Yuning Chen

Jin-Kao Hao

An iterated "hyperplane exploration" approach for the Quadratic Knapsack Problem

Keywords: Quadratic Knapsack problem, Hyperplane exploration, Tabu search, Variable fixing, Heuristics

The quadratic knapsack problem (QKP) is a well-known combinatorial optimization problem with numerous applications. Given its NP-hard nature, finding optimal solutions or even high quality suboptimal solutions to QKP in the general case is a highly challenging task. In this paper, we propose an iterated "hyperplane exploration" approach (IHEA) to solve QKP approximately. Instead of considering the whole solution space, the proposed approach adopts the idea of searching over a set of hyperplanes defined by a cardinality constraint to delimit the search to promising areas of the solution space. To explore these hyperplanes efficiently, IHEA employs a variable fixing strategy to reduce each hyperplane-constrained sub-problem and then applies a dedicated tabu search procedure to locate high quality solutions within the reduced solution space. Extensive experimental studies over three sets of 220 QKP instances indicate that IHEA competes very favorably with the stateof-the-art algorithms both in terms of solution quality and computing efficiency. We provide additional information to gain insight into the key components of the proposed approach.

Introduction

The quadratic knapsack problem (QKP) [START_REF] Gallo | Quadratic knapsack problems[END_REF] can be informally described as follows. We are given a capacity-constrained knapsack and a set of candidate objects (or items). Each object has a positive weight, and if selected, generates an object profit and a pairwise profit with any other selected object. The purpose of QKP is to select a subset of objects to fill the knapsack so as to maximize the overall profit while the total weight of the selected objects does not exceed the knapsack capacity.

Formally, let c be the knapsack capacity and N = {1, 2, ..., n} the set of objects. Let p ii be the profit of object i (i ∈ N), w i be its weight. For each pair of objects i and j (1 ≤ i ̸ = j ≤ n), p ij denotes the pairwise profit which is added to the total profit only when both objects are selected. Let x i (1 ≤ i ≤ n) be the decision variables such that x i = 1 if object i is selected, x i = 0 otherwise. Then QKP can be formulated as follows:

Maximize f (x) = n ∑ i=1 n ∑ j=i p ij x i x j (1)
subject to:

n ∑ j=1 w j x j ≤ c (2)
x ∈ {0, 1} n (

QKP can be reduced to the classical knapsack problem (KP) by restricting the pairwise profit p ij to 0 for all 1 ≤ i ̸ = j ≤ n and thus generalizes KP. From a graph-theoretic view of point, QKP is also a generalization of the Clique problem [START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF][START_REF] Pisinger | The quadratic knapsack problem-a survey[END_REF]. From the perspective of computational complexity, QKP is NP-hard in the strong sense [START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF]. It is also tightly related to other challenging problems (e.g., edge-weighted maximum clique [START_REF] Dijkhuizen | A cutting-plane approach to the edge-weighted maximal clique problem[END_REF] and weighted maximum bclique [START_REF] Park | An extended formulation approach to the edgeweighted maximal clique problem[END_REF]), and appears as a column generation sub-problem when solving the graph partitioning problem [START_REF] Johnson | Min-cut clustering[END_REF]. In addition to its theoretical importance, QKP is capable of formulating a number of practical applications [START_REF] Pisinger | The quadratic knapsack problem-a survey[END_REF] like satellite site selection in telecommunications, locations of airports and railway stations in logistics and compiler design.

QKP is well studied in the literature. Over the last decades, much effort has been devoted to developing exact algorithms. Most of these algorithms are based on the general branch-and-bound (B&B) framework. In this context, many useful techniques were introduced including upper planes [START_REF] Gallo | Quadratic knapsack problems[END_REF], Lagrangian relaxation [START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF][START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF], linearization [START_REF] Billionnet | Linear programming for the 0-1 quadratic knapsack problem[END_REF][START_REF] Johnson | Min-cut clustering[END_REF], semidefinite programming [START_REF] Helmberg | A semidefinite programming approach to the quadratic knapsack problem[END_REF].

The progress made on exact methods continually enlarged the class of QKP instances that can be solved optimally. Among state-of-the-art exact approaches, the B&B algorithm introduced in [START_REF] Pisinger | Solution of large-sized quadratic knapsack problems through aggressive reduction[END_REF] is probably one of the most successful methods which uses aggressive problem reduction techniques. Today's stateof-the-art exact methods are able to solve instances with up to 1500 variables.

On the other hand, to handle problems whose optimal solutions cannot be reached by an exact algorithm, heuristics constitute a useful and complementary approach which aims to find sub-optimal solutions as good as possible to large problems within a reasonable time. Existing QKP heuristic methods can be classified into two categories, namely the randomized or stochastic heuristics (which use random choices in their search components) and deterministic heuristics (which, given a particular input, always produce the same output).

Representative randomized heuristic approaches for QKP include three greedy, genetic and greedy genetic algorithms [START_REF] Julstorm | genetic, and greedy genetic algorithms for the quadratic knapsack problem[END_REF], a Mini-Swarm algorithm [START_REF] Xie | A Mini-Swarm for the quadratic knapsack problem[END_REF], and a GRASP-tabu search algorithm [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF]. Typical deterministic heuristic approaches include an upper plane based heuristic [START_REF] Gallo | Quadratic knapsack problems[END_REF], a greedy constructive heuristic [START_REF] Chaillou | Best network flow bound for the quadratic knapsack problem[END_REF], a hybrid method [START_REF] Billionnet | Linear programming for the 0-1 quadratic knapsack problem[END_REF] combining the greedy heuristic of [START_REF] Chaillou | Best network flow bound for the quadratic knapsack problem[END_REF] and the "fill-up and exchange" procedure of [START_REF] Gallo | Quadratic knapsack problems[END_REF], a linearization and exchange heuristic [START_REF] Hammer | Efficient methods for solving quadratic 0-1 knapsack problem[END_REF] and a dynamic programming heuristic [START_REF] Fomeni | A dynamic programming heuristic for the quadratic knapsack problem[END_REF]. Different from the methods dealing directly with QKP, the approach of [START_REF] Glover | Solving quadratic knapsack problems by reformulation and tabu search. single constraint case[END_REF] reformulates it as an unconstrained binary quadratic problem (UBQP) and applies a tabu search algorithm designed for UBQP to solve the reformulated model. Among the aforementioned heuristics, the Mini-Swarm algorithm [START_REF] Xie | A Mini-Swarm for the quadratic knapsack problem[END_REF], the GRASP-tabu search algorithm of [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] and the very recent dynamic programming heuristic of [START_REF] Fomeni | A dynamic programming heuristic for the quadratic knapsack problem[END_REF] are the state-of-the-art approaches which are used as our references for performance assessment and comparisons. Finally, several approximation algorithms can be found in [START_REF] Kellerer | Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications[END_REF][START_REF] Xu | A strongly polynomial FPTAS for the symmetric quadratic knapsack problem[END_REF]. For a comprehensive survey of different solution methods prior to 2007, the reader is referred to [START_REF] Pisinger | The quadratic knapsack problem-a survey[END_REF].

One observes that, compared to the research effort on exact algorithms which has taken place for a long time, studies on heuristics for QKP are more recent and less abundant. In this work, we are interested in solving large scale QKP instances approximately and present an effective heuristic approach which explores the idea of searching over promising hyperplanes. The proposed approach basically introduces an additional cardinality constraint to the original model to prune regions of the search space where no optimal solution exists. Such an idea proved to be very useful for designing effective heuristics for the multidimensional knapsack problem [START_REF] Boussier | A multi-level search strategy for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Fleszar | Fast, effective heuristics for the 0-1 multi-dimensional knapsack problem[END_REF][START_REF] Vasquez | An hybrid approach for the 0-1 multidimensional knapsack problem[END_REF]. Similar ideas were also explored as a type of "generalized branching" [START_REF] Sil | Column generation techniques for pickup and delivery problems[END_REF] or "constraint branching" [START_REF] Foster | An integer programming approach to scheduling[END_REF] within the general B&B framework. In this work, we adapt for the first time the idea of hyperplane exploration in the context of QKP. For this purpose, we address two relevant issues which are critical to make our approach successful. First, we need to identify the promising hyperplanes which are likely to contain high quality solutions. Second, we want to search efficiently inside the identified hyperplanes since each hyperplane, though already much reduced relative to the original model, may still contain a very large number of candidate solutions.

Based on the above considerations, our proposed iterated "hyperplane exploration" algorithm (IHEA) for QKP makes two original contributions.

• From the algorithmic perspectives, we present for the first time a decomposition approach for solving QKP. By introducing the cardinality constraint, IHEA divides the initial problem into several disjoint hyperplaneconstrained sub-problems and focuses its exploration within the most promising hyperplanes while discarding unpromising sub-problems. To further reduce the search space of each hyperplane-constrained problem, IHEA uses specific rules to fix a large number of variables. To seek high quality solutions within each reduced sub-problem, IHEA employs a dedicated tabu search procedure which is able to tunnel through infeasible regions to facilitate transition between structurally different feasible solutions. An informed perturbation strategy is also applied to establish a global form of diversification and thereby to allow examining additional unexplored hyperplanes.

• From the perspective of computational results, the proposed IHEA approach displays very competitive performances on three groups of 220 benchmark instances. Particularly, it is able to attain easily all the optimal solutions with a 100% success rate for the first group of 100 instances with up to 300 objects. For the second group of 80 larger instances with 1000 to 2000 objects, IHEA provides improved best results for 6 instances (new lower bounds) and attains the best known results for the remaining cases. We also report results for a third group of very large instances with up to 6000 variables for which our approach achieves an average gap of less than 1.359% between the best lower bound and the well-known upper bound Û 2 CP T [START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF].

The rest of the paper is organized as follows. Section 2 describes the proposed approach. Section 3 presents an extensive computational assessment in comparison with the state-of-the-art approaches and reports new results for a set of very large-sized instances. Section 4 studies some key ingredients of the proposed approach. Conclusions are drawn in Section 5.

Iterated "hyperplane exploration" algorithm for QKP

In this section, we present our iterated "hyperplane exploration" algorithm for QKP. We begin with some useful notations and definitions, and then present the main components of the proposed approach.

Basic notations and definitions

For a precise presentation of the IHEA algorithm, the following notations and definitions are first introduced.

-Given a solution x ∈ {0, 1} n of a QKP instance P , I 1 (x) and I 0 (x) denote respectively the index set of variables receiving the value of 1 and 0 in x;

-Given a solution x ∈ {0, 1} n of a QKP instance P , σ(x) denotes the sum of the values of all variables in x (i.e., σ(x) = |I 1 (x)|).

-Given two solutions x ∈ {0, 1} n and x

′ ∈ {0, 1} n , |x, x ′ | = n ∑ j=1 |x j -x ′ j | denotes the Hamming distance between x and x ′ .
-Function f r (x) calculates a raw objective value of solution x ∈ {0, 1} n which could be either feasible or infeasible with respect to the capacity constraint.

Definition 1 Given a solution x ∈ {0, 1} n , the contribution of object i (i ∈ N) to the objective value with respect to x is given by:

C(i, x) = p ii + ∑ j∈I 1 (x),j̸ =i p ij (4)
Definition 2 Given a solution x ∈ {0, 1} n , the density of object i (i ∈ N) with respect to x is given by:

D(i, x) = C(i, x)/w i (5
)
Definition 3 A constrained QKP with a k dimensional hyperplane constraint is defined as:

CQKP [k] =                            max n ∑ i=1 n ∑ j=i p ij x i x j s.t. n ∑ j=1 w j x j ≤ c n ∑ j=1 x j = k x ∈ {0, 1} n (6)
where n ∑ j=1

x j = k is a hyperplane constraint which restricts the solution space of QKP in the k dimensional hyperplane. Each feasible solution of problem CQKP [k] has exactly k selected objects.

Note that the notion of contribution C(i, x) (Definition 1) is related to the upper planes of [START_REF] Gallo | Quadratic knapsack problems[END_REF] with two notable differences. First, C(i, x) involves both a problem instance and a solution x while an upper plane only depends on the problem instance (and is independent of any solution). Second, an upper plane can be used to produce an upper bound for QKP while C(i, x) does not have such a utility. In our work, C(i, x) is used as an indicator to evaluate the contribution of a particular item i to the total profit with respect to the given solution x. This indicator allows us to dynamically identify the most profitable item (according to the search state) to be included into the current solution in order to maximize the total profit.

General idea of the "hyperplane exploration" algorithm

Let CQKP [k] (1 ≤ k ≤ n) be a constrained QKP (see Definition 3), it is
obvious that its solution space is a subspace of the original QKP. Therefore, any feasible solution of the

CQKP [k] (1 ≤ k ≤ n) is also a feasible solution
of the original QKP. Let Ω F be the feasible solution space of a QKP instance such that:

Ω F = {x ∈ {0, 1} n : n ∑ j=1 w j x j ≤ c},
Then the feasible solution space of the constrained QKP with a k dimensional hyperplane constraint (CQKP [k]) is given by:

Ω [k] = {x ∈ Ω F : σ(x) = k}.
QKP can be decomposed into n independent sub-problems (constrained QKPs):

CQKP [START_REF] Billionnet | Linear programming for the 0-1 quadratic knapsack problem[END_REF], CQKP [START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF], ..., CQKP [n]. These n sub-problems represent n disjoint subspaces and the feasible solution space of QKP is the union of the solution space of all its sub-problems, i.e., Ω

F = ∪ n k=1 Ω [k] .
For QKP, if items are sorted in non-decreasing order according to their weight w j (j ∈ N), there must exist only one positive integer k UB simultaneously verifying the following two constraints: 1)

k UB ∑ j=1 w j ≤ c, 2) k UB +1 ∑ j=1 w j > c; similarly, if
items are sorted in non-increasing order according to their weight w j (j ∈ N),

there must be only one positive integer k LB simultaneously verifying the following two constraints: 1)

k LB ∑ j=1 w j ≤ c, 2) k LB +1 ∑ j=1 w j > c.
Following the literature like [START_REF] Billionnet | Linear programming for the 0-1 quadratic knapsack problem[END_REF][START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF][START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF][START_REF] Gallo | Quadratic knapsack problems[END_REF][START_REF] Pisinger | The quadratic knapsack problem-a survey[END_REF][START_REF] Pisinger | Solution of large-sized quadratic knapsack problems through aggressive reduction[END_REF], we assume non-negative entries in the profit matrix.

Notice that the existing QKP benchmark instances follow this assumption.

This leads to the following proposition.

Proposition 1. There must exist optimal solutions of QKP in hyperplanes whose dimensions satisfy:

k LB ≤ k ≤ k UB .
Proof. Given a feasible solution

x 1 ∈ Ω [k 1] (0 < k 1 < k LB)
, and a feasible solution

x 2 ∈ Ω [k 2] (k LB ≤ k 2 ≤ k UB , k 1 < k 2)
which is obtained by including another (k 2 -k 1) unselected items to x1 . Then x 2 and x 1 have k 1 selected items in common. Since (k 2 -k 1) ≥ 1, and the contribution of any selected item in x 2

is greater than or equal to 0, we have: f (x 2) ≥ f (x 1). Consequently, there must exist solutions in

∪ k U B k=k LB Ω [k]
whose objective value is greater than or equal to the objective value of the best solution in

∪ k LB -1 k=1 Ω [k]
. On the other hand, k U B is the maximum number of items that can be contained in the knapsack which means any solution in hyperplanes with a dimension greater than k U B is infeasible. Therefore, no feasible solution in ∪ n k=k U B +1 Ω [k] has an objective value better than the objective value of the best solution in

∪ k U B k=k LB Ω [k] . 2
To make an effective search, we can focus on hyperplanes with a dimension k within the interval [k LB , k UB] and definitely discard other subspaces 1 . This leads to a first (and large) reduction of the solution space from

∪ n k=1 Ω [k] to ∪ k U B k=k LB Ω [k] .
However, the remaining search space

∪ k U B k=k LB Ω [k]
could still be too large to be explored efficiently, especially when the gap between k LB and k U B is large which is typically the general case (see Section 4.1). In order to further prune some less-promising solution spaces, we explore the hypothesis that high quality solutions are located in a set of "promising" hyperplanes whose dimensions are close to k U B . This hypothesis is confirmed by the experimental results presented in Section 3 and Section 4.1.

Based on the above hypothesis, the general idea of our IHEA approach is to progressively and intensively explore a small number of "interesting" hyperplanes whose dimensions are close to k U B so that a large subspace is effectively pruned and the search effort is more focused. We carry out the hyperplane exploration in increasing order of their dimensions aiming to identify solutions of increasing quality, and restart this process with a perturbation when no improvement can be found. When the search seems to stagnate in one hyperplane, we seek better solutions in a higher dimensional hyperplane. To explore a given hyperplane, additional variable fixing techniques are applied to fix a number of variables so as to further shrink the subspace to be examined.

General procedure of the "hyperplane exploration" algorithm

Our iterated "hyperplane exploration" approach is composed of three steps:

(1) Construct an initial high quality solution x 0 and use σ(x 0) to determine the starting dimension of the "promising" hyperplanes; (σ(x 0) ∈ (3) Apply a perturbation to restart the search from a new starting point.

[k LB , k U B] and σ(x 0) is close to k U B) (2) For each hyperplane dimension k = σ(x 0), σ(x 0) + 1, σ(x 0) + 2...,
This perturbation (removing some specifically selected items) typically displaces the search from the current hyperplane to a lower dimensional hyperplane which introduces a possibility to visit more not-explored-yet search spaces (e.g., hyperplanes with a dimension lower than σ(x 0)) where high quality solutions might exist (though with a small probability).

Algorithm 1 shows the pseudo-code of the IHEA algorithm for QKP, whose components are detailed in the following sections. At the very beginning, an initial solution is generated by a greedy randomized construction procedure (Section 2.4.1) and is further improved by a descent procedure (Section 2.4.2).

Then, the initial dimension of the hyperplane as well as the first constrained problem are determined from the initial solution. From this point, the algorithm enters the "hyperplane exploration" phase which examines a series of hyperplane constrained QKP problems. At each iteration of the 'while' loop, IHEA first applies specific variable fixing rules to construct a reduced

constrained problem RCP (V f ixed , CQKP [k], x ′) where V f ixed contains a set of fixed variables (Section 2.5). RCP (V f ixed , CQKP [k], x ′) is then solved by the tabu search procedure (Section 2.6). Each time a better solution x * [k] is discovered (i.e., f (x * [k]) > f (x b
)) by tabu search, IHEA updates the best solution found x b and moves on to solve another constrained problem in a higher dimensional hyperplane. To do this, the algorithm increments k by one and reinitializes x ′ by randomly adding one unselected item to x b . The 'while' loop terminates when no improving solution can be found. The global best solution is updated at the end of the 'while' loop. IHEA then makes some dedicated changes (perturbations) to x b , improves the perturbed solution (with the de-scent procedure) to a local optimum, and use the local optimum to start a new round of the "hyperplane exploration" procedure. The above whole procedure continues until a maximum number of allowed iterations is reached.

Algorithm 1 Pseudo-code of the IHEA algorithm for QKP.

1: Input: P : an instance of the QKP ; L: size of running list; rcl: max allowed size of restricted candidate list; M axIter: max number of iterations; 2: Output: the best solution x * found so far 3:

x 0 ← Greedy Randomized Construction(rcl) 4: x 0 ← Descent(x 0) 5: x ′ ← x 0 /* x ′ represents the current solution */ 6: Iter ← 0 /* Iteration counter */ 7: x b ← x ′ /*
V f ixed ← Determine F ixed V ariables(k, x ′) 16: Construct reduced constrained problem RCP (V f ixed , CQKP [k], x ′) 17: Run T abuSearch Engine(L, x ′ , x b) to solve RCP (V f ixed , CQKP [k], x ′) and keep a best solution x * [k] 18: if f (x * [k]) > f (x b) then 19: x b ← x * [k] 20: k ← k + 1 21: x ′ ← Randomly add one item to x b 22: Construct constrained problem CQKP [k] 23: else 24:
SolutionImproved ← f alse 25:

end if 26:

end while 27:

if f (x b) > f (x *) then 28:

x * ← x b 29: end if 30:

/* Perturbation phase */ 31:

x ′ ← P erturbation(x b , Iter)

32: x ′ ← Descent(x ′)
33:

x b ← x ′ 34: Iter ← Iter + 1 35: until Iter ≥ M axIter

Initial solution

IHEA constructs an initial solution according to a greedy randomized constructive heuristic. In order to place the initial solution in a "good" hyperplane, we additionally improve the constructed solution with a descent procedure. In this section, we explain these two procedures.

Greedy randomized construction procedure

Our greedy randomized construction procedure follows the spirit of the GRASP approach [START_REF] Feo | Greedy randomized adaptive search procedures[END_REF] which has been investigated in [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] to solve QKP. Different from [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] where the construction procedure is used as the main search algorithm, our IHEA algorithm uses this construction procedure to obtain an initial solution.

Starting from a partial solution x where all items are set unselected initially, the construction procedure iteratively and adaptively selects some items to be included in x (i.e., the corresponding variables receive the value of 1) while maintaining the solution feasibility. At each iteration, we randomly select one unselected item from a restricted candidate list RCL and add the item to the partial solution.

Let R(x) = {i ∈ I 0 (x) : w i + ∑ j∈I 1 (x) w j ≤ c} be the set of unselected items that can fit into the knapsack with respect to x. Let rcl be the maximum size of the restricted candidate list. Then RCL contains min{rcl, |R(x)|} unselected items which have the largest density values (Section 2.1) and do not violate the capacity constraint when any of them is included to the current partial solution x. Formally, ∀i ∈ RCL, the following two conditions hold:

1) i ∈ R(x), 2) D(i, x) ≥ D(j, x) (∀j ∈ I 0 (x)\RCL).
The items in RCL are ranked according to their density values and the r th (1 ≤ r ≤ |RCL|) ranked item is associated with a bias b r = 1/e r . Thus, the r th item is selected with a probability p(r) which is calculated as:

p(r) = b r / ∑ |RCL| j=1 b j .
Once an item is selected and added to the partial solution x, RCL is updated as well as the objective value of the partial solution. This procedure repeats until RCL becomes empty.

One notices that the initial solution constructed by this greedy randomized procedure must be in a hyperplane whose dimension is not smaller than k LB since it is a tight packing plan that cannot include any more unselected item, and not greater than k U B since it is a feasible solution. Also, this dimension is experimentally proved to be close to k U B (see Section 4.1). The underlying reason is that items with a small weight are biased towards being selected to join the knapsack.

Descent procedure

Starting from a solution generated through the greedy randomized construction procedure, IHEA uses a descent procedure to reach a local optimum (The descent procedure is also applied after a perturbation, see Section 2.7). This descent procedure helps: 1) to generate a promising hyperplane which may contain high quality solutions; 2) to improve the quality of the initial solution which allows the hyperplane exploration to start from a high platform.

Our descent procedure jointly employs two different neighborhoods defined by two basic move operators: ADD and SWAP .

-ADD(i): This move operator adds an unselected item i (i ∈ I 0 (x)) to a given solution x. It can be considered as a special case of FLIP used in [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] by restricting the flipped variables to those having the value of 0 in the given solution. N A denotes the neighborhood induced by the ADD operator, and N F A is a subset of N A that contains only feasible neighbor solutions.

-SWAP (i , j): Given a solution x, SWAP (i , j) exchanges an unselected item i (i ∈ I 0 (x)) with a selected item j of x (j ∈ I 1 (x)). This operator is commonly used in the existing QKP approaches [START_REF] Billionnet | Linear programming for the 0-1 quadratic knapsack problem[END_REF][START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF]. A SWAP operation can be realized as two consecutive FLIP operations where one is to flip a variable from 0 to 1 and the other is to flip another variable from 1 to 0. N S denotes the neighborhood induced by the SWAP operator, and N F S is a subset of N S that contains only feasible neighbor solutions.

The aim of the descent procedure is to attain a local optimum (as good as possible) in both neighborhoods N F A and N F S starting from a solution x (either obtained by the construction procedure or the perturbation procedure). To this end, the algorithm iteratively explores N F A and N F S in a token-ring way

N F A → N F S → N F A → N F S For each iteration, a feasible neighbor solution x ′
is picked at random from the neighborhood under consideration and replaces the incumbent solution x if x ′ is better than

x (i.e., f (x ′) > f (x)).
It should be noted that our descent procedure is different from the "fill-up and exchange" procedure of [START_REF] Gallo | Quadratic knapsack problems[END_REF] which also relies on ADD and SWAP. Our descent procedure examines neighbor solutions in random order and accepts the first encountered improving neighbor while the "fill-up and exchange" procedure checks neighbor solutions in a deterministic way. Moreover, our descent procedure explores N F A and N F S in a token-ring way while the "fill-up and exchange" process explores these neighborhoods in a sequential way.

Variable fixing and problem reduction

By adding a hyperplane constraint σ(x) = k to QKP, the induced constrained problem CQKP [k] removes a large part of the solution space (of order O(2 n -C k n)) from the original QKP. However, the solution space of the constrained problem CQKP [k] might still be too large to be efficiently searched by an algorithm. Indeed, as we employ a search algorithm which explores both feasible and infeasible solutions (see Section 2.6), CQKP [k] has a search space of 2 k where k, though smaller than n, could still be large. To further reduce the search space to explore, we fix some variables in CQKP [k]. set of variables V f ixed that are highly likely to be part of the optimal solution and fixes them to the value of 1. We then remove these variables (these variables are said fixed) from CQKP [k], leading to a reduced constrained problem

Recall that in

RCP (V f ixed , CQKP [k], x ′).
In order to limit the risk of fixing wrong variables, we follow the general idea of identifying a set of "strongly determined" variables [START_REF] Glover | Heuristics for integer programming using surrogate constraints[END_REF]. For this purpose, we make use of information from the density value associated with each item.

According to the definition presented in Section 2.1, for those selected items in a given solution, the density of an item represents its contribution (profit) per weight unit. Thus, the density value is a good indicator of the importance of a selected item. Given a QKP solution x ′ ∈ {0, 1} n , our variable fixing rules can be summarized as a three-step method:

(1) For each variable

x ′ i such that i ∈ I 1 (x ′), calculate its density value D(i, x ′);
(2) Sort all variables in I 1 (x ′) in non-increasing order according to their

density values D(i, x ′) (i ∈ I 1 (x ′)), leading to a sorted index set SI 1 (x ′);
(3) Extract the first n f variables in SI 1 (x ′) to form the fixed variable set

V f ixed (n f is the number of fixed variables, i.e., n f = |V f ixed |). Fix the variables in V f ixed with the value of 1, leading to a reduced constrained problem RCP (V f ixed , CQKP [k], x ′) whose variable set is (I 1 (x ′)\V f ixed)∪ I 0 (x ′).
In the last step, n f is determined using the following empirical formula:

n f = k LB + max{(|I 1 (x ′)| -k LB) * (1 -1/(0.008 * n)), 0} (7)
where k LB is the minimum number of items that can be contained in the knapsack. Typically,

|I 1 (x ′)| is larger than k LB .
It is easy to understand that a solution with only k LB selected items is unlikely to be a good solution since the packing plan is not tight enough. The number of items that can be fixed (n f) is specified by formula [START_REF] Chen | A "reduce and solve" approach for the multiple-choice multidimensional knapsack problem[END_REF]. Formula (7) was identified in the following manner. We first obtained optimal solutions for a set of instances of different sizes (ranging from n = 100 to 500)

with the exact solver of [START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF]. We also obtained a set of near-optimal solutions provided by our solution initialization procedure of Section 2.4. We sorted the selected items of the near-optimal solutions according to their density values, and then compared them to the optimal solutions. Finally, we arrived at the following observations: 1) the number of items that can be fixed (n f) is somewhere between k LB and |I 1 (x ′)|; 2) the number of items that can be fixed enlarges as the size of the instance increases. The design of formula [START_REF] Chen | A "reduce and solve" approach for the multiple-choice multidimensional knapsack problem[END_REF] basically integrates these observations. Note that different strategies for temporary or definitive variable fixing were explored in [START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF] for QKP and studied in other contexts like 0-1 mixed integer programming, integer linear programming and binary quadratic programming [START_REF] Chen | A "reduce and solve" approach for the multiple-choice multidimensional knapsack problem[END_REF][START_REF] Wang | Backbone guided tabu search for solving the UBQP problem[END_REF][START_REF] Wilbaut | New convergent heuristics for 0-1 mixed integer programming[END_REF]. Moreover, the notion of item density was previously used in other construction procedures [START_REF] Chaillou | Best network flow bound for the quadratic knapsack problem[END_REF][START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF]. For instance, from the set of given items, the greedy construction procedure in [START_REF] Chaillou | Best network flow bound for the quadratic knapsack problem[END_REF] drops iteratively the "lightest" items one by one until the remaining items form a feasible solution (i.e., the knapsack constraint becomes satisfied). Furthermore, unlike our procedure where the density of each item is calculated only once, the procedure of [START_REF] Chaillou | Best network flow bound for the quadratic knapsack problem[END_REF] updates, after each iteration, the density value of each remaining item.

Hyperplane exploration with tabu search

The tabu search procedure (T abuSearch Engine) described in this section is designed to solve the reduced constrained problem RCP (V f ixed , CQKP [k], x ′), i.e., identify feasible solutions that are better than x b which is the current best solution found in the current course of the "hyperplane exploration" procedure. The key ingredients of T abuSearch Engine are described as follows.

• Neighborhood: It is known that allowing a controlled exploration of infeasible solutions may enhance the performance of a heuristic search algorithm, by facilitating transitions between structurally different feasible solutions [START_REF] Glover | The case for strategic oscillation[END_REF]. Following this idea, we employ the N S neighborhood (defined in Section 2.4.2) which contains both feasible and infeasible neighbor solutions. In order to explore effectively the search space of a given hyperplane, we restrict our tabu search procedure to visit solutions that are considered better than the best feasible solution found so far, leading to a restricted SWAP neighborhood N R S . Precisely, given the objective value of the current best feasible solution with objective value f min , the neighborhood N R S (x) of a solution x (either feasible or infeasible) is defined as:

N R S (x) = {x ′ ∈ N S (x) : f r (x ′) > f min }
where f r is the raw objective value. • Tabu list management: We use the reverse elimination method (REM) introduced in [START_REF] Glover | Tabu Search[END_REF] for our tabu list management. REM defines an exact tabu mechanism which prevents any visited solution from being revisited. REM uses a running list to store the attributes of all implemented moves. One can trace back the running list to identify the tabu status of a move by making use of another list called residual cancellation sequence (RCS) where an attribute is either added if it is not yet in the RCS or removed from RCS otherwise. Interested readers are referred to [START_REF] Dammeyer | Dynamic tabu list management using the reverse elimination method[END_REF][START_REF] Glover | Tabu Search[END_REF][START_REF] Vasquez | An hybrid approach for the 0-1 multidimensional knapsack problem[END_REF] for more details on this method. For the SWAP operator used by T abuSearch Engine, when there are only two attributes left in RCS (i.e., |RCS| = 2), the move composed of these two attributes is declared tabu in the next iteration. The procedure of updating the tabu status is described in Algorithm 2.

• Evaluation function: The evaluation function used by T abuSearch Engine considers two factors to assess a solution x: 1) raw objective value f r (x), 2)

capacity violation v c (x) = c- n ∑ j=1 w j x j . A transition is made from the current solution x to a neighbor solution x ′ ∈ N R S (x) if ∀x ′′ ∈ (N R S (x)\{x ′ }), x ′ veri- fies one of the following two conditions: 1) v c (x ′) < v c (x ′′), 2) v c (x ′) = v c (x ′′) and f r (x ′) ≥ f r (x ′′).
Algorithm 2 presents the pseudo-code of T abuSearch Engine which takes three elements as its input: 1) the max size of the running list which serves as the termination condition; 2) an initial solution (feasible or unfeasible) which serves as its starting point; 3) a reference feasible solution x ref which restricts the search to visit solutions whose objective value is better than that of x ref .

At each iteration, the algorithm identifies the best non-tabu SWAP move relative to the above evaluation function, and applies the move to obtain a new solution. Each time a feasible solution is discovered (i.e., v min = 0), the running list is reset and f min is updated. T abuSearch Engine terminates if one of the following two conditions is verified: 1) all moves are tabu, i.e., v min = ∞; 2) the running list is full, i.e., erl ≥ L.

Note that tabu search was also used in [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] to enhance a GRASP procedure.

However, these two studies are quite different. First, our general IHEA approach focuses on decomposing the initial solution space into a set of hyperplaneconstrained and reduced solution spaces while GRASP+tabu of [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] explores the original solution space. Second, our tabu search procedure is dedicated to effectively explore the solution space of a hyperplane-constrained sub-problem.

As such, its design (in terms of neighborhood, tabu list management and evaluation function) is different from GRASP+tabu. Third, our tabu search explores both feasible and infeasible solutions while GRASP+tabu only visits feasible solutions. Compared to the approach of [START_REF] Glover | Solving quadratic knapsack problems by reformulation and tabu search. single constraint case[END_REF], their tabu search algorithm was dedicated to the unconstrained binary quadratic problem and operates with the "one-flip" move operator (called "shift" in [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF]) which adds or removes an item (SWAP was not used). (v min , f max) ← (∞, -∞) 10:

Algorithm 2 Pseudo-code of T abuSearch Engine

for each i ∈ I 0 (x) do 11:

for each j ∈ I 1 (x) do 12:

if

tabu[i][j] ̸ = iter then 13: (x i , x j) ← (1, 0) 14: if (f r (x) > f min)∧((v c (x) < v min)∨((v c (x) = v min)∧(f r (x) ≥ f max))) then 15: (i * , j *) ← (i, j); (v min , f max) ← (v c (x), f r (x

Perturbation

To establish a global form of diversification and reinforce the capacity of the algorithm to visit unexplored "promising" hyperplanes, we employ a perturbation strategy to restart the search from a new starting point (usually in a lower dimensional hyperplane w.r.t. the current hyperplane). A perturbation is applied when the hyperplane-based search stagnates, i.e., the local optimum x *

[k]

of the current constrained problem CQKP [k] does not improve the best solution found in the current hyperplane exploration phase x b . This best solution x b could be either the local optimum obtained by the initializing construction procedure (or perturbation procedure) followed by the descent procedure, or the local optimum of the last constrained problem CQKP

[k -1] (x * [k-1]).
Given a feasible solution x, the general idea of our perturbation strategy is to remove a small number (say s, s > 0) of items which are chosen from t (s ≤ t ≤ (I 1 (x) -n f)) selected items with the lowest densities and then replace the removed items with some other unselected items. To do this, we first sort all the selected items in x according to the ascending order of their densities D(x, i)

(i ∈ I 1 (x)
). We then remove s items which are selected from the first t sorted items and re-construct the solution using the greedy randomized construction procedure of Section 2.4.1, leading to a perturbed solution. This perturbed solution is further improved by using the descent procedure of Section 2.4.2.

The calibration of the parameters t and s is discussed in Section 3.2.

To improve the diversification effect of the perturbation, we employ a shortterm memory to prevent recently removed items from being added back to the solution in subsequent iterations. Each time an item is removed from the solution, it is not allowed to be inserted to the solution in next rand (1, s) iterations where rand(1, s) takes a random value between 1 and s.

Implementation improvement

A fast incremental evaluation technique was introduced in [START_REF] Gallo | Quadratic knapsack problems[END_REF] to determine rapidly the effect of the ADD and SWAP moves for their "fill-up and exchange" procedure which explores only feasible regions. We slightly extend this technique to make it applicable to evaluate the raw objective values of the new solutions encountered in either feasible or infeasible solution spaces.

In addition, we also introduce a fast feasibility checking technique.

Given a solution x, which may be either feasible or infeasible, flipping a variable x i produces a new solution x ′ whose raw objective value can be con-

veniently calculated in O(1) time as: f r (x ′) = f r (x) + (1 -2 * x i) * C(i, x),
where C(i, x) is the contribution of variable x i . Therefore, any solution generated by a move operator which can be realized with constant times of flip operations can be evaluated in O(1) time as well. This is the case for the ADD and SWAP operators which can be realized with one and two flip operations respectively. Using this fast evaluation technique leads to a significant acceleration compared to a complete evaluation which requires O(n 2) time.

To achieve this saving, we maintain a memory structure ∆ to store the current contribution value of each variable ∆ i (corresponding to C(i, x) for a given solution x) which is updated each time a flip operation is performed. Given an empty solution where all variables are assigned the value of 0, the contribution of flipping any variable is initialized to its profit value, i.e., ∆ i ← p i , i ∈ N . Thereafter, once a move is performed, the contribution value of each variable after flipping a variable x i can be efficiently updated as follows:

∆ j =        ∆ j , if j = i ∆ j + q ij , if x i = 1 and j ∈ N \{i} ∆ j -q ij , if x i = 0 and j ∈ N \{i} (8)
The total time of updating the structure ∆ is bounded by O(n). Using this memory structure, a new solution x ′ transitioned from the current solution x by adding an unselected item x i can be evaluated using the following equation:

f r (x ′) = f r (x) + ∆ i (9)
Similarly, a new solution x ′ produced by swapping items x i (x i = 1) and x j (x j = 0) of the current solution x can be evaluated by the following equation:

f r (x ′) = f r (x) -∆ i + ∆ j -p ij (10
)
In addition to ∆, we maintain another memory structure which stores the sum of weights of all the selected items in the current solution, which is updated accordingly after an operation is performed. This memory structure allows the capacity constraint checking to be achieved with a time complexity of O(1).

Computational Experiments

This section is dedicated to a computational assessment of the proposed algorithm and comparisons with the state-of-the-art QKP approaches.

Experimental protocol

To evaluate the efficiency of the proposed algorithm, we carry out extensive experiments on a set of 220 instances ranging from small to very large sizes. These instances can be divided into three groups:

• Group I. This group is composed of 100 small and medium sized benchmark instances generated by Billionnet and Soutif [START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF]. These instances, generated in the same way as in [START_REF] Chaillou | Best network flow bound for the quadratic knapsack problem[END_REF][START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF][START_REF] Gallo | Quadratic knapsack problems[END_REF][START_REF] Hammer | Efficient methods for solving quadratic 0-1 knapsack problem[END_REF], are very popular and used to test many QKP algorithms. These instances are characterized by their number of objects n ∈ {100, 200, 300}, density d ∈ {25%, 50%, 75%, 100%} (i.e., number of non-zero coefficients of the objective function divided by n(n+1)/2). Each (n, d) combination involves 10 different instances distinguished by their labels except for (300,75%) and (300,100%) where instances are missing. Optimal solutions are known for these instances. The instance data files can be downloaded at http://cedric.cnam.fr/ ~soutif/QKP/QKP.html.

• Group II. The second group includes 80 large-sized benchmark instances which are recently generated by Yang et al. [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF]. These instances have a number of objects from 1000 to 2000, a value of density from 25% to 100%. Due to their large size, optimal solutions are still unknown for these instances.

The instance data files are available at http://www.info.univ-angers.

fr/pub/hao/QKP.html

• Group III. This group is composed of 40 new instances of very large sizes that we propose for this study. They are characterized by their number of objects n ∈ {5000, 6000} and density d ∈ {25%, 50%, 75%, 100%}. For each (n, d) combination, 5 instances were proposed. These instances are available from the authors of this work (they are too large to be put on our web).

The above three groups of instances were all generated using the same generator that was very popular and commonly used in QKP literature [START_REF] Billionnet | Linear programming for the 0-1 quadratic knapsack problem[END_REF][START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF][START_REF] Gallo | Quadratic knapsack problems[END_REF][START_REF] Hammer | Efficient methods for solving quadratic 0-1 knapsack problem[END_REF].

The parameter settings for the generator are the same as well: the coefficients p ij of the objective function are integers that are uniformly distributed in the interval [0,100]; each weight w j is uniformly distributed in [START_REF] Billionnet | Linear programming for the 0-1 quadratic knapsack problem[END_REF]50]; the capacity c is randomly selected from [50,

∑ n j=1 w j]. However, to ensure the hardness of the new instances of Group III, we have performed the following selection process.

For each instance, we attained the best objective value of ten feasible solutions, each of which was built by randomly filling the knapsack. A gap between the objective value of the random solution and the best objective value from our IHEA algorithm was then calculated. We denote this gap as randGap.

For each (n, d) combination, we generated 10 instances, 5 of which having the largest randGaps were selected to join Group III. The average randGap (in percentage) of all instances in Group III is 69.36% which indicates that a randomly generated solution is rather poor. From this perspective, finding a high quality solution for these instances is a non-trivial task.

Our IHEA algorithm was coded in C++ 12.04. When running the DIMACS machine benchmark program dfmax.c on graphs r300.5, r400.5 and r500.5 (available at ftp://dimacs.rutgers.edu/ pub/dsj/clique/) (compliled without optimization flag), the run time on our machine is 0.40, 2.50 and 9.55 seconds respectively for these graphs.

Parameter calibration

Our IHEA algorithm relies on five parameters (see Table 1). To calibrate these parameters, we employed an automatic configuration method called Iterated F-race (IFR) [START_REF] Birattari | Experimental methods for the analysis of optimization algorithms[END_REF] which was implemented in the irace package [START_REF] López-Ibáñez | The irace package, iterated race for automatic algorithm configuration[END_REF]. For each parameter to be tuned, IFR requires a range of values as input. Based on preliminary experiments, we used the range of values as follows: rcl ∈ [START_REF] Feo | Greedy randomized adaptive search procedures[END_REF][START_REF] Sil | Column generation techniques for pickup and delivery problems[END_REF], L ∈ [100, 400], p 1 ∈ [START_REF] Chaillou | Best network flow bound for the quadratic knapsack problem[END_REF][START_REF] Hammer | Efficient methods for solving quadratic 0-1 knapsack problem[END_REF], and p 2 ∈ [START_REF] Billionnet | Linear programming for the 0-1 quadratic knapsack problem[END_REF][START_REF] Chen | A "reduce and solve" approach for the multiple-choice multidimensional knapsack problem[END_REF]. p 1 and p 2 are two parameters associated with t and s, i.e., t = min{p 1 , (I 1 (x) -n f)} and s = min{p 2 , t}. We restricted the training set to 26 representative instances: one instance from each (n, d) combination. To run IFR, we used the tuning budget of 3000 IHEA runs, each run being given 50 iterations. Once the previous four parameters are determined, the termination condition parameter M axIter can be easily tuned by taking into account the balance between quality and efficiency of the IHEA algorithm. The parameter values shown in Table 1 were used in all experiments in the following sections unless otherwise mentioned.

Comparative results on small and medium instances of Group I

Our first experiment was performed on the benchmark instances of Group I. These instances were first solved to optimality by the exact algorithm of [START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF], with hundreds or thousands of CPU seconds on a 300 MHz Pentium II Processor. Several recent heuristic approaches are able to attain these optimal solutions with much less computing efforts (typically a few seconds) [START_REF] Xie | A Mini-Swarm for the quadratic knapsack problem[END_REF][START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF].

To evaluate the performance of our IHEA algorithm, three leading heuristic methods were considered for our comparison:

-A Mini-Swarm approach [START_REF] Xie | A Mini-Swarm for the quadratic knapsack problem[END_REF]. The experiments reported in [START_REF] Xie | A Mini-Swarm for the quadratic knapsack problem[END_REF] were per- formed on a computer with a 3.06 GHz P4 processor.

-A recent Dynamic Programming heuristic approach [START_REF] Fomeni | A dynamic programming heuristic for the quadratic knapsack problem[END_REF]. Among all algorithm variants studied in [START_REF] Fomeni | A dynamic programming heuristic for the quadratic knapsack problem[END_REF], the best performance was achieved by the version using π3 i /w i as the item ordering rule coupled with the "fill-up and exchange" procedure proposed in [START_REF] Gallo | Quadratic knapsack problems[END_REF]. This algorithm version, denoted as DP+FE, was included for our comparative study. The results of DP+FE in this study were obtained by running the source code (which was kindly given to us by the authors of [START_REF] Fomeni | A dynamic programming heuristic for the quadratic knapsack problem[END_REF]) on our machine. Since DP+FE is a deterministic heuristic algorithm, it was executed for a single run.

-A GRASP-tabu approach [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF]. This approach includes two algorithm variants (GRASP and GRASP+tabu). We used the results of GRASP+tabu for our comparative study since it dominates GRASP alone. The reported results were obtained on a Pentium 1.73 GHz processor with 2 GB RAM.

It is not a straightforward task to make a fully fair comparative analysis with the reference approaches due to the differences in computing hardware, termination criterion, etc. This is particularly true for the computing times.

For this reason, we focus our study on the quality criterion of the solutions found. Nevertheless, we include information on computing time for indicative purposes. Following [START_REF] Martinelli | Improved bounds for large scale capacitated arc routing problem[END_REF][START_REF] Usberti | GRASP with evolutionary pathrelinking for the capacitated arc routing problem[END_REF], we used the CPU frequency of our computer (AMD Opteron 4184 2.8 GHz) as a basis to scale the times of the reference algorithms reported in [START_REF] Xie | A Mini-Swarm for the quadratic knapsack problem[END_REF][START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] (see Table 2 for the scaling factors).

Like the two reference randomized algorithms (Min-Swarm and GRASP+tabu), we ran our IHEA algorithm 100 times to solve each problem instance. To show a general picture and simplify the presentation, we divide the whole instance set into 8 classes according to the (n, d) combination. Table 3 displays for each instance class and for each randomized algorithm, the average value of three indicators: 1) success rate (SR), i.e., the number of the trials over 100 runs hitting the known optimal solution; 2) relative percentage deviation (RPD), the average gap between the best lower bound (f LB) and the best solution value (f best) in percentage over 100 trials where the gap is calculated by ((f LB -f best)/f LB × 100); 3) the average CPU time in seconds for one trial (t(s)).

Note that for the single-run deterministic algorithm (DP+FE), the average values over multiple runs are not needed. For our IHEA algorithm, we also report the average time when the algorithm first encounters the best solution (t b (s)) over 100 trials. Since our proposed algorithm as well as the reference algorithms can easily attain the optimal results for all the benchmark in- Instance 100 100 4 is not available and is not considered when we calculate the average value for the instance class 100 100. 2 Instance 300 25 3 is not available and is not considered when we calculate the average value for the instance class 300 25.

stances under consideration, these optimal results are not listed in the table (see [START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF][START_REF] Xie | A Mini-Swarm for the quadratic knapsack problem[END_REF][START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] for these optimal results). The results of the reference algorithms are extracted from the corresponding papers [START_REF] Xie | A Mini-Swarm for the quadratic knapsack problem[END_REF][START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] (the code of the reference algorithms are not available).

From Table 3, we observe that our IHEA algorithm attains the known optimal values with a successful rate of 100% for all these instances with an average computing time of no more than 1.156 seconds. The average best solution time t b (s) of IHEA is even more interesting since the maximum time is only 0.035 seconds (for 200 50). IHEA outperforms the Min-Swarm approach in the success rate and the relative percentage deviation by consuming typically less CPU seconds. Meanwhile, IHEA dominates the deterministic DP+FE algorithm in terms of both solution quality and computational efficiency for all instance classes. Compared to GRASP+tabu which is one of the current best performing heuristic algorithms, IHEA remains very competitive since it solves all these instances to optimality with a 100% success rate while there are 2 instances for which GRASP+tabu is not able to achieve a success rate of 100%. Another interesting feature of IHEA is that its average computing time is approximately linear relative to the size of the instance which was not observed for the reference algorithms.

Comparative results on large instances of Group II

In this section, we investigate the behavior of our algorithm on the second group of 80 large instances (n = 1000 or 2000) with unknown optima. Like GRASP+tabu of [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF], our IHEA algorithm was executed 100 times for each instance. As reference algorithms, we again used GRASP+tabu (which reported the current best known lower bounds for these instances) and DP+FE. The results of DP+FE were obtained by executing a single run of its source code on our machine while the results of GRASP+tabu were extracted from [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF]. and the average computing time for one trial (t(s)). We also report the average best time over 100 trials for our IHEA algorithm (column t b (s)). The best known results are indicated in italic and the new improved results are highlighted in bold. In the last two rows, #Bests indicates the number of italic and bold values, and Avg. denotes the average value for each column.) with much less average computing by our IHEA algorithm, we used the method proposed in [START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF] to calculate upper bounds Û 2 CP T (the current tightest bounds), which was previously used in [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF] to evaluate their algorithms. The results of DP+PE [START_REF] Fomeni | A dynamic programming heuristic for the quadratic knapsack problem[END_REF] on these instances are not reported since DP+PE requires intolerable amount of computing time (indeed, we did not obtain any result with a time limit of one week).

Our IHEA algorithm was executed 100 times for each instance. Table 6 summarizes the results: the best lower bound (column Best), the gap between the upper bound Û 2 CP T and the best lower bound in percentage (column GAP, calculated by (Û 2 CP T -Best)/Best × 100), success rate (column SR), relative percentage deviation (column RPD), the average computational time for one trial (column t(s)) and the average best solution time aver 100 trials (column t b (s)). The last row (Avg.) indicates the average value of each column. From Table 6, we observe that IHEA is able to attain high quality lower bounds for all these large and difficult instances. These lower bounds are typically very close to the corresponding upper bounds. Indeed, the average gap between the best lower bound and the upper bound Û 2 CP T is 1.359% for the whole instance set. Moreover, IHEA achieves a success rate of 100% for 30 out of 40 instances (75%). The average success rate across all instances is 87.675%. When we examine the computing time, the results are quite acceptable. Specifically, the average run time for one trial is 174.075 seconds. The best solution time is much shorter with an average value of 14.456 seconds.

Discussion

The computational outcomes and comparisons with state-of-the-art algorithms presented in Section 3 demonstrated the effectiveness of the proposed IHEA approach. In this section, we provide additional information to gain more insights into the "hyperplane exploration" component (Section 4.1), and further investigate two other important ingredients of the IHEA algorithm: the variable fixing strategy (Section 4.2) and the perturbation strategy (Section 4.3). To simplify the presentation of Sections 4.1 and 4.2, we used a subset of 8 representative instances (see Table 7-8) from the 80 benchmarks of Group II [START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF]. These instances cover all sizes and all densities of Group II. We denote this subset of instances as Group ii.

Insight into the "hyperplane exploration" phase

To show the influence of the "hyperplane exploration" component on the efficiency of IHEA, we provide additional information on the 8 representative instances of Group ii in Table 7 (complementary to Tables 4 and5) includ-

Impact of the variable fixing strategy

As shown in Section 2.5, for a given hyperplane, IHEA has a "high quality" solution as its input. Before exploring the hyperplane with tabu search, we use the density criterion to fix a number of selected items (to the value of 1) and thus generate a reduced problem for tabu search. This variable fixing strategy is motivated by the idea that selected items with high density in a high quality solution are strongly determined and should not be destroyed during tabu search. To verify the usefulness of this variable fixing strategy, we conducted an experiment to compare IHEA with a variant IHEA N oV F where the variable fixing strategy is disabled (i.e., removing lines 15-17 from Algorithm 1). As such T abuSearch Engine explores directly the search space of CQKP

[k] instead of RCP (V f ixed , CQKP [k], x ′) (see Section 2.3).
We ran IHEA and IHEA N oV F 100 times to solve all instances of Group II under the same condition as before. We divide the whole instance set into 8 classes according to the (n, d) combination. Table 8 summarizes the results. In addition of the average best solution value (Avg.Best), average success rate (Avg.SR) model to generate a series of "interesting" hyperplane-constrained problems whose solution space represents a small subset of the original solution space of QKP. To further reduce the hyperplane-constrained problem, we employ specific variable fixing rules based on item density information to fix "strongly determined" variables. The dedicated tabu search procedure is then used to explore the reduced hyperplane-constrained problem. Finally a perturbation strategy is applied to help the search to escape from deep local optima.

We assessed the performance of the proposed approach and presented comparisons with three best performing methods on two sets of 180 well-known benchmark instances (up to 2000 items) and a set of 40 new instances (with 5000 and 6000 items). The computational experiments showed that the proposed approach competes very favorably with the state-of-the-art algorithms.

Specifically, IHEA consistently attained the known optimal solution with a 100% success rate for all 100 small-sized benchmarks (with 100 to 300 objects). For the set of 80 large benchmarks with 1000 and 2000 objects, IHEA discovered 6 improved results (new best lower bounds) and attained the remaining 74 best known results. Encouraging results on 40 new very large instances (with 5000 and 6000 objects) additionally confirmed the effectiveness of our approach where the average gap between the best lower bound and the well known upper bound Û 2 CP T is bounded by 1.359%. The experiments also showed that the proposed approach is more computationally effective than the existing heuristics. Furthermore, we performed additional experiments to gain insight into the "hyperplane exploration" component of the proposed approach, and investigate the beneficial role of two key strategies of the proposed approach: the variable fixing strategy and the perturbation strategy.

We comment that even if IHEA follows the common assumption of nonnegative profits (see Section 2.2, Proposition 1), this is not a necessary condition to apply it. Indeed, in the case of negative profits, Proposition 1 does not hold necessarily and as such the hyperplanes containing the optimal solutions can no more be bounded correctly. Nevertheless, IHEA can still be applied to locate high quality solutions within a set of promising hyperplanes which can be identified by any specific means. In this sense, the proposed IHEA approach is general and applicable to any QKP instance even though its performance may decrease for instances with negative profits.

For future work, there are several interesting directions that could be investigated. First, given the current IHEA algorithm, we can improve the hyperplane exploration (tabu search) by introducing adaptive memory techniques based on recency and/or frequency information projection [START_REF] Glover | Diversification-driven tabu search for unconstrained binary quadratic problems[END_REF]. Some advanced search frameworks like path relinking and scatter search [START_REF] Glover | Tabu Search[END_REF] could also be integrated to reinforce the tabu search engine. Generally, under the IHEA approach, the task of hyperplane exploration can be performed by any effective search algorithm which can be either a heuristic or an exact solver. Second, it would be useful to investigate additional methods able to identify the most "promising" hyperplanes and thus reduce the number of hyperplanes to be explored. Finally, given that the idea of hyperplane decomposition is quite general, it would be interesting to investigate its merit for solving other knapsack and related problems.

1 : 2 :

 12 Input: L: max size of running list; x in : an initial solution; x ref : a reference feasible solution Output: the best feasible solution found so far x * 3: |RL| ← L /* Initialize the size of running list to L */ 4: f min ← f (x ref) /* f min records the objective value of the current best feasible solution */ 5: x * ← x ref /* x * records the best feasible solution found so far */ 6: erl ← 0 7: x ← x in 8: while v min ̸ = ∞ ∨ erl < L do 9:

 x b records the best solution found in current iteration */ 8: x * ← x b /* x * records the global best solution */

	9: repeat
	10: 11:	SolutionImproved ← true k ← σ(x ′)
	12:	Construct constrained problem CQKP [k]
	13:	/* "hyperplane exploration" phase */
	14:	while SolutionImproved do
	15:	

 Algorithm 1, the starting solution x ′ of T abuSearch Engine for solving each constrained problem CQKP [k] is modified from the best solution x b such that x ′ and x b are either the same in the first hyperplane (see Line 7 of Algorithm 1) or different only in one variable (see Line 21 of Algorithm 1). For each CQKP [k], based on x

′ , our variable fixing step tries to identify a

Table 2

 2 Scaling factors for the computers used in the reference algorithms. Our computer (AMD Opteron 4184) serves as the basis.

	Algorithm	Reference Processor type	Frequency (GHz) Factor
	IHEA	-	AMD Opteron 4184 2.8	1.0
	Min-Swarm	[35]	Pentium IV	3.06	1.09
	GRASP+tabu [37]	Pentium	1.73	0.62

Table 3

 3 Comparative results of IHEA with 3 state-of-the-art algorithms on the 100 benchmark instances of Group I[START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF]. The values in bold indicate the improved results of IHEA.

	IN ST.		Min-Swarm [35]	DP+FE [12]		GRASP+tabu [37]	IHEA
		SR(%) RPD t(s)	SR(%) RPD	t(s)	SR(%) RPD	t(s)	SR(%)	RPD t(s)	t b (s)
	100 25	93.900 0.012 0.482	40.000 0.319	0.697	100.000 0.000	0.060	100.000 0.000 0.325 0.004
	100 50	94.200 0.004 0.442	80.000 0.018	0.708	100.000 0.000	0.057	100.000 0.000 0.253 0.002
	100 75	97.500 0.001 0.396	80.000 0.008	0.704	100.000 0.000	0.052	100.000 0.000 0.334 0.003
	100 100 1 100.000 0.000 0.224	77.777 0.005	0.657	100.000 0.000	0.048	100.000 0.000 0.248 0.002
	200 25	90.300 0.009 1.559	60.000 0.056	7.341	100.000 0.000	0.286	100.000 0.000 0.714 0.029
	200 50	92.400 0.001 1.967	50.000 0.009	8.239	99.900 9.4E-6	0.301	100.000 0.000 0.827 0.035
	200 75	90.900 0.003 2.361	60.000 0.010	7.055	100.000 0.000	0.318	100.000 0.000 0.946 0.010
	200 100 100.000 0.000 1.305	60.000 0.004	6.683	100.000 0.000	0.251	100.000 0.000 0.722 0.005
	300 25 2	-	-	-	33.333 0.061	28.341 99.667 0.001	0.735	100.000 0.000 1.122 0.018
	300 50	-	-	-	50.000 0.003	31.324 100.000 0.000	0.763	100.000 0.000 1.156 0.015
	1							

Table 4 (

 4 for instances with 1000 objects) and Table 5 (for instances with 2000 objects) summarize the comparative results. The listed indicators include the best lower bound discovered (column Best), the success rate (column SR) to attain the best lower bound, the relative percentage deviation (column RPD)

Table 4 and

 4 5 disclose that our IHEA algorithm outperforms both GRASP+tabu and DP+FE in terms of all indicators. Firstly, IHEA attains the best known lower bounds or improves these lower bounds for all 80 instances. Specifically, it discovers improved best lower bounds for 6 instances and attains the previous best known lower bounds for the remaining 74 instances. Secondly, the success rate and relative percentage deviation achieved by IHEA are consistently better than or equal to those achieved by the randomized GRASP+tabu. In particular, IHEA performs better in these two indicators for 24 out of 80 cases and is equal for the remaining 56 cases. GRASP+tabu has 24 cases for which the success rate is under 100% while IHEA has only 3 such cases. Moreover, IHEA is better both in its lowest success rate (95% vs. 6%) and in its average success rate (99.9% vs. 91.63%) compared to GRASP+tabu. Notice that the success rate of IHEA can be further improved by simply extending the max iteration parameter (MaxIter). For example, when we set the MaxIter

	to (√	n+130), IHEA achieves a 100% success rate for all these instances but
	at the expense of more computing time. Thirdly, IHEA always needs much
	less computing effort to achieve a similar or better performance compared to
	GRASP+tabu and DP+FE.
	To solve instances with 1000 variables and 2000 variables respectively, IHEA
	consumes an average computing time of 6.0 seconds and 22.73 seconds while
	these values are 27.96 seconds and 329.65 seconds for GRASP+tabu, 2917.70
	seconds and 51695.75 seconds for DP+FE. This implies that IHEA scales very
	well with a weak increasing ratio of its average computing time (i.e., 22.73/6.0
	≈ 3.79) when the problem size grows from 1000 to 2000 objects while this
	ratio is much higher for GRASP+tabu (329.65/27.96 ≈ 11.79) and DP+FE
	(51695.75/2917.70 ≈ 17.72). Notice also that compared to the average time
	which is proportional to the MaxIter parameter, the average best solution
	time (column t b (s)) is even much shorter (i.e., 0.47 seconds) across the whole
	instance set. Given this fact, it is easy to see that the large gap between the
	average t b (s) and t(s) is consumed by the algorithm only to complete its run,
	but useless for improving the best solution. Finally, comparing GRASP+tabu
	with DP+FE, the former outperforms the latter by achieving significantly
	more best known lower bounds (74 vs. 11

Table 7

 7 Additional information of IHEA on the 8 representative instances of Group iiAvg.k value is more than 2 but less than 3. Based on this observation, we conclude that each iteration of the "hyperplane exploration" phase of IHEA typically explores a very limited number of hyperplanes which contributes to its performance. To understand why such a small number of hyperplanes is explored, we examine the initial hyperplane (Avg.k 0). It can be seen that the initial hyperplane is always equal or very close to the best hyperplane (see column k *). Indeed, there is 1 out of 8 cases where the initial hyperplane is exactly the best hyperplane where the best solution is found, and 7 cases where the initial hyperplane is only one dimension away from the best hyperplane. Moreover, Table7indicates that the dimension of the initial hyperplane (column Avg.k 0), which is always within the interval [k LB , k U B], is very close to k U B . The difference between the average values of Avg.k 0 and k U B is only 908.00-906.75.00=1.25. Similar observations can be made for other instances of Group II.

	IN ST.	k *	Avg.k 0	k LB	k U B	Avg.k
	1000 25 5	880	879.010	520	881	2.904
	1000 50 8	627	626.000	242	627	2.928
	1000 75 5	858	857.000	490	858	2.924
	1000 100 6	796	796.000	397	796	2.000
	2000 25 3	929	928.010	236	931	2.896
	2000 50 5	1153 1152.000	378	1153	2.969
	2000 75 9	864	863.000	207	864	2.967
	2000 100 2	1154 1153.000	387	1154	2.970
	Avg.	907.63	906.75 357.13 908.00	2.82

Table 9

 9 Comparative results of IHEA with IHEA RDP T and IHEA N OP T on the 80 large instances of Group II[START_REF] Yang | An effective GRASP and tabu search for the 0-1 quadratic knapsack problem[END_REF]. The values in bold denote the best results of row Sum. OP T . IHEA RDP T randomly removes s selected items without con-1 sidering their densities while IHEA N OP T eliminates the perturbation phase 2 from IHEA. This experiment was also performed on the 80 instances of Group 3 II. As usual, each algorithm was executed 100 times on each instance. Table9summarizes the results based on three indicators: 1) average best solu-5 tion value (Avg.Best); 2) average success rate (Avg.SR); 3) average computing 6 time for one trial (Avg.t(s)). The last row of the table (Avg.) indicates the 7 average of the listed values of each column. From Table9, we observe that 8 eliminating the perturbation phase from the IHEA algorithm causes a great 9 deterioration of its performance in terms of both best solution value and suc-10 cess rate. Indeed, compared to IHEA and IHEA RDP T , IHEA N OP T achieved a 11 smaller average best solution (Avg.Best) value for 6 out of 8 instance classes 12 and even a smaller average success rate (Avg.SR) for all 8 classes. When com-13 paring IHEA RDP T with IHEA, one observes that, although IHEA RDP T does 14 not deteriorate the best solution value, it is less stable than IHEA by achieving 15 a smaller average success rate for 7 out of 8 instance classes. A Wilcoxon signed 16 rank test with a significance factor of 0.05 was applied to compare the success 17 rates of IHEA RDP T and IHEA, and the resulting p-value of 0.001602 discloses 18 that IHEA RDP T is significantly worse than IHEA. Moreover, IHEA RDP T re-19 quired on average more computing time than IHEA (20.171 seconds v.s. 14.367 20 seconds). This experiment confirms that the perturbation phase of IHEA is 21 useful and the adopted density based strategy is effective. This paper deals with the NP-hard Quadratic Knapsack Problem which is 24 a highly useful model in practice. To approximate this hard combinatorial 25 problem, we developed an iterated "hyperplane exploration" approach mixing 26 problem reduction techniques and local optimization with tabu search. The 27 proposed approach introduces a hyperplane constraint to the original QKP[START_REF] Pisinger | The quadratic knapsack problem-a survey[END_REF]

	IN ST.	IHEA	IHEA RDP T	IHEA N OP T
		Avg.Best	Avg.SR Avg.t(s) Avg.Best	Avg.SR Avg.t(s) Avg.Best	Avg.SR Avg.t(s)
	1000	2016960.700	100.000 5.489	2016960.700	96.200 7.649	2016958.100	78.300 0.134
	1000	5118953.900	99.700 6.022	5118953.900	78.200 8.327	5118885.300	61.100 0.144
	1000	5900793.200	100.000 6.390	5900793.200	98.400 9.218	5900733.000	75.700 0.149
	1000 100 7476457.700	100.000 6.117	7476457.700	93.600 9.010	7476457.700	79.900 0.146
	2000	7841340.400	100.000 22.244 7841340.400	89.900 31.684 7841340.400	57.900 0.569
	2000	18617410.400 100.000 23.240 18617410.400 97.600 32.179 18617161.000 88.300 0.576
	2000	24676371.600 100.000 22.718 24676371.600 97.500 31.554 24675823.000 81.100 0.563
	2000 100 21220476.400 99.500 22.719 21220476.400 100.000 31.750 21218753.400 77.800 0.533
	Avg.	11608595.538 99.900 14.367 11608595.538 93.925 20.171 11608263.988 75.012 0.352
	and IHEA N					

4

In case an optimal solution exists in a hyperplane with a dimension k < k LB , an optimal solution x * identified in k ∈ [k LB , k UB] must include items with zero contribution. In a practical situation where the (positive) weight of an item represents a cost, an additional step is required to remove from x * the zero contribution items.

Our best solution certificates are available at: http://www.info.univ-angers. fr/pub/hao/QKPResults.zip.

Acknowledgment

We are grateful to the reviewers for their insightful comments which helped us to improve the paper. We would also like to thank Dr. Letchford and Dr. Fomeni for providing us with their source code of [12]. The work was partially supported by the LigeRo project (2009-2013, No. 012, Region of Pays de la Loire, France) and the PGMO project (2014-0024H, Jacques Hadamard Mathematical Foundation Paris). Support for Yuning Chen from the China Scholarship Council is also acknowledged.

Table 4

Comparative results of IHEA with two state-of-the-art algorithms on the 40 instances with 1000 objects of Group II. The best known results are in italic and the new best known results are in boldface.

DP+FE [START_REF] Fomeni | A dynamic programming heuristic for the quadratic knapsack problem[END_REF] GRASP+tabu [This observation confirms a safe ranking of the three compared algorithms in 2 decreasing order of their performance: IHEA, GRASP+tabu and DP+FE.

Computational results on very large instances of Group III

1

We now present the last experiment on the 40 very large instances of Group III 2 with 5000 to 6000 variables with unknown optima. In addition to their size, the 3 hardness of these instances is also ensured through the selection process when 4 and5. The last row (Avg.) indicates the average value of some columns. significance factor of 0.05 was applied to these two groups of success rates and the resulting p-value of 0.001602 clearly shows that IHEA is significantly better than IHEA N oV F . Moreover, when we examine the average computing time, we find that IHEA is 23 times faster than IHEA N oV F (14.376 vs 332.715 seconds). Such a drastic speed-up is achieved thanks to the fact that a large number of variables are fixed and few of them are wrongly fixed. Indeed, the average value of the average number of fixed variables in percentage (see column Avg.% F V) is 94.9% which means that 94.9% of the search space is eliminated on average, and the average number of wrongly fixed variables (see column Avg.% W F V) is always 0 which means no variable is wrongly fixed for these instances.

Impact of the perturbation strategy

IHEA uses a density based perturbation strategy to introduce a form of global diversification for a better exploration of the solution space (Section 2.7). To assess the impact of the adopted perturbation strategy, we conducted an experiment to compare the performance of IHEA with two variants IHEA RDP T