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We have used Brillouin Light Scattering spectroscopy to independently determine the in-plane
Magneto-Crystalline Anisotropy and the Dzyaloshinskii-Moriya Interaction (DMI) in out-of-plane
magnetized Au/Co/W(110). We found that the DMI strength is 2.5 larger along the bcc[001] than
along the bcc[110] direction. We use analytical considerations to illustrate the relationship between
the crystal symmetry of the stack and the anisotropy of microscopic DMI. This shows that systems
with two-fold symmetry are promising for realizing isolated elliptical skyrmions or anti-skyrmions.

An anti-symmetric exchange interaction, the
Dzyaloshinskii-Moriya Interaction (DMI), was first
theoretically predicted by Dzyaloshinskii using sym-
metry arguments in bulk magnetic systems [1]. Then
Moriya [2] demonstrated the anti-symmetric spin cou-
pling in systems with a lack of inversion symmetry,
by including spin-orbit coupling in the super-exchange
interaction. Fert and Levy [3] pointed out that high
spin-orbit scattering centers can break the indirect
exchange symmetry. The study of DMI presents a
particular interest since it can stabilize chiral magnetic
textures like skyrmions. Skyrmions are magnetic solitons
characterized by chiral vortex-like spin configurations.
They belong to a different topological space than the
ferromagnetic one, so that hopes for a robust topological
protection have been raised.

Ground-state triangular skyrmion-lattice phases
were the first to be found experimentally in 2009 [4],
in a magnetic compound with lack of bulk inversion
symmetry. In 2013, isolated circular skyrmions were
observed as metastable objects in ultra-thin magnetic
films, the breaking of symmetry arising from the in-
terfaces. However, a strong magnetic field, ultra-high
vacuum and low temperatures were required [5]. Later,
isolated skyrmions were stabilized at room temperature
in capped films [6, 7], opening the route to patterning
circuits for their manipulation, with the recent achieve-
ment of their motion by spin orbit torques [8, 9]. It has
been demonstrated recently that skyrmions can display
a non-cylindrical symmetry in anisotropic environments.
The effect of spatially modulated exchange energy and
magnetocrystalline anisotropy on the skyrmion shape
has been theoretically analyzed [10] and experimentally
investigated [11] in ultra-thin films, while a distorted
skyrmion lattice [12] has been evidenced in a bulk system
due to an anisotropic DMI arising in a mechanically-

strained single-crystal.
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Figure 1: (a) Superposition of the W(110) and the strained
Co (0001) surfaces with the Nishiyama-Wassermann relation-
ship (b) Tungsten bcc unit cell with the (110) surface high-
lighted (c) Illustration of the geometry and notation used to
describe the magnetization ( θ;φ) and the directions (α) in
the bcc(110) crystal framework

In this paper, we investigate epitaxial Au/Co/W(110),
a thin-film system that displays a large two-fold
anisotropic DMI, which we measured directly by Bril-
louin Light Scattering spectroscopy (BLS). The evidence
of anisotropic DMI in ultra-thin stacks opens the pos-
sibility for stabilizing isolated non-circular skyrmions or
even anti-skyrmions, topological objects which until now
have been predicted only theoretically [13, 14].

The sample stack is grown by pulsed laser deposition,
and crystallographic properties are investigated in-situ.
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The (1120) surface of a commercial Al2O3 single crystal
is used as the substrate for growing at room tempera-
ture a thin film of Mo (0.8 nm) followed by the deposi-
tion of a 8 nm thick W film. The stack is then annealed
at 1200 K for 1 h. During this annealing the Mo under-
layer promotes the selection of a unique epitaxial rela-
tionship, avoiding twins and yielding a single-crystalline
film [15]. Reflection High-Energy Electron Diffraction
(RHEED)[16] confirms the disappearance of the W twins
and the correct epitaxial relationship (Fig. 1).

Ultrathin Co films are then deposited, either as a
wedge in order to study the thickness-dependent prop-
erties [16] and confirm the layer-by-layer deposition by
Scanning Tunneling Microscopy [16], or with a uniform
thickness (t = 0.65 nm) for the BLS measurements.

The best condition for layer-by-layer growth was ob-
tained by progressively warming the sample from room
temperature to 448 K while the Co thickness increases
from 0 to 1.5 nm. The immiscibility between Co and
W guarantees a flat and sharp interface. RHEED and
Grazing incidence X-ray diffraction (GIXRD) patterns
demonstrate the retained single crystal feature through
the so-called Nishiyama-Wassermann epitaxial relation-
ship [16]. The lattice misfits along the main in-plane crys-

tallographic directions are ∆abcc[110] =
√

2aW−
√

3aCo√
2aW

=

2.98% and ∆abcc[001] = aW−aCo

aW
= 20.79% where aW and

aCo are respectively the bulk bcc and hcp lattice param-
eters. Along the bcc[110] direction the Co is expected to
grow pseudomorphically (ax =

√
2/2aW, with ax defined

in Fig.1 ), up to 10 Co monolayers (1ML '0.2 nm) [17].
Along the bcc[001] direction, the misfit instead is large
implying that the Co structure relaxes for a thickness
between 2 and 4 ML (ay = 3.56/4.56aW2 [17]), where ay
is defined in Fig.1. Along this direction, the Co-W crys-
tal forms a superstructure with a period of 14ay(1.5 nm).
This is reasonably smaller than the characteristic mag-
netic length scales even in ultrathin Co films, so that
from the micromagnetic point of view the system can be
considered uniform with averaged quantities and with a
C2 symmetry.

Finally, a 2 nm-thick fcc Au(111) cap layer (C6 crystal
symmetry) is deposited in order to promote out-of-plane
anisotropy and protect the stack from oxidation. GIXRD
measurements show that the Co/W interface is hardly
modified by the capping layer [16] and the stressed Co

layer does not significantly changes its C3 crystal sym-
metry. Hence we expect the contribution of the Au/Co
interface to the anisotropic properties to be negligibly
small.

The Brillouin Light Scattering spectroscopy was per-
formed in the Damon-Eshbach (DE) configuration [18].
This technique is particularly suited for the study of
anisotropic systems because it allows to extract the mag-
netic properties independently along any direction. An
external magnetic field Hext saturates the magnetiza-
tion along an in-plane direction. A photon beam, gen-
erated by a laser (λ = 532 nm), strikes the sample
in the plane perpendicular to the magnetic field with
an incidence angle 0◦ < θinc < 60◦ in order to vary
the spin wave (SW) wave vector involved in the scat-
tering process kSW = 4π sin(θ)/λ. We call α the an-
gle between kSW (the direction along which the mag-
netization varies) and the bcc [110] crystallographic di-
rection (Fig.1). A 2x3 pass Fabry-Perot interferometer
allows to analyze the back-scattered light and to study
the Stokes (S) and anti-Stokes (AS) spectrum generated
by the scattering process between the laser photons and
the SWs for different α values . The BLS spectrum
in systems with DMI can be separated in a symmetric
f0 = (|fS| + |fAS|)/2 and an antisymmetric component
fanti = (|fS| − |fAS)|/2. The study of f0 with Hext along
the main crystallographic directions allows to estimate
the magneto-crystalline anisotropy (MCA) constantsKi

in the direction of the applied field, while fanti allows to
extract the DMI sign and strength acting on a Néel spin
cycloid along the SW wavevector.

The twofold supercrystal symmetry induces a biax-
ial MCA energy density that can be formulated in the
second order approximation including the out-of-plane
shape anisotropy (Kd = 1

2µ0M
2
s ) :

Eanisotropy = −(Kout −Kd) cos2 θ −Kin sin2 θ cos2 φ (1)

where θ and φ describe the magnetization direction
(Fig.1) and Kout and Kin are respectively the out-of-
plane and the in-plane easy axis MCA constants. The

symmetric frequencies f
[110]
0 and f

[001]
0 , when Hext is re-

spectively applied along [110] and [001], can be calculated
[19] as,

f
[001]
0 =

γµ0

2π

√
[H

[001]
ext −Hin + Jk2

SW + P (kSWt)Ms][H
[001]
ext −Hout + Jk2

SW − P (kSWt)Ms] (2)

f
[110]
0 =

γµ0

2π

√
[H

[110]
ext +Hin + Jk2

SW + P (kSWt)Ms][H
[110]
ext −Hout +Hin + Jk2

SW − P (kSWt)Ms] (3)

where γ is the gyromagnetic ratio, J = 2A
µ0Ms

is the SW stiffness with A the exchange stiffness and Ms the spon-
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taneous magnetization, P (kSWt) = 1 − 1−exp(−|kSW|t)
|kSW|t is

a geometric factor associated to the SW dynamics with
t the sample thickness, Hout and Hin are the anisotropy
fields. By analyzing the spectra in Fig. 2 one can have
a numerical estimation of the MCA constants. In this
work, the S-AS peaks occur for small values of kSW,
i.e. Jk2

SW << Hext, so that it is possible to neglect ex-
change contribution to the resonance BLS peaks. The
spontaneous magnetization (Ms = 1.15 · 106 A/m) is
inferred from the out-of-plane hysteresis loop obtained
with a vibrating sample magnetometer (VSM). Evaluat-

ing f
[001]
0 = 8.53 GHz and f

[110]
0 = 15.24 GHz with re-

spectively µ0H
[110]
ext = 0.5 T and µ0H

[001]
ext = 0.6 T we

obtain Kin = 1
2µ0MsHin = 136kJ/m3 and Kout −Kd =

1
2µ0MsHout = 199kJ/m3. Anomalous Hall Effect mea-
surements performed on the same sample confirm the
anisotropy values, validating the approach. Note that
published results on the same system [20] showed a com-
parable out-of-plane anisotropy [16], but a larger in-plane
anisotropy.

Figure 2: BLS spectra on Au/Co(0.65 nm)/W(110) with
kSW along the two in-plane symmetry axes. Red: experi-
mental data. Blue line: data fit with Lorentzian functions.
Green line: background fit. In the AS spectra, the dis-
tance between the continuous and dashed black lines shows
the frequency shift between S and AS peaks. (a) BLS spec-
trum with µ0Hext = 0.6 T parallel to the bcc[001] axis and
kSW = 8.08 /µm parallel to the bcc[110] axis (b) BLS spec-
trum with µ0Hext = 0.5 T parallel to the bcc[110] axis and
kSW = 18.09 /µm parallel to the bcc[001] axis.

The difference 2fanti arises from the different DMI ef-
fect on SW modes with opposite kSW [21, 22]. In ultra-
thin films DMI is the only physical phenomenon liable to
break the S-AS peak symmetry. BLS is thus particularly
suitable for the investigation of anisotropic DMI, espe-
cially because the extracted data are independent from
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Figure 3: (a) S-AS frequency shift (2fanti) as a function
of SW wave-vector (kSW) for different in-plane directions α.
The dots are the experimental data and the lines are linear fit
yielding the DMI strength (Ds). (b) Blue and orange lines :

micromagnetic calculated D
(eff)
s (Eq.10) and D

(app)
s (Eq.8) as

a function of the in-plane directions (φ); red dots: D strength
evaluated from the experimental data; green line: micromag-
netic calculated magnetization direction promoted by DMI
(Eq.9) as a function of the crystallography directions; dashed
line: Néel-like cycloid

any other anisotropy present in the system such as MCA,
and from the strength of Hext. The SW frequency shift
in a system with interfacial DMI [D(t) = Ds/t)] in the
DE geometry can be formulated as [21, 23]:

2fanti =
2γ

π

D(t)

Ms
kSW =

2γ

π

Ds

M
kSW . (4)

M, the magnetic moment per unit surface (M = Ms t),
can be obtained directly from VSM measurements, allow-
ing a thickness-independent determination of the DMI
strength, Ds. In Fig.(3) 2fanti is plotted as a function
of kSW along the main axes (bcc[001];bcc[110]) and along
an intermediate direction (α = π/4). The points in the
plot are extracted from the center of the Lorentzian dis-
tribution used to fit the S and AS peaks (Fig.2). The er-
ror bars (δf) are obtained by a Levenberg-Marquardt er-
ror algorithm. The difference in the magnitude of errors
(Fig.3) between the in-plane directions is related to an
instrumental issue that leads to a decrease of the signal-
to-noise ratio in the BLS spectra when the magnon fre-
quency increases (Fig.2).

The plot in Fig.(3) demonstrates along all directions
the occurrence of a clockwise chirality and strongly
anisotropic DMI. In the table in Fig.(3)(a) the values
of Ds parallel to the Hext direction are shown. The
DMI strength increases by a factor of 2.5 going from the
bcc[001] to the bcc[110] direction passing an intermediate
value when SWs propagate at α = π/4.

In order to understand the relation between the crys-
tal symmetry and the micromagnetic DMI anisotropy,
we propose calculations starting from the atomic DMI
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formulation (Eq.5). This consideration does not aim at
the quantitative evaluation of DMI, but illustrates how
atomic DMI vectors dij between Co atoms i and j at
various sites, add up or compensate to yield global mi-
cromagnetic D constants along the main symmetry axes
(bcc[110] and bcc[001]).

EDMI =
∑
ij

dij · (mi ×mj) (5)

Following the Moriya symmetry rules, dij is paral-
lel to the normal of the triangle delimited by the mag-
netic atoms and the scattering center[3]. We consider the
Co/W superstructure and we restrict the calculation to
the Co first neighbors. The Co/W cell relation with high-
est symmetry is shown in Fig.(1). Indeed in the Co/W
superlattice the position of the W atoms with respect to
the Co atoms changes from one Co unit cell to the next.
Thus we can expect dij vectors with different strengths
and directions. If the analyzed magnetic configurations
have a characteristic length (l) much larger than the su-
percell parameter (14ax) one can reduce the calculation
to a single Co cell with 〈dij〉 vectors as the average of
all the dij for the same bonds on the superlattice. Along
the 02 bond the W atoms are aligned with the Co atoms
and the 〈dij〉 will lie in the crystal plane. The bonds
01′ and 01 are symmetric with respect to the W atoms
and they have the same length |r01| = |r01′ |. Then we
can expect that the in-plane components will average to
zero and consider that the vectors have the same mod-
ulus (〈d〉 = 〈d01′〉 = 〈d01〉). Moreover the previous con-
dition (l >> 14ax) allows describing the magnetization
in a continuous medium approach and expressing mj as
the Taylor expansion centered in i. Then developing the
calculations [16] and using the notation of the Lifshitz

invariants L
(i)
jk = mj

∂mk

∂i − mk
∂mj

∂i the DM energy can
be written:

EDM = −
∫ [

D(x)
s (Ds, β)L(x)

xz +D(y)
s (Ds, β)L(y)

yz

]
d2r (6)

the equation presents a two-fold symmetry with

two DMI constants D
(x)
s = Ds cotβ and D

(y)
s =

Ds
sin β+〈dy〉/〈d〉

cos β that depend on three parameters Ds =
〈d〉
a , β = arctan(ay/ax) and 〈dy〉/〈d〉. The experimen-

tal data for α = 0 and α = π/2 in Fig. (3) allow
to evaluate the DMI constants. Setting β = 0.51 in-
ferred from GIXRD [16] we obtain Ds = 0.186 pJ/m and
〈dy〉/〈d〉 = 0.14. The value of Ds is in agreement with the
one found for sputtered systems[24], however the complex
superstructure does not allow a quantitative explication
for the difference between 〈d〉 and 〈dy〉.
It is possible to generalize the discussion to every ultra-
thin magnetic system with interfacial DMI and a twofold
symmetry. Considering a new basis (û, v̂, ẑ) (see Fig.(1),
turned at an angle α = (x̂, û) with respect to the initial

bcc [001]

bcc [110]

π
4

π
4ϕ=

=π4α

ϕ= π
8ϕ=

(a) (b) (c)

=π4α=π4α

Figure 4: Polar plot of magnetization direction (φ) promoted
by DMI as a function of the in plane direction of variation α

(Eq. 9) for different (D
(x)
s ;D

(y)
s ) values: (a) D

(x)
s = D

(y)
s (b)

D
(x)
s = 2.5D

(y)
s (c) D

(x)
s = −D(y)

s

basis, the DMI energy of a uni-dimensional spin modu-
lation propagating along û reads:

EDM (α) = −
∫ [

cos2(α)D(x)
s + sin2(α)D(y)

s

]
L(u)

uz d
2r

−
∫ (

D(x)
s −D(y)

s

)
cos(α) sin(α)L(v)

uz d
2r. (7)

It presents two different types of Lifshitz invariants
that describe a DMI stabilizing different spin configura-

tions in competition [25]. The first term L
(u)
uz describes

the well known result of an interfacial DMI promoting

a Néel cycloid. The second term L
(v)
uz evidences that

the interfacial DMI in a two-fold symmetry system can
stabilize a Bloch spiral. This last component vanishes
along the main axes and has maxima proportional to

the difference of the DMI constants (D
(x)
s −D(y)

s ) when
α = π/4 + nπ/2. It means that in a general two-fold
system the DMI promotes Néel cycloids along the main
axes and a mixed configuration between a Néel cycloid
and a Bloch spiral along the intermediate directions.

In order to understand the BLS data at α = π/4, we
evaluate the DMI energy for a SW described as m(u) =
M + δm(u), with M ∝ v̂ (parallel to Hext, due to the
DE geometry) and δm(u) lying in the (û, ẑ) plane. The

apparent DMI constantD
(app)
s is estimated from the DMI

energy density of the SW [16]. As a function of α, we find

D(app)
s = D(x)

s cos2 α+D(y)
s sin2 α (8)

The plot of Eq.8 in Fig.(3)(b) shows a very good
agreement with the experimental data.

In a more general case, the rotation plane of a spin
spiral is free in order to minimize the energy. Writing φ
as the angle of such a plane with respect to the x̂ axis
(Fig. (1)), we estimate the optimum relation between φ
and α:

tanφ =

(
D

(y)
s

D
(x)
s

)
tanα (9)
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with an effective DMI constant which represents the
maximum DMI energy gain possible in the corresponding
direction

Deff
s = D(x)

s cosα cos

[
arctan

(
D

(y)
s

D
(x)
s

tanα

)]

+D(y)
s sinα sin

[
arctan

(
D

(y)
s

D
(x)
s

tanα

)]
(10)

Hence setting D
(x)
s = 2.5D

(y)
s it is possible to ob-

tain the D
(eff)
s (α) and the φ(α) for Au/Co/W(110)

(Fig.3(b))(Fig.4(b)).
Studying Eqs.(9)(10) we can emphasize two interesting

cases. First, setting isotropic conditions (D
(x)
s = D

(y)
s )

we obtain the well-known result of a DMI stabilizing
only Néel cycloids (α = φ) (Fig.4(a)). However, when

D
(y)
s and D

(x)
s have opposite signs [26], Eqs. (9) and (10)

show that anti-skyrmionic spin textures with φ ∝ −α
are promoted (Fig.4(c)), i.e. cycloids with opposite
chiralities along the main orthogonal axes, while chiral
Bloch spirals are expected for intermediate angles. The
variation φ(α) ∝ −α implies that the winding number is
W = [φ(α)]α=2π

α=0 /2π = −1 [27], indeed the signature of
an anti-skyrmion.

In conclusion, we investigated DMI in an out-of-plane
magnetized epitaxial Au/Co(0.65 nm)/W(110) trilayer.
The DMI in this system promotes a clockwise chirality
with a DMI strength 2.5 times larger along bcc[110]
than along bcc[001]. This anisotropy arises from the
two-fold symmetry of the Co/W(110) stack. We used a
phenomenological model to highlight the link between
the atomic DMI at the Co/W(110) interface based on its
expected superlattice, with the resulting micromagnetic
uniaxial DMI. Under such conditions, DMI gives rise
not only to Neél cycloids, but to mixed cycloid/spiral
textures [Fig.4(b)]. This experimental evidence of a
strongly-anisotropic DMI is the first important step for
the stabilization in a magnetic thin film of deformed
isolated skyrmions and antiskyrmions.
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[4] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch,

A. Neubauer, R. Georgii, and P. Böni, Science 323, 915
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Supplemental Materials
SAMPLE GROWTH

The high nucleation density makes Pulsed Laser Deposition (PLD) an excellent technique for the layer-by-layer
growth of epitaxial systems. In our set-up, the laser source is a frequency-doubled Nd:YAG laser (λ = 532 nm) with
a pulse duration of approximately 10 ns, a 3 W maximum average power and 10 Hz frequency.

The layer-by-layer growth is investigated in samples with a thickness gradient (wedge). In-situ Reflection High-
Energy Electron Diffraction (RHEED) allows us to confirm the epitaxial relationships between the crystals during
the deposition.

Co ki     [1120]W ki    [001]

q

a)

qW

qCo

qAu

qW

qCo

qAu
b) c)

 ki    bcc[001]

a) d)

 ki    bcc[110]

Figure 5: a) RHEED pattern from the W(110) surface with the electron beam parallel to the [001] direction. b) RHEED
pattern from the Co surface with the electron beam parallel to the [1120] direction (parallel to the bcc [001] direction). c) d)
Plot of the RHEED intensity from the Gold (blue), Cobalt (red) and Tungsten (black) surfaces with the electron beam along
the bcc[001] in c) and along the bcc[110] in d)

The Co grows on the bcc W(110) surface following Nishiyama-Wassermann orientation, i.e. with a unique epitaxial
relationship and the Co [1120] direction parallel to the W[001] and the Co [1100] parallel to the W[110]. The RHEED
diffraction pattern streaks, (c) in Fig. 5, allow to derive the lattice parameter a in the direction perpendicular to the
electron beam:

a =
λL

q
(11)

where L is the distance between the detector and the sample and λ is the wave length of the incident beam in
the relativistic formulation. The value of a∗, reciprocal of a , can be used to determine the strain of the Co crystal.
Fig. 5(c) shows the RHEED pattern for the Co, W and Au surfaces with the electron beam along the bcc[001] direction.
We can consider pseudomorphic growth of the Co along this direction on the W substrate even if there is a difference
between the Co and W pattern streaks. Indeed the distance between the streaks in the RHEED pattern strongly
depends on the geometry of the beam reflection and the geometrical conditions between the two measurements could
have slightly changed. This effect can generate an intrinsic error in the position of the pattern streaks. It is possible
to evaluate the value of the strain (ε[110] = −2.86% ), which is comparable with the values found for the same system

in literature [1–4]. The RHEED pattern with the electron beam along the bcc[110] shows the presence of a relaxed
Co structure. Indeed the large misfit between the W and the Co atomic parameters (aW[001]bcc−aCo[001]bcc = 0.66Å )
does not allow a pseudomorphic growth. The Co thus grows with a relaxed structure and a fixed atomic distance ratio
with respect to the tungsten substrate. In literature, High Resolution Low Energy Electron Diffraction (HR-LEED)
was performed on Co/W(110) for different Co thickness reporting a ratio of aCo

aW
= 3.56/4.56aW2 = 0.78 between 2

and 4 MonoLayers (ML) [17]. Our experimental data show a Co/W atomic distance ratio in agreement with this
value (aCo

aW
= 0.81). Hence the Co-W crystals produce a superstructure with a twofold symmetry, a period of 14ay

(14ay − 11aW/2 = 2pm) along the W[001] axis and one W atomic distance ax along the W[110] as shown in Fig. 14.

The system is capped with a thin film of Au. The Co(0001) symmetry allows the epitaxial growth of a fcc(111) Au
crystal. It grows in its relaxed configuration due to the big mismatch of the lattice parameters.
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Figure 6: a) Bragg peaks for fcc Au(111)/Co(0001)/bcc W(110) crystals in their epitaxial relationship b) Sketch of the
reciprocal frameworks fixed on the Al2O3 crystal used to describe the Bragg peaks and values of the lattice parameter for a
Al2O3 crystal.

Grazing incidence X-ray diffraction measurements were performed at the BM32 beamline of the European Syn-
chrotron Radiation Facility, on the capped Au/Co/W(110) multilayer with a homogeneous Co layer of 3 ML thickness.

It is possible to describe the Bragg peaks in a reciprocal framework fixed on the Al2O3 crystal. The Al2O3 crystal
has a 3C symmetry whereas the Au/Co/W(110) has a 2C symmetry. Then in order to better describe the W, Co
and Au peaks we define a new framework with perpendicular axes as shown in Fig. 6. Hence we can formulate an
expression for the points in the reciprocal space:

Q = (Ha′∗,Kb′∗, Lc′∗) |Q| =
√

(H
√

3|a|)2 + (K|c|)2 + (L|a|)2 (12)

with the reciprocal lattice parameter defined in the Fig. 6. The momentum transfer modulus was scanned in
the surface plane (Qz = 0.08Å−1) along both the bcc(001) and bcc(110) directions. In the former case, shown in
Fig. 7, three Bragg peaks are observed corresponding to W(002), Au(120) and Co(120) reflections, respectively. The
registry position of the cobalt layer along the bcc(110) direction is confirmed by the scan of Fig. 8. In this case only
one additional peak is observed, attributed to the relaxed Au layer. The Co(100) peak merges with the W(110) one.
Angular scans show that the main crystallographic axes of the cobalt film are aligned with the tungsten ones. Defining
β as the angle between the Co bonds 01 and 01’ (Fig. 14) it is possible to determine the distortion of the Co crystal.
This angle can be calculated from the position of the Co (100) and (010) peaks (β = 0.51). We can conclude that the
Co/W interface is hardly modified by the capping layer.

We also prepared a Co/W(110) sample with a thickness gradient of the Co layer. The layer thickness is calculated
a priori using an in-situ quartz crystal microbalance placed before the deposition at the sample position. Fig.(9)
shows the STM pictures taken along a Co wedge. The Co islands, as shown in Fig. 9(f), have the height of the Co
interplanar distance (2Å) and their lateral size increases for increasing values of the Co thickness. The growth is
not perfectly layer-by-layer, since in Fig. 9(b) it is possible to detect three atomic levels. However the sample can
be considered to have a homogeneous thickness from the magnetic point of view because the characteristic exchange
length (lex) is comparable with the average distance between the islands [5]. These images allow us to have an extra
confirmation of the sample thickness. Indeed it is possible to calculate the ratio of surface covered by islands as a
function of the position in the wedge. The data, as in Fig. 9(e), are fitted with a Gaussian function for each atomic

step. The thickness in ML (t = n+CR) is calculated via the islands coverage ratio CR = I(n+1)
I(n+1)+I(n) , where I(n) is

the Gaussian integral for a given n layer. The higher step linewidth function is fixed using the value of the lower step
function. This allows to avoid the apparent broadening of island size due to the STM tip shadow effect.
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Figure 7: GIXRD measurements performed scanning the momentum transfer parallel to the surface plane, along the bcc(001)
direction
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Figure 8: Scan parallel to the bcc(110) direction

OUT-OF-PLANE MAGNETIZATION

We used focussed Kerr magnetometry to study the magnetization reorientation in the sample with a Co wedge.
The polar Kerr cycles are measured as a function of an out-of plane magnetic field. The hysteresis loops obtained for
different Co thickness are plotted in Fig. 10. For small thickness the Curie temperature is below room temperature, i.e.
the correlation between the Co atoms is weaker than the thermal fluctuations. In this regime the Co is paramagnetic
and there is no Kerr signal [6]. The black loop in Fig. 10 (1.7 ML) shows the presence of a finite magnetization, a
saturation field of µ0Hsat = 10 mT and the absence of coercivity. This indicates a superparamagnetic state where
the Co islands are ferromagnetic with a weak mutual interaction. The out-of-plane interfacial Magneto-Crystalline
Anisotropy is the dominating effect for the thickness range between 1.7 ML and 4.5 ML. Indeed the square hysteresis
loop (red line in Fig. 10) for out-of-plane magnetic field shows the presence of an out-of-plane easy axis. The change
of shape and the increase of saturation field in the hysteresis when increasing the thickness to 4.8 ML (blue line in
Fig. 10) show that the easy axis is not parallel to the applied field any longer. Indeed, when the thickness increases
[4.5 − 5.1 ML] the magnetic volume increases and the shape anisotropy progressively tilts the magnetization in the
sample plane. The spin reorientation range depends on the strength of the MCA and hence on the surface quality.
The spin reorientation transition range is perfectly comparable with the values found by [20]. The complexity of the
reflection mechanism in a multi-layer magnetic system does not allow to estimate from the Kerr magnetometry the
value of the spontaneous magnetization (Ms). The spontaneous magnetization (Ms = 1.15×106 A/m) is obtained from
the out-of-plane hysteresis loop taken using a Vibrating Sample Magnetometer and the estimation of the magnetic
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Figure 9: STM pictures of Co islands during a quasi-layer-by-layer deposition in different positions along a Co wedge. a) 1.15
ML b) 1.45 ML c) 1.62 ML d) 1.93 ML are the thickness of the Co layer that can be calculated studying the coverage ratio of
Co islands. e) Plot of the heights of the islands as a function of the STM picture (b). f) plot of the islands height along the
profile 1 in the STM picture (b)
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Figure 10: Hysteresis loops obtained by polar focused Kerr on different positions along a Co wedge in Au/Co/W(110).

volume.

PHENOMENOLOGICAL INTERPRETATION OF ANISOTROPIC DMI

The presence of anisotropic DMI in magnetic systems with C2 surface symmetry can phenomenologically be under-
stood considering the Fert-Levy three atoms model [7]. This model considers a magnetic metal crystal and analyzes
the indirect magnetic exchange between two magnetic atoms when the conduction electrons scatter with a high spin
orbit coupling impurity. The indirect exchange interaction between two magnetic atoms via one electron in the con-
duction band is described by the RKKY model [8]. In systems with inversion symmetry this interaction is symmetric,
promotes collinear spin arrangement and its effect is hidden in the direct Heisenberg exchange. If we consider a sys-
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tem with lack of inversion symmetry and spin orbit coupling the symmetry nature of the indirect exchange strongly
changes. Indeed the spin orbit coupling sets a relation between the space and spin degrees of freedom and in systems
with lack of inversion symmetry a breaking of the exchange symmetry can thus be expected. In the Fert-Levy model
the inversion symmetry is broken by the presence of a scattering point not collinear with the magnetic ions. The
spin orbit coupling plays its role in the scattering process between the conduction electron and the impurity. The
resulting exchange interaction thus will have a symmetric and an antisymmetric component. The antisymmetric one
is the DMI-like interaction which promotes a perpendicular spin arrangement. Its Hamiltonian can be formulated [7]
:

HDM = −V1
sin[kf (R1 + R2 + R12) + (π/10)Z]R̂1 · R̂2

R1R2R12
(R̂1 × R̂2) · (S1 × S2)

= d(R1,R2,R12) · (S1 × S2) (13)

where V1 is the perturbation potential for the conduction electron gas that depends on the exchange matrix elements
between a conduction electron and the d-orbital electrons in the magnetic atoms; in a framework set on the scattering
center, R1 and R2 are the positions of the two magnetic atoms and R12 is the vector between the magnetic ions; the
term (π/10)Z is the Fermi level phase shift induced by the interaction of the conduction electron with the Z electrons
in the d orbital of the scattering point and kf is the wavevector of the conduction electron.
The strength and the sign of the interaction strongly depend on the geometry of the triangle composed by the ions
and the scattering point. Indeed the DMI vector (d(R1,R2,R12)) has its direction always parallel to the normal
of the triangle and its sign depends on the triangle geometry. In order to understand this dependence we analyze
two different cases. All the considerations will be extended to a two dimensional crystal where the d out-of-plane
components are averaged to zero. Hence all the analysis will be developed in a 1D approximation.

• We study the DMI sign and strength fixing the distance between the line connecting the magnetic atoms and
the scattering point, which is kept centered in between the magnetic atoms (Fig. 11). The DMI strength in
Fig. 11 is thus plotted as a function of the atomic distance R12.

Figure 11: Plot of Eq.(13) as a function of the distance between the magnetic atoms R12 in Å. The y axis is normalized with
respect to the constant V1. An artistic picture shows the configuration and the particles that play a role in the three atoms
model for the DMI.

• We fix the position of the magnetic atoms and change the scattering point position in a line parallel to the line
connecting the magnetic atoms. The DMI strength in Fig. 12 is thus plotted as a function of the distance r.

In both the analyzed cases kf is estimated from angle-resolved photoemission spectroscopy measurements
performed by Moras et al. [9] on a Co/W(110) interface. The plots in Fig. 11 and 12 evidence the strong dependence
of the DMI strength on the geometrical configuration. Indeed a change of the distance between the magnetic atoms
and of the scattering point position drastically change the interaction strength and can modify the DMI sign.

We consider the interface between a magnetic crystal and a heavy metal. In this stack the DMI arises from the
interface with the high spin orbit coupling metal that breaks the inversion symmetry. The Fert-Levy model can not be
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Figure 12: Plot of Eq. (13) as a function of the position of the scattering point r. The y axis is normalized with respect to
the constant V1. The distance between the magnetic ions is set equal to 3Å.

used to have a quantitative interpretation of DMI strength and sign because the interaction can not be reduced to a
simple scattering phenomenon. On the other hand we can use this model as a phenomenological tool for determining
the crystal symmetry class where it is possible to expect an anisotropic DMI. Indeed we can consider the relationship
between the two dimensional unit cells at the interface and take into account one by one the interactions between the
magnetic ions with their closer scattering point independently one from the other.

We focus on the magnetic crystal and we consider the scattering points in the center of the bonds. In this
approximation we can notice that a C2 crystal allows an anisotropic interaction. Indeed in a rectangular crystal
the difference in distance between the two crystallographic directions could induce different strength and sign of
the DMI vector. The same argument is not valid for higher symmetry classes like C3 or C4. In these crystals an
anisotropic DMI can only be obtained if the scattering points are placed in a different way with respect to the bonds
between magnetic atoms.

FROM ATOMIC STRUCTURE TO MICROMAGNETIC DMI IN TWOFOLD SYSTEMS

The micromagnetic DMI is an averaged consequence of the atomic interactions. Hence in order to evidence the
relationship between the crystal symmetry and the micromagnetic DMI it is fundamental to analyze the atomic
configuration and symmetry of the interface between the magnetic and the heavy metal crystal. This analysis does
not aim at the quantitative evaluation of DMI, but to illustrate how atomic DMI vectors dij between atoms i and j at
various atomic sites add up to yield global micromagnetic D constants along the main symmetry axes of the system.

EDM =
∑
ij

dij · (mi ×mj) (14)

Twofold symmetry systems present a particular interest since they can exhibit anisotropic antisymmetric exchange
interactions. We will develop the calculations for the Co crystal epitaxially grown on bcc W(110). A schematic view
of the Co crystal in its epitaxial relationship with the W substrate is shown in Fig. 13. The big mismatch between
the lattice parameters produces the relaxation of the Co crystal along the bcc[001] direction. In order to consider the
full interface symmetry it is important to take into account the produced supercrystal described in Fig. 14, i.e the Co
between 2ML and 10ML grows pseudomorphically along the bcc[110] direction (ax =

√
2/2aW = 0.223 nm) whereas

along the bcc[001] it grows with a defined proportion with respect to the W (ay = 3.56/4.56aW /2 = 0.124 nm )[see
[17]]. It is possible to define a reconstruction period of 14ax where the Co crystal finds the initial relationship with
the W (14ax − 11aW = 2pm ).

The Moriya symmetry rules allow to define the direction of each dij vector for each ij Co bond. Indeed dij is
always parallel to the normal of the triangle delimited by the magnetic atoms and the scattering center. By looking
at the supercrystal structure displayed in Fig. 14 we can notice how the W atoms drastically change their position
with respect to the same Co bond in different unit cells. Thus we can expect dij vectors with different strengths and
directions. If the analyzed magnetic configurations have a characteristic length (l) much larger than the supercell
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parameter (14ax) one can reduce the calculation to a single Co cell with 〈dij〉 vectors as the average of all the dij for
the same bonds on the superlattice. Along the 03 bond the W atoms are aligned with the Co atoms and the 〈d03〉
vectors will lie in the crystal plane. The bonds 01′ and 01 are symmetric with respect to the W atoms and they have
the same length |r01| = |r01′ |. Then we can expect that the in-plane components will average to zero and consider
the vectors having the same modulus (〈d〉 = 〈d01′〉 = 〈d01〉).

Because of all these considerations we study only one Co cell where we take into account only the interaction
between the first neighbors, labeled by 1, 1′ and 3 in Fig. 13, and restrict the calculation to −π2 < α < π

2 .

3

ax

ay

d01

d01'

d03

0

1'

1

u

v

bcc [001]

α
m

bcc [110]
ϕ

β

W
Co

Figure 13: Superposition of the W(110) and the strained Co (0001) surfaces with the Nishiyama-Wassermann relationship with
an illustration of notation used to describe the magnetization ( θ;φ) and the directions (α) in the bcc(110) crystal framework

Then in the crystal framework (x̂//bcc[110], ŷ//bcc[001]) the 〈dij〉 vectors for each bond described by the vector uij
are:

〈d01〉 = −〈d01〉
a

[ayx̂ + axx̂] 〈d01′〉 = −〈d01′〉
a

[−ayx̂ + axŷ] 〈d03〉 = −〈dy〉ŷ (15)

u01 =
axx̂− ayŷ

a
u01′ =

axx̂ + ayŷ

a
u03 = ŷ (16)

where a is the length of the bond 01′ and ax and ay the respective projections along the main crystallographic axes
(Fig. 14). The case of a large length magnetic configuration, already imposed in the model, allows to describe the
magnetization in a continuous medium approach and to express mj as the Taylor expansion centered in i

mj = mi +
∑
k

|aij | ·u(k)
ij

∂mi

∂k
(17)

Hence the Eq.(14) takes the form
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EDM =
∑
i

〈d01〉 · [m× (ax∂xm− ay∂ym)] + 〈d01′〉 · [m× (ax∂xm + ay∂ym)]

+〈d03〉 [m× (2ay∂ym)] (18)

=
∑
i

ax (〈d01〉+ 〈d01′〉) · (m× ∂xm)− ay (〈d01〉 − 〈d01′〉 − 2〈d03〉) · (m× ∂ym) (19)

= −
∑
i

2ax
〈d〉ax
a

ŷ · (m× ∂xm)− 2ay

(
〈d〉ay
a

+ 〈dy〉
)
x̂ · (m× ∂ym) (20)

Then developing the vectorial and scalar products and using the formalism of the Lifshitz invariants L
(i)
jk = mj

∂mk

∂i −
mk

∂mj

∂i the DM energy can be written

EDM = 2
∑
i

[
ax
〈d〉ay
a

L(x)
xz + ay

(
〈d〉ay
a

+ 〈dy〉
)
L(y)
yz

]
(21)

Hence it is possible to transform the discrete sum in a continuous two-dimensional integral,

EDM = 2

∫ [
ax
〈d〉ay
a

L(x)
xz + ay

(
〈d〉ay
a

+ 〈dy〉
)
L(y)
yz

]
dxdy

2axay
(22)

= −Ds

∫ [
cotβL(x)

xz +

(
sinβ + 〈dy〉/〈d〉

cosβ

)
L(y)
yz

]
d2r (23)

= −
∫ [

D(x)
s (Ds, β)L(x)

xz +D(y)
s (Ds, β)L(y)

yz

]
d2r (24)

the equation presents a two-fold symmetry with two DMI constants D
(x)
s = Ds cotβ and D

(y)
s = Ds

sin β+〈dy〉/〈d〉
cos β

that depend on three parameters Ds = 〈d〉
a , β = arctan(ay/ax) and 〈dy〉/〈d〉. The experimental values of D

(i)
s along

the main axes allow to estimate the factors Ds and 〈dy〉/〈d〉.

SPIN TEXTURE AND EFFECTIVE DMI IN A 2-FOLD SYMMETRY SYSTEM

It is possible to generalize the discussion above to every ultra-thin magnetic film with interfacial DMI and a twofold
symmetry. Considering a new basis (û, v̂, ẑ) (see Fig. 13), turned by an angle α = (x̂, û) with respect to the initial
basis, the DMI energy of a one-dimensional spin modulation propagating along û reads:

EDM (α) = −
∫ [

cos2(α)D(x)
s + sin2(α)D(y)

s

]
L(u)

uz d
2r

−
∫ (

D(x)
s −D(y)

s

)
cos(α) sin(α)L(v)

uz d
2r. (25)

It presents two different types of Lifshitz invariants that describe a DMI stabilizing different spin configurations in
competition. It means that in a general two-fold system the DMI promotes Néel cycloids along the main axes and a
mixed configuration between a Néel cycloid and a Bloch spiral along the intermediate directions.

In order to understand the BLS data at α = π/4, we evaluate the DMI energy for a SW described as m(u) =
M + δm(u), with M =

√
1− δm2 v̂ (parallel to Hext, due to the DE geometry) and δm(u) = δm[sin(kswu− ωt)û +

cos(kswu− ωt)ẑ] lying in the (û, ẑ) plane. The latter expresses the spin-wave of wave vector ksw. Averaging over one
wave length Λ = 2π/ksw, the DMI energy density ωswDM of the texture is

ωswDM =
2π

Λ

[
cos2(α)D(x)

s + sin2(α)D(y)
s

]
δm. (26)

The 2π/Λ factor arises from the fact that over one period, the varying part of the magnetization undergoes a 2π
rotation and the δm factor increases the amplitude of the spin-wave. As the spin-wave has a Néel structure, only
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the energy part associated to L
(u)
uz remains. Therefore, an apparent DMI constant D

(app)
s is estimated as D

(app)
s =

ωswDMΛ/2πδm. As a function of α, we find

D(app)
s = D(x)

s cos2 α+D(y)
s sin2 α (27)

The plot of Eq.(27) in Fig. 14(b) shows a very good agreement with the experimental data.
In a more general case, the rotation plane of a spin spiral is free in order to minimize the energy. Writing φ as the

angle of such a plane with respect to the x̂ axis (Fig. 13), we estimate, using a similar calculation as for the spin-wave,
the optimum relation between φ and α:

tanφ =

(
D

(y)
s

D
(x)
s

)
tanα (28)

with an effective DMI constant

Deff
s = D(x)

s cosα cos

[
arctan

(
D

(y)
s

D
(x)
s

tanα

)]

+D(y)
s sinα sin

[
arctan

(
D

(y)
s

D
(x)
s

tanα

)]
(29)
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Figure 14: (a) Sketch of the supercrystal produced by the epitaxial growth of the Co(0001) surface on the bcc W(110) surface.

(b) Blue and orange lines : micromagnetic calculated D
(eff)
s (Eq.29) and D

(app)
s (Eq.27) as a function of the in-plane directions

(φ); red dots: D strength evaluated from the experimental data; green line: micromagnetic calculated magnetization promoted
by DMI (Eq.28) as a function of the crystallography directions; dashed line: Néel-like cycloid
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