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STRICHARTZ ESTIMATES FOR THE FRACTIONAL
SCHRODINGER AND WAVE EQUATIONS ON COMPACT
MANIFOLDS WITHOUT BOUNDARY

VAN DUONG DINH

Abstract

We firstly prove Strichartz estimates for the fractional Schrédinger equations on R%, d > 1
endowed with a smooth bounded metric g. We then prove Strichartz estimates for the frac-
tional Schrodinger and wave equations on compact Riemannian manifolds without boundary
(M, g). This result extends the well-known Strichartz estimate for the Schrédinger equation
given in [7]. We finally give applications of Strichartz estimates for the local well-posedness
of the pure power-type nonlinear fractional Schrodinger and wave equations posed on (M, g).

Keywords: Nonlinear fractional Schridinger equation; Strichartz estimates; WKB approxima-
tion; pseudo-differential calculus.

1 Introduction and main results

This paper is concerned with the Strichartz estimates for the generalized fractional Schrédinger
equation on Riemannian manifold (M, g), namely

0w+ Agu = 0,
u(0) UQ,

where o € (0,00)\{1} and Ay = \/—A, with A, is the Laplace-Beltrami operator associated
to the metric g. When o € (0,2)\{1}, it corresponds to the fractional Schrédinger equation
discorved by N. Laskin (see [23], [24]). When o > 2, it can be seen as a generalization of the
Schrédinger equation o = 2 (see e.g. [8], [33]) or the fourth-order Schrédinger equation o = 4
(see e.g. [26], [27]).

The Strichartz estimates play an important role in the study of nonlinear fractional Schrodinger
equation on R? (see e.g. [§], [33], [26] [16], [10], [18], [13] and references therein). Let us re-
call the local in time Strichartz estimates for the fractional Schrédinger operator on RY. For

€ (0,00)\{1} and I C R a bounded interval, one has
itA®

e woll o (1,Lame)) < Clluoll gres ey, (1.1)

where A = v/—A with A is the free Laplace operator on R¢ and

provided that (p, q) satisfies the fractional admissible condition, namely

2 d
pel2od g2 (pgd) # (2002, T4<

N

We refer to [I3] for a general version of these Strichartz estimates on R.
The main purpose of this paper is to prove Strichartz estimates for the fractional Schrodinger
equation on R? equipped with a smooth bounded metric and on a compact manifold without
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boundary (M, g).

Let us firstly consider R? endowed with a smooth Riemannian metric g. Let g(z) =
(gjk(x))?,kzl be a metric on R?, and denote G(x) = (gjk(x))?’kzl := g~ '(x). The Laplace-
Beltrami operator associated to g reads

d

Ag= Y lg(@) 70 (¢ (@)lg(@)on) ,

7 k=1

where [g(z)| := y/det g(x) and denote P := —A the self-adjoint realization of —A,. Recall that
the principal symbol of P is

d
pa,&) =E'G@)E= D ¢ ()¢
k=1

In this paper, we assume that g satisfies the following assumptions.

1. There exists C' > 0 such that for all z, & € R,

d
CTHEP < Y g @)g < ClEP. (1.2)

k=1

2. For all o € N%, there exists C,, > 0 such that for all z € R?,

0°¢H (@) < Ca jok € {1, ..}, (1.3)

We firstly note that the elliptic assumption implies that |g(z)| is bounded from below
and above by positive constants. This shows that the space Lq(Rd,dvolg),l < q < oo where
dvol, = |g(x)|dz and the usual Lebesgue space L7(R?) coincide. Thus in the sequel, the notation
L9(R?) stands for either LI(R?, dvol,) or the usual Lebesgue space L9(R%). It is well-known that
under the assumptions and , the Strichartz estimates may fail at least for the
Schrodinger equation (see [7], Appendix) and in this case (i.e. o = 2) one has a loss of derivatives
1/p that is the right hand side of is replaced by |uol| g1/praey. Here we extend the result
of Burg-Gérard-Tzvetkov to the more general setting, i.e. o € (0,00)\{1} and obtain Strichartz
estimates with a “loss” of derivatives (0 — 1)/p when o € (1,00) and without “loss” when
o € (0,1). Throughout this paper, the “loss” compares to .

Theorem 1.1. Consider R?, d > 1 equipped with a smooth metric g satisfying (1.2), (1.3) and
let I C R a bounded interval. If o € (1,00), then for all (p,q) fractional admissible, there exists
C > 0 such that for all ug € Hvat(@=1/P(R%),

Heitl\guonLP(I,LQ(Rd)) < C||uo||H'ypq+(‘7_1)/p(Rd)’ (1-4)

where A, == /P and lull gy ey == | (Ag)” ull 2ray. If o € (0,1), then 1] holds with ~vpq +
(0 —1)/p is replaced by ~ypq.

The proof of is based on the WKB approximation which is similar to [7]. Since we are
working on manifolds, a good way is to decompose the semi-classical fractional Schrédinger
operator, namely " ("8)7 in the localized frequency, ie. eith ("49)7 ,(h2P) for some
v € C(R\{0}). The main difficulty is that in general we do not have the exact form of the
semi-classical fractional Laplace-Beltrami operator in order to use the usual construction in [7].
To overcome this difficulty we write eith ™ ("8)7 o (h2P) as e~ith™ " ¥(h*P) (B2 P) where 1h(\) =
G(A\)VA” for some @ € C>(R\{0}) satisfying ¢ = 1 near supp(¢). We then approximate 1(h2P)
in terms of pseudo-differential operators and use the action of pseudo-differential operators on
Fourier integral operators in order to construct an approximation for e~h~ “(h*P) (2 P). This
approximation gives dispersive estimates for e“h_l(hAg)ﬂcp(hQP) on some small time interval
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independent of h. After scaling in time, we obtain Strichartz estimates without “loss” of deriva-
tives over time intervals of size h~1. When o € (1,00), we can cumulate the bounded interval
I by intervals of size h?~1 and get estimates with (o — 1)/p loss of derivatives. In the case
o € (0,1), we can bound the estimates over time intervals of size 1 by the ones of size h°~!
and have the same Strichartz estimates as on R%. It is not a surprise that we recover the same
Strichartz estimates as in the free case for o € (0, 1) since ¢™7 has micro-locally the finite prop-
agation speed property which is similar to o = 1 for the (half) wave equation. Intuitively, if we
consider the free Hamiltonian H(x, &) = |¢|?, then the spatial component of geodesic flow reads
x(t) = 2(0) + to€|€]°~2. After a time ¢, the distance d(x(t), z(0)) ~ t|¢]°71 <tif o —1 < 0 and
|¢| > 1. By decomposing the solution to i0yu — A%u =0 as u = >, -, ur where uy = o(27*D)u
is localized near |¢| ~ 2% > 1, we see that after a time ¢, all components u;, have traveled at a
distance ¢ from the data uy(0).

When R? is replaced by a compact Riemannian manifold without boundary (M, g), Burg-
Gérard-Tzvetkov established in [7] a Strichartz estimate with loss of 1/p derivatives for the
Schrédinger equation, namely

||6_itAgU0||LP(I,L‘I(M)) < Clluoll gr/v(arys (1.5)
where (p, q) is a Schrodinger admissible pair, i.e.

2 d d
pe [2700]3 qE[Q,OO), (paqu)#(230032)7 ];+a:§
When M is the flat torus T¢, Bourgain showed in [5], [6] some estimates related to (1.5 by means
of the Fourier series for the Schrédinger equation. A direct consequence of these estimates is

, d 1
—itA
lle B guOHL“(Tde) < C|\U0HH~(Td)a v > 19
Let us now consider the linear fractional Schrodinger equation posed on a compact Riemannian
manifold without boundary (M, g), namely

F(t,m), (t,m)elxM,

ug(m), me M, (1.6)

{ i0pu(t,m) + Agu(t,m)
u(0,m)

where Ay := /—A, with A, is the Laplace-Beltrami operator on (M, g). We have the following
result.

Theorem 1.2. Consider (M,g) a smooth compact boundaryless Riemannian manifold of di-
mension d > 1 and let I C R a bounded interval. If o € (1,00), then for all (p,q) fractional
admissible, there exists C' > 0 such that for all ug € HYat(@=1/P(A),

€5 uo|| Lo (1, La(ar)) < Cllttoll grava+ -7 (apy- (1.7)

Moreover, if u is a (weak) solution to (1.6), then

lulle(r,La(ary) < C(HUOHH'qu-%—(ﬂ—l)/P(M) + ||FHL1(17H’qu+(<7—1)/P(M))>' (18)

If 0 € (0,1), then (1.7) and (1.8) hold with ~y,, in place of ypq + (0 — 1)/p.

Remark 1.3. 1. Note that the exponents 7,, + (0 — 1)/p = d/2 — d/q — 1/p in the right
hand side of (1.7) and ~,, = d/2 — d/q — o/p in the case of o € (0,1) correspond to the
gain of 1/p and o /p derivatives respectively compared with the Sobolev embedding.

2. When M =T and o € (1,2), the authors in [I2] established estimates related to (1.7,
namely

o 2—0
sugllpacrxty < Cllwollgvery, v > S

[|e?tA (1.9)
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3. Using the same argument as in [7], we see that the endpoint homogeneous Strichartz
estimate ([1.7) are sharp on S?,d > 3. Indeed, let uy be a zonal spherical harmonic
associated to eigenvalue A = k(d + k — 1). One has (see e.g. [30]) that for A > 1,

s d—1 d . 20d+1
Jtoll ooy ~ VA", sla)=—5-— if%ﬁQSoo

Moreover, the above estimates are sharp. Therefore,

PtA° 7 i *2
le“®5 o | 127,12 (say) = ll€™Y> ol g2z, 2w sy ~ VA,

where 2* = 2d/(d —2) and s(2*) = 1/2. This gives the optimality of (1.7)) since oo+ + (0 —
1)/2 =1/2.

A first application of Theorem is the Strichartz estimates for the fractional wave equation
posed on (M, g). Let us consider the following linear fractional wave equation posed on (M, g),

{afv(t,m)JrA?,"v(t,m) = G(tm), (t,;m)clxM, (1.10)

U(Oa m) = UO(m)a atv(ovm) - Ul(m)a m € M.
We refer to [9] or [I7] for the fractional wave equations.

Corollary 1.4. Consider (M,g) a smooth compact boundaryless Riemannian manifold of di-
mension d > 1. Let I C R be a bounded interval and v a (weak) solution to . If
o € (1,00), then for all (p,q) fractional admissible, there exists C > 0 such that for all
(vo,v1) € vaq+(0—1)/p(M) X vaq+(o—1)/p—o(M)7

vl Lo (r,Laary) < C(H[U](O)HHWMHU*U/P(M) + ||G||L1(I,HWMHU*U/P*U(M)))’ (1.11)

where
H[’U](O)”H'quﬂf’*l)/P(M) = ”UOHH‘YMHU*D/P(M) + ||’U1||H’qu+(0*1)/p7C7(M).

If 0 € (0,1), then (1.11) holds with ~vpq + (0 — 1)/p is replaced by Ypq.

We next give applications of the Strichartz estimates given in Theorem Let us consider
the following nonlinear fractional Schrédinger equation

. o _ v—1
Oputt.m) + Agu(tom) = —p(ul " u)(em), (Gm) € Tx M€ (1) pe
u(0,m) = wg(m), me M.
with the exponent v > 1. The number p = 1 (resp. p = —1) corresponds to the defocusing case

(resp. focusing case). By a standard approximation (see e.g. [15]), the following quantities are
conserved by the flow of the equations,

/|utm|dvol( ),

B = [ GIAg2u(t.m) + E )l dvol ).

Theorem [1.2] gives the following local well-posedness result.
Theorem 1.5. Consider (M, g) a smooth compact boundaryless Riemannian manifold of di-

mension d > 1. Let 0 € (1,00),v > 1 and v > 0 be such that

>1/2—-1/max(v —1,4) when d=1,
{'V / / ( 12) (1.12)

v>d/2—1/max(v —1,2) whend > 2,
and also, if v is not an odd integer,

W] <, (1.13)
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where [y] is the smallest positive integer greater than or equal to . Then for all ug € HY (M),
there exist T > 0 and a unique solution to (NLFS) satisfying

we C([0,T], HY (M) 0 LP([0,T], L™ (M),

for some p > max(v — 1,4) when d = 1 and some p > max(v — 1,2) when d > 2. Moreover,
the time T depends only on the size of the initial data, i.e. only on ||uo|lg~ary- In the case
o € (0,1), the same result holds with (1.12)) is replaced by

{ v >1/2—0/max(v —1,4) when d =1,

v>d/2—o/max(v —1,2) whend > 2. (1.14)

We note that when v is an odd integer, we have F(-) = —pu| - [*~!- € C*°(C,C) and when v
is not an odd integer, condition implies f € C1 (C,C). It allows us to use the fractional
derivatives (see [21], [13]).

As a direct consequence of Theorem and the conservation laws, we have the following
global well-posedness result for the defocusing nonlinear fractional Schrédinger equation, i.e.
@ =11in (NLFS).

Corollary 1.6. Consider (M,g) a smooth compact boundaryless Riemannian manifold of di-
mension d > 1. Let o € (1/2,00)\{1} when d =1, 0 > d—1 whend > 2 and v > 1 be
such that if v is not an odd integer, [0/2] < v. Then for all ug € H?/?(M), there exists a
unique global solution u € C(R, H7/2(M))NLE, (R, L>=(M)) to the defocusing (NLFS) for some

p > max(v —1,4) when d =1 and some p > max(v — 1,2) when d > 2.

We finally give applications of Strichartz estimates given in Corollary for the nonlinear
fractional wave equation. Let us consider the following nonlinear fractional wave equation posed
on (M, g),

(NLFW)

{ AFu(t,m) + A2v(t,m) = —p(lv|""tv)(t,m), (t,m) el x M,pe {+1},
v(0,m) = vo(m), Ow(0,m) =wv1(m), me M.

with o € (0,00)\{1} and the exponent v > 1. In this case, the following energy is conserved
under the flow of the equation, i.e.

1 1
E(v,0v) = /M 5\6tv(t,m)\2 + §|Agv(t, m)|* + > j_ T lo(t,m)|"dvol, (m).
Using the Strichartz estimates given in Corollary we have the following local well-posedness
result.

Theorem 1.7. Consider (M,g) a smooth compact boundaryless Riemannian manifold of di-
mension d > 1. Let o € (1,00),v > 1 and v > 0 be as in and also, if v is not an odd
integer, . Then for all vg € HY(M) and v € HY"7(M), there exist T > 0 and a unique
solution to (NLFW) satisfying

v e C((0,T], H7(M)) N CH([0, 7], HY=7 (M)) N LP([0, T], L> (M),

for some p > max(v — 1,4) when d = 1 and some p > max(v — 1,2) when d > 2. Moreover,
the time T depends only on the size of the initial data, i.e. only on |[[v](0)| g~ (ar)- In the case

o € (0,1), the same result holds with (1.14]) in place of (1.12)).

We organize this paper as follows. In Section 2, we prove the Strichartz estimates on R¢
endowed with the smooth bounded metric g. In Section 3, we will give the proof of Strichartz
estimates on compact manifolds (M, g). We then prove the well-posedness results for the pure
power-type of nonlinear fractional Schrodinger and wave equations on compact manifolds without
boundary in Section 4.

Notation. In this paper the constant may change from line to line and will be denoted by
the same C. The notation A < B means that there exists C > 0 such that A < CB, and the
one A ~ B means that A < B and B < A. For Banach spaces X and Y, the notation || - ||£(x,y)
denotes the operator norm from X to Y and || - |[z(x) == || - [l z(x,x)-
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2 Strichartz estimates on (RY, g)

2.1 Reduction of problem

In this subsection, we give a reduction of Theorem due to the Littlewood-Paley decomposi-
tion. To do so, we firstly recall some useful facts on pseudo-differential calculus. For m € R, we
consider the symbol class S(m) the space of smooth functions a on R?? satisfying

1020 a(x,€)| < Cag (&)™,

for all z,& € R%. We also need S(—o0) := ﬂmeRS (m). We define the semi-classical pseudo-
differential operator with a symbol a € S(m

Opi(a)u(z) i= (2h) / / e a(, €uly)dyde,

where u € . (R?). The following result gives the £(L?(R?), L"(R?))-bound for pseudo-differential
operators (see e.g. [4], Proposition 2.4).

Proposition 2.1. Let m > d and a be a continuous function on R?* smooth with respect to the
second variable satisfying for all B € N%, there exists Cg > 0 such that for all z,& € RY,

0 a(x,€)| < Cp (&)™
Then for all 1 < q < r < oo, there exists C > 0 such that for all h € (0,1],

10pr(a)ll z(La(ray,Lr(ra) < Ch™ (5-4).

For a given f € C§°(R), we can approximate f(h?P) in term of pseudo-differential operators.
We have the following result (see e.g [4], [7] or [28]).

Proposition 2.2. Consider R? equipped with a smooth metric g satisfying (1.2) and (1.3). Then
for a given f € C3°(R), there exist a sequence of symbols q; € S(—o0) satisfying qo = f o p and
supp(q;) C supp(f o p) such that for all N > 1,

N-1

F(B2P) =" W Opu(q;) + hN R (h),
=0

and for allm >0 and all 1 < ¢ <r < 00, there exists C > 0 such that for all h € (0,1],

_(d_4
BN (P)|| £(La ey, Lrrey) < Ch (5-%),
IRN (M)l (- ety zrm (may) < ChT2™.
A direct consequence of Propositionand Propositionis the following £(L4(R?), L™ (R?))-
bound for f(h?P).

Proposition 2.3. Let f € CP(R). Then for all 1 < g < r < oo, there exists C > 0 such that
for all h € (0,1],

1£ (0Pl euaqma) iy < O (7).
Next, we need the following version of the Littlewood-Paley decomposition (see e.g. [7] or
41)-
Proposition 2.4. There exist oo € C°(R) and ¢ € C(R\{0}) such that
wo(P)+ Y @(h*P)=1d,
h—1l:dya

where h=! : dya means h=! = 28 k € N\{0}. Moreover, for all q € [2,00), there exists C > 0
such that for all u € ./ (R?),

1/2
lullzoey < C( D et Pyulfugs)  + Clullzas.

h—1l:dya
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We end this subsection with the following reduction.

Proposition 2.5. Consider R? d > 1 equipped with a smooth metric g satisfying (1.2)), (1.3)).
Let o € (0,00)\{1} and ¢ € C§°(R\{0}). If there exist to > 0 small enough and C > 0 such
that for all ug € L*(RY) and all h € (0,1],

g —1 o _ 1\ —
e A o (h? Pug | poe (may < Ch™H (L4 6|1~ 1) =2 |lug|| 11 o), (2.1)
for all t € [—to,to], then Theorem holds true.

The proof of Proposition [2.5 bases on the following version of TT*-criterion (see [22], [34] or
[35]).

Theorem 2.6. Let (X, M, u) be a o-finite measured space, and T : R — B(L*(X, M, pn)) be a
weakly measurable map satisfying, for some constants C,v,6 > 0,

1T 22 (x)—r2x) < C, tER,
ITHT ()| 1 (x)sre(x) < CRTP (14|t —s|h™H)77, t,seR

Then for all pair (p,q) satisfying
1 1 1

p6[2,00}, qG[].,OO], (]%%5)75(2,00,1)» EST(§_7>a

one has
1T ()ullLe®,Lax)) < Ch™"[lullL2(x)s
where k= §(1/2—-1/q) — 1/p.
Proof of Proposition . Using the energy estimates and dispersive estimates (2.1)), we can apply
Theorem [2.6|for T'(t) = L(_¢,.4,] (t)eith (he) o(R2P) § = d, 7 = d/2 and get
Hemf (hAg)Uw(hQP)uO||Lp([_t07to]7Lq(Rd)) < C’h’(d/Q*d/qfl/p)Huolle(Rd).
By scaling in time, we have
Ao _ ith—1 -
125 (h* PYuo| Lo (o1 [t o], La(rayy = PPl PR o (B2 PYug|| Lo (= t9.t0),29(R0))
< C’h_'“’q||u0||Lz(Rd). (24)

Using the group property and the unitary property of Schrédinger operator e“Ag, we have the

same estimates as in (2.4]) for all intervals of size 2h° ~!. Indeed, for any interval I}, of size 2h° 1,
we can write Ij, = [c — h? Yo, c + h7~1tg] for some ¢ € R and

€72 (B PYuo|| o (1, pa(ray) = 1€ (B> P)e™™ aug|| 1o (no—1 [t to)s 11 (R1))
< Ch™ ||| L2 ray = CB™ 7 |lug|| L2y

In the case o € (1,00), we use a trick given in [7], i.e. cumulating O(h'~7) estimates on intervals
of length 2h° ! to get estimates on any finite interval I. Precisely, by writing I as a union of N
intervals Ij, of length 2h°~1 with N < h'=7, we have

o . 1/p
||eZtA9 gp(h2P)UO||Lp([7L4(]Rd)) §<Z/I HeltAg cp(hQP)UOHiq(]Rd)dt)
n h

SCNl/ph_’ypq HuOHLQ(Rd) < Ch_fypq_(a_l)/p||UO||L2(Rd). (25)

In the case o € (0,1), we can obviously bound the estimates over time intervals of size 1 by the
ones of size h?~! and obtain

1745 o(h® PYuo|| o1, pa(ray) < OB Jug]| L2 (ra)- (2.6)
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Moreoer, we can replace the norm ||ugl| L2 () in the right hand side of and ([2.6) by
llo(h2P) u0||Lz rdy- Indeed, by choosing ¢ € C§°(R\{0}) satisfying ¢ = 1 near supp(p),
can write

eith L(hAy) (h2 )u _ ezth’l(hAg)“¢(h2P)<p(h2p)u0

and apply (2.5) and (2.6) with ¢ in place of ¢. Now, by using the Littlewood-Paley decompo-
sition given in Proposition and the Minkowski inequality, we have for all (p,q) Schrédinger
admissible,

1/2
Null o (1,La(Ray) < C( Z ||90(h2p)u||2Lp(1,Lq(Rd))) + Cllull e (1,12 (ra)) - (2.7)
h—1l:dya

We now apply (2.7) for u = e 3 1y together with (2.5) and get for o € (1, 00),

o 1/2
||€”Ag“0||LP(LLq(Rd)) < C( Z hiz(%ﬁ(gil)/p)||80(h2p)uo||%2(md)> + Clluo|| 2 (ray-
h—1l:dya

Here the boundedness of I is crucial to have a second bound in the right hand side. The almost
orthogonality and the fact that v, + (0 — 1)/p > 1/p imply for o € (1, 00),

| ”AQUOHLP I,La(Rd)) < O”UOHHWMH"*”/I’(W)'

Similar results hold for o € (0,1) with 7,4 in place of v,4 + (¢ — 1)/p by using (2.6) instead of
(2.5). This completes the proof. O

2.2 The WKB approximation

This subsection is devoted to the proof of dispersive estimates . To do so, we will use the
so called WKB approximation (see [7], [, [20] or [2]]), i.e. to approximate e®*h" (740)7 ,(h2P)
in terms of Fourier integral operators. The following result is the main goal of this subsection.
Let us denote Uy, (t) := el H(hA9)7 for simplifying the presentation.

Theorem 2.7. Let o € (0,00)\{1},¢ € C§°(R\{0}), J a small neighborhood of supp(yp) not
containing the origin, a € S(—o00) with supp(a) C p~1(supp(p)). Then there exist ty > 0 small
enough, S € C>®([—tg,to] x R?) and a sequence of functions a;(t,-,-) € S(—o0) satisfying
supp(a;(t,-,-)) C p~*(J) uniformly with respect to t € [—tg,to] such that for all N > 1,

Uy (t)Opp(a)ug = Jn(t)ug + Ry (t)uo,

where
N1
B Jn(S(t), a;(t))uo(x)
7=0
N-1 o
=y [(%h)—d JL eSO . ua )|
=0

Jn(0) = Opp(a) and the remainder Ry (t) satisfies for all t € [—tg,to] and all h € (0,1],
IRN ()]l 2(z2@ay < CAY L (2.8)
Moreover, there exists a constant C' > 0 such that for all t € [—to,to] and all h € (0,1],

1IN ()| (21 (Ray, Lo (mayy < CRTH(L A+ [¢]R) 42, (2.9)
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Remark 2.8. Before entering to the proof of Theorem let us prove . We firstly note
that the study of dispersive estimates for Uy (t)¢(h%P) is reduced to the one of Uy (t)Opp(a)
with a € S(—o0) satisfying supp(a) C p~*(supp(y)). Indeed, by using the parametrix of ¢ (h2P)
given in Proposition 2.2 we have for all N > 1,
N-1
@(h*P) = Z h? Opn(;) + b Ry (h),
j=0

for some ¢; € S(—o0) satisfying supp(¢;) C p~'(supp(p)) and the remainder satisfies for all
m >0, -
IR (R) | £(rr—m (), m (ray) < CRT2™.
Since Uy, (t) is bounded in H™(RY), the Sobolev embedding with m > d/2 implies
[Un(®) BN (W)l 22 ey, Lo @y < NURE) BN (W) || 221 (Rt) () < ChT2™

By choosing N large enough, the remainder term is bounded in £(L!(R?), L>°(R%)) independent
of t, h. We next show that Theorem [2.7] gives dispersive estimates for Uy, (t)Opp(a), i.e.

UL (£)Opn(@)]| £ (1 Ry, Lo (may) < Ch™H (L + [t|h ™)™, 10)

for all h € (0,1] and all t € [~tg,to]. Indeed, by choosing ¢ € C§°(R\{0}) which satisfies QZ 1
near supp(y), we can write
(

t)Opn(a) = ¢(h*P)Un(t)Opn(a)@(h*P) + (1 — &) (h* P)Un (t)Opn(a) o (h*P)
+Un(t)Opr(a)(1 = )(h*P). (2.11)

A

Using Theorem the first term is written as

$(h* P)U(t)Opn(a) 2(h*P) = G(h*P)Jn (£)§(h* P) + ¢(h* P) Ry (t)5(h* P).
We learn from Proposmon - 2.2] and . ) that the first term in the right hand side is of size
Or(r1(®a), Lo ®e)y) (A~ (14 [th™1)~ d/2) and the second one is of size O (p1(ra), oo (ray) (R 179).
For the second and the third term of (2.11]), we compose to the left and the right hand side with
(P4 1)™ for m > 0 and use the parametrlx of (1 — @)(h?P). By composing pseudo-differential
operators with disjoint supports, we obtain terms of size O, (p2ray)(h>). The Sobolev embed-

ding with m > d/2 implies that the second and the third terms are of size Or (L1 (R4), Lo (R4)) (h®).
By choosing N large enough, we have ([2.10)).

Proof of Theorem[2.7l The proof is done by several steps.

Step 1: Construction of the phase. Due to the support of a, we can replace (hAy)? by
Y(h2P) where ¥(A) = @V~ with ¢ € C3°(R\{0}) and @ = 1 on J. The interest of this
replacement is that we can use Proposition to write
N—1
Y(h*P) = > h*Opp(qr) + KN Ry (h), (2.12)
k=0

where ¢, € S(—o0) satisfying go(2,€) = ¥ o p(z,£), supp(qr) C p~'(supp(¢)) and Ry(h) is
bounded in L?(R¢) uniformly in h € (0,1]. The standard Hamilton-Jacobi equation gives the
following result (see e.g. [28] or Appendix |AJ).

Proposition 2.9. There exist to > 0 small enough and a unique solution S € C™([—to, to] xR??)
to the Hamilton-Jacobi equation

8t5(t7xa§) +qo(x7vw‘9(tax7£)) = 07 (2 13)

$(0,2,€) — - |
Moreover, for all a, 3 € N%, there exists Cup > 0 such that for all t € [—to,to] and all z,§ € R,
070 (S(t,2,€) —x-€)| < Caplt], o+ 8] 21, (2.14)

10202 (S(t,2,€) — 2 - € + tao(w,€))| < Caglt]. (2.15)
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Step 2: Construction of amplitudes. The Duhamel formula yields
t -
eith_lw(hQP)Oph(a)uo = Jn(t)ug — ihil/ gilt=s)h " (R P) (hDs — (h*P)) Jn(s)uods.
0

We want the last term to have a small contribution. To do this, we need to consider the action
of hD; — ¢ (h®P) on Jy(t). We first compute the action of hD; on Jy(t) and have

hDy o Jy(t Z RLIL(S(t), bi(t)),

where

bO(t7 x, g) = atS(tv x, g)a/O(ta x, f)a
bl(t7 x, f) = atS(t7 x, §)al(t, l‘,é_) + Dtalfl(tw z, §)7 l = 1u sy N - 17
bN(tv z, f) = DtaNfl(ta z, g)
In order to study the action of 1)(h2P) on Jy(t), we firstly need the parametrix of 1(h?P) given

in (2.12). We also need the following action of a pseudo-differential operator on a Fourier integral
operator (see e.g. [28], [29] or [3], Appendix).

Proposition 2.10. Let b € S(—oc0) and ¢ € S(—o<) and S € C®(R?*) satisfy for all o, 3 €
Ne |+ B| > 1, there ezists Cop > 0,

10202 (S(2,8) — - €)| < Cap, V£ €R™

Then

2
L

Oph(b)OJh(S,C) = . thh(S (b<16) )+h Jh(S TN(h))

Il
o

where (b<c); is an universal linear combination of
ab(a, VS (w, €))7~ e(x, )07 S(x,€) - - 97+ S (, £),

witho < o0+ = and |oy| > 2 for alll =1,...,k and |3| = j. The maps (b,c) — (b<c);
and (b,c) — rn(h) are continuous from S(—o0) X S(—o00) to S(—o0) and S(—o00) respectively.
In particular, we have

(b d C)O(xv g) = b(l‘, VIS(J:’ 5))C($, g)a
i(bac)i(z,&) = Vyb(x, ViS(2,8)) - Vae(z, &) + %tr (V2 b(x,0:5(x,€)) - V2 . S(x,8)) ez, €).

Using ([2.12)), Proposition we can apply Proposition and obtain

N-1
Y(h?P)o Jn(t) =Y h*Opnlar) o > W Jn(S(t),a;(t)) + k™ R (h)Jn (1),
7=0

=2

b
Il

0

N
Z th“Jh(S(t), (g <aj(t))) + hN“Jh(S(t), ry+1(h,t)) + hNRN(h)JN(t)7
k+j+1=0

This implies that

(hD; — (R Z " In(S (), er(t) = KN R (h)In (£) = BN T, (S(8), rvga (hy 1)),
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where
co(t) = 0:S(t)ao(t) — qo(w, VoS(t))ao(t),
cr(t) = 0pS(t)ar(t) — qo(z, Vo S(t))ar(t) + Diar—1(t) — (g0 <ar—1(t)1 — (q1 <ar—1(t))o
-y (qmaj(t))h —1,.,N -1,
en(t) = Dian_1(t) = (g <an-1(t)1 — (@ <an—1(H))o— Y (gr<a;(t).

Thanks to the Hamilton-Jacobi equation given in Proposition[2.9] the system of equations ¢, (t) =
0 for r = 0,..., N leads to the following transport equations

Diao(t,x,§) — (g0 <ao(t))1 — (g1 9ao(t))o =0, (2.16)
Dyar(t,z,€) — (g0 <ar(t)1 — (g1 <ar(t))o = Z (qx <a;(t))1, (2.17)

for r =1,..., N — 1 with initial data
a0(071.7§) :a(x7£)ﬂ a’r(07x7£) :07 r= ]‘7"'7N_ 1‘ (2'18)
We can rewrite these equations as

Orap(t,x,&) = V(t,x,8&) - Vyap(t,x, &) — f(t,x,&)ap(t,x, &) =0,
atar(t’xaf) - V(ta Z‘,f) : vxar(tax7§) - f(t,x,ﬁ)aT(t,x,g) = gr(ta Z‘,f),

forr =1,.., N — 1 where
V(t,2,€) = (9ca0) (2, Va5 (4,2, ),
F(t,2,6) = Str [Vaole, VoS (t,2,6) - V25(t,2,6)] + s, Va5 (t,,),
gtz &) =i > (qe<ai(t)).

k4j+l=r+1
j<r—1

We now construct a,(t,z,£),r = 0,...,N — 1 by the method of characteristics as follows. Let
Z(t,s,x,€) be the flow associated to V(t,x, &), i.e

atZ(ta S, Cﬂ,f) = 7V(ta Z(ta S, T, 5)7 f), Z(S, S, T, 5) =2
By the fact that gy € S(—o0) and (2.14)) and using the same trick as in Lemma we have
1020 (Z(t,5,2,€) — x)| < Caglt — s, (2.19)

for all [t],|s| < tg. Now, we can define iteratively
t
aalt..6) = (20t . exp ( [ 705,205,800 €105
t ’ t
w9 = [ o 26n0.000 ([ 10 Z(T,t,w,f),é)df) ds.
0 T

for r = 1, ...,N — 1. These functions are respectively solutions to and with ini-
tial data respectively. Since supp(a) C p~!(supp(p)), we see that for to > 0 small
enough, (Z(t,s,p_l(supp(go))),f) € p~1(J) for all [t|,|s| < to. By extending a,(t,,&) on R?*?
by a,(t,x,&) = 0 for (x, §) §§ p‘l( ), the functions a, are still smooth in (z,¢) € R??. Using
the fact that a,qx € S(— and , we have for to > 0 small enough, a,(t,-,-) is a
bounded set of S(—o0) and supp(ar( )) D 1(J) uniformly with respect to t € [—tg, to].
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Step 3: L2-boundedness of remainder. We will use the so called Kuranishi trick (see e.g.
28], [25]). We firstly have

t
Ry (t) = ik / eit=o)h T Y (h7P) (RN(h)JN(s)+th(S(s),rN+1(h, s)))ds.
0

Using that ¢/t=)2""w(h*P) js ynitary in L2(RY) and Proposition that Rx(h) is bounded
in £(L?(R%)) uniformly in h € (0,1], the estimate follows from the L2-boundedness of
Jn(S(t),a(t)) uniformly with respect to h € (0,1] and t € [~tg,to] where (a(t))ie[—t,,t0] 15
bounded in S(—o0). For t € [~tg, ty], we define a map on R3¢ by

1
Mtiz,.8) = [ aS(ty+ s(o = 9),)ds.
0
Using (2.14)), we have for ¢ty > 0 small enough,
Ve - VeS(t,x,€) — Ipa| < 1, Va,& € R

This implies that
1
‘VEA(tax7y7£)| < / |v5 Vls(tay+5(x_y)a§)|d8 < 17 vt € [—to,to]-
0

Thus for all t € [~tg,to] and all z,y € R?, the map & — A(t,z,y,&) is a diffeomorphism from
R? onto itself. If we denote & — A™L(¢,z,y, &) the inverse map, then A=1(¢, z,y, €) satisfies (see
[3]) that: for all o, o/, 8 € N¥, there exists Cparp > 0 such that

10505 0 (A (1, 2,9, €) — )| < Caarslt], (2.20)

for all t € [~tg,to]. Now, by change of variable & — A~L(t,z,y,&), the action J,(S(t),a(t)) o
Jn(S(t),a(t))* becomes (see [28]) a semi-classical pseudo-differential operator with the amplitude

alt,z, A71(t,2,y,€))alt,y, A= (t, 2, y, )| det DA™ (¢, 2, y,€)].

Using the fact that (a(t))ic[—ty,¢,) is bounded in S(—o0) and (2.20), this amplitude and its
derivatives are bounded. By the Calderén-Vaillancourt theorem, we have the result.

Step 4: Dispersive estimates. We prove the result for a general term, namely J,(S(t), a(t))
with (a(t))ie[—to,t) 18 bounded in S(—oco) satisfying supp(a(t,-,-)) € p~'(J) for some small
neighborhood J of supp(y) not containing the origin uniformly with respect to t € [—tg, tg]. The
kernel of Jp,(S(t), a(t)) reads

K (t,z,y) = (2mh) ¢ / e SOV (¢ 1 £)dE.
Rd

It suffices to show for all t € [—tg,t] and all h € (0,1], |Kj(t, z,y)| < Ch=4(1 + |t|h—') =42, for
all z,y € R?. We only consider the case t > 0, for t < 0 it is similar. Since the amplitude is
compactly supported in ¢ and a(t, z, &) is bounded uniformly in ¢ € [~tg, %] and z,y € R?, we
have |Kp,(t,z,y)| < Ch= 4. If0 <t < hor 1+th™! <2, then

|Kh(taxay)| < Chid < Chid(]_ +th*1)*d/2.

We now can assume that h < ¢ < ¢y and write the phase function as (S(t, z, &) — y&)/t with the
parameter A\ = th~! > 1. By the choice of ¢ (see Step 1 for (), we see that on the support of

the amplitude, i.e. on p~1(J), qo(z,&) = \/p(x,f)g. Thus we apply 1' to write

1
S(t,.’ﬂ,g) = x'gftvp(xvg)o +t2/; (1 *9)835(0@%,5)(10
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G() = |n|? with n = /G(2)¢ or & = \/g(x)n where g(z

Next, using that p(z,§) =
=(g9(z))"t = (g k(x))] w1, the kernel can be written as

(9jk(2))] =1 and G(z)

K (t,2,y) = (2mh) / AV ot 2. /g(@)n)g()|dn,
Rd

where

d(t,z,y,n) = 9@)@—y) nl”+t/1( 0)925(0t, 2, /g(x)n)d

t

Recall that |g(z)| := y/det g(z). By (1.2 , Iv/G ()| and ||4/g(z)|| are bounded from below and

above umformly in r € R% ThlS 1mphes that n stlll belongs to a compact set of R? away from
zero. We denote this compact support by K. The gradient of the phase is

Vit ) = VI g ([0 0)(9e02S) 000 a0 as) Vo)

Let us consider the case |\/g(z)(x — y)/t| > C for some constant C large enough. Thanks
to the Hamilton-Jacobi equation (2.13]) (see also (A.9), (A.2) and Lemma |A.2) and the fact

o € (0,00)\{1}, we have for ¢y, small enough,

V@] > [V g(x) (@ —y)/t] = alnl”™! = O(t) = C1.

Hence we can apply the non stationary theorem, i.e. by integrating by parts with respect to n
together with the fact that for all 3 € N? satisfying |3| > 2, |8ﬁ<1>(t,x, y,n)| < Cg, we have for
all N > 1,

|Kpn(t,z,y)| < Ch™INN = Ch=4(1 + th=1) =42,

provided N is taken greater than d/ 2
Thus we can assume that |\/g(z)(x —y)/t| < C. In this case, we write

Lot
Vae(t .90 = ol (s + (0~ 2) 1) +0(0).

Using that

ot

’deto|n|”’2<le +(o— 2)7’| |Z )] = oo — 1||n|"?? > C.
n

Therefore, for ty > 0 small enough, the map n — V,®(t,z,y,n) from a neighborhood of K

to its range is a local diffeomorphism. Moreover, for all 3 € N? satisfying |3| > 1, we have

|8ﬁ<I>(t z,y,1)| < Cg. The stationary phase theorem then implies that for all ¢ € [h, to] and all

z,y € R? satisfying |\/g(z)(z — y)/t| < C,
|Kn(t,z,y)| < Ch™IN"Y2 < Ch=(1 4 th™1)~%/2,

This completes the proof. [l

3 Strichartz estimates on compact manifolds

In this section, we give the proof of Strichartz estimates on compact manifolds without boundary
given in Theorem

3.1 Notations

Coordinate charts and partition of unity. Let M be a smooth compact Riemannian
manifold without boundary. A coordinate chart (U, V,, k) on M comprises an homeomorphism
K between an open subset U, of M and an open subset V, of R%. Given ¢ € C5°(U, )(resp
X € C5°(Vy)), we define the pushforward of ¢ (resp. pullback of x) by k.¢ := ¢ o k™1 (resp.
K*x := x o k). For a given finite cover of M, namely M = U,cxU, with #F < oo, there exist
¢r € C°(Uk),k € F such that 1 =3 _¢.(m) for all m € M.
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Laplace-Beltrami operator. For all coordinate chart (U, V,, k), there exists a symmetric

positive definite matrix g, (z) := (gfk(m));l w1 With smooth and real valued coefficients on V;

such that the Laplace-Beltrami operator P = —A, reads in (U, Vi, k) as

d
Pyi= —hBgi” = = 3 1gx(@)| 105 (I9x () 62" ()0 ).

jk=1
where |g.(z)| = \/det g () and (gf;’k(m));{k:l := (gx(z))~!. The principal symbol of P is

d

Pe(@,6) = D gl (2)&58-

jk=1

3.2 Functional calculus

In this subsection, we recall well-known facts on pseudo-differential calculus on manifolds (see
e.g. [7]). For a given a € S(m), we define the operator

Opp(a) := K*Opp(a)kx. (3.1)

If nothing is specified about a € S(m), then the operator Opj(a) maps C3°(U,) to C*°(Uy). In
the case supp(a) C V,, x R%, we have that Opf(a) maps C§°(Uy) to C5°(U,) hence to C*°(M).
We have the following result.

Proposition 3.1. Let ¢, € C3°(Uy) be an elemgnt of a partition of unity on M and ggqu,ﬁ €
C5°(Uy) be such that ¢, = 1 near supp(¢y) and ¢ = 1 near supp(¢,). Then for all N > 1, all
z € [0, +00)and all h € (0,1],

N-1
(B*P —2) "¢ = > W $Op}i(an,;(2)) 0w + BN By (2, h),

§=0
where g, j(2) € S(=2 — j) is a linear combination of ax(p, — 2z)~*~F for some symbol aj, €
S(2k — j) independent of z and
Ry (z,h) = —(h*P = 2) 7' 6, 0p} (s (2, h)) b,

where 1 n(2,h) € S(=N) with seminorms growing polynomially in 1/dist(z, R™) uniformly in
h € (0,1] as long as z belongs to a bounded set of C\[0,+00).
Proof. Let us set X := Kx@y, similarly for x,, and Xr and get Xy, Xn» Xx € C3°(Vye) and X, = 1

near supp(x,) and x, = 1 near supp(y,). We firstly find an operator, still denoted by P,
globally defined on R? of the form

d d
P==>" g*@)0;0n + > _ bi(x)a, (3.2)
k=1 =1

which coincides with P,; on a large relatively compact subset Vg of V.. By “large”, we mean
that supp(x.) C V. For instance, we can take P = vP, — (1 — v)A where v € C§°(V,;) with
values in [0, 1] satisfying v = 1 on V;. The principal symbol of P is

d
p(e,8) = > g7*(@)&&,  where g*(2) = v(x)glF (x) + (1 — v())djk. (3.3)
J.k=1

It is easy to see that g(z) = (¢7%(z)) satisfies (1.2) and (1.3) and b; is bounded in R¢ together
with all of its derivatives. Using the standard elliptic parametrix for (k2P — 2)~! (see e.g [28]),
we have

(th — 2)Opr(gs(z,h)) =1+ hNOph(f,Q7N(z, h)), (3.4)
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where ¢.;(z,h) = Z;V;Ol hiqy ;(z) with gy ;(2) € S(—=2 — j) and 7, n(z,h) € S(—N) with semi-
norms growing polynomially in (z) /dist(z, RT) uniformly in h € (0,1]. On the other hand, we
can write

(hQPK - Z))N(nOph(qn(Za h))XK = Xn(h2pn - Z)Oph(%c(zv h))X:—c + [h2pm )zn]Oph(qﬁ(Z’ h))X(n )
3.5

Here [h2P,, X«] and Y, have coefficients with disjoint supports. Thanks to (3.4) and the com-
position of pseudo-differential operators with disjoint supports, we have

(h2Pn - Z)f(ﬁoph(%@(zv h))X:—c =Xk T+ hN;(rcOph(rn,N(z, h))Xm

with 7. n(z, h) satisfying the required property. We then compose to the right and the left of
above equality with £* and k, respectively and get

(h2P - Z)(;HOPZ(QR(Za h))¢n = ¢n + hNQ;ROpZ(TK,N(Zv h))(,‘b,{
This gives the result and the proof is complete. O

Next, we give an application of the parametrix given in Proposition[3.1I]and have the following
result (see [4], [7]).

Proposition 3.2. Let ¢,., b, gi:>,€ be as in Proposition and f € C§°(R). Then for all N > 1
and all h € (0,1],

N-1

F(RPP) b =Y 1 §uOpfi(ar,;)én + BN Ry n(h), (3.6)
j=0

where a, ; € S(—00) with supp(ax,;) C supp(f o p.) for j = 0,...,N — 1. Moreover, for all
m > 0, there exists C > 0 such that for all h € (0,1],

RN (B) || 2= vy, b (ary) < CRT2™, (3.7)

Proof. The proof is essentially given in [7]. For the reader’s convenience, we recall the main
steps. By using Proposition and the Helffer-Sjostrand formula (see [I4]), namely

102P) =~ [ 9F(x)02P - 5L (o)
where fis an almost analytic extension of f, the Cauchy formula implies 1' with
Ro(t) =+ [ BF)02P = 276,007 (2 1) ndL(2)
It remains to prove (3.7). This leads to study the action on L? (Rd) of the map
L BFCP.+ 1720 P =27 RO (2 )P+ 1" 2L ).

Using a trick as in (3.5), we can find a globally defined operator P which coincides with P, on
the support of x,.. We see that [|(h*P — 2) | z(p2(re)) < CIm 2|~ and

(P +1)"™/20pn(ry,n (2, 1) xn (P + 1)/ = h™2" Opy (7, v (2, ),

where 7 N (2,h) € S(—N+2m) with seminorms growing polynomially in 1/dist(z, R") uniformly
in h € (0,1] which are harmless since f is compactly supported and df(z) = O(|Im z|>). By
choosing N such that N —2m > d, the result then follows from the £(L?(R?)) bound of pseudo-

differential operator given in Proposition [2.1 O
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A direct consequence of Proposition [2.2| using partition of unity and Proposition is the
following result. (see [7], Corollary 2.2 or []).

Corollary 3.3. Let f € C§°(R). Then for all1 < ¢ <r < oo, there exists C > 0 such that for
all h € (0,1],
_(d_d
1£(h?P)|l cLoany,Lrany) < Ch (3=,

The next proposition gives the Littlewood-Paley decomposition on compact manifolds with-
out boundary (see [7], Corollary 2.3) which is similar to Proposition

Proposition 3.4. There exist pg € C°(R) and ¢ € C°(R\{0}) such that for all q € [2,00),
there exists C > 0,

1/2
lllzony < €( 3 NletrPyulliaqan) * + Cllulzzqan,
h—1:dya

for allu € C(M).

3.3 Reduction of problem

In this subsection, we firstly show how to get Corollary from Theorem and then give a
reduction of Theorem

Proof of Corollary Since we are working on compact manifolds without boundary, it
is well-known that there exists an orthonormal basis (e;)jen of L2(M) := L%(M, dvol,) of C*
functions on M such that

A_Zej = /\;’ej,

with 0 < Ao <A1 < Ap <-++ ) limj,oo Aj = F00. For any f a piecewise continuous function,
the functional f(Ay) is defined as

Fhgu =" F(A))uje;.
JEN

If we set jo := dim(ker A7), then \g = Ay = --- = \j,_1 =0 and \; > \j, > 0 for j > jo. Here
the number jy stands for the number of connected components of M and the corresponding

eigenfunctions (ej)§“=701 are constant functions. We now define the projection on ker(A7) by

Mou := E uje;, where u; 1= <€j’“>L2(M) = / ej(m)u(m)dvoly(m).
“— M
J<jo

By the Duhamel formula, the equation (1.10) can be written as

sin(tA? tsin((t — s)A%
v(t) = cos(tAg)vo + le + / MG(S)CZS.
Ag 0 Ag
We remark that the only problem may happen on ker(AJ) of Sin/(ff,\ ) But it is not the case
g
because
sin(tA?) sin(tA7) sin(tA?)
Hngvl = Z ?jvmej = Z thJULij =t Z V1,5€5 = tno’Ul.
9 J<jo J J<Jjo J J<Jjo

Since ker(AJ) is generated by constant functions, the local in time Strichartz estimates of Ilgv,
namely |[Tlov||zr(7,za(ar)) With I a bounded interval, can be controlled by any Sobolev norms
of data. Therefore, we only need to study the local in time Strichartz of v away from ker(AJ).

Using the fact that
QA 4 —ith] GItA] _ o—itA]
3(tA?) = —————, sin(tA)) = ——,
cos(tA7) 5 sin(tA7) 57
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the Strichartz estimates (1.11)) follow directly from the ones of e***¢ as in . This gives
Corollary O
We now prove Theorem To do so, we have the following reduction.

Proposition 3.5. Consider (M, g) a smooth compact Riemannian manifold of dimension d > 1.
Let o € (0,00)\{1} and ¢ € C§°(R\{0}). If there exists to > 0 small enough and C > 0 such
that for all ug € L*(M) and all h € (0,1],

e )7 o (W2 PYug | oo (ary < CRTHA + [HR ™) ™2 |fuo] 11 a1, (3.8)
for allt € [—tg,1o], then Theorem holds true.

Proof. The proof of homogeneous Strichartz estimates follows similarly to the one given in
Proposition We only give the proof of (1.8), i.e. o € (1,00), the one for o € (0,1) is
completely similar. The homogeneous part follows from (|1.7). It remains to prove

t
i(t—s)AT
| [P emsim@as] o < Ol many: (39)

The estimate (3.9) follows easily from (1.7) and the Minkowski inequality (see [7], Corollary
2.10). Indeed, the left hand side reads

H/%t =M P (s )dS‘

1 (t—s)AZF . \ d
LP(1,L9(M)) /” 0.6 (s)e ($)llLe(1,La(ary)ds

= / =85 F ()| Lo (1,0 (a1 ds
I
e AL Op——
I

This gives (3.9) and the proof of Proposition is complete. O

3.4 Dispersive estimates

This subsection devotes to prove the dispersive estimates (3.8]). Again thanks to the localization
¢, we can replace (hA,)? by 1(h?P) where ¢y(\) = ¢(A)VA~ with ¢ € C5°(R\{0}) such that ¢ =
1 near supp(yp). The partition of unity allows us to consider only on a local coordinates, namely

> e“hilw(ﬁp)go(hQP)gzﬁ,{. By using the same argument as in Remark and Proposition
the study of e*h” “("*P),(h2P)g, is reduced to the one of eith_lw(hQP)q;,{Opg(a,{)qb,i with
a,;, € S(—o0) and supp(as) C supp(¢ o px). Let us set

u(t) = eV G Opf (an) dto.
We see that u solves the following semi-classical evolution equation

(hDy — (W2 P))u(t) = 0,
{ U|t=0 GOl (ay ), tto.
The WKB method allows us to construct an approximation of the solution to (3.10)) in finite
time independent of h. To do so, we firstly choose ¢, ;,5; € C§°(Uy) such that ¢, =
near supp(qi)ﬁ) (see Proposition (3.1 for (255) gi)N = 1 near supp(¢,,) and g?); = 1 near supp(gf)ﬁ).
Proposition [3.2] then implies

(W2 P)¢), = §.0p; (be(h)) D) + WV Ry, y(h), (3.11)

where b, (h) = {1}1 hibyy with b,y € S(—o0) and Ry, y(h) = Oz(z2(ar))(1). By using the global
extension operator defined in (3.2)), we can apply the construction of the WKB approximation
given in Subsection [2.2and find tq > 0 small enough, a function S,, € C*°([—tq, to] x R??) and a

(3.10)
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sequence ay, ;(t,-,-) € S(—oo) satisfying supp(ay ;(t,-,-)) C p~(J) (see (3.3) for the definition of
p) for some small neighborhood J of supp(¢) not containing the origin uniformly in ¢ € [—to, to]
such that

(th - Oph(b,i(h)))Jﬁ’N(t) = RN’N(t), (312)

where
N—

H

thh Cl,g,j(t)% JN(O) = Oph(a%)a
=0

satisfying for all ¢ € [—tg, to] and all (z,£) € p~1(J),

<.

0907 (S (t,2,6) —x- &) < Caglt], |a+8>1, (3.13)
0200 (St 2, €) —:r~§+t\/m0)‘ < Cogltl?, (3.14)
and for all h € (0,1],
[ Te. v ()| 201 Ry, e (ray) < CR™H L+ [Hh 1) 42, (3.15)
R n(t) = Op(pzgray, (RN TH). (3.16)

Next, we need the following micro-local finite propagation speed.

Lemma 3.6. Let o € (0,00)\{1}, x, X € C5°(R?) such that X = 1 near supp(x), a(t) € S(—o0
with supp(a(t,-,-)) C p~*(J) uniformly int € [~to,to] and S € C([~to, to] x R??) satisfy (3.14
for all t € [—to,to] and all (x,€) € p~1(J). Then for to > 0 small enough,

Tn(S(t), a(t))x = XJn(S(t), a(t))x + R(t),
where R(t) = Oﬁ(Lz(Rd))(hoo).
Proof. The kernel of Jp,(S(t), a(t))x — XJn(S(t),a(t))x is given by

Ky (t,z,y) = (2mh)™? / TN SERO=vO (1 — R)(x)alt, z, &) x (y)dE.
R4

Using (3.14), we can write for tg > 0 small enough, t € [~tg, o] and (z,¢) € p~1(J),

S(t,z,&) —y& = (x —y) —tv/p(x, & +O t?).
By change of variables n = \/G(2)€ or £ = \/g(z)n, we have

Kn(t,x,y) = (2mh) ¢ /Rd eI EEm (1 - %) (x)alt, z, v/g(@)n) x(y)V/det g(x)da,

where ®(t,z,y,&) = \/g(x)(x — y)n — t|n|° + O(t?). Thanks to the support of x and Y, we see
that |« — y| > C. This gives for ¢ty > 0 small enough that

V@ (t, 2, y,m)| = V(@) (@ —y) — tonln]”=* + O(t*)] = C(1 + |z — y|).

Here we also use the fact that ||1/g(z)]|| is bounded from below and above (see (3.3)). Using the
fact that for all 3 € N¢ satisfying |3| > 2,

‘ag(l)(t7 z,y,m)| < Cs,
the non stationary phase theorem implies for all N > 1, all t € [~tg, o] and all x,y € R%,
|Kn(t,2,y)| < CRV =41+ |z —y[) ™V

The Schur’s Lemma gives R(t) = Or(r2(ray)(h>). This ends the proof. O
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Proof of dispersive estimates (3.8). With the same spirit as in (3.1), let us set J&(¢) =
K*Jo N (t)ks, R (1) = K*Rye n(t)ks where Jo n(t) and Ry n(t) given in (3.12). The Duhamel
formula gives

u(t) = ™ PG Opr (an) druo
= Gud (1) pruo — ih /O t =T WEP) (D (R2P)) T (8) Stods.
We aslo have from that
(hDs—=tp(h* P)) b TR (5) b = GxhDsJ 5o (5) = Opfi (b (h)) T (8) b — BN Ry, n (h) b TR (8) b
The micro-local finite propagation speed given in Lemma [3.6] and imply
(hDy — (W’ P))pu R (8) b = Gjer™ (hDs — Opp (br (1)) N (8) kb — Ric(8) — BN Ry (h) i TN (8) e
= G RR ()0 — Ri(s) — WY RL, o (h) w3 (8) b,

where R,(s) = Oc(r2(ay)(h*°). Here we also use the L?-boundedness of pseudo-differential
operators with symbols in S(—o00). We then get

u(t) = Gu R (t) b + R (t)uo,

where
t
R (t)uo = —ih ™! / e = P) () R (8)b — Ri(s) — BN R), ()b T (8) by Juods.
0

By the same process as in Remark [2.8 using (3.15) and the fact that R% (t) = Ozz2(ary) (A1)
for all t € [—tg, to], we obtain

g —1 2
[’ B o(h2 P) o oo (ary < CR™ (1 + [t ™2 [uo| L1 (ary,

for all t € [—tg,t0]. The dispersive estimates (3.8) then follow from the above estimates and
partition of unity. This completes the proof. O

4 Nonlinear applications

In this section, we give the proofs of Theorem and Corollary and Theorem

Proof of Theorem We only treat the case o € (1, 00) where we have Strichartz estimates
with loss of derivatives. The one for o € (0,1) is similar and essentially given in [13], Theorem
1.7. We follow the standard process (see e.g [I5] or [7]) by using the fixed point argument in a
suitable Banach space. We firstly choose p > max(v — 1,4) when d = 1 and p > max(v — 1,2)
when d > 2 such that v > d/2 — 1/p and then choose ¢ > 2 such that

2 d _d

S+-<c
P oq

Let us consider
Xr = {U € C(I,HY(M)) N LP(I, H(M)), |lull oo (1,157 (ar)) + ||U||LP(I,H;{(M)) < N}
equipped with the distance
lu=vllxr = llu = vlleeqrr2m + 1w =0l L, yrwato=172 4

where I = [0,T], T, N > 0 will be chosen later and o = v — 7,4 — (0 — 1)/p. Here H) (M) :=
(1 — A,)™"/2L9(M) is the generalized Sobolev space on M and HY(M) := HJ(M). Using the
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persistence of regularity (see [8], Theorem 1.25), we have (Xr,| - ||x,) is a complete metric
space. By the Duhamel formula, it suffices to prove that the functional

t
By (u) (1) = " Moug — iu/ eI u(s) | u(s)ds
0
is a contraction on Xp. The Strichartz estimates (1.8)) imply
[ Puo (Wl Lo (1,77 (ar)) + [ Puo (W) | 2o (1,152 (a1)) S w0l (ary + 1F (@) 21 (1,57 (0

where F(u) = —plu['"tu. Using our assumption on v (i.e. v is an odd integer or ([1.13)
otherwise), the fractional derivatives (see e.g. [2I], Appendix) and Hoélder inequality, we have

< ||UHLV 1 [ s M))HU’HLOQ(LHW(M))

IF @)z (i S (|l Gl
(M)

< Tl_T ||u||2;(1[’Lw(M)) HUHL‘”(I,H“/(M))-

Note that by working in local coordinates, the fractional derivatives on compact manifold are
reduced to the ones on R%. Similarly, using the fact that for all z,¢ € C,

F(2) = F(OI S |2 — ¢l + 1¢17), (4.1)
we have
||F(u) ( )HLl(I L2(M)) S (HUHLV 1(I1,Lo°(M)) + HUHLV 11, Loo(M)))HU - UHL‘X’(LL2(M))
ST (Il e anyy + 1005 oy )l = Olloe 1,220

The Sobolev embedding with v > d/q implies LP(I, H*(M)) C LP(I,L>(M)). Thus,

[@ug (W)l Lo (1,19 (0)) + (1P (W)l Lo (1,12 (01))
< lwoll vy + T4 ° ||u||Lp(1 ag (ay lull L=, (ay)
and
1Puo (w) = Pug (V)| oo (1,£2(a0)) + 1 Pug (1) = Pug (V) 1 ; gy wa—te=1r 19,
ST (s e anyy + 1005l ooy e = Wl rrzany— (42)

< T (HUHLP I,Hg (M) + HU”LP I H“(M))) lu = vl r2any-

This implies for all u,v € X, there exists C' > 0 independent of ug € HY (M) such that

Do (W)l Lo (1,9 (0)) + [ Puo (W) | Lo (1,110 (1)) < Cllwo ||z (ary + CT™ % NV,

and
[Pug (1) = Py (V)| x < CT

Therefore, if we set N = 2C/||ug|| g~ (ary and choose T' > 0 small enough so that CT 5 Nl <
%, then X is stable by ®,, and ®,, is a contraction on Xr. The fixed point theorem gives
the existence of solution v € C(I, H"(M)) N LP(I,L>°(M)) to (NLFS). It remains to show the
uniqueness. Consider u,v € C(I, HY(M)) N LP(I,L*>®*(M)) two solutions of (NLFS). Since the
uniqueness is a local property (see also [8]), it suffices to show u = v for T is small. Using ,
we have

_x—1 v— v—
= vllxes < OT 5" (ullfzds earyy + 1l5mis oeary 1w vl -
Since [[u|| e (1,10 (ar)) is small if T' is small and similarly for v, we see that if 7' > 0 small enough,
1
lu = vllxr < Sllu = vlix.

This completes the proof. O
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Proof of Corollary By the assumptions given in Corollary we apply Theorem
with 4 = ¢/2 and see that for all uy € H?/?2(M), there exist T > 0 and a unique solution
u € C([0,T], H°/?(M)) N LP([0, T), L>°(M)) to the defocusing (NLFS). Note that the time T
depends only on |[ug|| g+/2(pr)- Moreover, by a classical approximation argument, the following

quantities are conserved for ug € H/?(M),
()12 ar) = M (uo),

1, ., 1 ,
IS Pu® Lo ary + IIU()IILfL(M) E(uo).

This shows that |[u(t)||go/2(as) remains bounded for all ¢ in the existence domain. Thus we
can apply Theorem [I.5] again with the initial data starting at 7" and obtain a unique solution
u € C([0,2T), H*/>(M))NLP([0,2T), L>(M)). By repeating this process, we extend the solution
for positive times. Similarly, the same result holds for negative times. This ends the proof. O

Proof of Theorem The proof is very close to the one of Theorem We only consider
the case o € (1,00), the one for o € (0,1) is similar (see also [I3], Theorem 1.13). Let (p, ¢) and
a be as in the proof of Theorem We will solve (NLFW) in

Y= {v € C(I, H'(M)) N C*(I, HY=° (M)) N LP(I, HZ (M),
]l Loo (7, E57 (ary) + ”U”LP(I,H;;(M)) < N}
equipped with the distance
lv = wllyz = o = wlllze L2y + 10 =wll 1, ) gmvwa=e=0r0 0,5
where I = [0,7] and T, N > 0 will be chosen later. Here we denote

101l oo (1,17 (aryy = 10l Lo (1,17 (ar)) + 100l Loe (1, 57— (a1 -

The persistence of regularity implies that (Y7, ||-|vs) is a complete metric space. By the Duhamel
formula, it suffices to prove that the functional

sin(tA9 tsin((t — s)A9
q)vo,m (’U)(t) = COS(tAg)UO + %’Ul - NJ/ %"U(S)‘Vilﬂ(s)ds (43)

g9 g9

is a contraction on Yp. The local Strichartz estimates (1.11]) imply

| [®og,0, (V)] HLOO(I,HW(M)) + [ Pug,0, (@HLF([,H&(M)) ~ H[v](o)”H‘Y(M) + ”F(U)”Ll(I,H”f—U(M))
S IO e any + 1F @)z (1,57 (ar) -

As in the proof of Theorem [I.5] the fractional derivatives with the assumption on v given in
Theorem the Holder inequality imply

IE@zmvony S T [0l oo a0, (-
Similarly, using (4.1]), we have
1F@) = F)llexcrizqony S T (10155 s qany + 101550 1 ary ) 10 = Vo 22000
The Sobolev embedding LP(I, HY(M)) C LP(I,L>(M)) then implies that

[ [P oo,v0 ()] 1Loe (1,17 (a1)) + (1 Pug o0 (V)| Lo (1,110 (1))

SR (ary + T ollyady #g vy [Vl oo (1,1 (v
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and
|@Ww@o—éwmmwm%STkgfmmb@LwM»+ww;@LMM»mu—wwr (4.4)
ST (101t g oy + 1007 e ay ) 1t = Ol
Therefore, for all v,w € Y7, there exists a constant C' > 0 independent of vy, v; such that

A
1 [@ug,00 (0)] | o (1,157 a0y + 1P, 00 (V)| Lo (1,12 (2 < CHOIO) | 5 ary + CT' 7 NV,

and N
1D o010 (V) = Pog v, (W) |y < CTH 7 N Hlu = vy

Setting N = 2C'[|[v](0)|| gr+(ary and choosing T' > 0 small enough so that cT' 5 NVl <1

see that Y7 is stable by &, ,, and ®,, ., is a contraction on Yr. By the fixed point theorem
there exists a unique solution v € Y7 to (NLFW). The uniqueness of solution v € C'(I, HY(M))N
CY(I,H"=°(M)) N LP(I,L>(M)) follows as in the proof of Theorem using . O

A Hamilton-Jacobi equation

In this appendix, we will recall the standard Hamilton-Jacobi equation (see e.g. [28]). Let us
consider the following Hamilton-Jacobi equation

nS(t,x, &) + H(z,V,S(t,z,&)) = 0,
S(O,Qﬁ,é-) = 33"57

where H € C>(R??) satisfies that for all o, 3 € N?, there exists Cap > 0 such that for all
z, & € R?,

(A1)

0207 H(2,6)| < Cap. (A.2)
The Hamiltonian flow associated to H is denoted by @y (¢, x,&) := (X (¢,x,&),E(t, z,£)) where

{Xw = VeH(X(1),5(1), ami{xm>= .
= t),2(t)),

—_
—
—

t),=(t
) = —V.H(X(),E() E0) = ¢

We have the following result (see [28]).

Lemma A.1. Let tg >0 and a, B € N? be such that || + |3| > 1. Then there exists Copr, > 0
such that for all t € [—to,to] and all (z,£) € R4,

10207 (D1 (t, 2,6) — (,8)] < Capolt]-

Proof. The proof is essentially given in [28]. We assume first |a + 8] = 1 and denote

[ 0.X() 9X(r)
Z“)‘< PED) &E@))'

By direct computation, we have
920 = A 2(0), (A.3)

where

This implies that

t t
M@—@ﬂgAmmwmﬂWSMmﬁAMM@—@ww
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where M = Sup; , ¢ye[—t,,t0)xr2¢ |[A(t)[|. Using Gronwall inequality, we have
|1 Z(t) — Igza|| < M|t|eMt < MeMiot].
For |a+ | > 2, we take the derivative of (A.3) and apply again the Gronwall inequality. O

Lemma A.2. There exists to > 0 small enough such that for all t € [—to,to] and all £ € R?,
the map x +— X(t,x,€) is a diffeomorphism from R onto itself. Moreover, if we denote x
Y (t,x,€) the inverse map, then for all t € [—to,to] and all o, B € N? satisfying |a+ 3| > 1, there
exists Cop > 0 such that for all x,& € RY,

0200 (Y (t,2,€) — )| < Caplt].

Proof. By Lemma , there exists ¢y > 0 small enough such that

1
10:X (1) — Fall < 5,

for all ¢ € [—to,to]. By Hadamard global inversion theorem, the map = — X(t,z,€) is a

diffeomorphism from R? onto itself. Let x — Y (t,x, ) be its inverse. By taking derivative agaf
with |a 4+ 8] = 1 of the following equality

= X(t.Y (28,9, (A.4)
we have
(0 X)(t, Y (t,2,€), )05 (Y (t,2,€) — ) = —0505 (X (t,4,1) = V)| (y.=(v (t.0.6).6)-

By choosing ¢y small enough, we see that the matrix (0,X)(t,Y (¢t,x,&),£) is invertible and its
inverse is bounded uniformly in t € [~tg, o] and x,¢ € RY. This implies that

0202 (Y (t,2,€) — )| < C|oS05 (X (t,y,m) — y)| < Caplt]-

For higher derivatives, we differentiate (A.4) and use an induction on |« + 8|. This completes
the proof. O

Now, we are able to solve the Hamilton-Jacobi equation (A.1)) and have the following result.

Proposition A.3. Let ty be as in Lemmal[A2] Then there exists a unique function S €
C>=([~to,to] x R2?) such that S solves the Hamilton-Jacobi equation (A.1). The solution S
is given by

S(t,z,&) =Y (t,z,£) -§—|—/O (€-0¢H —H)o®y(s,Y(t,z,§),&)ds, (A.5)
and S satisfies
VeS(t) =Y (1), VaS(t)=E(tY(1),8), Pnu(t,VeS(t),8) = (,VaS(t)), (A.6)

where S(t) := S(t,z,£) and Y (t) := Y (t,2,£). Moreover, for all a, 3 € N%, there exists Cop > 0
such that for all t € [—to,to] and all z,€& € RY,

090 (S(t,2,8) —x-&) | < Cagltl, |a+ 8> 1, (A7)
10202 (S(t,2,6) — - € +tH(2,€))| < Cagltl®. (A8)

Proof. It is well- known (see [28]) that the function S defined in 1.' is the unique solution to
(A.1]) and satisfies (A.6]). It remains to prove - ) and ( - By (A.6) and the conservation of

energy, we have

H(z,va(t)) =Ho (I)H(tvvfs(t)ag) = H(VgS(t),f) = H(Y(t)vf)
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This implies that

(txf)—xﬁ-t/@t (0t,2,&)d :—t/H (0t,2,£),£)do

Using (A.2)) and Lemma we have (A.7)). Next, we compute

535()——@[ (Y (#),8)] = = (Vo H)(Y(),8) - Y (1)
= —(VaH)(Y(2),6) - Ve [0:5(t)] = = (Vo H)(Y (), €) - Ve [-H(Y (1), £)]
= (Vo H)*(Y(1),6) - VeY () + (Vo H - VeH) (Y (1), 6). (A.9)

The Taylor formula gives
S(t,l’7f) = l'é-—tH(.’E,g)

42 /O (1= 0) [(VLH2(Y(01),€) - VY (01) + (Vo H - VeH)(Y (02), €)] db.

Using again (A.2)) and Lemma[A4.2] we have (A.5). O
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