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Abstract – In this paper, we present techniques for fatigue damage evaluation using spectral methods and
a model taking into account confined elasto-plastic behavior. The model is associated with a local fatigue
approach, covering the whole endurance domain (low cycle and high cycle fatigue). It uses Neuber’s method
and is valid for limited plasticity. To validate this modeling, we perform a correlation between spectral
methods, modified spectral methods and experimental tests. Results presented here are focused on the
uniaxial loading case.
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1 Introduction1

The phenomenon of fatigue has become a major design2

criterion in the engineering industry, requiring fatigue3

methods that better model real physical phenomena. Con-4

ventional fatigue methods are defined in time domain5

because their loading input data is usually a stress or6

strain time history. Algorithms such as Rainflow [1, 2]7

extract stress cycles from the time history to obtain a8

stress distribution. To determine the lifetime generated9

by the stress distribution, we can use a fatigue law such10

as Basquin equation and a damage accumulation rule such11

as Palmgren-Miner law. Nevertheless, these methods re-12

quire knowing the stress time history or the envelope of13

this time history.14

In the case of random vibrations, the mechanical15

structure may have a dynamic response. It is difficult to16

know the stress time history and to make the classical17

fatigue analysis. In time domain, it is only calculated the18

damage associated with one realization of the random19

vibrations process. If one wants the damage caused by20

random processes (in this paper, only stationary ergodic21

random processes are considered), it is necessary to calcu-22

late damages on several different realizations of the same23

stochastic process. This approach is called Monte Carlo24

simulation. The main drawback of Monte Carlo simula-25

tions is the computation time [3].26

a Corresponding author: herve.rognon@supmeca.fr

To overcome these problems it is suitable to work in 27

the frequency domain. In addition, we model the random 28

vibrations as a gaussian stochastic process, characterized 29

by its PSD. Fatigue spectral methods are entirely defined 30

in the frequency domain. The average damage is then cal- 31

culated from the PSD of stress. The stress cycles distribu- 32

tion is not calculated but is estimated with a probability 33

density function. This probability density depends on pa- 34

rameters of the PSD and the selected spectral method. 35

Spectral methods have shown their reliability in fatigue 36

life predictions, however, their theory requires several as- 37

sumptions about the strucutre response (Fig. 1a) that 38

limite their applications. 39

Our proposal extends the range of SM to low cycle 40

fatigue, by modeling confined plastic behavior of materi- 41

als and we use a fatigue law that take into account this 42

plasticity. Figure 1b defines the framework in which we 43

will expand the use of spectral methods. In the presence 44

of non-linearity, the response of the structure is a station- 45

ary ergodic non-gaussian stochastic process. Although the 46

assumption of zero mean is no longer true, we make the 47

assumption that the response of the structure with a non- 48

linearity is zero mean because the non-linearity (plastic- 49

ity) is confined. 50

To allow comparison between the proposed method 51

and the methods of bibliography, we conducted vibration 52

fatigue tests which will serve as a reference. Tests will be 53

performed in the case of a nearly uniaxial response to be 54

consistent with the definition of the methods studied. 55
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Nomenclature

E[•] Mathematical expectation
f Frequency (Hz)
Gxx(f) Power spectral density of x(t)
Rxx(τ ) Autocorrelation function of x(t)
λm Spectral moment of order m
ν0 Number of zero-upcrossings
νa Average number of maxima
γ Irregularity factor
N number of cycles (lifetime)
σ Stress amplitude
σm mean stress
ε Strain amplitude
C , k Material parameters of Basquin model
E Young’s modulus
εf Fatigue ductility coefficient
σf Fatigue strength coefficient
b, c Material parameters of Manson-Coffin-Basquin model
h(P, V ) Joint probability density function of peak and valley
Pa(σ) Amplitude probability density function of σ(t)
d Damage at a given amplitude σ
E[d] Average damage in the interval σ and σ + dσ
E[D] Average damage
Tf Life time (seconds, hours or days)
X(t) Gaussian stochastic process
Z(t) Non-Gaussian stochastic process
G(•) Direct transformation
G−1(•) Inverse transformation
MOY• Average of stationary ergodic stochastic process •(t)
STD• Standard deviation of the stationary ergodic stochastic process •(t)
S Skewness
K Kurtosis
h3, h4 Parameters of Hermite model
k′ Cyclic strength coefficient
n′ Cyclic strain hardening exponent
εei σei Strain and stress obtained by elastic behavior for class i
εri σri Strain and stress obtained by Neuber’s model for class i
H(•) Cycles distribution with linear behavior
Hep(•) Cycles distribution with elasto-plastic behavior

Acronyms

PSD Power Spectral Density
PDF Probality Density Function
RMS Root Mean Square
SM Spectral Method
SMM Spectral Method Modified
HM Hermite Model + spectral method

(a) Assumptions necessary for using spectral methods (b) Assumptions of our case study

Fig. 1. Definition of required assumptions in spectral methods and positionning of our framework.
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2 General purpose1

2.1 Properties of stochastic processes2

Power spectral density3

In the case of a stationary Gaussian stochastic process,4

the PSD contains information defining this process [4].5

Moreover, if the process is ergodic, the PSD can be cal-6

culated from the autocorrelation function of a realization7

of the random process x(t) as follows, equation (1) :8

Gxx(f) =
∫ +∞

−∞
Rxx(τ)e−i2πfτ dτ (1)

where R(τ) = E[x(t)x(t+ τ)]. This equation (1) is known9

as the Wiener-Khintchine theorem.10

Spectral moments and signal parameters11

The spectral moments are important characteristics of12

a random process, they are calculated by equation (2).13

λm =
∫ +∞

−∞
Gxx(f) | f |m df (2)

They are related to the amount of information contained14

in a random process in the time domain. If for exam-15

ple x(t) is a displacement and a random process with16

zero mean, λ0 is the variance of the displacement, λ2 is17

the variance of the velocity and λ4 is the variance of the18

acceleration.19

Spectral moments determine signal parameters of20

random processes.These results were demonstrated by21

Rice [5]. The number of zero-upcrossings is defined in22

equation (3).23

ν0 =
√

λ2

λ0
(3)

We define in equation (4) the number of maxima as:24

νa =
√

λ4

λ2
(4)

Another useful parameter is the irregularity factor. It25

represents the bandwidth of the PSD. It is calculated26

from the number of maxima and the number of zero-27

upcrossings, equation (5).28

γ =
ν0

νa
=

√
λ2

λ0λ4
(5)

2.2 Fatigue law29

Spectral methods commonly use the Basquin fatigue30

model [6]. This gives a power law relation between stress31

amplitude and life. This model leads to a linear Stress-32

Life curve in a log-log scale. It is defined in equation (6)33

.34

Nσk = C (6)

In the case of the proposed approach, the fatigue model 35

used is Basquin-Manson-Coffin’s formulation [6]. This is 36

a non linear model that determines total strain amplitude 37

as a function of life. It is governed by equation (7): 38

ε =
σ

′
f

E
(2N)b + ε

′
f (2N)c (7)

2.3 Spectral methods 39

In a classical approach of damage, counting methods 40

define each stress cycle extracted by a peak of level P and 41

valley of level V or amplitude σ and mean value σm. Each 42

extracted cycle is a random event that has its own proba- 43

bility of occurrence. Consider h (P, V) the joint probabil- 44

ity density of cycles extracted functions of peaks P and 45

valley V. By simple variable change, the joint distribution 46

of cycles is obtained in terms of amplitude σ and mean 47

value σm, equation (8): 48

Pa,m(σ, σm) = 2h(σm + σ, σm − σ) (8)

The amplitude probability density function (PDF) is 49

then, equation (9) : 50

Pa(σ) =
∫ +∞

−∞
Pa,m(σ, σm)dσm (9)

Damage due to each stress amplitude σ, according to 51

Basquin equation is equation (10) : 52

d =
1
N

= C−1σk (10)

The expectation of damage contribution of cycles whose 53

amplitude is between σ and σ + dσ, equation (11) : 54

E[d] = C−1νaσkPa(σ)dσ (11)

where νaPa(σ)dσ is the number of maxima per unit time 55

in the interval [σ; σ + dσ]. 56

The damage expectation per unit time for the law of 57

Palmgren-Miner is equation (12). 58

E[D] = C−1νa

∫ +∞

0

σkPa(σ)dσ (12)

Pa(σ) is the amplitude probability density function and 59

depends on the formulation made by each author. In our 60

case, we use the probability density function (PDF) de- 61

fined by Lalanne (Rice theory) [7] and Dirlik (Rainflow 62

approach) [8]. 63
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Fig. 2. Methodology diagram for calculating fatigue for non-gaussian process with a reversible transformation of the hermite
model type.

Lalanne’s method1

Lalanne [7] defines the amplitude probability density2

function from the work of Rice [5], given in equation (13).3

PLal
a (σ) =

√
1− γ2

2πλ0
exp

( −σ2

2λ0(1 − γ2)

)

+
γσ

2λ0
exp

(
− σ2

2λ0

)

×
[
1 + Erf

(
γσ√

2λ0(1− γ2

)]
(13)

where Erf(x) is the error function, defined by Erf(x) =4

2√
π

∫ x

0
e−α2

dα. The average damage can be calculated5

from the equation (14).6

E[DLal] = C−1νa

∫ +∞

0

σkPLal
a (σ)dσ (14)

Dirlik’s method7

In 1985, Dirlik [9] proposed to determine directly from8

the PSD the amplitude density probability based on the9

definition of a rainflow cycle. He determines the rainflow10

cycles probability density empirically, from a large num-11

ber of Monte Carlo simulations with different forms of12

PSD and irregularity factors. The probability density by13

Dirlik is given in equation (15).14

PDir
a (σ) =

1√
λ0

[
D1

QD
exp

(
− ϕ

QD

)
+

D2ϕ

R2
exp

(
− ϕ2

2R2

)

+D3ϕ exp
(
−ϕ2

2

)]
(15)

where 15

ϕ =
σ√
λ0

; xm =
λ1

λ0

√
λ2

λ4
; D1 =

2(xm − γ2)

1 + γ2

R =
γ − xm −D2

1

1− γ −D1 −D2
1

; D2 =
1− γ −D1 −D2

1

1−R
(16)

D3 = 1−D1 −D2; QD =
1.25(γ −D3 − (D2R))

D1

Equation (17) indicates the average damage with the cy- 16

cles probability density by Dirlik. 17

E[DDir ] = C−1νa

∫ +∞

0

σkPDir
a (σ)dσ (17)

2.4 Hermite’s model 18

In case the structure response is a stationary ergodic 19

non-Gaussian stochastic process, there are ways to per- 20

form the calculation of the fatigue damage. Hermite’s 21

model [10, 11] is a reversible transformation that can 22

transform a non-Gaussian processes in Gaussian process. 23

Combined with spectral methods, this allows fatigue life 24

calculation of a non-Gaussian stochastic process [12, 13]. 25

The global methodology is described in Figure 2. In our 26

case, the non-Gaussian processes can be generated by a 27

structure with a non-linear behavior. Here we use the Her- 28

mite model because it is easy to implement but there are 29

other models such as Ochi and Ahn [14,15] and Power-law 30

model [16]. 31

Equation (18) represents the G(•) transformation [17] 32

applied to our problem where X0 is the reduced centered 33

variable (X0 =
X −MOYx

STDx
). 34

X0 = [
√

ξ2(Z) + η3+ξ(Z)]
1
3 −[

√
ξ2(Z) + η3−ξ(Z)]

1
3−η1

(18)
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environment  

Fig. 3. Proposed fatigue process in the spectral methods.

Where1

ξ(Z) = 1.5η2

(
η1 +

Z −MOYz

STDz

)
− η3

1 , η1 =
h3

3h4
,

η2 =
1

3h4
, η3 = (η2 − 1− η2

1)3, h3 =
S

6
,

h4 =
(K − 3)

24
(19)

Equation (20) represents the inverse transformation of G2

(G−1):3

Z = MOYz + STDz[X0 + h3((X2
0 − 1) + h4((X3

0 − 3X0)]
(20)

3 Modeling of plasticity in spectral methods4

3.1 Modelization in spectral methods5

To take into acount elasto-plastic behavior, the spec-6

tral methods need two essential elements to provide a7

good estimation of the damage. The first element is a8

fatigue law that takes into account the plastic behavior.9

The second element is a model giving the elasto-plastic10

local responses due to the loading. These two elements are11

taken into account by using the Basquin-Manson-Coffin12

model and the rule of Neuber [18, 19].13

Manson-Coffin-Basquin’s law can take into account14

the plastic behavior of the material during the accumu-15

lation of damage. Neuber’s method defines a distribution16

that takes into account the elasto-plastic behavior from a17

linear calculation respecting the assumptions of spectral18

methods (Fig. 1). In spectral domain, it is difficult to ac-19

cess to the real strain time history, but for each strain level20

it is possible to obtain the cycles number corresponding,21

this is the distribution of cycles number (H function). The22

H function is generally used for the discretized calculus23

Figure 4 shows how we apply for each stress increment24

the Neuber’s method to obtain the real strain. To repre-25

sent the present phenomenon, we use to apply the correc-26

tion of Ramberg-Osgood equation and Neuber equation,27

see equation (21). 28

εri

⎧⎪⎪⎨
⎪⎪⎩

εriσri =
σeiσei

E
←− Neuber

εri =
σri

E
+
(σri

k′
)1/n′

←− Ramberg-Osgood

(21)
We must add the assumption that the total number of 29

cycles from distribution remains unchanged regardless of 30

the materials behavior [20]. The distribution is defined 31

for a given time interval. In this time interval, the cycles 32

number is given by the system frequency and not by the 33

strain or stress amplitudes. We work only on the alloca- 34

tion of the cycles number on the space of possible real 35

strain (Fig. 4). This means that the area under the curve 36

remains the same before and after correction, only the cy- 37

cles modification on the high strain modifies the damage 38

[21]. This process is integrated in the process of spectral 39

methods as shown in Figure 3. The assumptions of spec- 40

tral methods are respected since it applies in the linear 41

part of the process. 42

4 Tests and results 43

4.1 Specimen description 44

The specimen in Figure 5 is designed to meet the 45

assumption of the method described previously (con- 46

fined plasticity). It is made from quenched & tempered 47

30NiCrMo8 steel, whose general properties are summa- 48

rized in Table 1. The specimen consists of two parts (cylin- 49

drical portion and inertia block), crimped together by a 50

shrink fitting process to allow transfer of forces. In Fig- 51

ure 5c, we show in blue the clamping area of the specimen. 52

The flat part prevents any rotation of the specimen dur- 53

ing the test. The cylindrical portion of the clamping area 54

allows for a recessed well defined and reproducible on all 55

specimens. Table 2 gives the experimental fatigue data 56

for the laws of Basquin and Coffin-Manson-Basquin. The 57

experimental value for the Basquin slope k is 12.03. To 58

avoid dispersion due to choice of damage laws, we chose 59
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Table 1. Mechanical properties of 30NICRMO8.

Young’s modulus Poisson’s coefficient Yield strength Tensile strength
195 GPa 0.33 945 MPa 1135 MPa

σe2

 

 
Neuber 
method 

(σe1, σe2, σe3, σei, σe5) 

(εr1, εr2, εr3, εri, εr5) 

εr3 εri 

A3 
A5 

Cycles number 

ε εr5 εr2 

A1 

A2 

Ai 

Distribu�on with elasto- 
plas�c correc�on Hep(ε) 

εr1 

Elas�c distribu�on  

σe3 σei 

A3 A5 

Cycles number 

σ σe5 

Elasto-plas�c distribu�on  

A1 

A2 

Ai 

Distribu�on with linear 
behavior H(σ) 

σe1 

Fig. 4. Correction method for the distribution of cycles num-
ber in the spectral methods.

to adjust it to the slope of the elastic line from Basquin-1

Manson-Coffin (1/0.085 = 11.764).2

4.2 Test bench description3

Each test is composed of three specimens (Fig. 6) to4

save time and set repetitive. The specimens are encased in5

a clamping system. The excitation system is a electrody-6

namic vibrator which is controlled by several parameters7

(RMS value, leveling the PSD). The tests are performed8

on the second eigenmode of the specimen in order to have9

a uniaxial loading. The PSD excitation is a PSD band10

90 Hz−120 Hz, centered around the eigenmode. Table 511

in first column presents the different levels of PSD selected12

for our tests. We have 9 specimens for each level, requir-13

ing 3 tests. Accelerometers are placed on the specimen in14

order to detect crack initiation.15

The lifetime is defined as the time between the start16

of the test and the initiation of the crack. The crack ini-17

tiation is detected by the variation of the frequency and18

amplitude of the eigenmode.19

Table 2. Fatigue properties of 30NiCrMo8 steel.

S N parametrer E N parameter
k C b c ε′f σ′

f (MPa)
11.764 3.659 × 10e36 –0.085 –0.752 1.741 1750.000

4.3 Numerical model and modal analysis 20

To compare the experimental lifetimes for different nu- 21

merical methods, we modeled the specimen using a finite 22

element code (ABAQUS). This allows retrieving the stress 23

frequency response function which is the input data for 24

calculation methods in fatigue. 25

Numerical model was refined thanks to correlations 26

with experimental data (density, Young modulus and 27

damping). Table 3 shows the experimental eigenfrequen- 28

cies from average of measurements performed on 10 test 29

pieces (shock hammer and shaking table), we can see that 30

the gap with the frequency of the numerical model is 31

less than 1% in the case of our study. Figure 7 shows 32

each modal shape with excitation along
−→
Z , we note that 33

the second eigenmode is orthogonal to the first and third 34

eigenmodes. 35

A convergence study of the mesh was performed in 36

order to ensure good estimation of stresses and strains 37

in the critical area. We refined the mesh until the values 38

of stress and strain does not vary between two refined 39

meshing. We obtained that 41% of the degrees of freedom 40

are located in the notch so that it represents only 5% of 41

the total volume of the specimen. 42

We also performed a damping factor analysis. This pa- 43

rameter must be correctly quantified because it strongly 44

affects the values of stress and strain. In our case, the 45

damping is low, the slightest error in estimating it in- 46

volves lifetimes completely wrong. To determine a damp- 47

ing value consistent across all tests, we calculate the 48

damping of each test during the first two hours of testing 49

where the specimen is healthy. We calculate the damp- 50

ing means on all tests. We chose the damping mean as 51

damping value for our calculations. This value is 0.0016 52

or 0.16% damping. 53

4.4 Results and observations 54

The presented results are in the context of an exci- 55

tation of the second eigenmode which generates a nearly 56

uniaxial response. Table 4 summarizes the mean and stan- 57

dard deviation of the experimental life times by level of 58

excitation. Means and standard deviations were calcu- 59

lated on a set of 36 specimens (9 specimens per level). 60

Data are calculated in seconds and hours. The last col- 61

umn of the table indicates the ratio between mean and 62
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(a) Specimen global view (b) View of the critical area of
the specimen

(c) CATIA model view with clamping
area

Fig. 5. Vibration fatigue test specimen.

Fig. 6. Schema of test bench with the different elements that compose it and a picture of the test bench with specimens.

Table 3. Dynamic parameters (experimental and numerical data).

Eigenmode Experimental Numerical Damping (%) Loading type Loading state
eigenfrequency (Hz) eigenfrequency (Hz) (in critical area)

1st 94.5 94.2 (–0.31%) 0.11 Bending and Torsion multiaxial
2nd 102.7 102.1 (–0.58%) 0.16 Bending uniaxial
3rd 248.7 256.5 (+3.14%) 0.48 Torsion and Bending multiaxial

Table 4. Experimental average lifetime by excitation level well as the associated stantard deviation.

Level of PSD acceleration (g2/Hz) Lifetime (initiation) Average Standard deviation Standard deviation/Average

Hours 4.4 0.8
0.0040 Seconds 1.6+E04 2.8+E03 0.175

Hours 9.6 1.2
0.0034 Seconds 3.5E+04 4.2E+03 0.120

Heures 17.6 2.2
0.0030 Secondes 6.3E+04 7.8E+03 0.124

Heures 29.7 5.0
0.0026 Secondes 1.1E+05 1.8E+04 0.164
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Fig. 7. The deformations of each eigenmode with in hard, the specimen at rest and in transparent, the specimen deformed.

Table 5. Comparaison between the experimental lifetimes and the lifetimes of the different methods. in parenthesis, the relative
error from the experimental lifetime.

Excitation
level
(g2/Hz)

Experi-
-mental
life (s)

Numerical data
RMS SMM (s) SM (s) Hermite (HM) (s)
(MPa)

Dirlik Lalanne Dirlik Lalanne Dirlik Lalanne

0.0040 1.6E+04 229 1.2E+04 (–25%) 1.4E+04 1.6E+02 (–99.1%) 1.1E+02 3.1E+03 (–80.6%) 2.9E+03
0.0034 3.5E+04 211 3.4E+04 (–2.9%) 3.2E+04 1.6E+03 (–95.9%) 1.5E+03 1.4E+04 (–60.0%) 3.5E+04
0.0030 6.3E+04 197 5.7E+04 (–9.5%) 5.4E+04 9.2E+03 (–85.3%) 8.7E+03 3.8E+04 (–39.6%) 6.3E+04
0.0026 1.1E+05 175 1.1E+05 (+3.6%) 1.0E+05 7.6E+04 (–30.9%) 7.2E+04 9.5E+05 (–13.6%) 1.1E+05

standard deviation. In our case, the ratio is quite low re-1

gardless of the level of excitation. It appears that there is2

no relationship between this ratio and the level of excita-3

tion. This gives a good level of confidence in the experi-4

mental results.5

In Table 5, we compare experimental and numerical6

lifetimes for Lalanne and Dirlik models. In the second col-7

umn, we reported the RMS value obtained by calculating8

the PSD stress. This value is the same regardless of the9

method selected because this is an input data for fatigue10

calculation. Third column gives the experimental lifetime11

average per excitation level. The lifetime average per level12

is obtained from nine specimens of three tests. The other13

columns are the lifetimes obtained from the numerical14

methods. The average lifetimes are calculated from the15

probability density function (PDF) of Lalanne and Dirlik.16

In case of Dirlik PDF, in parentheses, the values of rela-17

tive errors compared to experimental lifetimes. The rela-18

tive error is defined in equation (22).19

Relative error(%) =
calculated lifetime− experimental lifetime

experimental lifetime
× 100 (22)

For the proposed model (SMM), the relative errors com-20

pared to experimental lifetimes are low; it shows a good21

accuracy of the method. In contrast for classical spectral22

methods (SM), the maximum relative error is 99.1%, it is23

obtained between the experimental lifetime and the life-24

time with classical spectral method at the level 1. The re-25

sult is consistent because the lower the calculated lifetime,26

the more elastoplastic the material behavior is. Since the27

spectral methods ignore the elasto-plastic behavior, this28

implies skewed results. Conversely, in the case of level 4,29

the loads are small and the material works global in elas- 30

tic behavior. In reference [22], for the steel 30NiCrMo8, 31

an RMS value of less than 180 MPa involves elastic be- 32

havior during the fatigue test. This explains good corre- 33

lation between classical spectral methods predictions and 34

experimental results. 35

Table 5 results are illustrated in Figure 8. As X- 36

axis there are the lifetimes obtained with the different 37

numerical methods. As Y-axis, there are the lifetimes ob- 38

tained experimentally. A point on the graph form the 39

combination of a life of a numerical method associated 40

with the experimental life corresponding thereto. A point 41

on the median line means a simulation fitting perfectly 42

experimental data. This allows to see that the main in- 43

fluence is due to material nonlinearity; the probability 44

density function selected (Lalanne or Dirlik) has little ef- 45

fect. This highlights that it is the material nonlinearity 46

that are in default in classical spectral methods. 47

We also observe that the Hermite model associated 48

with spectral methods tend to give better results at any 49

level than classical spectral methods. Nevertheless, this 50

model diverges when the nonlinearity increases and moves 51

away from the experimental results. The proposed model 52

gives a good estimate of the lifetime of the specimen at 53

any level. This shows the influence of the elasto-plastic 54

behavior on the fatigue life. 55

5 Conculsion and perspectives 56

The proposed method allows a better estimation of 57

the lifetime by including the influence of the plastic be- 58

havior of the material on the fatigue phenomenon. To 59
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Fig. 8. Synthesis of different experimental and numerical liftimes for the specimen excited on the second eigenmode.

consolidate the results obtained, other tests will be per-1

fomed on different levels and different type of solicitation.2

We found that the Hermite model gives good re-3

sults but tend to diverge when the nonlinearity increased.4

There may be two reasons for this. The first is that the5

method does not model directly the nonlinearity. The sec-6

ond is that the fatigue law used is a S-N law that does7

not take into account the plasticity.8

We have shown that if the classical spectral methods9

give incorrect results; this was due to the non-respect of10

assumptions, in our case, the linearity of the material be-11

havior.12

For the following, we have several axes of13

improvement:14

– We study the impact of experimental and numerical15

scatter on the different lifetimes results. This involves16

both the variability of experimental lifetimes and of17

numerical lifetimes. We also study the impact of the18

damping scatter on the calculated lifetimes.19

20

– We will study and model the inclusion of non re-21

versed strains (non-zero mean of the process studied).22

And, we will focus on the modeling of hysteresis phe-23

nomenon of material in the fatigue calculation.24
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