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Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary

Introduction and main results

This paper is concerned with the Strichartz estimates for the generalized fractional Schrödinger equation on Riemannian manifold (M, g), namely

i∂ t u + Λ σ g u = 0, u(0) = u 0 ,
where σ ∈ (0, ∞)\{1} and Λ g = -∆ g with ∆ g is the Laplace-Beltrami operator associated to the metric g. When σ ∈ (0, 2)\{1}, it corresponds to the fractional Schrödinger equation discorved by N. Laskin (see [START_REF] Laskin | Fractional quantum mechanics and Lévy path integrals[END_REF], [START_REF]Fractional Schrödinger equation[END_REF]). When σ ≥ 2, it can be seen as a generalization of the Schrödinger equation σ = 2 (see e.g. [START_REF] Cazenave | Semilinear Schrdinger equations[END_REF], [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF]) or the fourth-order Schrödinger equation σ = 4 (see e.g. [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF], [START_REF]The cubic fourth-order Schrödinger equation[END_REF]). The Strichartz estimates play an important role in the study of nonlinear fractional Schrödinger equation on R d (see e.g. [START_REF] Cazenave | Semilinear Schrdinger equations[END_REF], [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF], [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF] [START_REF] Guo | Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations[END_REF], [START_REF] Cho | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF], [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF], [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF] and references therein). Let us recall the local in time Strichartz estimates for the fractional Schrödinger operator on R d . For σ ∈ (0, ∞)\{1} and I ⊂ R a bounded interval, one has

e itΛ σ u 0 L p (I,L q (R d )) ≤ C u 0 H γpq (R d ) , (1.1) 
where Λ = √ -∆ with ∆ is the free Laplace operator on R d and

γ pq = d 2 - d q - σ p
provided that (p, q) satisfies the fractional admissible condition, namely

p ∈ [2, ∞], q ∈ [2, ∞), (p, q, d) = (2, ∞, 2), 2 p + d q ≤ d 2 .
We refer to [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF] for a general version of these Strichartz estimates on R d . The main purpose of this paper is to prove Strichartz estimates for the fractional Schrödinger equation on R d equipped with a smooth bounded metric and on a compact manifold without boundary (M, g).

Let us firstly consider R d endowed with a smooth Riemannian metric g. Let g(x) = (g jk (x)) d j,k=1 be a metric on R d , and denote G(x) = (g jk (x)) d j,k=1 := g -1 (x). The Laplace-Beltrami operator associated to g reads

∆ g = d j,k=1 |g(x)| -1 ∂ j g jk (x)|g(x)|∂ k ,
where |g(x)| := det g(x) and denote P := -∆ g the self-adjoint realization of -∆ g . Recall that the principal symbol of P is

p(x, ξ) = ξ t G(x)ξ = d j,k=1
g jk (x)ξ j ξ k .

In this paper, we assume that g satisfies the following assumptions.

1. There exists C > 0 such that for all x, ξ ∈ R d ,

C -1 |ξ| 2 ≤ d j,k=1 g jk (x)ξ j ξ k ≤ C|ξ| 2 .
(1.2)

2. For all α ∈ N d , there exists C α > 0 such that for all x ∈ R d ,

|∂ α g jk (x)| ≤ C α , j, k ∈ {1, ...d}. (1.3) 
We firstly note that the elliptic assumption (1.2) implies that |g(x)| is bounded from below and above by positive constants. This shows that the space L q (R d , dvol g ), 1 ≤ q ≤ ∞ where dvol g = |g(x)|dx and the usual Lebesgue space L q (R d ) coincide. Thus in the sequel, the notation L q (R d ) stands for either L q (R d , dvol g ) or the usual Lebesgue space L q (R d ). It is well-known that under the assumptions (1.2) and (1.3), the Strichartz estimates (1.1) may fail at least for the Schrödinger equation (see [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], Appendix) and in this case (i.e. σ = 2) one has a loss of derivatives 1/p that is the right hand side of (1.1) is replaced by u 0 H 1/p (R d ) . Here we extend the result of Burq-Gérard-Tzvetkov to the more general setting, i.e. σ ∈ (0, ∞)\{1} and obtain Strichartz estimates with a "loss" of derivatives (σ -1)/p when σ ∈ (1, ∞) and without "loss" when σ ∈ (0, 1). Throughout this paper, the "loss" compares to (1.1).

Theorem 1.1. Consider R d , d ≥ 1 equipped with a smooth metric g satisfying (1.2), (1.3) and let I ⊂ R a bounded interval. If σ ∈ (1, ∞), then for all (p, q) fractional admissible, there exists C > 0 such that for all u 0 ∈ H γpq+(σ-1)/p (R d ),

e itΛ σ g u 0 L p (I,L q (R d )) ≤ C u 0 H γpq +(σ-1)/p (R d ) , (1.4) 
where Λ g := √ P and u H γ (R d ) := Λ g γ u L 2 (R d ) . If σ ∈ (0, 1), then (1.4) holds with γ pq + (σ -1)/p is replaced by γ pq .

The proof of (1.4) is based on the WKB approximation which is similar to [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]. Since we are working on manifolds, a good way is to decompose the semi-classical fractional Schrödinger operator, namely e ith -1 (hΛg) σ , in the localized frequency, i.e. e ith -1 (hΛg) σ ϕ(h 2 P ) for some ϕ ∈ C ∞ 0 (R\{0}). The main difficulty is that in general we do not have the exact form of the semi-classical fractional Laplace-Beltrami operator in order to use the usual construction in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF].

To overcome this difficulty we write e ith -1 (hΛg) σ ϕ(h 2 P ) as e -ith -1 ψ(h 2 P ) ϕ(h 2 P ) where ψ(λ) = φ(λ) √ λ σ for some φ ∈ C ∞ (R\{0}) satisfying φ = 1 near supp(ϕ). We then approximate ψ(h 2 P ) in terms of pseudo-differential operators and use the action of pseudo-differential operators on Fourier integral operators in order to construct an approximation for e -ith -1 ψ(h 2 P ) ϕ(h 2 P ). This approximation gives dispersive estimates for e ith -1 (hΛg) σ ϕ(h 2 P ) on some small time interval independent of h. After scaling in time, we obtain Strichartz estimates without "loss" of derivatives over time intervals of size h σ-1 . When σ ∈ (1, ∞), we can cumulate the bounded interval I by intervals of size h σ-1 and get estimates with (σ -1)/p loss of derivatives. In the case σ ∈ (0, 1), we can bound the estimates over time intervals of size 1 by the ones of size h σ-1 and have the same Strichartz estimates as on R d . It is not a surprise that we recover the same Strichartz estimates as in the free case for σ ∈ (0, 1) since e itΛ σ g has micro-locally the finite propagation speed property which is similar to σ = 1 for the (half) wave equation. Intuitively, if we consider the free Hamiltonian H(x, ξ) = |ξ| σ , then the spatial component of geodesic flow reads x(t) = x(0) + tσξ|ξ| σ-2 . After a time t, the distance d(x(t), x(0)) ∼ t|ξ| σ-1 t if σ -1 ≤ 0 and |ξ| ≥ 1. By decomposing the solution to i∂ t u -Λ σ u = 0 as u = k≥0 u k where u k = ϕ(2 -k D)u is localized near |ξ| ∼ 2 k ≥ 1, we see that after a time t, all components u k have traveled at a distance t from the data u k (0).

When R d is replaced by a compact Riemannian manifold without boundary (M, g), Burq-Gérard-Tzvetkov established in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] a Strichartz estimate with loss of 1/p derivatives for the Schrödinger equation, namely

e -it∆g u 0 L p (I,L q (M )) ≤ C u 0 H 1/p (M ) , (1.5) 
where (p, q) is a Schrödinger admissible pair, i.e.

p ∈ [2, ∞], q ∈ [2, ∞), (p, q, d) = (2, ∞, 2), 2 p + d q = d 2 .
When M is the flat torus T d , Bourgain showed in [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations[END_REF], [START_REF]Exponential sums and nonlinear Schrödinger equations[END_REF] some estimates related to (1.5) by means of the Fourier series for the Schrödinger equation. A direct consequence of these estimates is

e -it∆g u 0 L 4 (T×T d ) ≤ C u 0 H γ (T d ) , γ > d 4 - 1 2 . 
Let us now consider the linear fractional Schrödinger equation posed on a compact Riemannian manifold without boundary (M, g), namely

i∂ t u(t, m) + Λ σ g u(t, m) = F (t, m), (t, m) ∈ I × M, u(0, m) = u 0 (m), m ∈ M, (1.6) 
where Λ g := -∆ g with ∆ g is the Laplace-Beltrami operator on (M, g). We have the following result.

Theorem 1.2. Consider (M, g) a smooth compact boundaryless Riemannian manifold of dimension d ≥ 1 and let I ⊂ R a bounded interval. If σ ∈ (1, ∞), then for all (p, q) fractional admissible, there exists C > 0 such that for all u 0 ∈ H γpq+(σ-1)/p (M ),

e itΛ σ g u 0 L p (I,L q (M )) ≤ C u 0 H γpq +(σ-1)/p (M ) . (1.7) Moreover, if u is a (weak) solution to (1.6), then u L p (I,L q (M )) ≤ C u 0 H γpq +(σ-1)/p (M ) + F L 1 (I,H γpq +(σ-1)/p (M )) . (1.8)
If σ ∈ (0, 1), then (1.7) and (1.8) hold with γ pq in place of γ pq + (σ -1)/p.

Remark 1.3.

1. Note that the exponents γ pq + (σ -1)/p = d/2 -d/q -1/p in the right hand side of (1.7) and γ pq = d/2 -d/q -σ/p in the case of σ ∈ (0, 1) correspond to the gain of 1/p and σ/p derivatives respectively compared with the Sobolev embedding.

2. When M = T and σ ∈ (1, 2), the authors in [START_REF] Demirbas | Tzirakis Existence and Uniqueness theory for the fractional Schrödinger equation on the torus[END_REF] established estimates related to (1.7), namely

e itΛ σ g u 0 L 4 (T×T) ≤ C u 0 H γ (T) , γ > 2 -σ 8 .
(1.9)

3. Using the same argument as in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], we see that the endpoint homogeneous Strichartz estimate (1.7) are sharp on S d , d ≥ 3. Indeed, let u 0 be a zonal spherical harmonic associated to eigenvalue λ = k(d + k -1). One has (see e.g. [START_REF] Sogge | Oscillatory integrals and spherical harmonics[END_REF]) that for λ 1,

u 0 L q (S d ) ∼ √ λ s(q) , s(q) = d -1 2 - d q if 2(d + 1) d -1 ≤ q ≤ ∞.
Moreover, the above estimates are sharp. Therefore,

e itΛ σ g u 0 L 2 (I,L 2 (S d )) = e it √ λ σ u 0 L 2 (I,L 2 (S d )) ∼ √ λ s( 2 
)
, where 2 = 2d/(d -2) and s(2 ) = 1/2. This gives the optimality of (1.7) since

γ 22 + (σ - 1)/2 = 1/2.
A first application of Theorem 1.2 is the Strichartz estimates for the fractional wave equation posed on (M, g). Let us consider the following linear fractional wave equation posed on (M, g),

∂ 2 t v(t, m) + Λ 2σ g v(t, m) = G(t, m), (t, m) ∈ I × M, v(0, m) = v 0 (m), ∂ t v(0, m) = v 1 (m), m ∈ M. (1.10)
We refer to [START_REF] Chen | Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law[END_REF] or [START_REF] Herrmann | Fractional calculus, An introduction for physicists, 2nd Edition[END_REF] for the fractional wave equations.

Corollary 1.4. Consider (M, g) a smooth compact boundaryless Riemannian manifold of dimension d ≥ 1. Let I ⊂ R be a bounded interval and v a (weak) solution to (1.10). If σ ∈ (1, ∞), then for all (p, q) fractional admissible, there exists C > 0 such that for all

(v 0 , v 1 ) ∈ H γpq+(σ-1)/p (M ) × H γpq+(σ-1)/p-σ (M ), v L p (I,L q (M )) ≤ C [v](0) H γpq +(σ-1)/p (M ) + G L 1 (I,H γpq +(σ-1)/p-σ (M )) , (1.11) 
where

[v](0) H γpq +(σ-1)/p (M ) := v 0 H γpq +(σ-1)/p (M ) + v 1 H γpq +(σ-1)/p-σ (M ) .
If σ ∈ (0, 1), then (1.11) holds with γ pq + (σ -1)/p is replaced by γ pq .

We next give applications of the Strichartz estimates given in Theorem 1.2. Let us consider the following nonlinear fractional Schrödinger equation

i∂ t u(t, m) + Λ σ g u(t, m) = -µ(|u| ν-1 u)(t, m), (t, m) ∈ I × M, µ ∈ {±1}, u(0, m) = u 0 (m), m ∈ M. (NLFS)
with the exponent ν > 1. The number µ = 1 (resp. µ = -1) corresponds to the defocusing case (resp. focusing case). By a standard approximation (see e.g. [START_REF] Ginibre | Introduction aux équations de Schrödinger non linéaires[END_REF]), the following quantities are conserved by the flow of the equations,

M (u) = M |u(t, m)| 2 dvol g (m), E(u) = M 1 2 |Λ σ/2 g u(t, m)| 2 + µ ν + 1 |u(t, m)| ν+1 dvol g (m).
Theorem 1.2 gives the following local well-posedness result.

Theorem 1.5. Consider (M, g) a smooth compact boundaryless Riemannian manifold of dimension d ≥ 1. Let σ ∈ (1, ∞), ν > 1 and γ ≥ 0 be such that

γ > 1/2 -1/ max(ν -1, 4) when d = 1, γ > d/2 -1/ max(ν -1, 2) when d ≥ 2, (1.12)
and also, if ν is not an odd integer,

γ ≤ ν, (1.13) 
where γ is the smallest positive integer greater than or equal to γ. Then for all u 0 ∈ H γ (M ), there exist T > 0 and a unique solution to (NLFS) satisfying

u ∈ C([0, T ], H γ (M )) ∩ L p ([0, T ], L ∞ (M )),
for some p > max(ν -1, 4) when d = 1 and some p > max(ν -1, 2) when d ≥ 2. Moreover, the time T depends only on the size of the initial data, i.e. only on u 0 H γ (M ) . In the case σ ∈ (0, 1), the same result holds with (1.12) is replaced by

γ > 1/2 -σ/ max(ν -1, 4) when d = 1, γ > d/2 -σ/ max(ν -1, 2) when d ≥ 2. (1.14)
We note that when ν is an odd integer, we have

F (•) = -µ| • | ν-1 • ∈ C ∞ (C, C
) and when ν is not an odd integer, condition (1.13) implies f ∈ C γ (C, C). It allows us to use the fractional derivatives (see [START_REF] Kato | On nonlinear Schrödinger equations. II. H s -solutions and unconditional wellposedness[END_REF], [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF]).

As a direct consequence of Theorem 1.5 and the conservation laws, we have the following global well-posedness result for the defocusing nonlinear fractional Schrödinger equation, i.e. µ = 1 in (NLFS).

Corollary 1.6. Consider (M, g) a smooth compact boundaryless Riemannian manifold of dimension d ≥ 1. Let σ ∈ (1/2, ∞)\{1} when d = 1, σ > d -1 when d ≥ 2 and ν > 1 be such that if ν is not an odd integer, σ/2 ≤ ν. Then for all u 0 ∈ H σ/2 (M ), there exists a unique global solution u ∈ C(R, H σ/2 (M )) ∩ L p loc (R, L ∞ (M )) to the defocusing (NLFS) for some p > max(ν -1, 4) when d = 1 and some p > max(ν -1, 2) when d ≥ 2.

We finally give applications of Strichartz estimates given in Corollary 1.4 for the nonlinear fractional wave equation. Let us consider the following nonlinear fractional wave equation posed on (M, g),

∂ 2 t v(t, m) + Λ 2σ g v(t, m) = -µ(|v| ν-1 v)(t, m), (t, m) ∈ I × M, µ ∈ {±1}, v(0, m) = v 0 (m), ∂ t v(0, m) = v 1 (m), m ∈ M. (NLFW)
with σ ∈ (0, ∞)\{1} and the exponent ν > 1. In this case, the following energy is conserved under the flow of the equation, i.e.

E(v, ∂ t v) = M 1 2 |∂ t v(t, m)| 2 + 1 2 |Λ σ g v(t, m)| 2 + µ ν + 1 |v(t, m)| ν+1 dvol g (m).
Using the Strichartz estimates given in Corollary 1.4, we have the following local well-posedness result.

Theorem 1.7. Consider (M, g) a smooth compact boundaryless Riemannian manifold of dimension d ≥ 1. Let σ ∈ (1, ∞), ν > 1 and γ ≥ 0 be as in (1.12) and also, if ν is not an odd integer, (1.13). Then for all v 0 ∈ H γ (M ) and v 1 ∈ H γ-σ (M ), there exist T > 0 and a unique solution to (NLFW) satisfying

v ∈ C([0, T ], H γ (M )) ∩ C 1 ([0, T ], H γ-σ (M )) ∩ L p ([0, T ], L ∞ (M )),
for some p > max(ν -1, 4) when d = 1 and some p > max(ν -1, 2) when d ≥ 2. Moreover, the time T depends only on the size of the initial data, i.e. only on [v](0) H γ (M ) . In the case σ ∈ (0, 1), the same result holds with (1.14) in place of (1.12).

We organize this paper as follows. In Section 2, we prove the Strichartz estimates on R d endowed with the smooth bounded metric g. In Section 3, we will give the proof of Strichartz estimates on compact manifolds (M, g). We then prove the well-posedness results for the pure power-type of nonlinear fractional Schrödinger and wave equations on compact manifolds without boundary in Section 4.

Notation. In this paper the constant may change from line to line and will be denoted by the same C. The notation A B means that there exists C > 0 such that A ≤ CB, and the one A ∼ B means that A B and B A. For Banach spaces X and Y , the notation • L(X,Y ) denotes the operator norm from X to Y and • L(X) := • L(X,X) .

2 Strichartz estimates on (R d , g)

Reduction of problem

In this subsection, we give a reduction of Theorem 1.1 due to the Littlewood-Paley decomposition. To do so, we firstly recall some useful facts on pseudo-differential calculus. For m ∈ R, we consider the symbol class S(m) the space of smooth functions a on R 2d satisfying

|∂ α x ∂ β ξ a(x, ξ)| ≤ C αβ ξ m-|β| ,
for all x, ξ ∈ R d . We also need S(-∞) := ∩ m∈R S(m). We define the semi-classical pseudodifferential operator with a symbol a ∈ S(m) by

Op h (a)u(x) := (2πh) -d R 2d e ih -1 (x-y)ξ a(x, ξ)u(y)dydξ,
where u ∈ S (R d ). The following result gives the L(L q (R d ), L r (R d ))-bound for pseudo-differential operators (see e.g. [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF], Proposition 2.4).

Proposition 2.1. Let m > d and a be a continuous function on R 2d smooth with respect to the second variable satisfying for all β ∈ N d , there exists

C β > 0 such that for all x, ξ ∈ R d , |∂ β ξ a(x, ξ)| ≤ C β ξ -m .
Then for all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

Op h (a) L(L q (R d ),L r (R d ) ≤ Ch -( d q -d r ) .
For a given f ∈ C ∞ 0 (R), we can approximate f (h 2 P ) in term of pseudo-differential operators. We have the following result (see e.g [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF], [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] or [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]). Proposition 2.2. Consider R d equipped with a smooth metric g satisfying (1.2) and (1.3). Then for a given f ∈ C ∞ 0 (R), there exist a sequence of symbols q j ∈ S(-∞) satisfying q 0 = f • p and supp(q j ) ⊂ supp(f • p) such that for all N ≥ 1,

f (h 2 P ) = N -1 j=0 h j Op h (q j ) + h N R N (h),
and for all m ≥ 0 and all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

R N (h) L(L q (R d ),L r (R d )) ≤ Ch -( d q -d r ) . R N (h) L(H -m (R d ),H m (R d )) ≤ Ch -2m .
A direct consequence of Proposition 2.1 and Proposition 2.2 is the following

L(L q (R d ), L r (R d ))- bound for f (h 2 P ). Proposition 2.3. Let f ∈ C ∞ 0 (R). Then for all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1], f (h 2 P ) L(L q (R d ),L r (R d )) ≤ Ch -( d q -d r ) .
Next, we need the following version of the Littlewood-Paley decomposition (see e.g. [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] or [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF]).

Proposition 2.4. There exist

ϕ 0 ∈ C ∞ 0 (R) and ϕ ∈ C ∞ 0 (R\{0}) such that ϕ 0 (P ) + h -1 :dya ϕ(h 2 P ) = Id, where h -1 : dya means h -1 = 2 k , k ∈ N\{0}. Moreover, for all q ∈ [2, ∞), there exists C > 0 such that for all u ∈ S (R d ), u L q (R d ) ≤ C h -1 :dya ϕ(h 2 P )u 2 L q (R d ) 1/2 + C u L 2 (R d ) .
We end this subsection with the following reduction.

Proposition 2.5. Consider R d , d ≥ 1 equipped with a smooth metric g satisfying (1.2), (1.3).

Let σ ∈ (0, ∞)\{1} and ϕ ∈ C ∞ 0 (R\{0}). If there exist t 0 > 0 small enough and C > 0 such that for all u 0 ∈ L 1 (R d ) and all h ∈ (0, 1],

e ith -1 (hΛg) σ ϕ(h 2 P )u 0 L ∞ (R d ) ≤ Ch -d (1 + |t|h -1 ) -d/2 u 0 L 1 (R d ) , (2.1) 
for all t ∈ [-t 0 , t 0 ], then Theorem 1.1 holds true.

The proof of Proposition 2.5 bases on the following version of T T -criterion (see [START_REF] Keel | Endpoint Strichartz estimates[END_REF], [START_REF] Zworski | Semiclassical Analysis[END_REF] or [START_REF] Zhang | Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds[END_REF]).

Theorem 2.6. Let (X, M, µ) be a σ-finite measured space, and T : R → B(L 2 (X, M, µ)) be a weakly measurable map satisfying, for some constants C, γ, δ > 0,

T (t) L 2 (X)→L 2 (X) ≤ C, t ∈ R, (2.2) 
T (t)T (s) L 1 (X)→L ∞ (X) ≤ Ch -δ (1 + |t -s|h -1 ) -τ , t, s ∈ R. (2.3)
Then for all pair (p, q) satisfying

p ∈ [2, ∞], q ∈ [1, ∞], (p, q, δ) = (2, ∞, 1), 1 p ≤ τ 1 2 - 1 q , one has T (t)u L p (R,L q (X)) ≤ Ch -κ u L 2 (X)
,

where κ = δ(1/2 -1/q) -1/p.
Proof of Proposition 2.5. Using the energy estimates and dispersive estimates (2.1), we can apply Theorem 2.6 for

T (t) = 1 [-t0,t0] (t)e ith -1 (hΛg) σ ϕ(h 2 P ), δ = d, τ = d/2 and get e ith -1 (hΛg) σ ϕ(h 2 P )u 0 L p ([-t0,t0],L q (R d )) ≤ Ch -(d/2-d/q-1/p) u 0 L 2 (R d ) .
By scaling in time, we have

e itΛ σ g ϕ(h 2 P )u 0 L p (h σ-1 [-t0,t0],L q (R d )) = h (σ-1)/p e ith -1 (hΛg) σ ϕ(h 2 P )u 0 L p ([-t0,t0],L q (R d )) ≤ Ch -γpq u 0 L 2 (R d ) . (2.4) 
Using the group property and the unitary property of Schrödinger operator e itΛ σ g , we have the same estimates as in (2.4) for all intervals of size 2h σ-1 . Indeed, for any interval I h of size 2h σ-1 , we can write

I h = [c -h σ-1 t 0 , c + h σ-1 t 0 ] for some c ∈ R and e itΛ σ g ϕ(h 2 P )u 0 L p (I h ,L q (R d )) = e itΛ σ g ϕ(h 2 P )e icΛ σ g u 0 L p (h σ-1 [-t0,t0];L q (R d )) ≤ Ch -γpq e icΛ σ g u 0 L 2 (R d ) = Ch -γpq u 0 L 2 (R d ) .
In the case σ ∈ (1, ∞), we use a trick given in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], i.e. cumulating O(h 1-σ ) estimates on intervals of length 2h σ-1 to get estimates on any finite interval I. Precisely, by writing I as a union of N intervals I h of length 2h σ-1 with N h 1-σ , we have

e itΛ σ g ϕ(h 2 P )u 0 L p (I,L q (R d )) ≤ h I h e itΛ σ g ϕ(h 2 P )u 0 p L q (R d ) dt 1/p ≤CN 1/p h -γpq u 0 L 2 (R d ) ≤ Ch -γpq-(σ-1)/p u 0 L 2 (R d ) .
(2.5)

In the case σ ∈ (0, 1), we can obviously bound the estimates over time intervals of size 1 by the ones of size h σ-1 and obtain

e itΛ σ g ϕ(h 2 P )u 0 L p (I,L q (R d )) ≤ Ch -γpq u 0 L 2 (R d ) . (2.6) 
Moreoer, we can replace the norm u 0 L 2 (R d ) in the right hand side of (2.5) and (2.6) by ϕ(h 2 P )u 0 L 2 (R d ) . Indeed, by choosing φ ∈ C ∞ 0 (R\{0}) satisfying φ = 1 near supp(ϕ), we can write e ith -1 (hΛg) σ ϕ(h 2 P )u 0 = e ith -1 (hΛg) σ φ(h 2 P )ϕ(h 2 P )u 0 and apply (2.5) and (2.6) with φ in place of ϕ. Now, by using the Littlewood-Paley decomposition given in Proposition 2.4 and the Minkowski inequality, we have for all (p, q) Schrödinger admissible,

u L p (I,L q (R d )) ≤ C h -1 :dya ϕ(h 2 P )u 2 L p (I,L q (R d )) 1/2 + C u L p (I,L 2 (R d )) . (2.7) 
We now apply (2.7) for u = e itΛ σ g u 0 together with (2.5) and get for σ ∈ (1, ∞),

e itΛ σ g u 0 L p (I,L q (R d )) ≤ C h -1 :dya h -2(γpq+(σ-1)/p) ϕ(h 2 P )u 0 2 L 2 (R d ) 1/2 + C u 0 L 2 (R d ) .
Here the boundedness of I is crucial to have a second bound in the right hand side. The almost orthogonality and the fact that γ pq + (σ -1)/p ≥ 1/p imply for σ ∈ (1, ∞),

e itΛ σ g u 0 L p (I,L q (R d )) ≤ C u 0 H γpq +(σ-1)/p (R d ) .
Similar results hold for σ ∈ (0, 1) with γ pq in place of γ pq + (σ -1)/p by using (2.6) instead of (2.5). This completes the proof.

The WKB approximation

This subsection is devoted to the proof of dispersive estimates (2.1). To do so, we will use the so called WKB approximation (see [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF], [START_REF] Kapitanski | Some generalizations of the Strichartz-Brenner inequality[END_REF] or [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]), i.e. to approximate e ith -1 (hΛg) σ ϕ(h 2 P ) in terms of Fourier integral operators. The following result is the main goal of this subsection. Let us denote U h (t) := e ith -1 (hΛg) σ for simplifying the presentation.

Theorem 2.7. Let σ ∈ (0, ∞)\{1}, ϕ ∈ C ∞ 0 (R\{0}), J a small neighborhood of supp(ϕ) not containing the origin, a ∈ S(-∞) with supp(a) ⊂ p -1 (supp(ϕ)). Then there exist t 0 > 0 small enough, S ∈ C ∞ ([-t 0 , t 0 ] × R 2d ) and a sequence of functions a j (t, •, •) ∈ S(-∞) satisfying supp(a j (t, •, •)) ⊂ p -1 (J) uniformly with respect to t ∈ [-t 0 , t 0 ] such that for all N ≥ 1,

U h (t)Op h (a)u 0 = J N (t)u 0 + R N (t)u 0 , where J N (t)u 0 (x) = N -1 j=0 h j J h (S(t), a j (t))u 0 (x) = N -1 j=0 h j (2πh) -d R 2d
e ih -1 (S(t,x,ξ)-yξ) a j (t, x, ξ)u 0 (y)dydξ , J N (0) = Op h (a) and the remainder R N (t) satisfies for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

R N (t) L(L 2 (R d )) ≤ Ch N -1 .
(2.8)

Moreover, there exists a constant C > 0 such that for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

J N (t) L(L 1 (R d ),L ∞ (R d )) ≤ Ch -d (1 + |t|h -1 ) -d/2 .
(2.9)

Remark 2.8. Before entering to the proof of Theorem 2.7, let us prove (2.1). We firstly note that the study of dispersive estimates for U h (t)ϕ(h 2 P ) is reduced to the one of U h (t)Op h (a) with a ∈ S(-∞) satisfying supp(a) ⊂ p -1 (supp(ϕ)). Indeed, by using the parametrix of ϕ(h 2 P ) given in Proposition 2.2, we have for all N ≥ 1,

ϕ(h 2 P ) = N -1 j=0 h j Op h (q j ) + h N RN (h),
for some qj ∈ S(-∞) satisfying supp(q j ) ⊂ p -1 (supp(ϕ)) and the remainder satisfies for all

m ≥ 0, RN (h) L(H -m (R d ),H m (R d )) ≤ Ch -2m . Since U h (t) is bounded in H m (R d ), the Sobolev embedding with m > d/2 implies U h (t) RN (h) L(L 1 (R d ),L ∞ (R d )) ≤ U h (t) RN (h) L(H -m (R d ),H m (R d )) ≤ Ch -2m .
By choosing N large enough, the remainder term is bounded in

L(L 1 (R d ), L ∞ (R d )) independent of t, h.
We next show that Theorem 2.7 gives dispersive estimates for U h (t)Op h (a), i.e.

U h (t)Op h (a) L(L 1 (R d ),L ∞ (R d )) ≤ Ch -d (1 + |t|h -1 ) -d/2 , (2.10) 
for all h ∈ (0, 1] and all t ∈ [-t 0 , t 0 ]. Indeed, by choosing φ ∈ C ∞ 0 (R\{0}) which satisfies φ = 1 near supp(ϕ), we can write

U h (t)Op h (a) = φ(h 2 P )U h (t)Op h (a) φ(h 2 P ) + (1 -φ)(h 2 P )U h (t)Op h (a) φ(h 2 P ) + U h (t)Op h (a)(1 -φ)(h 2 P ).
(2.11)

Using Theorem 2.7, the first term is written as

φ(h 2 P )U h (t)Op h (a) φ(h 2 P ) = φ(h 2 P )J N (t) φ(h 2 P ) + φ(h 2 P )R N (t) φ(h 2 P ).
We learn from Proposition 2.2 and (2.9) that the first term in the right hand side is of size

O L(L 1 (R d ),L ∞ (R d )) (h -d (1 + |t|h -1 ) -d/2
) and the second one is of size

O L(L 1 (R d ),L ∞ (R d )) (h N -1-d ).
For the second and the third term of (2.11), we compose to the left and the right hand side with (P + 1) m for m ≥ 0 and use the parametrix of (1 -φ)(h 2 P ). By composing pseudo-differential operators with disjoint supports, we obtain terms of size

O L(L 2 (R d )) (h ∞ ).
The Sobolev embedding with m > d/2 implies that the second and the third terms are of size

O L(L 1 (R d ),L ∞ (R d )) (h ∞ ).
By choosing N large enough, we have (2.10).

Proof of Theorem 2.7. The proof is done by several steps.

Step 1: Construction of the phase. Due to the support of a, we can replace (hΛ g ) σ by ψ(h 2 P ) where ψ(λ) = φ√ λ σ with φ ∈ C ∞ 0 (R\{0}) and φ = 1 on J. The interest of this replacement is that we can use Proposition 2.2 to write

ψ(h 2 P ) = N -1 k=0 h k Op h (q k ) + h N R N (h), (2.12) 
where

q k ∈ S(-∞) satisfying q 0 (x, ξ) = ψ • p(x, ξ), supp(q k ) ⊂ p -1 (supp(ψ)) and R N (h) is bounded in L 2 (R d ) uniformly in h ∈ (0, 1]
. The standard Hamilton-Jacobi equation gives the following result (see e.g. [START_REF] Robert | Autour de l'approximation semi-classique[END_REF] or Appendix A).

Proposition 2.9. There exist t 0 > 0 small enough and a unique solution S ∈ C ∞ ([-t 0 , t 0 ]×R 2d ) to the Hamilton-Jacobi equation

∂ t S(t, x, ξ) + q 0 (x, ∇ x S(t, x, ξ)) = 0, S(0, x, ξ) = x • ξ. (2.13)
Moreover, for all α, β ∈ N d , there exists C αβ > 0 such that for all t ∈ [-t 0 , t 0 ] and all x, ξ ∈ R d ,

|∂ α x ∂ β ξ (S(t, x, ξ) -x • ξ) | ≤ C αβ |t|, |α + β| ≥ 1, (2.14) 
|∂ α x ∂ β ξ (S(t, x, ξ) -x • ξ + tq 0 (x, ξ))| ≤ C αβ |t| 2 .
(2.15)

Step 2: Construction of amplitudes. The Duhamel formula yields

e ith -1 ψ(h 2 P ) Op h (a)u 0 = J N (t)u 0 -ih -1 t 0 e i(t-s)h -1 ψ(h 2 P ) hD s -ψ(h 2 P ) J N (s)u 0 ds.
We want the last term to have a small contribution. To do this, we need to consider the action of hD t -ψ(h 2 P ) on J N (t). We first compute the action of hD t on J N (t) and have

hD t • J N (t) = N l=0 h l J h (S(t), b l (t)),
where

b 0 (t, x, ξ) = ∂ t S(t, x, ξ)a 0 (t, x, ξ), b l (t, x, ξ) = ∂ t S(t, x, ξ)a l (t, x, ξ) + D t a l-1 (t, x, ξ), l = 1, ..., N -1, b N (t, x, ξ) = D t a N -1 (t, x, ξ).
In order to study the action of ψ(h 2 P ) on J N (t), we firstly need the parametrix of ψ(h 2 P ) given in (2.12). We also need the following action of a pseudo-differential operator on a Fourier integral operator (see e.g. [START_REF] Robert | Autour de l'approximation semi-classique[END_REF], [START_REF] Ruzhansky | Global calculus of Fourier integral operators, weighted estimates, and applications to global analysis of hyperbolic equations[END_REF] or [START_REF] Bouclet | Distributions spectrales pour des opérateurs perturbés[END_REF], Appendix).

Proposition 2.10. Let b ∈ S(-∞) and c ∈ S(-∞) and S ∈ C ∞ (R 2d ) satisfy for all α, β ∈ N d , |α + β| ≥ 1, there exists C αβ > 0, |∂ α x ∂ β ξ (S(x, ξ) -x • ξ)| ≤ C αβ , ∀x, ξ ∈ R d . Then Op h (b) • J h (S, c) = N -1 j=0 h j J h (S, (b c) j ) + h N J h (S, r N (h)),
where (b c) j is an universal linear combination of In particular, we have

∂ β η b(x, ∇ x S(x, ξ))∂ β-α x c(x, ξ)∂ α1 x S(x, ξ) • • • ∂ α k x S(x, ξ), with α ≤ β, α 1 + • • • α k = α
(b c) 0 (x, ξ) = b(x, ∇ x S(x, ξ))c(x, ξ), i(b c) 1 (x, ξ) = ∇ η b(x, ∇ x S(x, ξ)) • ∇ x c(x, ξ) + 1 2 tr ∇ 2 η,η b(x, ∂ x S(x, ξ)) • ∇ 2 x,x S(x, ξ) c(x, ξ).
Using (2.12), Proposition 2.9, we can apply Proposition 2.10 and obtain

ψ(h 2 P ) • J N (t) = N -1 k=0 h k Op h (q k ) • N -1 j=0 h j J h (S(t), a j (t)) + h N R N (h)J N (t), = N k+j+l=0 h k+j+l J h (S(t), (q k a j (t)) l ) + h N +1 J h (S(t), r N +1 (h, t)) + h N R N (h)J N (t),
This implies that

(hD t -ψ(h 2 P ))J N (t) = N r=0 h r J h (S(t), c r (t)) -h N R N (h)J N (t) -h N +1 J h (S(t), r N +1 (h, t)),
where

c 0 (t) = ∂ t S(t)a 0 (t) -q 0 (x, ∇ x S(t))a 0 (t), c r (t) = ∂ t S(t)a r (t) -q 0 (x, ∇ x S(t))a r (t) + D t a r-1 (t) -(q 0 a r-1 (t)) 1 -(q 1 a r-1 (t)) 0 - k+j+l=r j≤r-2 (q k a j (t)) l , r = 1, ..., N -1, c N (t) = D t a N -1 (t) -(q 0 a N -1 (t)) 1 -(q 1 a N -1 (t)) 0 - k+j+l=N j≤N -2
(q k a j (t)) l .

Thanks to the Hamilton-Jacobi equation given in Proposition 2.9, the system of equations c r (t) = 0 for r = 0, ..., N leads to the following transport equations

D t a 0 (t, x, ξ) -(q 0 a 0 (t)) 1 -(q 1 a 0 (t)) 0 = 0, (2.16 
)

D t a r (t, x, ξ) -(q 0 a r (t)) 1 -(q 1 a r (t)) 0 = k+j+l=r+1 j≤r-1 (q k a j (t)) l , (2.17) 
for r = 1, ..., N -1 with initial data a 0 (0, x, ξ) = a(x, ξ), a r (0, x, ξ) = 0, r = 1, ..., N -1.

(2.18)

We can rewrite these equations as

∂ t a 0 (t, x, ξ) -V (t, x, ξ) • ∇ x a 0 (t, x, ξ) -f (t, x, ξ)a 0 (t, x, ξ) = 0, ∂ t a r (t, x, ξ) -V (t, x, ξ) • ∇ x a r (t, x, ξ) -f (t, x, ξ)a r (t, x, ξ) = g r (t, x, ξ),
for r = 1, ..., N -1 where

V (t, x, ξ) = (∂ ξ q 0 )(x, ∇ x S(t, x, ξ)), f (t, x, ξ) = 1 2 tr ∇ 2 ξ q 0 (x, ∇ x S(t, x, ξ)) • ∇ 2 x S(t, x, ξ) + iq 1 (x, ∇ x S(t, x, ξ)), g r (t, x, ξ) = i k+j+l=r+1 j≤r-1
(q k a j (t)) l .

We now construct a r (t, x, ξ), r = 0, ..., N -1 by the method of characteristics as follows. Let Z(t, s, x, ξ) be the flow associated to V (t, x, ξ), i.e.

∂ t Z(t, s, x, ξ) = -V (t, Z(t, s, x, ξ), ξ), Z(s, s, x, ξ) = x.
By the fact that q 0 ∈ S(-∞) and (2.14) and using the same trick as in Lemma A.1, we have

|∂ α x ∂ β ξ (Z(t, s, x, ξ) -x)| ≤ C αβ |t -s|, (2.19) 
for all |t|, |s| ≤ t 0 . Now, we can define iteratively

a 0 (t, x, ξ) = a(Z(0, t, x, ξ), ξ) exp t 0 f (s, Z(s, t, x, ξ), ξ)ds , a r (t, x, ξ) = t 0 g r (s, Z(s, t, x, ξ), ξ) exp t τ
f (τ, Z(τ, t, x, ξ), ξ)dτ ds, for r = 1, ..., N -1. These functions are respectively solutions to (2.16) and (2.17) with initial data (2.18) respectively. Since supp(a) ⊂ p -1 (supp(ϕ)), we see that for t 0 > 0 small enough, (Z(t, s, p -1 (supp(ϕ))), ξ) ∈ p -1 (J) for all |t|, |s| ≤ t 0 . By extending a r (t, x, ξ) on R 2d by a r (t, x, ξ) = 0 for (x, ξ) / ∈ p -1 (J), the functions a r are still smooth in (x, ξ) ∈ R 2d . Using the fact that a, q k ∈ S(-∞), (2.15) and (2.19), we have for t 0 > 0 small enough, a r (t, •, •) is a bounded set of S(-∞) and supp(a r (t, •, •)) ∈ p -1 (J) uniformly with respect to t ∈ [-t 0 , t 0 ].

Step 3: L 2 -boundedness of remainder. We will use the so called Kuranishi trick (see e.g. [START_REF] Robert | Autour de l'approximation semi-classique[END_REF], [START_REF] Mizutani | Strichartz estimates for Schrödinger equations with variable coefficients and potentials at most linear at spatial infinity[END_REF]). We firstly have

R N (t) = ih N -1 t 0 e i(t-s)h -1 ψ(h 2 P ) R N (h)J N (s) + hJ h (S(s), r N +1 (h, s)) ds.
Using that e i(t-s)h -1 ψ(h 2 P ) is unitary in L 2 (R d ) and Proposition 2.2 that R N (h) is bounded in L(L 2 (R d )) uniformly in h ∈ (0, 1], the estimate (2.8) follows from the L 2 -boundedness of J h (S(t), a(t)) uniformly with respect to h ∈ (0, 1] and t ∈ [-t 0 , t 0 ] where (a(t)) t∈[-t0,t0] is bounded in S(-∞). For t ∈ [-t 0 , t 0 ], we define a map on R 3d by Λ(t, x, y, ξ) := 1 0 ∇ x S(t, y + s(x -y), ξ)ds.

Using (2.14), we have for t 0 > 0 small enough,

|∇ x • ∇ ξ S(t, x, ξ) -I R d | 1, ∀x, ξ ∈ R d .
This implies that

|∇ ξ Λ(t, x, y, ξ)| ≤ 1 0 |∇ ξ • ∇ x S(t, y + s(x -y), ξ)|ds 1, ∀t ∈ [-t 0 , t 0 ].
Thus for all t ∈ [-t 0 , t 0 ] and all x, y ∈ R d , the map ξ → Λ(t, x, y, ξ) is a diffeomorphism from R d onto itself. If we denote ξ → Λ -1 (t, x, y, ξ) the inverse map, then Λ -1 (t, x, y, ξ) satisfies (see [START_REF] Bouclet | Distributions spectrales pour des opérateurs perturbés[END_REF]) that: for all α, α , β ∈ N d , there exists C αα β > 0 such that

|∂ α x ∂ α y ∂ β ξ (Λ -1 (t, x, y, ξ) -ξ)| ≤ C αα β |t|, (2.20) 
for all t ∈ [-t 0 , t 0 ]. Now, by change of variable ξ → Λ -1 (t, x, y, ξ), the action J h (S(t), a(t)) • J h (S(t), a(t)) becomes (see [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]) a semi-classical pseudo-differential operator with the amplitude a(t, x, Λ -1 (t, x, y, ξ))a(t, y, Λ -1 (t, x, y, ξ)| det ∂ ξ Λ -1 (t, x, y, ξ)|.

Using the fact that (a(t)) t∈[-t0,t0] is bounded in S(-∞) and (2.20), this amplitude and its derivatives are bounded. By the Calderón-Vaillancourt theorem, we have the result.

Step 4: Dispersive estimates. We prove the result for a general term, namely J h (S(t), a(t)) with (a(t)) t∈[-t0,t0] is bounded in S(-∞) satisfying supp(a(t, •, •)) ∈ p -1 (J) for some small neighborhood J of supp(ϕ) not containing the origin uniformly with respect to t ∈ [-t 0 , t 0 ]. The kernel of J h (S(t), a(t)) reads

K h (t, x, y) = (2πh) -d R d
e ih -1 (S(t,x,ξ)-yξ) a(t, x, ξ)dξ.

It suffices to show for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

|K h (t, x, y)| ≤ Ch -d (1 + |t|h -1 ) -d/2
, for all x, y ∈ R d . We only consider the case t ≥ 0, for t ≤ 0 it is similar. Since the amplitude is compactly supported in ξ and a(t, x, ξ) is bounded uniformly in t ∈ [-t 0 , t 0 ] and x, y ∈ R d , we have

|K h (t, x, y)| ≤ Ch -d . If 0 ≤ t ≤ h or 1 + th -1 ≤ 2, then |K h (t, x, y)| ≤ Ch -d ≤ Ch -d (1 + th -1 ) -d/2 .
We now can assume that h ≤ t ≤ t 0 and write the phase function as (S(t, x, ξ) -yξ)/t with the parameter λ = th -1 ≥ 1. By the choice of φ (see Step 1 for φ), we see that on the support of the amplitude, i.e. on p -1 (J), q 0 (x, ξ) = p(x, ξ) σ . Thus we apply (2.15) to write

S(t, x, ξ) = x • ξ -t p(x, ξ) σ + t 2 1 0 (1 -θ)∂ 2 t S(θt, x, ξ)dθ.
Next, using that p(x, ξ) = ξ t G(x)ξ = |η| 2 with η = G(x)ξ or ξ = g(x)η where g(x) = (g jk (x)) d j,k=1 and G(x) = (g(x)) -1 = (g jk (x)) d j,k=1 , the kernel can be written as

K h (t, x, y) = (2πh) -d R d
e iλΦ(t,x,y,η) a(t, x, g(x)η)|g(x)|dη, where

Φ(t, x, y, η) = g(x)(x -y) • η t -|η| σ + t 1 0 (1 -θ)∂ 2 t S(θt, x, g(x)η)dθ.
Recall that |g(x)| := det g(x). By (1.2), G(x) and g(x) are bounded from below and above uniformly in x ∈ R d . This implies that η still belongs to a compact set of R d away from zero. We denote this compact support by K. The gradient of the phase is

∇ η Φ(t, x, y, η) = g(x)(x -y) t -ση|η| σ-2 + t 1 0 (1 -θ)(∇ ξ ∂ 2 t S)(θt, x, g(x)η)dθ g(x).
Let us consider the case | g(x)(x -y)/t| ≥ C for some constant C large enough. Thanks to the Hamilton-Jacobi equation (2.13) (see also (A.9), (A.2) and Lemma A.2) and the fact σ ∈ (0, ∞)\{1}, we have for t 0 small enough,

|∇ η Φ| ≥ | g(x)(x -y)/t| -σ|η| σ-1 -O(t) ≥ C 1 .
Hence we can apply the non stationary theorem, i.e. by integrating by parts with respect to η together with the fact that for all

β ∈ N d satisfying |β| ≥ 2, |∂ β η Φ(t, x, y, η)| ≤ C β , we have for all N ≥ 1, |K h (t, x, y)| ≤ Ch -d λ -N = Ch -d (1 + th -1 ) -d/2 ,
provided N is taken greater than d/2. Thus we can assume that | g(x)(x -y)/t| ≤ C. In this case, we write

∇ 2 η Φ(t, x, y, η) = -σ|η| σ-2 I R d + (σ -2) η • η t |η| 2 + O(t).
Using that

det σ|η| σ-2 I R d + (σ -2) η • η t |η| 2 = σ d |σ -1 η| (σ-2)d ≥ C.
Therefore, for t 0 > 0 small enough, the map η → ∇ η Φ(t, x, y, η) from a neighborhood of K to its range is a local diffeomorphism. Moreover, for all β ∈ N d satisfying |β| ≥ 1, we have

|∂ β η Φ(t, x, y, η)| ≤ C β .
The stationary phase theorem then implies that for all t ∈ [h, t 0 ] and all

x, y ∈ R d satisfying | g(x)(x -y)/t| ≤ C, |K h (t, x, y)| ≤ Ch -d λ -d/2 ≤ Ch -d (1 + th -1 ) -d/2 .
This completes the proof.

Strichartz estimates on compact manifolds

In this section, we give the proof of Strichartz estimates on compact manifolds without boundary given in Theorem 1.2.

Notations

Coordinate charts and partition of unity. Let M be a smooth compact Riemannian manifold without boundary. A coordinate chart (U κ , V κ , κ) on M comprises an homeomorphism κ between an open subset U κ of M and an open subset

V κ of R d . Given φ ∈ C ∞ 0 (U κ )(resp. χ ∈ C ∞ 0 (V κ )), we define the pushforward of φ (resp. pullback of χ) by κ * φ := φ • κ -1 (resp. κ * χ := χ • κ). For a given finite cover of M , namely M = ∪ κ∈F U κ with #F < ∞, there exist φ κ ∈ C ∞ 0 (U κ ), κ ∈ F such that 1 = κ φ κ (m) for all m ∈ M .
Laplace-Beltrami operator. For all coordinate chart (U κ , V κ , κ), there exists a symmetric positive definite matrix g κ (x) := (g κ jk (x)) d j,k=1 with smooth and real valued coefficients on V κ such that the Laplace-Beltrami operator P = -∆ g reads in (U κ , V κ , κ) as

P κ := -κ * ∆ g κ * = - d j,k=1 |g κ (x)| -1 ∂ j |g κ (x)|g jk κ (x)∂ k ,
where |g κ (x)| = det g κ (x) and (g j,k κ (x)) d j,k=1 := (g κ (x)) -1 . The principal symbol of P κ is

p κ (x, ξ) = d j,k=1
g jk κ (x)ξ j ξ k .

Functional calculus

In this subsection, we recall well-known facts on pseudo-differential calculus on manifolds (see e.g. [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]). For a given a ∈ S(m), we define the operator

Op κ h (a) := κ * Op h (a)κ * . (3.1)
If nothing is specified about a ∈ S(m), then the operator Op κ h (a) maps

C ∞ 0 (U κ ) to C ∞ (U κ ). In the case supp(a) ⊂ V κ × R d , we have that Op κ h (a) maps C ∞ 0 (U κ ) to C ∞ 0 (U κ ) hence to C ∞ (M ).
We have the following result.

Proposition 3.1. Let φ κ ∈ C ∞ 0 (U κ
) be an element of a partition of unity on M and φκ , φκ ∈ C ∞ 0 (U κ ) be such that φκ = 1 near supp(φ κ ) and φκ = 1 near supp( φκ ). Then for all N ≥ 1, all z ∈ [0, +∞)and all h ∈ (0, 1],

(h 2 P -z) -1 φ κ = N -1 j=0 h j φκ Op κ h (q κ,j (z))φ κ + h N R N (z, h),
where q κ,j (z) ∈ S(-2 -j) is a linear combination of a k (p κ -z) -1-k for some symbol a k ∈ S(2k -j) independent of z and

R N (z, h) = -(h 2 P -z) -1
φκ Op κ h (r κ,N (z, h))φ κ , where r κ,N (z, h) ∈ S(-N ) with seminorms growing polynomially in 1/dist(z, R + ) uniformly in h ∈ (0, 1] as long as z belongs to a bounded set of C\[0, +∞).

Proof. Let us set χ κ := κ * φ κ , similarly for χκ and χκ and get χ κ , χκ , χκ ∈ C ∞ 0 (V κ ) and χκ = 1 near supp(χ κ ) and χκ = 1 near supp( χκ ). We firstly find an operator, still denoted by P , globally defined on R d of the form

P = - d j,k=1 g jk (x)∂ j ∂ k + d l=1 b l (x)∂ l , (3.2) 
which coincides with P κ on a large relatively compact subset V 0 of V κ . By "large", we mean that supp( χκ ) ⊂ V 0 . For instance, we can take

P = υP κ -(1 -υ)∆ where υ ∈ C ∞ 0 (V κ ) with values in [0, 1] satisfying υ = 1 on V 0 . The principal symbol of P is p(x, ξ) = d j,k=1 g jk (x)ξ j ξ k , where g jk (x) = υ(x)g jk κ (x) + (1 -υ(x))δ jk . (3.3)
It is easy to see that g(x) = (g jk (x)) satisfies (1.2) and (1.3) and b l is bounded in R d together with all of its derivatives. Using the standard elliptic parametrix for (h 2 P -z) -1 (see e.g [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]), we have

(h 2 P -z)Op h (q κ (z, h)) = I + h N Op h (r κ,N (z, h)), (3.4) 
where q κ (z, h) = N -1 j=0 h j q κ,j (z) with q κ,j (z) ∈ S(-2 -j) and rκ,N (z, h) ∈ S(-N ) with seminorms growing polynomially in z /dist(z, R + ) uniformly in h ∈ (0, 1]. On the other hand, we can write

(h 2 P κ -z) χκ Op h (q κ (z, h))χ κ = χκ (h 2 P κ -z)Op h (q κ (z, h))χ κ + [h 2 P κ , χκ ]Op h (q κ (z, h))χ κ . (3.5)
Here [h 2 P κ , χκ ] and χ κ have coefficients with disjoint supports. Thanks to (3.4) and the composition of pseudo-differential operators with disjoint supports, we have

(h 2 P κ -z) χκ Op h (q κ (z, h))χ κ = χ κ + h N χκ Op h (r κ,N (z, h))χ κ ,
with r κ,N (z, h) satisfying the required property. We then compose to the right and the left of above equality with κ * and κ * respectively and get

(h 2 P -z) φκ Op κ h (q κ (z, h))φ κ = φ κ + h N φκ Op κ h (r κ,N (z, h))φ κ .
This gives the result and the proof is complete.

Next, we give an application of the parametrix given in Proposition 3.1 and have the following result (see [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF], [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]). Proposition 3.2. Let φ κ , φκ , φκ be as in Proposition 3.1 and f ∈ C ∞ 0 (R). Then for all N ≥ 1 and all h ∈ (0, 1],

f (h 2 P )φ κ = N -1 j=0 h j φκ Op κ h (a κ,j )φ κ + h N R κ,N (h), (3.6) 
where a κ,j ∈ S(-∞) with supp(a κ,j ) ⊂ supp(f • p κ ) for j = 0, ..., N -1. Moreover, for all m ≥ 0, there exists C > 0 such that for all h ∈ (0, 1],

R N (h) L(H -m (M ),H m (M )) ≤ Ch -2m . (3.7) 
Proof. The proof is essentially given in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]. For the reader's convenience, we recall the main steps. By using Proposition 3.1 and the Helffer-Sjöstrand formula (see [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]), namely

f (h 2 P ) = - 1 π C ∂ f (z)(h 2 P -z) -1 dL(z),
where f is an almost analytic extension of f , the Cauchy formula implies (3.6) with

R κ,N (h) = 1 π C ∂ f (z)(h 2 P -z) -1 φκ Op κ h (r κ,N (z, h))φ κ dL(z).
It remains to prove (3.7). This leads to study the action on

L 2 (R d ) of the map C ∂ f (z)(P κ + 1) m/2 (h 2 P κ -z) -1 χκ Op h (r κ,N (z, h))χ κ (P κ + 1) m/2 dL(z).
Using a trick as in (3.5), we can find a globally defined operator P which coincides with P κ on the support of χκ . We see that (

h 2 P -z) -1 L(L 2 (R d )) ≤ C|Im z| -1 and (P + 1) m/2 Op h (r κ,N (z, h))χ κ (P + 1) m/2 = h -2m Op h (r κ,N (z, h)),
where rκ,N (z, h) ∈ S(-N +2m) with seminorms growing polynomially in 1/dist(z, R + ) uniformly in h ∈ (0, 1] which are harmless since f is compactly supported and ∂ f (z) = O(|Im z| ∞ ). By choosing N such that N -2m > d, the result then follows from the L(L 2 (R d )) bound of pseudodifferential operator given in Proposition 2.1.

A direct consequence of Proposition 2.2 using partition of unity and Proposition 2.1 is the following result. (see [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], Corollary 2.2 or [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF]).

Corollary 3.3. Let f ∈ C ∞ 0 (R).
Then for all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

f (h 2 P ) L(L q (M ),L r (M )) ≤ Ch -( d q -d r ) .
The next proposition gives the Littlewood-Paley decomposition on compact manifolds without boundary (see [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], Corollary 2.3) which is similar to Proposition 2.4. Proposition 3.4. There exist ϕ 0 ∈ C ∞ 0 (R) and ϕ ∈ C ∞ 0 (R\{0}) such that for all q ∈ [2, ∞), there exists C > 0,

u L q (M ) ≤ C h -1 :dya ϕ(h 2 P )u 2 L q (M ) 1/2 + C u L 2 (M ) , for all u ∈ C ∞ 0 (M ).

Reduction of problem

In this subsection, we firstly show how to get Corollary 1.4 from Theorem 1.2 and then give a reduction of Theorem 1.2.

Proof of Corollary 1.4. Since we are working on compact manifolds without boundary, it is well-known that there exists an orthonormal basis (e j ) j∈N of

L 2 (M ) := L 2 (M, dvol g ) of C ∞ functions on M such that Λ σ g e j = λ σ j e j , with 0 ≤ λ 0 ≤ λ 1 ≤ λ 2 ≤ • • • , lim j→∞ λ j = +∞.
For any f a piecewise continuous function, the functional f (Λ g ) is defined as

f (Λ g )u := j∈N f (λ j )u j e j .
If we set j 0 := dim(ker Λ σ g ), then λ 0 = λ 1 = • • • = λ j0-1 = 0 and λ j ≥ λ j0 > 0 for j ≥ j 0 . Here the number j 0 stands for the number of connected components of M and the corresponding eigenfunctions (e j ) j0-1 j=0 are constant functions. We now define the projection on ker(Λ σ g ) by Π 0 u := j<j0 u j e j , where u j := e j , u L 2 (M ) = M e j (m)u(m)dvol g (m).

By the Duhamel formula, the equation (1.10) can be written as

v(t) = cos(tΛ σ g )v 0 + sin(tΛ σ g ) Λ σ g v 1 + t 0 sin((t -s)Λ σ g ) Λ σ g G(s)ds.
We remark that the only problem may happen on ker(Λ σ g ) of

sin(tΛ σ g ) Λ σ g . But it is not the case because Π 0 sin(tΛ σ g ) Λ σ g v 1 = j<j0 sin(tλ σ j ) λ σ j v 1,j e j = j<j0 t sin(tλ σ j ) tλ σ j v 1,j e j = t j<j0 v 1,j e j = tΠ 0 v 1 .
Since ker(Λ σ g ) is generated by constant functions, the local in time Strichartz estimates of Π 0 v, namely Π 0 v L p (I,L q (M )) with I a bounded interval, can be controlled by any Sobolev norms of data. Therefore, we only need to study the local in time Strichartz of v away from ker(Λ σ g ). Using the fact that cos(tΛ σ g ) =

e itΛ σ g + e -itΛ σ g 2 , sin(tΛ σ g ) = e itΛ σ g -e -itΛ σ g 2i ,
the Strichartz estimates (1.11) follow directly from the ones of e ±itΛ σ g as in (1.8). This gives Corollary 1.4.

We now prove Theorem 1.2. To do so, we have the following reduction.

Proposition 3.5. Consider (M, g) a smooth compact Riemannian manifold of dimension d ≥ 1.

Let σ ∈ (0, ∞)\{1} and ϕ ∈ C ∞ 0 (R\{0}). If there exists t 0 > 0 small enough and C > 0 such that for all u 0 ∈ L 1 (M ) and all h ∈ (0, 1],

e ith -1 (hΛg) σ ϕ(h 2 P )u 0 L ∞ (M ) ≤ Ch -d (1 + |t|h -1 ) -d/2 u 0 L 1 (M ) , (3.8) 
for all t ∈ [-t 0 , t 0 ], then Theorem 1.2 holds true.

Proof. The proof of homogeneous Strichartz estimates follows similarly to the one given in Proposition 2.5. We only give the proof of (1.8), i.e. σ ∈ (1, ∞), the one for σ ∈ (0, 1) is completely similar. The homogeneous part follows from (1.7). It remains to prove t 0 e i(t-s)Λ σ g F (s)ds

L p (I,L q (M ))
≤ C F L 1 (I,H γpq +(σ-1)/p (M )) .

(3.9)

The estimate (3.9) follows easily from (1.7) and the Minkowski inequality (see [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], Corollary 2.10). Indeed, the left hand side reads

I 1 [0,t] (s)e i(t-s)Λ σ g F (s)ds L p (I,L q (M )) ≤ I 1 [0,t] (s)e i(t-s)Λ σ g F (s) L p (I,L q (M )) ds ≤ I e i(t-s)Λ σ g F (s) L p (I,L q (M )) ds ≤ C I F (s) H γpq +(σ-1)/p (M ) ds.
This gives (3.9) and the proof of Proposition 3.5 is complete.

Dispersive estimates

This subsection devotes to prove the dispersive estimates (3.8). Again thanks to the localization ϕ, we can replace (hΛ g ) σ by ψ(h 2 P ) where ψ(λ) = φ(λ) √ λ σ with φ ∈ C ∞ 0 (R\{0}) such that φ = 1 near supp(ϕ). The partition of unity allows us to consider only on a local coordinates, namely κ e ith -1 ψ(h 2 P ) ϕ(h 2 P )φ κ . By using the same argument as in Remark 2.8 and Proposition 3.2, the study of e ith -1 ψ(h 2 P ) ϕ(h 2 P )φ κ is reduced to the one of e ith -1 ψ(h 2 P ) φκ Op κ h (a κ )φ κ with a κ ∈ S(-∞) and supp(a κ ) ⊂ supp(ϕ • p κ ). Let us set u(t) = e ith -1 ψ(h 2 P ) φκ Op κ h (a κ )φ κ u 0 .

We see that u solves the following semi-classical evolution equation

(hD t -ψ(h 2 P ))u(t) = 0, u |t=0 = φκ Op κ h (a κ )φ κ u 0 .
(3.10)

The WKB method allows us to construct an approximation of the solution to (3.10) in finite time independent of h. To do so, we firstly choose φ κ , φ κ , φ κ ∈ C ∞ 0 (U κ ) such that φ κ = 1 near supp( φκ ) (see Proposition 3.1 for φκ ), φ κ = 1 near supp(φ κ ) and φ κ = 1 near supp( φ κ ). Proposition 3.2 then implies

ψ(h 2 P )φ κ = φ κ Op κ h (b κ (h))φ κ + h N R κ,N (h), (3.11) 
where b κ (h) = [START_REF] Alinhac | Pseudo-differential operators and the Nash-Moser theorem[END_REF]. By using the global extension operator defined in (3.2), we can apply the construction of the WKB approximation given in Subsection 2.2 and find t 0 > 0 small enough, a function S κ ∈ C ∞ ([-t 0 , t 0 ] × R 2d ) and a sequence a κ,j (t, •, •) ∈ S(-∞) satisfying supp(a κ,j (t, •, •)) ⊂ p -1 (J) (see (3.3) for the definition of p) for some small neighborhood J of supp(ϕ) not containing the origin uniformly in t ∈ [-t 0 , t 0 ] such that

N -1 l=1 h l b κ,l with b κ,l ∈ S(-∞) and R κ,N (h) = O L(L 2 (M ))
(hD t -Op h (b κ (h)))J κ,N (t) = R κ,N (t), (3.12) 
where

J κ,N (t) := N -1 j=0 h j J h (S κ (t), a κ,j (t)), J N (0) = Op h (a κ ),
satisfying for all t ∈ [-t 0 , t 0 ] and all (x, ξ) ∈ p -1 (J),

|∂ α x ∂ β ξ (S κ (t, x, ξ) -x • ξ)| ≤ C αβ |t|, |α + β| ≥ 1, (3.13) 
∂ α x ∂ β ξ (S κ (t, x, ξ) -x • ξ + t p(x, ξ) σ ) ≤ C αβ |t| 2 , (3.14) 
and for all h ∈ (0, 1],

J κ,N (t) L(L 1 (R d ),L ∞ (R d )) ≤ Ch -d (1 + |t|h -1 ) -d/2 , (3.15) R κ,N (t) = O L(L 2 (R d )) (h N +1 ). (3.16)
Next, we need the following micro-local finite propagation speed.

Lemma 3.6. Let σ ∈ (0, ∞)\{1}, χ, χ ∈ C ∞ 0 (R d ) such that χ = 1 near supp(χ), a(t) ∈ S(-∞) with supp(a(t, •, •)) ⊂ p -1 (J) uniformly in t ∈ [-t 0 , t 0 ] and S ∈ C ∞ ([-t 0 , t 0 ]×R 2d ) satisfy (3.14)
for all t ∈ [-t 0 , t 0 ] and all (x, ξ) ∈ p -1 (J). Then for t 0 > 0 small enough,

J h (S(t), a(t))χ = χJ h (S(t), a(t))χ + R(t), where R(t) = O L(L 2 (R d )) (h ∞ ).
Proof. The kernel of J h (S(t), a(t))χ -χJ h (S(t), a(t))χ is given by

K h (t, x, y) = (2πh) -d R d
e ih -1 (S(t,x,ξ)-yξ) (1 -χ)(x)a(t, x, ξ)χ(y)dξ.

Using (3.14), we can write for t 0 > 0 small enough, t ∈ [-t 0 , t 0 ] and (x, ξ) ∈ p -1 (J),

S(t, x, ξ) -yξ = (x -y)ξ -t p(x, ξ) σ + O(t 2 ).
By change of variables η = G(x)ξ or ξ = g(x)η, we have

K h (t, x, y) = (2πh) -d R d
e ih -1 Φ(t,x,y,η) (1 -χ)(x)a(t, x, g(x)η)χ(y) det g(x)dx, where Φ(t, x, y, ξ) = g(x)(x -y)η -t|η| σ + O(t 2 ). Thanks to the support of χ and χ, we see that |x -y| ≥ C. This gives for t 0 > 0 small enough that

|∇ η Φ(t, x, y, η)| = | g(x)(x -y) -tση|η| σ-2 + O(t 2 )| ≥ C(1 + |x -y|).
Here we also use the fact that g(x) is bounded from below and above (see (3.3)). Using the fact that for all β ∈ N d satisfying |β| ≥ 2,

|∂ β η Φ(t, x, y, η)| ≤ C β ,
the non stationary phase theorem implies for all N ≥ 1, all t ∈ [-t 0 , t 0 ] and all x, y ∈ R d ,

|K h (t, x, y)| ≤ Ch N -d (1 + |x -y|) -N . The Schur's Lemma gives R(t) = O L(L 2 (R d )) (h ∞
). This ends the proof.

Proof of dispersive estimates (3.8). With the same spirit as in (3.1), let us set J κ N (t) = κ * J κ,N (t)κ * , R κ N (t) = κ * R κ,N (t)κ * where J κ,N (t) and R κ,N (t) given in (3.12). The Duhamel formula gives

u(t) = e ith -1 ψ(h 2 P ) φκ Op κ h (a κ )φ κ u 0 = φκ J κ N (t)φ κ u 0 -ih -1 t 0 e i(t-s)h -1 ψ(h 2 P ) (hD s -ψ(h 2 P )) φκ J κ N (s)φ κ u 0 ds.
We aslo have from (3.11) that

(hD s -ψ(h 2 P )) φκ J κ N (s)φ κ = φκ hD s J κ N (s)φ κ -φ κ Op κ h (b κ (h)) φκ J κ N (s)φ κ -h N R κ,N (h) φκ J κ N (s)φ κ .
The micro-local finite propagation speed given in Lemma 3.6 and (3.12) imply

(hD s -ψ(h 2 P )) φκ J κ N (s)φ κ = φ κ κ * (hD s -Op h (b κ (h)))J N (s)κ * φ κ -Rκ (s) -h N R κ,N (h) φκ J κ N (s)φ κ . = φ κ R κ N (s)φ κ -Rκ (s) -h N R κ,N (h) φκ J κ N (s)φ κ , where Rκ (s) = O L(L 2 (M )) (h ∞ ).
Here we also use the L 2 -boundedness of pseudo-differential operators with symbols in S(-∞). We then get

u(t) = φκ J κ N (t)φ κ u 0 + R κ N (t)u 0 , where R κ N (t)u 0 = -ih -1 t 0 e i(t-s)h -1 ψ(h 2 P ) ( φ κ R κ N (s)φ κ -Rκ (s) -h N R κ,N (h) φκ J κ N (s)φ κ )u 0 ds.
By the same process as in Remark 2.8 using (3.15) and the fact that

R κ N (t) = O L(L 2 (M )) (h N -1 ) for all t ∈ [-t 0 , t 0 ], we obtain e ith -1 ψ(h 2 P ) ϕ(h 2 P )φ κ u 0 L ∞ (M ) ≤ Ch -d (1 + |t|h -1 ) -d/2 |u 0 L 1 (M ) ,
for all t ∈ [-t 0 , t 0 ]. The dispersive estimates (3.8) then follow from the above estimates and partition of unity. This completes the proof.

Nonlinear applications

In this section, we give the proofs of Theorem 1.5 and Corollary 1.6 and Theorem 1.7.

Proof of Theorem 1.5. We only treat the case σ ∈ (1, ∞) where we have Strichartz estimates with loss of derivatives. The one for σ ∈ (0, 1) is similar and essentially given in [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF], Theorem 1.7. We follow the standard process (see e.g [START_REF] Ginibre | Introduction aux équations de Schrödinger non linéaires[END_REF] or [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]) by using the fixed point argument in a suitable Banach space. We firstly choose p > max(ν -1, 4) when d = 1 and p > max(ν -1, 2) when d ≥ 2 such that γ > d/2 -1/p and then choose q ≥ 2 such that

2 p + d q ≤ d 2 .
Let us consider

X T := u ∈ C(I, H γ (M )) ∩ L p (I, H α q (M )), u L ∞ (I,H γ (M )) + u L p (I,H γ q (M )) ≤ N equipped with the distance u -v X T := u -v L ∞ (I,L 2 (M )) + u -v L p (I,H -γpq -(σ-1)/p q (M )) ,
where I = [0, T ], T, N > 0 will be chosen later and α = γ -γ pq -(σ -1)/p. Here H γ q (M ) := (1 -∆ g ) -γ/2 L q (M ) is the generalized Sobolev space on M and H γ (M ) := H γ 2 (M ). Using the Proof of Corollary 1.6. By the assumptions given in Corollary 1.6, we apply Theorem 1.5 with γ = σ/2 and see that for all u 0 ∈ H σ/2 (M ), there exist T > 0 and a unique solution u ∈ C([0, T ], H σ/2 (M )) ∩ L p ([0, T ], L ∞ (M )) to the defocusing (NLFS). Note that the time T depends only on u 0 H σ/2 (M ) . Moreover, by a classical approximation argument, the following quantities are conserved for u 0 ∈ H σ/2 (M ),

u(t) 2 L 2 (M ) = M (u 0 ), 1 2 Λ σ/2 g u(t) 2 L 2 (M ) + 1 ν + 1 u(t) ν+1 L ν+1 (M ) = E(u 0 ).
This shows that u(t) H σ/2 (M ) remains bounded for all t in the existence domain. Thus we can apply Theorem 1.5 again with the initial data starting at T and obtain a unique solution

u ∈ C([0, 2T ], H σ/2 (M ))∩L p ([0, 2T ], L ∞ (M ))
. By repeating this process, we extend the solution for positive times. Similarly, the same result holds for negative times. This ends the proof.

Proof of Theorem 1.7. The proof is very close to the one of Theorem 1.5. We only consider the case σ ∈ (1, ∞), the one for σ ∈ (0, 1) is similar (see also [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF], Theorem 1.13). Let (p, q) and α be as in the proof of Theorem 1.5. We will solve (NLFW) in

Y T := v ∈ C(I, H γ (M )) ∩ C 1 (I, H γ-σ (M )) ∩ L p (I, H α q (M )), [v] L ∞ (I,H γ (M )) + v L p (I,H α q (M )) ≤ N equipped with the distance v -w Y T := [v -w] L ∞ (I,L 2 (M )) + v -w L p (I,H -γpq -(σ-1)/p q (M )) ,
where I = [0, T ] and T, N > 0 will be chosen later. Here we denote

[v] L ∞ (I,H γ (M )) = v L ∞ (I,H γ (M )) + ∂ t v L ∞ (I,H γ-σ (M )) .
The persistence of regularity implies that (Y T , • Y T ) is a complete metric space. By the Duhamel formula, it suffices to prove that the functional

Φ v0,v1 (v)(t) = cos(tΛ σ g )v 0 + sin(tΛ σ g ) Λ σ g v 1 -µ t 0 sin((t -s)Λ σ g ) Λ σ g |v(s)| ν-1 v(s)ds (4.3) is a contraction on Y T . The local Strichartz estimates (1.11) imply [Φ v0,v1 (v)] L ∞ (I,H γ (M )) + Φ v0,v1 (v) L p (I,H α q (M )) [v](0) H γ (M ) + F (v) L 1 (I,H γ-σ (M )) [v](0) H γ (M ) + F (v) L 1 (I,H γ (M )) .
As in the proof of Theorem 1.5, the fractional derivatives with the assumption on ν given in Theorem 1.7, the Hölder inequality imply

F (v) L 1 (I,H γ (M )) T 1-ν-1 p v ν-1 L p (I,L ∞ (M )) v L ∞ (I,H γ (M )) .
Similarly, using (4.1), we have

F (v) -F (w) L 1 (I,L 2 (M )) T 1-ν-1 p v ν-1 L p (I,L ∞ (M )) + w ν-1 L p (I,L ∞ (M )) u -v L ∞ (I,L 2 (M )) .
The Sobolev embedding L p (I, u -v Y T (4.4)

H α q (M )) ⊂ L p (I, L ∞ (M )) then implies that [Φ v0,v1 (v)] L ∞ (I,H γ (M )) + Φ v0,v1 ( 
T 1-ν-1 p v ν-1
L p (I,H α q (M )) + w ν-1 L p (I,H α q (M ))

u -v Y T .

Therefore, for all v, w ∈ Y T , there exists a constant C > 0 independent of v 0 , v 1 such that [Φ v0,v1 (v)] L ∞ (I,H γ (M )) + Φ v0,v1 (v) L p (I,H α q (M )) ≤ C [v](0) H γ (M ) + CT 1-ν-1 p N ν , and Φ v0,v1 (v) -Φ v0,v1 (w)

Y T ≤ CT 1-ν-1 p N ν-1 u -v Y T .
Setting N = 2C [v](0) H γ (M ) and choosing T > 0 small enough so that CT 1-ν-1 p N ν-1 ≤ 1 2 , we see that Y T is stable by Φ v0,v1 and Φ v0,v1 is a contraction on Y T . By the fixed point theorem, there exists a unique solution v ∈ Y T to (NLFW). The uniqueness of solution v ∈ C(I, H γ (M ))∩ C 1 (I, H γ-σ (M )) ∩ L p (I, L ∞ (M )) follows as in the proof of Theorem 1.5 using (4.4).

A Hamilton-Jacobi equation

In this appendix, we will recall the standard Hamilton-Jacobi equation (see e.g. [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]). Let us consider the following Hamilton-Jacobi equation ∂ t S(t, x, ξ) + H(x, ∇ x S(t, x, ξ)) = 0, S(0, x, ξ)

= x • ξ, (A.1)
where H ∈ C ∞ (R 2d ) satisfies that for all α, β ∈ N d , there exists C αβ > 0 such that for all x, ξ ∈ R d ,

|∂ α x ∂ β ξ H(x, ξ)| ≤ C αβ . (A.2)
The Hamiltonian flow associated to H is denoted by Φ H (t, x, ξ) := (X(t, x, ξ), Ξ(t, x, ξ)) where Ẋ(t) = ∇ ξ H(X(t), Ξ(t)), Ξ(t) = -∇ x H(X(t), Ξ(t)), and X(0) = x, Ξ(0) = ξ.

We have the following result (see [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]).

Lemma A.1. Let t 0 ≥ 0 and α, β ∈ N d be such that |α| + |β| ≥ 1. Then there exists C αβt0 > 0 such that for all t ∈ [-t 0 , t 0 ] and all (x, ξ) ∈ R 2d ,

|∂ α x ∂ β ξ (Φ H (t, x, ξ) -(x, ξ)| ≤ C αβt0 |t|.
Proof. The proof is essentially given in [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]. We assume first |α + β| = 1 and denote For |α + β| ≥ 2, we take the derivative of (A.3) and apply again the Gronwall inequality.

Z(t) = ∂ x X(t
Lemma A.2. There exists t 0 > 0 small enough such that for all t ∈ [-t 0 , t 0 ] and all ξ ∈ R d , the map x → X(t, x, ξ) is a diffeomorphism from R d onto itself. Moreover, if we denote x → Y (t, x, ξ) the inverse map, then for all t ∈ [-t 0 , t 0 ] and all α, β ∈ N d satisfying |α + β| ≥ 1, there exists C αβ > 0 such that for all x, ξ ∈ R d ,

|∂ α x ∂ β ξ (Y (t, x, ξ) -x)| ≤ C αβ |t|.
Proof. By Lemma A.1 , there exists t 0 > 0 small enough such that Proof. It is well-known (see [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]) that the function S defined in (A.5) is the unique solution to (A. 

∂ x X(t) -I R d ≤ 1 

  and |α l | ≥ 2 for all l = 1, ..., k and |β| = j. The maps (b, c) → (b c) j and (b, c) → r N (h) are continuous from S(-∞) × S(-∞) to S(-∞) and S(-∞) respectively.
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  ) ∂ ξ X(t) ∂ x Ξ(t) ∂ ξ Ξ(t) . R 2d ds,where M = sup (t,x,ξ)∈[-t0,t0]×R 2d A(t) . Using Gronwall inequality, we haveZ(t) -I R 2d ≤ M |t|e M t ≤ M e M t0 |t|.

	By direct computation, we have	
			d dt	Z(t) = A(t)Z(t),	(A.3)
	where	A(t) =	∂ x ∂ ξ H(X(t), Ξ(t)) -∂ 2 x H(X(t), Ξ(t)) -∂ ξ ∂ x H(X(t), Ξ(t)) ∂ 2 ξ H(X(t), Ξ(t))	.
	This implies that			

Z(t) -I R 2d ≤ t 0 A(s) Z(s) ds ≤ M |t| + t 0 M Z(s) -I

  2 ,for all t ∈ [-t 0 , t 0 ]. By Hadamard global inversion theorem, the map x → X(t, x, ξ) is a diffeomorphism from R d onto itself. Let x → Y (t, x, ξ) be its inverse. By taking derivative ∂ α x ∂ β By choosing t 0 small enough, we see that the matrix (∂ x X)(t, Y (t, x, ξ), ξ) is invertible and its inverse is bounded uniformly in t ∈ [-t 0 , t 0 ] and x, ξ ∈ R d . This implies that For higher derivatives, we differentiate (A.4) and use an induction on |α + β|. This completes the proof. Now, we are able to solve the Hamilton-Jacobi equation (A.1) and have the following result.Proposition A.3. Let t 0 be as in Lemma A.2. Then there exists a unique function S ∈ C ∞ ([-t 0 , t 0 ] × R 2d ) such that S solves the Hamilton-Jacobi equation (A.1). The solution S is given by S(t) = Y (t), ∇ x S(t) = Ξ(t, Y (t), ξ), Φ H (t, ∇ ξ S(t), ξ) = (x, ∇ x S(t)), (A.6)where S(t) := S(t, x, ξ) and Y (t) := Y (t, x, ξ). Moreover, for all α, β ∈ N d , there exists C αβ > 0 such that for all t ∈ [-t 0 , t 0 ] and all x, ξ ∈ R d ,

	|∂ α x ∂ β	
	|∂ α x ∂ β ξ (S(t, x, ξ) -x • ξ) | ≤ C αβ |t|, |α + β| ≥ 1,	(A.7)
	|∂ α x ∂ β ξ (S(t, x, ξ) -x • ξ + tH(x, ξ)) | ≤ C αβ |t| 2 .	(A.8)

ξ with |α + β| = 1 of the following equality

x = X(t, Y (t, x, ξ), ξ), (A.4) we have (∂ x X)(t, Y (t, x, ξ), ξ)∂ α x ∂ β ξ (Y (t, x, ξ) -x) = -∂ α y ∂ β η (X(t, y, η) -y)| (y,η)=(Y (t,x,ξ),ξ) . ξ (Y (t, x, ξ) -x)| ≤ C|∂ α y ∂ β η (X(t, y, η) -y)| ≤ C αβ |t|. S(t, x, ξ) = Y (t, x, ξ) • ξ + t 0 (ξ • ∂ ξ H -H) • Φ H (s, Y (t, x, ξ), ξ)ds, (A.5)

and S satisfies ∇ ξ
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persistence of regularity (see [START_REF] Cazenave | Semilinear Schrdinger equations[END_REF], Theorem 1.25), we have (X T , • X T ) is a complete metric space. By the Duhamel formula, it suffices to prove that the functional Φ u0 (u)(t) = e itΛ σ g u 0 -iµ t 0 e i(t-s)Λ σ g |u(s)| ν-1 u(s)ds is a contraction on X T . The Strichartz estimates (1.8) imply

where F (u) = -µ|u| ν-1 u. Using our assumption on ν (i.e. ν is an odd integer or (1.13) otherwise), the fractional derivatives (see e.g. [START_REF] Kato | On nonlinear Schrödinger equations. II. H s -solutions and unconditional wellposedness[END_REF], Appendix) and Hölder inequality, we have

. Note that by working in local coordinates, the fractional derivatives on compact manifold are reduced to the ones on R d . Similarly, using the fact that for all z, ζ ∈ C,

we have

The Sobolev embedding with α > d/q implies L p (I,

, and

This implies for all u, v ∈ X T , there exists C > 0 independent of u 0 ∈ H γ (M ) such that

Therefore, if we set N = 2C u 0 H γ (M ) and choose T > 0 small enough so that

, then X T is stable by Φ u0 and Φ u0 is a contraction on X T . The fixed point theorem gives the existence of solution

) two solutions of (NLFS). Since the uniqueness is a local property (see also [START_REF] Cazenave | Semilinear Schrdinger equations[END_REF]), it suffices to show u = v for T is small. Using (4.2), we have

Since u L p (I,L ∞ (M )) is small if T is small and similarly for v, we see that if T > 0 small enough,

This completes the proof.

This implies that

Using (A.2) and Lemma A.2, we have (A.7). Next, we compute

(A.9)

The Taylor formula gives S(t, x, ξ) = x • ξ -tH(x, ξ)

Using again (A.2) and Lemma A.2, we have (A.8).