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Abstract

The social and medico-social sector is experiencing a fast evolution due to
the continuing growth of older population. Yet, social and medico-social struc-
tures suffer from a real lack of computerized decision support tools. This work
deals with the key issue of elaborating efficient action plans in these structures,
which aims to improve the whole quality of these structures. An efficient action
plan is a set of actions chosen among many candidate actions which optimize
several conflicting objectives and satisfy some imperative constraints. To assist
managers to optimize their action plans, we develop a multiobjective decision
support system as part of a commercial software. According to the objectives
and constraints defined by the decision maker and a set of feasible actions, the
software is used to select the actions that optimize the given objectives while
satisfying the constraints. After providing a description and a formal model
of the action plan optimization problem, we present a solution method using
the iterated local search based on quality indicators (IBMOLS). We assess the
proposed approach on problem instances with 2 to 8 objectives and up to 500
candidate actions and demonstrate its usefulness as a key component of a deci-
sion support system for social and medico-social structures.

Keywords: Action planning; Multiobjective optimization; Decision sup-
port; Heuristics.

1. Introduction

The problem studied in this paper concerns the social and medico-social
sector in France, which includes more than 34,000 different structures (rest
houses, accommodation and rehabilitation centers, work-based support centers,
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etc) (French SAH Ministry, 2012). The social and medico-social sector is in
perpetual and fast evolution, especially since the French law No. 2002-2 ren-
ovating social and medico-social actions, which considers the actions covering
planning, programming, resource allocation, structure evaluation and coordi-
nation as a fundamental basis for the management of social and medico-social
structures (structures for short hereafter). In this context, elaborating efficient
action plans becomes an important and challenging task for decision makers in
these structures.

In this work, we investigate a real case of multiobjective action plan optimiza-
tion problem. This study is unique because even if the social and medico-social
sector is increasingly computerized these last years, it remains among the sec-
tors where optimization is not yet used as a tool for decision support. Indeed,
the use of computer resources has made considerable progress in this sector,
yet they are basically employed for the daily management of the structures and
optimization tools are usually completely absent. In this context of lack of ad-
vanced models and tools, we develop a multiobjective decision support system
to assist managers to optimize their action plans, which, to our knowledge, is
the first study of this kind for the social and medico-social sector. This study
illustrates the interest of multiobjective optimization for building expert and
intelligent systems for decision making.

The problem consists in elaborating optimized action plans in order to im-
prove the overall management efficiency of structures. The aim is to choose a
subset of actions among many possible actions while optimizing several objec-
tives and satisfying some imperative constraints (e.g., budget). Each action has
a realization cost and can influence, positively or negatively, some or all the
objectives. The global cost of the final solution (i.e., an action plan) should
not exceed a predefined budget. Also, a threshold constraint could be added to
each objective indicating the minimal objective value that solutions must attain.
Thus, this problem can be considered as a practical case of the multiobjective
knapsack problem (MOKP) (Barichard and Hao, 2003; Lust and Teghem, 2012),
where actions represent items (objects) which need to be selected to put in a
knapsack whose capacity is defined by the budget allocated to the project while
optimizing a number of objectives. We note that, in the real case, we may need
to consider more than one thousand possible actions and up to eight objectives.

In this paper, we present an application of the Indicator-based Multiob-
jective Local Search (IBMOLS) algorithm (Basseur and Burke, 2007; Basseur
et al., 2012) with the Epsilon (ǫ) indicator (Zitzler and Künzli, 2004) and the
R2 indicator (Hansen and Jaszkiewicz, 1998; Brockhoff et al., 2012) to the ac-
tion plan optimization problem. We first present a formal model of the action
plan optimization. This modeling allows us to associate the action plan opti-
mization problem to the well-known multiobjective knapsack problem. Then,
we show that IBMOLS coupled with the R2 indicator is efficient even on large
size problem instances. This is the first time that IBMOLS is used with the R2
indicator to solve a multiobjective optimization problem with more than three
objectives. This work was partially motivated by a preliminary study using the
Epsilon (ǫ) indicator (Chabane et al., 2015), which showed that this indicator
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does not always maintain naturally population diversity in the objective space.
In this work, we show that R2-IBMOLS is more efficient than ǫ-IBMOLS and
NSGA-II (Deb et al., 2002) on all the instances tested and can help decision
makers to elaborate action plans which improve the overall quality of their struc-
tures. More generally, this study demonstrates that multiobjective optimization
constitutes a highly useful tool to build expert and intelligent decision support
systems for the fast evolving social and medico-social sector.

The paper is organized as follows. In Section 2, we present the action plan
optimization problem and its formulation as a multiobjective knapsack problem.
In Section 3, we provide basic definitions about multiobjective optimization and
the binary indicator search principle. In Section 4, we describe the IBMOLS
algorithm for action plan optimization. In Section 5, we present the problem
instances and the experimental protocol for computational assessments. In Sec-
tion 6, we show our experimental results and comparative studies, followed by
a discussion on the practical impact on action plan elaboration in Section 7. In
Section 8, we provide concluding comments and perspectives.

2. Action plan optimization problem

This section describes the context and interest of optimized action plan
elaboration to improve the whole quality of social and medico-social structures.
In the second part, we present a mathematical formulation of the action plan
optimization problem after recalling the general definition of the MOKP.

2.1. Problem description

The action plan optimization problem is a practical case of the MOKP,
which is well known in the literature. The MOKP often appears in the field
of project management as well as several other domains. This work is a part
of the “MSQualité”software developed by the company GePI 1 which works
specifically for the social and medico-social sector in France. Since the law No.
2002-2 of January 2nd, 2002, social and medico-social structures are constrained
to continuously elaborate improvement projects, carry out at least one self-
assessment every 5 years and one external assessment (assessment done by a
person outside the structure) every 7 years. This assessment aims to evaluate the
operating structure, its improvement project and the quality of service offered
to the persons entering in the structure. At the end of the evaluation process,
recommendations are given to the decision maker to conduct a new project
for the next period. To elaborate the project, the decision maker defines the
objectives to achieve, the resources to use, the constraints and the actions plan
to implement. Some precisions and examples about the objectives, actions and
constraints typically found in projects are given below.

1http://www.gepi-conseil.com
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• Objectives

The objectives depend mainly on the recommendations resulting from
the last assessment (self-assessment or external assessment). They could
be of varied nature, either concerning the residents lives such as “im-
prove resident’s life quality”, “improve risks prevention”, “increase the
resident’s autonomy”and “ensure the individual and collective rights”, or
the structure performance like “improve the opening of the structure to its
environment” and “improve the structure’s security” or both.

• Actions

The primary mission of a social and medico-social structure is, on the one
hand, to take care of its residents and provide them with welfare and, on
the other hand, to ensure well functioning of the structure, with respect to
the laws and persons. Therefore, the actions of an action plan always aim
to improve resident’s life quality and the structure performance in gen-
eral. Some examples of actions of the first aspect are: “facilitate moving
for persons with reduced mobility”, “arrange trips”, “organize shows”or
“implement activities for the residents”. For the second aspect, typical
actions are: “train staff to use IT tools”, “prepare a care protocol”or “in-
stall a lift”, for instances.

The origins of the actions are either recommended by the structure assess-
ment or decided by the managers for continuous improvements.

• Constraints

There are two main hard constraints which must be always satisfied: the
budget of the project and the minimum threshold that should be reached
for each objective after completion of the action plan.

We note that the realized project is evaluated in the next assessment and
each evaluation can lead to another project, and so on (see figure 1).

Assessment
 (human)

   Project     
  (with an    
action plan) 

Action plan
realization

Figure 1: Assessment process in social and medico-social structures in France.
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During the project elaboration, the decision maker is usually confronted
with two main challenges: i) which actions should be implemented in order to
maximize the overall quality of the structure while attaining the pre-defined
objectives of the project; ii) which actions to choose when the project budget
does not allow the implementation of all actions.

To assist the decision maker in elaborating the action plan, an action ware-
house is incorporated to the “MSQualité”software to store all the feasible actions
improving the structures quality, considering that the cost of each action as well
as their impact on the objectives are known. The action warehouse is fed with
actions already realized in different structures. When elaborating a project, the
decision maker has just to define the objectives and possibly the corresponding
budget. To help the decision maker in this task, “MSQualité”provides an action
plan to achieve or improve the objectives which could be completed with new
actions. The second challenge, which is the main issue of this work, is to de-
termine an efficient action plan considering a limited budget: which actions to
choose so that all the objectives are optimized without exceeding the allocated
budget. The schema below (figure 2) illustrates the project elaborating process
including the action plan optimization step.

Let us note that the realization step has the same duration as the project and
could require scheduling tools to optimize the action plan realization according
to the structure means. Nevertheless in this work we are not concerned by
this aspect. Also, the assessment step allows analyzing the project results and
draw conclusions and recommendations to take into account in the next project
elaboration. On the other hand, according to the assessment results, some
new actions (among those defined by the decision maker) could be added to the
action warehouse which can be suggested to other similar structures and actions
already stored in the action warehouse could be updated with the new results.

Thus, the problem consists in elaborating an efficient action plan to achieve
a project’s objectives while respecting the constraints. In other words, the aim
is to choose a subset of actions among many possible actions while optimizing
several often conflicting objectives under the given constraints. Each action has
a realization cost and can influence (positively or negatively) a part or all of the
objectives.
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Efficient
action plan

Obj 1
Obj Obj n2

Project

Feasible actions

Realization

Assessment

Optimization Action
warehouse

Edit / add 
actions

New 
actions

Budget 

Recommendations

Suggested  
actions 

Figure 2: Project elaborating process.

2.2. Problem formulation

Before presenting the action plan problem formulation, let us recall the basic
definition of the knapsack problem (KP) (Kellerer et al., 2004; Martello and
Toth, 1990; Changdar et al., 2015) and its multiobjective version. Given n

items each having a characteristic ωi (i = 1, ..., n) (weight, volume, cost, etc)
and a profit pi, some items should be selected to maximize the total profit
without exceeding the capacity W of the knapsack. Formally:

(KP )



















max
n
∑

i=1

pixi

s.t.
n
∑

i=1

ωixi ≤W

xi ∈ {0, 1} i = 1, ..., n

(1)

where xi = 1 means that the item i is selected to be in the knapsack, xi = 0
otherwise.
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From this basic formulation, several variants of the KP have been proposed
and studied during the last decades: the multidimensional knapsack problem
(MKP) (Kong et al., 2015; Puchinger et al., 2010; Wang et al., 2012), the mul-
tiple knapsack problem (Kellerer et al., 2004; Martello and Toth, 1990), the
multiple-choice knapsack problem (MCKP) (Sinha and Zoltners, 1979) and the
quadratic knapsack problem (QKP) (Gallo et al., 1980; Pisinger, 2007). More-
over, problems that combine two or more of these variants are also proposed,
like the multiobjective multidimensional knapsack problem (Lust and Teghem,
2012; Vianna and Vianna, 2013) and the multidimensional multi-choice knap-
sack problem (Chen and Hao, 2014; Cherfi and Hifi, 2009; Shojaei et al., 2013).
Other knapsack variants include for instance the constrained knapsack problem
in fuzzy environment (Changdar et al., 2015) and dynamic multidimensional
knapsack problems (Baykasoğlu and Ozsoydan, 2014).

The multiobjective knapsack problem is a difficult variant of the KP be-
cause the optimization of conflicting objectives simultaneously requires the use
of specific techniques borrowed from the multiobjective research community.
The MOKP may be used to formulate many practical problems like resource
allocation, capital budgeting, project management and, in our case, action plan
optimization.

Given a capacity constrained knapsack and n items (objects) having m prof-
its fij (j = 1, ...,m) and a characteristic ωi. The MOKP consists of selecting a
subset of items in order to maximize m profits (to maximize a vector of objective
functions) while not exceeding the knapsack capacity W . Formally, the MOKP
can be formulated as follows:

(MOKP )



















max fj(x)=
n
∑

i=1

fijxi j = 1, ...,m

s.t.
n
∑

i=1

ωixi ≤W

xi ∈ {0, 1} i = 1, ..., n

(2)

where fj represents the jth objective function, m the number of the objec-
tives, fij the value of item i on objective j, ωi the weight of the item i. Most
studies on the MOKP focus on instances of the bi-objective case (m = 2). Some
studies are dedicated to the three-objective case (m = 3). Very few MOKP
studies concern more objectives (Vianna et al., 2014; Vianna and Vianna, 2013).

Throughout this paper, the set of feasible actions is denoted by A, the action
plan (which is a subset of actions selected in A) is denoted by a vector x =
(a1, a2, ..., an) where n refers to the size of A. Let ai = 1 if the action ai is
selected and ai = 0 otherwise. X denotes the search space (the set of all the
possible action plans), F represents the set of the objectives (f1, f2, ..., fm) to
maximize and m the number of objectives. Each objective is represented by a
function fj which associates to each action ai ∈ A its impact on the objective
j. This impact is evaluated by the function fj(ai) = vij which assigns to any
action ai an integer value vij reflecting the contribution of the action ai to
the achievement of the objective j (vij>0) or the degradation of the action ai
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for the objective j (vij<0). vij=0 indicates that action ai has no effect on
the objective j. Thus, we can associate to each action ai an objective vector
Vi = (f1(ai), f2(ai), ..., fm(ai)). The realization cost of an action ai is denoted
by ωi which can take negative values, since there may be actions with negative
costs when it is about selling objects or services, for instance. Considering an
action plan x = (a1, a2, ..., an) ∈ {0, 1}

n, the impact that x has on the objective
j is given by:

fj(x) =

n
∑

i=1

aifj(ai) (3)

and the global cost of x is given by:

C(x) =
n
∑

i=1

aiωi (4)

Also, we consider in this paper two constraints: (i) the global cost of the so-
lution should not exceed a predefined budget β, i.e., C(x) ≤ β. (ii) a constraint
tj is added for every objective j, determining the minimal threshold accepted
for fj , i.e., fj(x) ≥ tj .

So, the optimization goal is to find x∗ ∈ argmax
x∈X

F(x) verifying:







x∗ ∈ {0, 1}n

∀j ∈ {1,m}, fj(x
∗) ≥ tj

C(x∗) ≤ β

(5)

Since here F refers to a vector of evaluation functions, x∗ is likely to be not
unique. Instead, optimizing F leads to a set of mutually nondominated solutions
called Pareto set (in Pareto optimality sense). We aim here to approximate the
Pareto front effectively (the Pareto front refers to the image of the Pareto set
in the objective space).

3. Binary quality indicators

This section is dedicated to binary quality indicators. We start with a general
introduction followed by a presentation of the Epsilon and R2 indicators which
are used in this work.

3.1. General presentation of binary quality indicators

In the following, X denotes the decision space of a general optimization
problem, Z the corresponding objective space, and m the number of objective
functions f1, f2, ..., fm that assign to each decision vector x ∈ X a corresponding
objective vector z = {f1(x), f2(x), ..., fm(x)} ∈ Z. Given two solutions x1 and
x2, the relation x1 ≻ x2 means that solution x1 is preferable to (or better than)
solution x2 according to the Pareto dominance relation (Zitzler et al., 2003).
The set of all Pareto optimal solutions is called “Pareto optimal set ”. The set
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of all Pareto set approximations is represented by the symbol Ω. In this section,
we assume that Z ⊆ Rm and that m objectives are to be minimized.

The binary quality indicators (Zitzler et al., 2003) represent a natural ex-
tension of the Pareto dominance relation on sets of objective vectors, where a
function I : Ω × Ω −→ R quantifies the difference in quality between two ap-
proximation sets A and B. When R denotes a fixed reference set (e.g. the set
of Pareto optimal solutions), the function I represents a unary quality indicator
that assigns to each Pareto set approximation a real number which has to be
minimized, to be as close as possible to R. With this principle, the optimiza-
tion goal is transformed to the identification of a Pareto set approximation that
minimizes I. Also, the quality indicator could be used to compare the quality
of two single solutions or a single solution against a population and (with that
comparison) it could be used in the selection process of evolutionary algorithms.
Indeed, during the selection process, the solution to delete should be the one
with the worst value of the indicator being used according to rest of the popu-
lation. As indicated by the authors of IBMOLS (Basseur et al., 2012), “During
the selection process, the main objective is to remove the solutions which cor-
respond to the smallest degradation of the overall quality of the population, in
terms of the quality indicator being used”.

In the following, we define two indicators used in this study: the Epsilon
additive indicator (Iǫ) and the R2 indicator (IR2). These definitions are taken
partially from (Zitzler and Künzli, 2004; Zitzler et al., 2003) for Epsilon indicator
and (Brockhoff et al., 2012; Hansen and Jaszkiewicz, 1998) for R2 indicator.

3.2. Epsilon indicator

Iǫ(A,B) gives the minimum distance by which a Pareto set approximation
A needs to be translated in each dimension of the objective space such that the
approximation B is dominated by A. Formally, it can be defined as follows:

Iǫ(A,B) = minǫ{∀x2 ∈ B, ∃x1 ∈ A : fj(x1)− ǫ ≤ fj(x2)}
∀j ∈ {1, ...,m}

(6)

Iǫ can be used to compare the quality of two single solutions x1 and x2:

Iǫ(x1, x2) = max{fj(x1)− fj(x2)} ∀j ∈ {1, ...,m} (7)

Iǫ(x1, x2) represents the minimal translation to execute x1 in the objective
space so that it dominates x2. This translation takes negative values when
x2 ≻ x1.

3.3. R2 indicator

The R2 indicator (Brockhoff et al., 2012; Hansen and Jaszkiewicz, 1998)
and the Hypervolume (HV ) indicator (Zitzler and Thiele, 1999) are two rec-
ommended approaches (Knowles et al., 2005) which simultaneously evaluate all
desired aspects of a Pareto front approximations. However, the R2 indicator is
considered as an alternative for the HV indicator for two reasons: (i) the run
time of the HV is expected to increase exponentially with respect to the number
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of objectives as its computation is known to be NP-hard. (ii) the distributions
obtained using the HV are biased towards the knee regions of the Pareto front
(Brockhoff et al., 2014).

As mentioned in (Hansen and Jaszkiewicz, 1998), the R indicator family is
based on utility functions which map a vector ~z ∈ Rm to a scalar utility value
u ∈ R for assessing the relative quality of two Pareto front approximation sets.

Definition 1. For a discrete and finite set U of utility functions, a uniform
distribution p over U , and a reference set R, the R2 indicator is defined by:

R2(R,A,U) =
1

|U |

∑

u∈U

(

max
r∈R
{u(r)} −max

a∈A
{u(a)}

)

(8)

When R is constant, the R2 indicator can be defined as a unary indicator:

R2(A,U) = −
1

|U |

∑

u∈U

max
a∈A
{u(a)} (9)

As suggested by Hansen and Jaszkiewicz (Hansen and Jaszkiewicz, 1998) and
used by Brockhoff et al. in (Brockhoff et al., 2012) and (Brockhoff et al., 2014),
we use, throughout this paper, the standard weighted Tchebycheff function
u(z) = uλ(~z) = −maxj∈{1,...,m} λj |z

∗
j − zj | within the R2 indicator as defined

in equation 9 , where λ = (λ1, ..., λm) ∈ Λ is a given weight vector and z∗ is an
utopian point.

In (Brockhoff et al., 2012, 2014), Brockhoff et al. studied the influence of
the number and the distribution of the weight vectors on the optimal distribu-
tion of the solutions. They concluded that: (i) For bi-objective problems, the
optimal placement of a point according to the R2 indicator only depends on
its neighbors and only on a subset of weight vectors. (ii) For a solution set of
size µ, the optimal µ-distributions2 for the R2 indicator turns out to contain
the intersection points of the rays corresponding to the weight vectors with the
Pareto front when µ > |Λ|. There is one optimal µ-distribution when µ = |Λ|
and the optimal µ-distributions is not always unique in the case µ < |Λ|. (iii)
Even in the scenarios in which the optimum distribution changes with increasing
the number of the weight vectors |Λ|, this distribution stabilizes when a specific
number |Λ|threeshold is exceeded. For the bi-objective case, |Λ|threeshold = 10µ.

The same authors show in (Wagner et al., 2013) that the optimal µ-distribu-
tions can be affected by moving the reference point, by restricting the weight
space and by skewing the weight vectors distribution (Figure 3).

2Optimum sets of size µ.
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Figure 3: Moving the target cone (gray area) by changing the position of the reference point
from z∗ = (0, 0) (left) to z∗ = (0.2, 0.2) (center). Narrowing the target cone (gray area) by
restricting the first component of the normalized weight vectors from [0.1,0.9] (left) to [0.5,0.7]
(right). The dashed arrows correspond to the target directions defined by the weight vectors.

4. Indicator-based multiobjective local search (IBMOLS)

In the field of evolutionary multiobjective optimization, the use of indicator-
based algorithms is continuously increasing, especially since 2004. In this sec-
tion, we review some representative studies on indicator-based multiobjective
optimization, then we present the indicator-based multiobjective local search
approach applied to the action plan optimization problem.

4.1. Indicator-based multiobjective optimization

Many multiobjective optimization algorithms from the literature are based
on the use of evolving a population of solutions to find a good set of compro-
mise solutions. The binary quality indicator principle was first proposed within
an evolutionary multiobjective (EMO) algorithm in (Zitzler and Künzli, 2004).
Since then, several other methods and studies using quality indicators have
emerged such as: an EMO algorithm using the hypervolume measure as selection
criterion (Emmerich et al., 2005), handling uncertainty in indicator-based mul-
tiobjective optimization (Basseur and Zitzler, 2006), improving hypervolume-
based EMO algorithms by using objective reduction methods (Brockhoff and
Zitzler, 2007), R2-IBEA (Phan and Suzuki, 2013), R2-EMOA (Trautmann et al.,
2013) and R2 indicator-based multiobjective search (Brockhoff et al., 2014).
Additionally, Bader and Zitzler (2011) proposed the HypE algorithm, a hyper-
volume estimation algorithm for multiobjective optimization that uses Monte
Carlo simulation to approximate the exact hypervolume values. Their experi-
mental results indicate that HypE is highly effective for many-objective prob-
lems. More recently, Jiang et al. (2015) introduced a simple and fast hyper-
volume indicator-based multiobjective evolutionary algorithm (FV-MOEA) to
quickly update the exact HV contributions of solutions. They tested their algo-
rithm on 44 benchmarks with 2-5 objectives and demonstrated that FV-MOEA
reports high hypervolume values and obtains significant speedups compared to
other HV indicator-based MOEAs. Ben Mansour and Alaya (2015) proposed an
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indicator-based ant colony optimization algorithm for multiobjective knapsack
problem. Li et al. (2015) developed a general multiobjective particle swarm
optimizer based on the R2 indicator (called R2-MOPSO). R2-MOPSO uses R2
contribution of the archived solutions to select global best leaders to update
the swarm. Falcón-Cardona and Coello (2016) presented a new indicator-based
multiobjective ant colony optimization algorithm for continuous search spaces
(iMOACOR), which is based on the ACOR and R2 indicators. Dı́az-Manŕıquez
et al. (2016) combined the R2 indicator and particle swarm optimization to
solve multi/many-objective problems.

On the other hand, local search algorithms are also known to be efficient for
many real-world applications, and especially on large-scale problems. IBMOLS
(Basseur and Burke, 2007) is a multiobjective algorithm combining a quality
indicators and a local search mechanism. Contrary to most multiobjective lo-
cal search algorithms of the literature which are based either on the Pareto
dominance relation between solutions or on aggregation methods, the fitness
assignment in IBMOLS is based on the quality indicator principle. It does not
require any specific diversity preservation mechanism, since this aspect should
be considered in the indicator itself. Moreover, the decision maker can include
preferences in the indicator definition. Furthermore, the local search deals with
a fixed population size, which enables the algorithm to find multiple nondom-
inated solutions in a single run, without any specific mechanism dedicated to
control the number of nondominated solutions during the local search process
(problem encountered with the classical multiobjective local search “Pareto Lo-
cal Search”(Paquete et al., 2004)). Finally, IBMOLS requires only a small num-
ber of parameters.

Several studies of the literature have shown the efficiency of the IBMOLS
method on different multiobjective problems. For instance, Basseur et al. (2012)
applied IBMOLS to three different problems (Flow-Shop, Ring Star and Nurse
Rostering). Then, in (Basseur et al., 2012), the authors proposed HBMOLS
that uses the hypervolume contribution unary indicator IHC in the selection
process. Tangpattanakul et al. (2015) applied IBMOLS with the hypervolume
indicator to solve a multiobjective optimization problem associated with se-
lecting and scheduling observations of an agile Earth observing satellite. They
compared IBMOLS with the BRKGA algorithm (Gonçalves and Resende, 2011)
and showed the advantage of IBMOLS over BRKGA. Finally, Tangpattanakul
(2015) also used IBMOLS with the hypervolume indicator to solve a bi-objective
p-Median problem and showed its effectiveness.

4.2. Indicator-based multiobjective local search for action plan optimization

Let P denote the current population of solutions of the IBMOLS algorithm.
Then, a local search procedure is applied on P as described below. A local
search step of the IBMOLS algorithm corresponds to a local search step applied
on each solution in P . A neighbor is accepted if its indicator value is better
than the worst solution in P . The neighborhood generation stops when the
entire neighborhood of solution in P is explored or once an improving solution
is found (first neighboring solution that improves the quality of P with respect
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to I). As such, the neighborhood is not explored entirely for seeking the best
neighbor. Two main reasons guided this choice: (i) it often enables to speed up
the convergence of the population, since most of the time only a small part of
the neighborhood is generated. (ii) The selection of the best neighbor leads to
deterministic local search steps (one possible way to go from an initial solution
to a set of local optima). The selection of a random improving move allows
us to reach different local optima (in the sense of multiobjective optimization)
from a single initial solution. The entire local search is terminated when the
archive E of nondominated solutions has not received any new solution during
a complete local search step.

Moreover, it is assumed that objective values of all solutions are normalized;
to achieve this, the minimum mj and maximum Mj value of each objective
function fj in the population P are computed first:

{

mj = minx∈P (fj(x))
Mj = maxx∈P (fj(x))

(10)

Then each objective function j of every individual x is normalized as follows:

NFj(x) =
fj(x)−mj

Mj −mj

(11)

where NFj(x) is the normalized jth objective function of the individual
x. The extreme values of the population are computed after the initialization
process and after each local search step (see algorithm 1). To compute an
indicator value I(x1, x2), the normalized values of objective functions NFj(x)
are employed. A detailed description of IBMOLS is outlined in algorithm 1.

In the iterated version of IBMOLS (algorithm 2), a Pareto set approximation
PO is maintained and updated. After each local search, a new initial population
is created for the next IBMOLS execution, using the initWalk function.

Note that IBMOLS is defined only by two main parameters (the population
size N , the binary indicator I) and the function initWalk which initializes the
population. These parameters can be tuned dynamically during the search or
fixed according to the problem instance under consideration.

The population size of IBMOLS is fixed and does not depend upon the
problem, objective functions or space dimension being considered. Basseur et al.
(2012) have shown on three different problems (a Flow-Shop problem, a Ring
Star problem and a Nurse Scheduling problem) that IBMOLS performs well
especially when using a small population (not more than 15 individuals). Based
on this conclusion, we have used populations of 10 solutions in our experiments.

The choice of an appropriate quality indicator, according to the considered
problem, is primordial to obtain a good approximation of the Pareto front. In
(Basseur et al., 2012), the efficiency of two binary indicators (Iǫ and IHV ) was
compared against IBen, IFon and ISri, which are derived from classical ranking
methods based on the Pareto dominance relation. It is concluded that, for
the bi-objective case, the Iǫ and IHV indicators tend to outperform the Pareto
dominance based indicators, especially when the problem size increases, Iǫ being
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Algorithm 1 The IBMOLS algorithm

Input: P (initial population of size N); I (binary indicator)
Output: E (Pareto approximation set)
Step 1: E ←− nondominatedSolutions(P )
Step 2 - fitness assignment: Calculate fitness values of individual x in P ,
i.e., fit(x) = I(P\{x}, x)
Step 3 - local search step: For all x ∈ P do:
update, for each objective function fj , the minimal mj and maximal Mj

values in P (for objective functions normalisation)
repeat
1) x∗ ←− one unexplored neighbor of x
2) P ←− P ∪ x∗

3) compute x∗ fitness: I(P\{x∗}, x∗)
4) update all z ∈ P fitness values: fit(z)+ = I(x∗, z)
5) w ←− the worst individual in P

6) remove w from P

7) update all z ∈ P fitness values: fit(z)− = I(w, z)
until all neighbors are explored or w 6= x∗

Step 4 - termination: E ←− nondominatedSolutions(E ∪ P ). If E does
not change, then return E; else perform another local search step.

Algorithm 2 Iterated IBMOLS algorithm

Input: N (population size) ; I (binary indicator)
Output: PO (Pareto approximation set)
Step 1: PO ←− ∅

Step 2: while stopping condition not achieved do
1) P ←− initWalk(PO,N)
2) E ←− IBMOLS(P, I)
3) PO ←− nondominatedSolutions(PO ∪ E)

Step 3: Return PO
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globally more efficient. In (Basseur et al., 2012), HBMOLS has been proposed
as a modified version of IBMOLS. HBMOLS uses the hypervolume contribution
unary indicator IHC to define the selection process of a HBMOLS-based iterated
local search. Experiments showed the superiority of HBMOLS over different
IBMOLS versions. Nevertheless, it is known that IHC is very expensive to
compute when the number of objectives is more than 2. On the other hand,
we have noted in (Chabane et al., 2015) that with Iǫ the diversity is reduced.
Moreover, it is reported in (Wessing and Naujoks, 2010) that the hypervolume
and R2 indicators show a correlated behavior, in practice. For these reasons, in
the experiments presented is this paper, we have used, in addition to Iǫ, the R2
indicator.

Even if the initial population is entirely created randomly for the first itera-
tion, when we iterate the local search process, the initWalk function generates a
new population P for the next iteration using information about good solutions
obtained during the previous iterations. Indeed, the initWalk function applies
random mutations on N randomly selected solutions of PO (each solution of
PO can only be selected at most once). To each selected solution, the mutation
is applied with a probability of 1/n (where n is the number of actions) and the
mutated solution is added to the population if it is not present in the popu-
lation and if it additionally verifies the budget constraint β and the objective
thresholds. When |PO| < N , all solutions of PO are selected and the missing
individuals of P are filled with new random solutions.

5. Experimental setup

In this and next sections, we present a set of experiments aiming to allow a
comparison of the results obtained with R2-IBMOLS, ǫ-IBMOLS and NSGA-
II (Deb et al., 2002) applied to the action plan optimization problem. Before
discussing the experiment protocol and providing the results (Section 6), we
first explain how the test instances were generated.

5.1. Instances generation

Based on the action plan optimization model given in section 2.2 and a study
of ten real action plans, we have generated several partially structured instances
with different actions, n ∈ {50, 100, 150, 250, 500} and different number of
objectives, m = 2, 3, 4, 5, 6, 8. To be as close as possible with respect to the
real action plans, for each objective function, an action has a chance of 50% to
be neutral, 40% to have a positive impact and 10% to have a negative impact.
Moreover, the cost of 40% of the actions is set to zero. The non-null action values
are uniformly taken from the interval [0,100] (positively or negatively). The non-
null action costs are uniformly taken in the interval [−104, 104]. The instances
used in our experiments are available at: http://www.info.univ-angers.fr/
pub/hao/gepiplanning/R2-IBMOLS.zip.
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5.2. Experimental protocol

Using the instances above, we have tested R2-IBMOLS, ǫ-IBMOLS and
NSGA-II with the commonly used parameters in the literature. For NSGA-
II, we have used a population of size 100, a mutation probability of 1/n (where
n is the number of the actions). For ǫ-IBMOLS and R2-IBMOLS we have used
the iterative version with a population of size 10. For a current population P ,
a reference point z∗ and a set of weight vectors Λ, the fitness of each solution x

in P is evaluated, with respect to the rest of the population, using the formula
12 for ǫ-IBMOLS and the formula 13 for R2-IBMOLS.

Iǫ(P\{x}, x) = minz∈P\{x}(Iǫ(z, x)) (12)

IR2(x,Λ, z
∗) = IR2(P,Λ, z

∗)− IR2(P\{x},Λ, z
∗) (13)

R2-IBMOLS is used with the reference point z∗ = (2, 2, ..., 2) and 100 weight
vectors (|Λ| = 100), uniformly distributed in the objective space. To generate
these vectors, we have used algorithm (3), initially proposed by Suzuki and
Phan (Phan and Suzuki, 2013).

This algorithm uses the hypervolume indicator to produce weight vectors so
that they uniformly disperse and maximize their hypervolume in the objective
space. This method is interesting because it does not depend on the dimension
of the objective space and works in the same way for low-dimensional and high-
dimensional spaces. This method can, however, be time consuming if the weight
vectors are generated at each iteration. In our experiments, the weight vectors
are generated once and remain the same throughout each experiment.

For the three algorithms (R2-IBMOLS, ǫ-IBMOLS and NSGA-II), the initial
population is generated randomly while satisfying the following constraints: i)
the costs of the individuals do not exceed the budget β; ii) each individual x
should improve all the objectives (fj(x) > 0 ∀j ∈ {1, ...,m}). Algorithm 4 shows
the initial population generation procedure.

Also, a bounded population size is used and the following selection strategy is
adopted: one random neighbor of each individual of the current population is se-
lected to be a member of the child population in NSGA-II or to integrate the cur-
rent population of IBMOLS. The neighborhood generation remains unchanged
for the three methods: the ith neighbor of the solution x = (a1, a2, ..., an) is
obtained by flipping the value of ai and only the neighbors verifying the con-
straint β and the objective thresholds are considered as candidate (when the
cost of the neighbor is greater than β, another neighbor is generated). For all
instances, the budget constraint β is fixed to one million and the thresholds are
fixed to 1 (tj ≥ 1 ∀j ∈ {1, ...,m}).

For the quality assessment, we have performed 30 runs of each method on
each instance. The stopping condition for each run corresponds to 200 ∗ n ∗m
evaluated solutions (where n is the number of actions and m is the number of
objectives). The experiments are realized on an Intel core i5-2400 CPU machine
with 2 x 3.10Ghz and 16Gb of RAM.

16



Algorithm 3 Generation of weight vectors

Input: tmax, the maximum number of iterations
Input: l, the number of weight vectors to be generated
Input: m, the number of objectives
Output: Λ, the set of weight vectors generated
t = 0
Λ = ∅
while t < tmax do
Randomly choose a vector σ in [0, 1]m−1 : σ = (σ1, σ2, ..., σm−1)
Sort σj in σ ascending order, such that σ1 ≤ σ2 ≤ ... ≤ σm−1

Create a vector λ = (λ1, λ2, ..., λm−1, λm) = (σ1, σ2 − σ1, ..., σm−1 −
σm−2, 1− σm−1)
Λ = Λ ∪ {λ}
if |Λ| > l then
Calculate hypervolume contribution of each λ in Λ:
IHC(λ) = HV (Λ)−HV (Λ \ {λ})
λ∗ = argminλ∈ΛIHC(λ)
Λ = Λ \ {λ∗}

end if
t = t+ 1

end while

Algorithm 4 Initial population generation

Input: N (population size) ; β (budget)
Output: P (initial population)
P = ∅

while |P | < N do
x = randomSolution()
while cost(x) > β do
x = x less one random action with positive cost

end while
for each objective function fj do

while fj(x) ≤ 0 do
x = x less one random action with negative value for fj

end while
end for
P = P ∪ {x}

end while
Return P
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For the statistical analysis, we have used the performance assessment package
PISA, described in (Knowles et al., 2005). We have performed a pair-wise com-
parison of the algorithms for each instance using the Mann-Whitney test and ap-
plied the Bonferroni correction to adjust the individual significance levels. Under
the Bonferroni correction, in order to achieve a significant level of l, the pair-wise
tests should be performed with a significant level of l

h
, where h is the number

of the pair-wise comparison, which is three in this study. Using the R and the
Epsilon indicators, we obtain the p–value corresponding to the hypothesis “the
first algorithm performs better than the second one”. This corresponds to the
lowest significance level for which the null-hypothesis is rejected. In our experi-
ments, we say that algorithm A1 outperforms algorithm A2 if the Mann-Whitney
test provides the conclusion “A1 performs better than A2”with a confidence level
greater than 95% (p–value ≤ 0.05), resulting in an individual significance level
of 0.0167, after applying the Bonferroni correction. The test procedure and
the performance assessment package PISA are available at the following URL:
http://www.tik.ee.ethz.ch/sop/pisa/?page=assessment.php.

6. Computational results

In this section, we present the experimental results obtained on the simulated
data with the experimental protocol described previously.

In the practical case, it is recommended to present a reduced number of high-
quality solutions to the decision maker. Indeed, one solution could have several
tens of actions and the decision maker should be able to choose the most ade-
quate action plan easily. Table 2 reports the average number of nondominated
solutions obtained with each algorithm over 30 runs. We note that the number
of obtained solutions is highly variable for the three algorithms, ranging from
several tens of solutions for small size instances to several thousands of solutions
for large size instances. Even for the smallest instance (“2 50”), the number of
solutions may be high so that the decision maker cannot make the choice easily
(32 solutions for R2-IBMOLS, 47 solutions for ǫ-IBMOLS and 2,150 solutions for
NSGA-II). Hence it would be interesting to integrate decision maker preferences
in the optimization process to direct the research process towards a specified
region of the objective space to obtain just the most interesting solutions for the
decision maker (Ruiz et al., 2015). Preference elicitation methods (Chen and
Pu, 2004), especially those based on weight elicitation strategies (Benabbou and
Perny, 2015), could be a good mean to this end.

Table 1 reports the comparison between NSGA-II, ǫ-IBMOLS and R2-IBM-
OLS in terms of mean values obtained for the R and ǫ indicators over 30 runs,
using the set of 30 instances of different sizes. The first column presents the
instance name, indicating its main characteristics: m and n respectively corre-
spond to the number of objectives and the number of actions considered. The
values in bold mean that the corresponding algorithm is at least 95% statisti-
cally better than the two others for the considered instance and indicator. The
underlined values mean that the correspond algorithm is at least 95% statisti-
cally better than the algorithm corresponding to the values in normal style, but

18



Table 1: Comparison of mean values of the ǫ and R indicators for NSGA-II, ǫ-IBMOLS and
R2-IBMOLS.

Instance
Assessment with ǫ indicator Assessment with R indicator

NSGA-II ǫ-IBMOLS R2-IBMOLS NSGA-II ǫ-IBMOLS R2-IBMOLS

2 50 0.323 0.567 0.144 0.118 0.310 0.027

2 100 0.314 0.549 0.105 0.132 0.303 0.018

2 150 0.346 0.577 0.124 0.144 0.279 0.023

2 250 0.335 0.524 0.126 0.144 0.279 0.028

2 500 0.325 0.619 0.116 0.149 0.334 0.030

3 50 0.296 0.425 0.171 0.068 0.080 0.022

3 100 0.315 0.433 0.175 0.085 0.117 0.026

3 150 0.365 0.413 0.181 0.090 0.139 0.030

3 250 0.432 0.376 0.118 0.145 0.074 0.021

3 500 0.532 0.261 0.155 0.148 0.075 0.032

4 50 0.261 0.350 0.174 0.044 0.059 0.016

4 100 0.466 0.192 0.086 0.083 0.034 0.009

4 150 0.497 0.248 0.191 0.080 0.050 0.026

4 250 0.408 0.118 0.086 0.035 0.021 0.009

4 500 0.571 0.122 0.111 0.108 0.021 0.014

5 50 0.227 0.366 0.135 0.032 0.042 0.011

5 100 0.399 0.208 0.169 0.052 0.030 0.014

5 150 0.446 0.191 0.129 0.068 0.028 0.012

5 250 0.505 0.089 0.039 0.096 0.011 0.003

5 500 0.381 0.068 0.032 0.074 0.009 0.003

6 50 0.232 0.348 0.167 0.031 0.052 0.014

6 100 0.486 0.144 0.092 0.057 0.012 0.004

6 150 0.510 0.127 0.079 0.084 0.013 0.004

6 250 0.514 0.091 0.054 0.057 0.009 0.003

6 500 0.556 0.153 0.065 0.089 0.015 0.006

8 50 0.158 0.286 0.122 0.013 0.015 0.005

8 100 0.227 0.105 0.084 0.008 0.006 0.002

8 150 0.246 0.077 0.062 0.005 0.004 0.001

8 250 0.271 0.05 0.041 0.004 0.003 0.001

8 500 0.436 0.225 0.076 0.073 0.021 0.009

it is worst than the algorithm corresponding to the values in bold style, for the
considered instance and indicator.

From Table 1, we can conclude that R2-IBMOLS is quite efficient on all the
instances. NSGA-II is better than ǫ-IBMOLS on the small instances (all the
instances with 2 objectives, all the instances with 50 actions and the instances
3 100 and 3 150). Meanwhile, ǫ-IBMOLS performs better than NSGA-II as
soon as the number of objectives exceeds 4.
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Table 2: Average number of nondominated solutions generated by NSGA-II, ǫ-IBMOLS and
R2-IBMOLS over 30 runs.

Instance NSGA-II ǫ-IBMOLS R2-IBMOLS

2 50 2,150 47 32

2 100 1,529 66 48

2 150 1,450 66 67

2 250 1,300 86 89

2 500 1,279 119 135

3 50 2,528 210 333

3 100 2,564 270 629

3 150 3,061 335 845

3 250 3,947 495 1,696

3 500 5,165 703 2,856

4 50 585 87 358

4 100 1,009 164 671

4 150 1,131 235 905

4 250 1,143 305 2,348

4 500 1,769 663 3,558

5 50 1,148 215 522

5 100 1,979 426 1,447

5 150 2,114 502 1,949

5 250 3,046 598 3,266

5 500 4,243 1,058 9,501

6 50 1,542 341 651

6 100 2,828 697 2,097

6 150 3,952 908 3,725

6 250 5,075 1,210 7,727

6 500 7,687 2,492 18,900

8 50 3,991 965 3,989

8 100 7,988 2,151 4,918

8 150 11,989 3,080 5,317

8 250 19,991 4,919 19,176

8 500 39,996 9,325 45,419

For the action plan optimization problem studied in this work, the algorithm
run time is not necessarily a main aspect for evaluating its effectiveness, since
the project is done once every 5 years. Nevertheless, we note, from our experi-
ments, that even if R2-IBMOLS is more efficient than NSGA-II and ǫ-IBMOLS
(see Table 1), its run time should be reduced, especially for the large size in-
stances where the run time of R2-IBMOLS is high. The run times obtained
for some large size instances are (in seconds): 12,193.796 for the instance 3 500,
20,392.545 for the instance 4 500, 152,636.384 for the instance 5 500, 29,026.848
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Figure 4: Maximum values obtained with NSGA-II, ǫ-IBMOLS and R2-IBMOLS over 30
runs, for objectives of four instances with 50 or 500 actions and 5 or 6 objectives: “6 500”(top
left), “6 50”(top right), “5 500”(bottom left) and “5 50”(bottom right.)

for the instance 6 250 and 690,734.872 for the instance 6 500. Indeed, for all
the instances with more than 2 objectives, the average run time of R2-IBMOLS
is significantly higher than the one of ǫ-IBMOLS and NSGA-II. The run time
of R2-IBMOLS essentially depends on the number of weight vectors being con-
sidered. It could be reduced by exploiting the following property of the R2
indicator: the optimal placement of solutions in the objective space only de-
pends on a subset of the weight vectors (vectors around each solution).

Figure 4 reports the maximum values obtained on each objective function,
with NSGA-II, ǫ-IBMOLS and R2-IBMOLS over 30 runs, on four representative
instances of the action problem considered here (instances with 5 and 6 objec-
tives). Indeed, in real-world instances the number of actions can vary from 50
actions to more than 500 actions and the number of objectives in our practical
case can be greater than four. It is clear, from figure 4, that R2-IBMOLS attains
more likely extreme solutions for each objective function than NSGA-II and ǫ-
IBMOLS: on the four considered instances, the maximum values obtained for all
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the objectives with R2-IBMOLS are higher than those obtained with NSGA-II
and ǫ-IBMOLS except the objective f2 of the instance “5 50”(bottom right) and
the objective f4 of the instance “6 50”(top right).

7. Practical impact on action plan elaboration

As indicated in Section 2.1, this work is part of the “MSQualité”software
developed by the Company GePI for social and medico-social sector. As one
key component of “MSQualité”, the solution presented in this work provides
valuable assistance to managers on the following aspects.

• Each structure manager can be aware of the actions already implemented
in other structures and especially those actions leading to quality improve-
ment of the structures. This information helps the manager to make better
decisions concerning the actions to be taken in his own structure.

• To evaluate the real impact of the performed actions on the objectives,
managers often use indicators that could be numerous and varied, depend-
ing on the nature of the actions. However, having a common platform in
“MSQualité”allows each manager to exploit and benefit from indicator
grids built by other structures to assess his own action plan.

• As mentioned in Section 2.1, one difficult task faced by managers is the
choice of the most appropriate actions to implement. With the method
proposed in this work, this task becomes easier since the manager has
just to define the objectives of his project, and “MSQualité”will suggest
actions whose positive impacts have already been proven in the past in
at least one structure. In real action plans, about 60% to 80% of actions
could be proposed by “MSQualité”.

• With the proposed method, we estimate that, for an equal budget, man-
agers could elaborate action plans which are 40% to 50% more efficient
than those elaborated manually. Indeed, 40% to 50% of actions of real ac-
tion plans are usually implemented without knowing beforehand whether
the actions will be efficient or not, or to which extend they will be efficient.
With the proposed method, those actions could be replaced by actions
whose positive impacts are already known, since when a given action has
already been implemented and evaluated in any structure, the results of
that evaluation are accessible to all the managers. Hence, managers will
be able to elaborate more efficient action plans.

8. Conclusion and perspectives

In this paper, we have studied an action plan optimization problem en-
countered in the fast evolving social and medico-social sector. The targeted
application requires identification of a set of efficient actions among many can-
didate actions within a given social and medico-social structure while satisfying
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some imperative constraints and optimizing a number of objectives. To tackle
this problem, we have proposed a mathematical formulation of this application
based on the multiobjective knapsack problem. As our solution method, we
have adapted the IBMOLS approach with the ǫ and R2 indicators. We have
assessed the proposed approach on simulated data with 50-500 actions and 2-
8 objectives and performed comparative studies between IBMOLS (ǫ-IBMOLS
and R2-IBMOLS) and the popular NSGA-II algorithm.

Based on this work, we can make two main conclusions. First, the adopted
IBMOLS approach with the ǫ and R2 indicators proves to be a viable method
to find high-quality compromise solutions for the action plan optimization prob-
lem in social and medico-social structures. As such, its integration within the
decision support system “MSQualité”constitutes a valuable means which helps
managers to elaborate more effectively efficient action plans to continually im-
prove the quality of their structures. Second, thanks to the shared platform
offered by “MSQualité”, managers of different structures can collaborate with
each other and benefit mutually from the experience of all structures.

This work also opens the way for future research. First, in this work, op-
timization is performed independently of decision maker preferences. However,
the R2 indicator offers some properties to do that. Indeed, we can use the posi-
tion of the reference point and the weight vector direction of the R2 indicator to
shrink the search space and orientate the search process towards regions of inter-
est of the decision maker in the objective space. This would also help to reduce
the number of generated solutions and thus ease manager’s decision making.
Second, in our experiments, we have noticed that R2-IBMOLS whose run time
depends on the number of the used weight vectors is more time consuming than
ǫ-IBMOLS and NSGA-II on the large instances. This problem can be alleviated
by considering the fact that the optimal placement of solutions according to
the R2 indicator depends only on a subset of the weight vectors. Finally, this
work has shown that the proposed approach works well for our studied problem
whose objectives are limited to 8. An interesting work would be to investigate
IBMOLS on problems with more objectives and higher complexity and compare
its performance with other competitive multiobjective approaches such as HypE
(Bader and Zitzler, 2011) and MOEA/D (Zhang and Li, 2007). Meanwhile, no-
tice also that in the proposed approach, the adopted optimization algorithm
(IBMOLS) can be substituted by other algorithms.

To conclude, this study shows that computerized decision support systems
have much to offer in the fast evolving social and medico-social sector and
can effectively help decision makers to identify suitable choices to continually
improve the overall quality of their structures.
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diversifient. Repères et Analyses, 44.

Trautmann, H., Wagner, T., and Brockho. D. (2013). R2-EMOA: Focused
multiobjective search using r2-indicator-based selection. In 7th Interna-
tional Learning and Intelligent Optimization Conference (LION), pp. 70–74.
Springer.

Vianna, D.S, and Vianna, M.D. (2013). Local search-based heuristics for the
multiobjective multidimensional knapsack problem. Production, 23(3), 478–
487.
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