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January 4, 2017

Abstract

We consider nonlinear transport equations with non-local velocity, describing the time-evolution of a
measure, which in practice may represent the density of a crowd. Such equations often appear by taking
the mean-field limit of finite-dimensional systems modelling collective dynamics. We first give a sense to
dissipativity of these mean-field equations in terms of Lie derivatives of a Lyapunov function depending
on the measure.

Then, we address the problem of controlling such equations by means of a time-varying bounded
control action localized on a time-varying control subset with bounded Lebesgue measure (sparsity space
constraint). Finite-dimensional versions are given by control-affine systems, which can be stabilized by
the well known Jurdjevic–Quinn procedure.

In this paper, assuming that the uncontrolled dynamics are dissipative, we develop an approach in the
spirit of the classical Jurdjevic–Quinn theorem, showing how to steer the system to an invariant sublevel
of the Lyapunov function. The control function and the control domain are designed in terms of the Lie
derivatives of the Lyapunov function, and enjoy sparsity properties in the sense that the control support
is small.

Finally, we show that our result applies to a large class of kinetic equations modelling multi-agent
dynamics.

1 Introduction and main result

1.1 The context

In recent years, the study of collective behavior of a crowd of autonomous agents has drawn a great interest
from scientific communities, e.g., in civil engineering (for evacuation problems [16, 26]), robotics (coordination
of robots [9, 24, 29, 33]), computer science and sociology (social networks [25]), and biology (animals groups
[5, 14, 20]). In particular, it is well known that some simple rules of interaction between agents can promote
formation of special patterns, like lines in ants formations and migrating lobsters, or V-shaped formation in
migrating birds. This phenomenon is often referred to as self-organization.

Beside the problem of analyzing the collective behavior of a “closed” system [15], it is interesting to
understand what changes of behavior can be induced by an external agent (e.g., a policy maker) to the
crowd. For example, one can try to enforce creation of patterns when they are not formed naturally, or
break the formation of such patterns [11, 12, 19, 32, 27]. This is the problem of control of crowds, that we
address in this article in a specific case.

From the mathematical point of view, problems related to models of crowds are of great interest. From
the analysis point of view, one needs to pass from a big set of simple rules for each individual to a model
capable of capturing the dynamics of the whole crowd. This can be solved via the so-called mean-field
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process, that permits to consider the limit of a set of ordinary differential equations (one for each agent) to
a partial differential equation (PDE in the following) for the whole crowd [32]. The resulting equation is a
transport equation with non-local velocity, of the form

∂tµ+∇ · (f [µ]µ) = 0, (1)

where µ is the measure representing the density of agents, ∇· is the divergence operator and f [µ] is a vector
field depending on the measure, taking into account interactions between agents. Many kinetic equations are
of this form. We recall fundamental properties of such classes of equations in Section 2. We just highlight
here that we assume in the following that f [µ] is a bounded Lipschitz vector field for any µ, Lipschitz
with respect to the Wasserstein distance Wp, p ∈ [1,+∞), as a function of µ. This ensures existence and
uniqueness of the solution of the associated Cauchy problem [3, 31]. Since such an equation generates a
semigroup, we will use the notation etfµ0 to denote the unique solution of (1) at time t with initial data µ0.
We recall existence results for (1) in Section 2.

1.2 Control of transport equations with non-local velocity

To control systems described by (1), we assume to act only on a small part of the crowd. Since agents are
indistinguishable when one only knows µ(t) at time t, controls can only be state-dependent and cannot focus
on specific agents. For this reason, we model the control action by means of a vector field g, and a control
gain u(t, x) localized in a small control set ω(t) (itself depending on time), modeling our choice of the gain
on the vector field. We choose the control gain u and the control set ω, both of them varying in time while
the vector field g is fixed, and it depends on the density µ. The resulting control system is given by

∂tµ+∇ · ((f [µ] + χωug[µ])µ) = 0. (2)

Here, the function χω is the indicator function of ω, defined almost verywhere by χω(x) = 1 if x ∈ ω and
χω(x) = 0 otherwise.

We focus on the following continuous sparse space constraint: we assume to act only on a small portion
of the configuration space, with finite strength. Accordingly, we assume the following constraints. Here,
given a measurable subset ω of Rd, we denote by |ω| its Lebesgue measure.

Control Constraints (U)

Fix c > 0. For each time t ≥ 0, we have:

Sparsity space constraint: |ω(t)| ≤ c, (3)

Finite strength: ‖u(t, ·)‖L∞ ≤ 1. (4)

Control sparsity constraints have been first introduced in [11, 12], for a population with a finite number
of agents. The sparsity space constraint was considered in [32]. In the mean-field approach, this is actually
the most natural sparsity constraint when one wants to use space-dependent vector fields and to act on
“small sets”. A sparsity population constraint was also considered in [32].

For the sparsity space constraint, one can easily deal both with measures that are absolutely continuous
with respect to the Lebesgue measure, and with measures containing singular (Dirac) parts. We denote
by Pc(Rd) the space of probability measures on Rd with compact support and by Pacc (Rd) the subspace of
probability measures on Rd that are absolutely continuous with respect to the Lebesgue measure.

In the following, we will define a control strategy that satisfies the following property: if the initial
data, at time 0, is absolutely continuous with respect to the Lebesgue measure, then it remains absolutely
continuous for any positive time. This does not prevent µ(t) of converging to some Dirac mass as t→ +∞,
as this is the case for consensus problems for crowd models.

In this paper, our objective is to generalize the Jurdjevic–Quinn stabilization method [28] to mean-field
controlled equations, under the sparsity constraint (U) described above. Following the Jurdjevic–Quinn
approach, we assume to have available a Lyapunov function V for which:
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• the uncontrolled dynamics f [µ] gives no increase of V ;

• the control ug[µ] allows one to increase-decrease V , except for some specific configurations of the
population µ in the subset Z of the set of measures with compact support Pc(Rd) defined as the set
on which the Lie derivatives of V vanish (see the precise definition in (8)).

We will then define a sparse control strategy, steering the population exactly to the set Z, in complete
analogy with the standard finite-dimensional Jurdjevic–Quinn method.

The vector fields f and ug defined on the space Rd play the role of derivatives for the function V [µ],
in the following sense: the vector field f induces an infinitesimal change in V that can be estimated as the

derivative limt→0
V [etfµ]−V [µ]

t . This limit needs to be well-defined, and this is why we will assume from now
on the following regularity assumptions on f : for any µ ∈ Pc(Rd), the function t 7→ V [etfµ] is of class C2.
Then, in analogy with the definition of a Lie derivative in finite dimension, we give the following definition.

Definition 1.1. We define the Lie derivative of V along f as the limit

LfV [µ] = lim
t→0

V [etfµ]− V [µ]

t
. (5)

Requiring the non-increase of V along the flow of f is equivalent to require dissipativity for the system.

Definition 1.2. We say that the system (2) is dissipative if there exists a Lyapunov function V : Pc(Rd)→ R
such that t 7→ V [etfµ] is of class C2 and

LfV [µ] ≤ 0 ∀µ ∈ Pc(Rd). (6)

Regularity conditions need to be satisfied as well for the controlled vector field ug. For this reason, we
define the space U of admissible control functions u, and from now on, we assume that U = Lip(Rd,R). In
what follows, we impose the following regularity assumption: for all µ ∈ Pc(Rd) and u ∈ U , the function
t 7→ V [etugµ] is of class C2. As a consequence, the limit

LugV [µ] = lim
t→0

V [etugµ]− V [µ]

t
(7)

is well defined.

Remark 1. Accordingly, the notion of Lie derivative can be extended to piecewise constant functions
t 7→ u(t, ·) ∈ U .

Definition 1.3. Assume that V : Pc(Rd) → R is such that t 7→ V [etfµ] and t 7→ V [etugµ] are of class C2

for all µ ∈ Pc(Rd) and u ∈ U . We define

Z =
{
µ ∈ Pc(Rd) | LfV [µ] = LugV [µ] = 0 ∀u ∈ Lip(Rd,R)

}
. (8)

Note that the definition of Lie derivative implies the multiplicative property

LkfV [µ] = kLfV [µ] and LkugV [µ] = kLugV [µ]. (9)

This continuity condition also implies additivity of Lie derivatives. Indeed, one can easily see that et(u+u′)g =
etug+o(t)etu

′g, which in turn implies that

L(u+u′)gV [µ] = LugV [µ] + Lu′gV [µ].

While conditions (5)-(7) are equivalent to differentiability of V along f and ug, we also need a kind of
differentiability for V along directions of the dynamics. By the additivity property, we can state it as
follows: there exists K > 0 such that, for all µ ∈ Pc(Rd) and u ∈ U , we have

|LugV [µ]| ≤ K‖u‖L1(µ). (10)
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This yields a metric for the space of controls u similar to the zero-order metric in a more general sub-
Riemannian structure for metrics on the space of diffeomorphisms on a manifold [4] (see also [1]). The main
difference here is that we choose the L1 norm weighted with respect to the measure µ(t), and not with
respect to the Lebesgue measure.

While conditions (5)-(7)-(10) hold for a fixed µ ∈ Pc(Rd), we also require the continuity of the Lie
derivatives of first and second order. We require that

lim
i→+∞

LfV [µi] = LfV [µ], lim
i→+∞

L2
fV [µi] = L2

fV [µ],

lim
i→+∞

LugV [µi] = LugV [µ], lim
i→+∞

L2
ugV [µi] = L2

ugV [µ],

lim
i→+∞

LfLugV [µi] = LfLugV [µ],

(11)

for all µi and µ ∈ Pc(Rd), with µi ⇀ µ (weak convergence of measures), i.e., limi→+∞
∫
φdµi =

∫
φdµ

for every φ ∈ C0
c (Rd,R). The conditions (11) imply in particular that Lf+ugV [µ] exists and satisfies

Lf+ugV [µ] = LfV [µ] + LugV [µ], i.e., that additivity holds also for the vector field f + ug.

Remark 2. Clearly, the choice of the set of admissible controls U has an impact on the set of admissible
functionals V for which (7)-(10)-(11) are satisfied. We choose here the set of Lipschitz functions because
existence is then ensured for (2) (see [3, 31]).

Note that reducing the space of admissible controls to some proper subset of Lip(Rd,R) (such as
C∞c (Rd,R)) may enlarge the set of functionals V for which the regularity conditions (5)-(7)-(10)-(11) are
satisfied. In Section 3, we will enforce the decrease of the functional V by a steepest descent method on the
space U , by (approximately) solving an optimization problem in the space of Lipschitz functions.

Following the classical Lyapunov theory for finite-dimensional systems, we need to impose some conditions
ensuring compactness of trajectories. In finite dimension, this is often imposed by requiring V to be proper,
i.e., lim|x|→+∞ V (x) = +∞, hence the fact that d

dtV (x(t)) ≤ 0 implies compactness. In the present mean-
field setting, instead, such a condition cannot be imposed by a simple evaluation of the function V : in
the case where V is the variance of the measure, one can have measures µ with arbitrarily small variance
and arbitrarily large support. For this reason, we impose compactness of trajectories by assuming that the
dynamics of the system, i.e., the vector fields f and g, have a compact support. More precisely, we assume
the existence of a ball B(0, R) such that

for all µ ∈ Pc(B(0, R)), f [µ](x) = g[µ](x) = 0 ∀x 6∈ B(0, R). (12)

Note that this condition implies that µ(t) ∈ Pc(B(0, R)) for any t ≥ 0. Then, all assumptions described
above will be assumed to hold for measures in Pc(B(0, R)) only.

Remark 3. The results of this paper can be stated for transport equations with non-local terms (2) defined
on bounded manifolds without boundary, or on bounded manifold with no-flux boundary condition.

Summing up, we make the following assumptions on the system (2) and on the Lyapunov functional V :
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Assumptions (H)

The vector fields f, g : Pc(Rd)→ Lip(Rd,Rd) and the Lyapunov function V : Pc(Rd)→ R satisfy Assump-
tions (H) if:

• there exists R > 0 such that f, g satisfy the compact support property (12);

• there exist L > 0, Q > 0 and p ≥ 1 such that, for all µ, ν ∈ Pc(B(0, R)) and for all x, y ∈ Rd,

|f [µ](x)− f [µ](y)| ≤ L|x− y|, |g[µ](x)− g[µ](y)| ≤ L|x− y|,
|f [µ](x)− f [ν](x)| ≤ QWp(µ, ν), |g[µ](x)− g[ν](x)| ≤ QWp(µ, ν);

(13)

• the functions t 7→ V [etfµ] and t 7→ V [etugµ] are of class C1 for all µ ∈ Pc(B(0, R)) and u ∈ U ; in
particular, the Lie derivatives (5) and (7) exist;

• the uncontrolled system is dissipative, i.e., LfV [µ] ≤ 0 for any µ ∈ Pc(B(0, R));

• the Lie derivative (7) satisfies the Lipschitz condition (10) and the continuity condition (11) for any
µ ∈ Pc(B(0, R)).

Remark 4. The uniform Lipschitz property of f and g in (13) and the uniform compactness of their support
in (12) imply that there exists M > 0 such that ‖f [µ]‖L∞ ≤M and ‖g[µ]‖L∞ ≤M for any µ ∈ Pc(B(0, R)).
These facts imply existence and uniqueness of the solution of the Cauchy problem for (2) (see, e.g., [3, 31]).
We recall existence results in Section 2.

1.3 The main result

The main idea of our control strategy is to choose the controller to make V decrease along trajectories. We
will do this choice with a steepest descent method, similarly to the finite-dimensional approach described in
[11, 12, 13].

Since the space of admissible controls χωug[µ] is infinite dimensional, we restrict ourselves to a finite-
dimensional set by imposing the following structure. Consider the class of Lipschitz mollified indicator
functions χη[a,b] : R→ R, defined by

χη[a,b](x) =


1 for x ∈ [a, b],

0 for x 6∈ [a− η, b+ η],
x−a+η

η for x ∈ [a− η, a];
−x+b+η

η for x ∈ [b, b+ η],

and then, consider the d-dimensional version of such functions. Given a = (a1, . . . , ad), b = (b1, . . . , bd) and
x = (x1, . . . , xd) in Rd, we define

χη[a,b](x) = min
i=1,...,d

χη[ai,bi](x
i). (14)

Now, for any choice of the three parameters (a, b, η), we take ω = ω(a, b, η) as the multi-interval [a1 −
η, b1 + η] × [a2 − η, b2 + η] × . . . × [ad − η, bd + η]. Then we reduce the choice of the sparse control in an
infinite-dimensional space of controls to the choice of three parameters (a, b, η). In what follows, we set

U(a, b, η) = χ[a1−η,b1+η]×[a2−η,b2+η]×···×[ad−η,bd+η]χ
η
[a,b]. (15)

We then define the “slope function” by

st(a, b, η) = |LU(a,b,η)g[µ(t)]V [µ(t)]|,
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which describes the instantaneous variation of V in µ(t) as a consequence of the action of the control
U(a, b, η). Note that (10) and the fact that the function t 7→ V [etugµ] is of class C1 imply the continuity of
the slope function with respect to its arguments (t, a, b, η).

We then apply a steepest descent method by choosing the control corresponding to one of the maximizers1

(a∗, b∗, η∗) of st in the space

Ωt =
{

(a, b, η) | |ω(a, b, η)| ≤ c and η ≥ t−1
}
. (16)

The condition |ω(a, b, η)| ≤ c in (16) ensures that the space constraint (3) is satisfied. We will see in Lemma 4
that the condition η ≥ t−1 implies that the control function is uniformly Lipschitz for any bounded time
interval [0, θ], thus ensuring that µ(t) remains absolutely continuous with respect to the Lebesgue measure.
At the same time, when t → +∞, this constraint allows to consider controls with an arbitrarily large
Lipschitz constant, since Lip(χη[a,b]) = 1

η . This Lipschitz constraint is somehow unavoidable if one wants

to ensure regularity of the measure µ(t) within finite time; otherwise, the steepest descent method might
either generate a non-Lipschitz vector field (for which existence for (2) holds for small times only) or a time-
varying Lipschitz vector field converging to a non-Lipschitz vector field within finite time (see an example
for a problem of crowd dynamics in Section 3).

Choosing the control as the instantaneous maximizer of st may cause chattering (in time) phenomena,
as it has been already noticed in finite dimension (see [13]). For this reason, we regularize the control by
means of an hysteresis: we introduce a parameter h ∈ (0, 1) and, given the control U(a∗, b∗, η∗), maximizer
of st at time tn, we keep it constant over an interval [tn, tn+δ] along which (st(a

∗, b∗, η∗) ≥ (1−h)st(a, b, η).
Summing up, the combination of a steepest descent method with an hysteresis provides a control making

V decrease and steering the density µ(t) to Z. Our main result is the following.

Theorem 1 (Main Theorem). Let f, g : Pc(Rd) → Lip(Rd,Rd) and V : Pc(Rd) → R satisfy Assumptions
(H) for some R > 0. Consider the controlled transport equation with non-local velocity

∂tµ+∇ ·
(
(f [µ] + χω(t,y)u(t, y)g[µ])µ

)
= 0, µ(0) = µ0, (17)

where µ0 ∈ Pacc (Rd) is such that supp(µ0) ⊂ B(0, R). Fix the hysteresis parameter h ∈ (0, 1). Fix the
following initial parameters n = 0 and t0 = 0. Define the following algorithm step.

1The method to select a maximizer plays no role in the convergence of the method. One may consider for instance the
lexicographic order in R2n+1, and choose the smallest maximizer.
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Step n

At time tn, choose one of the maximizers (a∗, b∗, η∗) of stn(a, b, η) in the set Ωtn defined in (16).
Then, we have two cases:

• If either stn(a∗, b∗, η∗) < t−1
n or Ωtn is empty, then choose the zero control

χω(t)u(t, x) ≡ 0, (18)

(thus, ω(t) needs not be defined) and let the measure µ(t), starting at µ(tn), evolve according to (17)
over the time interval [tn, tn+1], where tn+1 is the smallest time greater than tn for which there exists
(ā, b̄, η̄) ∈ Ω′t such that stn+1(ā, b̄, η̄) ≥ 2t−1

n+1, where

Ω′t =
{

(a, b, η) ∈ Ωt | η ≥ 2t−1
}
. (19)

• If stn(a∗, b∗, η∗) ≥ t−1
n , then choose the control defined by

ω(t) = [a∗1 − η∗, b∗1 + η∗]× [a∗2 − η∗, b∗2 + η∗]× · · · × [a∗d − η∗, b∗d + η∗],

u(t, ·) = −χη
∗

[a∗,b∗]sign(LU(a,b,η)g[µ(t)]V [µ(t)]),
(20)

where U is given in (15), and let the measure µ(t), starting at µ(tn), evolve according to (17) over
the time interval [tn, tn+1], where tn+1 is the smallest time greater than tn satisfying at least one of
the following conditions:

– either stn+1
(a∗, b∗, η∗) ≤ t−1

n+1

2 ;

– or there exists (ā, b̄, η̄) ∈ Ω′tn+1
such that

stn+1
(a∗, b∗, η∗) ≤ (1− h)stn+1

(ā, b̄, η̄). (21)

If tn+1 is finite, then go to Step (n+ 1).
If tn+1 = +∞, then keep the control (18) or (20) over the time interval [tn,+∞).

For this control strategy, the control χωu satisfies the control constraint (U), the unique solution µ(t) of
(17) is such that µ(t) ∈ Pacc (Rd) for any t ∈ [0,+∞), and µ(t) converges to Z ∩ Pc(B(0, R)), i.e.

• limt→+∞ inf
ν∈Z∩Pc(B(0,R))

Wp(µ(t), ν) = 0,

• or equivalently, there exists a choice ν(t) ∈ Z ∩ Pc(B(0, R)) for each t ≥ 0 such that µ(t) ⇀ ν(t), i.e.
for all φ ∈ C∞c (Rd) it holds limt→∞

∫
φd(µ(t)− ν(t)) = 0.

Remark 5. The three threshold time-dependent functions used in the definition of control algorithm in
Theorem 1 satisfy t−1/2 < t−1 < 2t−1. One can easily see that they can be replaced with three positive
functions satisfying φ1(t) < φ2(t) < φ3(t) converging to 0 as t→ +∞. In particular, the functions can take
finite values for t = 0, by maybe allowing one control to be active on the starting interval [0, t1].

The rest of the paper is structured as follows. In Section 2, we recall the main definitions and results for
transport PDEs with non-local velocities as (1) and (2). In Section 3, we discuss some examples of dynamics
of the form (2), and we show explain some differences with respect to the finite dimensional setting. Theorem
1 is proved in Section 4. In Section 5, we study a generalization of the Theorem 1 to a system of the form (2)
with several control potentials. Finally, in Section 6, we present an application of Theorem 1 to the control
of kinetic multi-agent systems.
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2 Transport equations with non-local velocities

In this section, we recall existence and uniqueness results for (1) and (2). In (1), the variable µ ∈ Pc(Rd) is
a probability measure on Rd. The term f [µ] is called the velocity field and it is a non-local term. Since the
value of a measure at a single point is not well defined, it is important to observe that f [µ] is not a function
depending on the value of µ in a given point, as it is often the case in the setting of hyperbolic equations in
which f [µ](x) = f(µ(x)). Instead, one has to consider f as an operator taking an as input the whole measure
µ and giving as an output a global vector field f [µ] on the whole space Rd. These operators are often called
“non-local”, as they consider the density not only at a given point, but in a whole neighbourhood.

We first recall two useful definitions to deal with measures and solutions of (1), namely the Wasserstein
distance and the push-forward of measures (for more details see, e.g., [35]).

Definition 2.1. Given two probability measures µ and ν on Rd and p ∈ [1,+∞), the p-Wasserstein distance
between µ and ν is

Wp(µ, ν) = inf

{∫
R2d

|x− y|p dπ(x, y) | π ∈ Π(µ, ν)

}1/p

,

where Π(µ, ν) is the set of transference plans from µ to ν, i.e., of the probability measures π on Rd×Rd such
that Projx#π = µ and Projy#π = ν with Projx : (x, y) 7→ x and Projy : (x, y) 7→ y.

The topology induced by Wp on the space of probability measures P(X) on a compact space X coincides
with the weak-∗ topology of measures (see [35, Theorem 7.12]). As a consequence of condition (12), each
trajectory µ(t) of the controlled system (2) is contained in the compact space Pc(B(0, R)) (compact if
endowed with the Wasserstein topology). Thus, from now on, we will state equivalently convergence
with respect to the weak-∗ topology of measures and with respect to the Wasserstein distance.
We now define the push-forward of measures.

Definition 2.2. Given a Borel map γ : Rd → Rd, the pushforward of a measure µ ∈ Pc(Rd) is defined by
γ#µ(A) = µ(γ−1(A)) for every measurable subset A of Rd.

We now recall an existence and uniqueness result for (1) (see a complete proof in [32]).

Theorem 2. We assume that, for every µ ∈ Pc(Rd), the velocity field f [µ] is a function of (t, x) with the
regularity

f [·] : P(Rd) −→ Lip(Rd) ∩ L∞(Rd)
µ 7−→ f [µ]

satisfying the following assumptions:

• there exist functions L(·) and M(·) in L∞loc(R) such that

‖f [µ](t, x)− f [µ](t, y)‖ ≤ L(t)‖x− y‖, ‖f [µ](t, x)‖ ≤M(t)(1 + ‖x‖),

for every µ ∈ Pc(Rd), every t ∈ R and all (x, y) ∈ Rd × Rd;

• for a given p ∈ [1,+∞), there exists a function K(·) in L∞loc(R) such that

‖f [µ]− f [ν]‖L∞(R;C0(Rd)) ≤ K(t)Wp(µ, ν),

for all (µ, ν) ∈ (Pc(Rd))2.

Then, for every µ0 ∈ Pc(Rd), the Cauchy problem

∂tµ+∇ · (f [µ]µ) = 0, µ|t=0
= µ0, (22)

has a unique solution µ(·) ∈ C0(R;Pc(Rd)), where Pc(Rd) is endowed with the weak-∗ topology of measures.
Moreover, t 7→ µ(t) is Lipschitz in the sense of the Wasserstein distance Wp. Moreover, if µ0 ∈ Pacc (Rd),
then µ(t) ∈ Pacc (Rd) for every t ∈ R.
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Furthermore, for every T > 0, there exists CT > 0 such that

Wp(µ(t), ν(t)) ≤ eCT tWp(µ(0), ν(0)), (23)

for all solutions µ and ν of (22) in C0([0, T ];Pc(Rd)).
Finally, the solution µ of the Cauchy problem (22) can be made explicit as follows. Let Φ(t) be the flow

of diffeomorphims of Rd generated by the time-dependent vector field f [µ], defined as the unique solution of
the Cauchy problem Φ̇(t) = f [µ(t)] ◦ Φ(t), Φ(0) = IdRd , or in other words,

∂tΦ(t, x) = f [µ(t)](t,Φ(t, x)), Φ(0, x) = x.

Then, we have
µ(t) = Φ(t)#µ0,

that is, µ(t) is the push-forward of µ0 under Φ(t).

Theorem 2 can be generalized to mass-varying transport PDEs, that is, in presence of sources (see [30]).
We now observe that Theorem 2 can be applied to (2) as well, under Assumptions (H) and provided that
the control u be a Lipschitz function of the space variable for all times.

Corollary 1. Under Assumptions (H), if u is a uniformly Lipschitz function of x on the time interval [0, θ],
satisfying the constraint (U), then, given any initial data µ(0) = µ0 ∈ Pc(B(0, R)), the equation (2) has a
unique solution µ(·) ∈ C0([0, θ],Pc(B(0, R))). Moreover, if µ0 ∈ Pacc (B(0, R)), then µ(t) ∈ Pacc (B(0, R)) for
every t ∈ [0, θ]. Denoting by Ψ the flow of diffeomorphims of Rd generated by the time-dependent vector field
f [µ] + u(t, x)g[µ], we have µ(t) = Ψ(t)#µ0.

Proof. It suffices to check that Theorem 2 can be applied to the vector field f [µ] + u(t, x)g[µ]. As already
stated, the existence of a uniform bound M for ‖f+ug‖L∞ is a consequence of the uniform Lipschitz property
and of the uniform boundedness of the support of both f [µ] and g[µ], together with the bound ‖u‖L∞ ≤ 1
imposed by (U) in (4). Similarly, we have a uniform bound on the Lipschitz constant Lip(f + ug). Indeed,
by (3),

Lip(f [µ(t)] + ug[µ(t)]) ≤ L+ Lipx(u)‖g[µ(t)]‖L∞ + ‖u‖L∞Lip(g[µ(t)])

≤ 2L+ Lipx(u)M. (24)

Finally, we have

‖f [µ] + ug[µ]− f [ν] + ug[ν]‖L∞ ≤ ‖f [µ]− f [ν]‖L∞ + ‖u‖L∞‖g[µ]− g[ν]‖L∞
≤Wp(µ, ν) + 1 ·QWp(µ, ν)

= 2QWp(µ, ν).

This proves the corollary.

We end this section with an estimate of the L∞ norm of the solution µ(t) to (1), when it is absolutely
continuous with respect to the Lebesgue measure.

Proposition 1. Let µ(·) be the unique solution of (1) for a given Lipschitz vector field f with µ0 ∈ Pacc (Rd).
Then

d

dt
‖µ(t)‖L∞ ≤ ‖µ(t)‖L∞‖∇ · f‖L∞ . (25)

Proof. The proof follows [22, Proposition 3.1]. Let ρ(t) be the density of µ(t) with respect to the Lebesgue
measure. For each p ∈ [1,+∞), by dropping the dependence with respect to time, we write

d

dt

∫
ρp dx = −p

∫
ρp−1∇ · (fρ) dx = −p

∫ (
ρp∇ · f + ρp−1〈f,∇ρ〉

)
dx.

Since ∇ · (fρp) = ρp∇ · f + 〈f,∇(ρp)〉 = ρp∇ · f + pρp−1〈f,∇ρ〉, we infer that

d

dt

∫
ρp dx = −

∫
(p− 1)ρp∇ · f dx−

∫
∇ · (fρp) dx.

The last term is zero as a consequence of the divergence theorem. Then d
dt‖ρ‖

p
Lp ≤ (p− 1)‖ρ‖pLp‖∇ · f‖L∞ ,

which in turn implies (25) as p→ +∞.
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3 Steepest descent under population constraint induces mass con-
centration

In this section, we discuss a remarkable phenomenon for controlled equations of the form (2): starting from
a measure µ0 ∈ Pacc (Rd), i.e., a measure that is absolutely continuous with respect to the Lebesgue measure
in Rd, a time-dependent choice of the control might drive the measure outside Pacc (Rd) in finite time, in
particular with emergence of Dirac deltas. In fact, we will show that such a phenomenon arises when trying
to minimize a Lyapunov function V , in particular when one chooses the control u(t) as the instantaneous
minimizer of the Lie derivative of V as time evolves. This example also shows that some key ideas coming
from control of finite-dimensional systems cannot be extended straightforwardly to infinite dimension.

In this section, we discuss the interest and the drawbacks of a control constraint different than (U),
namely the following:

Alternative control Constraints (U’)

Fix c > 0. For each time t ≥ 0 it holds:

Sparsity population constraint:

∫
ω(t)

dµ(t) ≤ c, (26)

Finite strength: ‖u(t, .)‖L∞ ≤ 1. (27)

The population constraint represents the idea of acting on a small part of the crowd itself, and not on a
small part of the configuration space, as we require in the space constraint in (U). Even though the sparse
population constraint is interesting from the theoretical point of view, it has a surprising drawback on the
modeling point of view: when a crowd is extremely concentrated, the constraint (U’) implies that the control
cannot act on the crowd anymore. This is somehow unnatural, since a crowd that is already concentrated
is the best configuration to steer. On the other hand, the space constraint (U) permits to act on the whole
crowd, when it is concentrated in a set of size c, i.e., exactly when it is concentrated.

We now show that the population constraint also induces some formal mathematical problems when
using a sparse Jurdjevic–Quinn approach. Consider the following system on the real line:

∂tµ+ ∂x(uµ) = 0. (28)

This is a particular case of (2) with f = 0 and g = 1. We consider the initial data µ0 = χ[0,1], i.e., a uniform
probability density on the interval [0, 1]. We consider the Lyapunov function

V [µ] =

∫
x2dµ(x),

i.e., the second moment with respect to zero. We have LfV = 0, and we have LugV [µ] = 0 for µ = δ0 only,
i.e., Z = {δ0}. Then, minimizing V is equivalent to steer µ(t) to the Dirac mass δ0.

We now apply a rough form of the steepest descent method to the problem of minimizing V : given the
initial measure µ0, we look for a control function u that maximizes the descent LugV [µ], while taking into
account the control constraints (U’). An easy computation shows that no optimal choice for u exists. Indeed,
for every ε > 0, consider the C∞ function

uε(x) =


−1 for x ∈ [1− c+ ε, 1],

0 for x ∈ (−∞, 1− c] ∪ [1 + ε,+∞),

C∞ − spline with values in [−1, 0] for x ∈ [1− c, 1− c+ ε] ∪ [1, 1 + ε].

Then, for a sufficiently small time t > 0, each particle x ∈ (1 − c + ε, 1] is displaced to x − t while each
particle x ∈ [0, 1 − c] undergoes no displacement. The particles in the small interval [1 − c, 1 − c + ε] are
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displaced toward 1− c, then giving a reduction of the value of the functional V . Then, we have

LuεgV [µ] =
d

dt |t=0

∫ 1−c+ε

1−c
(x+ tu(x) + o(t))2 dµ(x) +

d

dt |t=0

∫ 1

1−c+ε
(x− t)2 dµ(x)

≤− 2

∫ 1

1−c+ε
x dµ(x).

As a consequence, by decreasing the parameter ε > 0, one can reach a larger decrease of V . Nevertheless,
the limit for ε → 0 would result in the discontinuous control function u0 = χ[1−c,1], for which the solution
to the corresponding dynamics (28) does not satisfy Assumptions2 (H).

The fact that a maximizer of the steepest descent does not exist in the space of Lipschitz functions
can be overcome by fixing a value ε0 > 0 and applying the control uε0 over a small interval of time [0, t0]
with t0 < ε0. As a result, the component of the measure µ with x ∈ [1 − c, 1] concentrates in the interval
[1− c, 1− t0], while its density keeps being constantly equal to 1 for x ∈ [0, 1− c]. At time t, one can observe
that the largest contribution to V comes anyway from the mass in the interval [1− c, 1− t0], on which the
control already acted. Moreover, the mass in such interval keeps being c.

For the reasons described above, any strategy maximizing the descent of V acts on the mass in the
interval [1−c, 1] for all times. In particular, we can choose a sequence εi acting on the time interval [ti−1, ti],
with the condition εi < c − ti for all t ∈ [0, c). Applying the time-dependent control u(t, x) = uεi(x) for
t ∈ [ti−1, ti), the corresponding solution µ(t) of (28) has support in [0, 1 − t]. More precisely, it has the
following structure: the measure keeps having density 1 in the interval [0, 1− c], while the rest of the mass
c is contained in the interval [1− c, 1− t].

Then, the solution µ(t) converges as t↗ c to the singular measure

µ(c) = χ[0,1−c] + cδ1−c. (29)

This is not in contradiction with the fact that any solution of (1) with initial data µ0 ∈ Pacc (Rd) and Lipschitz
vector field f satisfies µ(t) ∈ Pacc (Rd). Indeed, the condition ε(t) < c− t implies limt→c ε(t) = 0, hence the
control u(t, x) converges to a non-Lipschitz function.

Starting from the singular measure (29) at time t = c, one finds several problems to steer it towards the
minimizer δ0 of V . First, the main contribution to V is given by the Dirac delta c δ1−c: then, the control
set ω chosen to maximize the descent for V would certainly contain such mass. But the condition 1− c ∈ ω
together with u(1 − c) 6= 0 would directly impose to choose ω containing a whole neighbourhood of 1 − c.
This would imply

∫
ω
µ(c) > c, hence the population constraint would be automatically violated.

This would in turn enforce us to focus our control on the absolutely continuous part, possibly leading to
the formation of a new Dirac delta c δ1−2c, and so on. The final result would be a set of Dirac deltas, not
concentrated at 0, on which control with population constraint cannot be applied.

Summing up, the steepest descent method with population constraint in (U’) might not steer the measure
to a configuration in Z, but rather to a configuration in which the population constraint itself may not be
satisfied.

4 Proof of Theorem 1

For the moment, we assume that the solution µ(·) of (17), with the control strategy defined by Theorem 1,
is well defined on [0, θ] with θ ∈ (0,+∞], and we establish some lemmas describing its evolution. Recall that
supp(µ0) ⊂ B(0, R).

Lemma 3. We have supp(µ(t)) ⊂ B(0, R) for every t ∈ [0, θ].

Proof. Since the vector field f + ug is zero outside B(0, R), the corresponding flow φt(·) coincides with the
identity in Rd\B(0, R). Since we have µ(t) = φt#µ0 by Theorem 2, we get that, for any Borel set E satisfying

E ∩B(0, R) = ∅, we have µ(t)(E) = µ0(φ−t(E)) = µ0(E) = 0. The lemma follows.

2Existence and uniqueness for the solution of (2) in small times, with possibly discontinuous controls, can be derived from
results of [2, 21]. Nevertheless, it is shown in [21] that, under such assumptions, one can have formation of singularities such as
Dirac deltas in finite time.
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Recall that L is the Lipschitz constant for f [µ] and g[µ] given in (13), and recall that ‖f [µ]‖L∞ ≤M and
‖g[µ]‖L∞ ≤M for every µ ∈ Pacc (B(0, R)) (as in Remark 4).

Lemma 4. We have ‖µ(t)‖L∞ ≤ edθ(2L+Mθ)‖µ(0)‖L∞ , for every t ∈ [0, θ].

Proof. Since the vector field f + ug satisfies (24), and since Lipx(u(t, ·)) ≤ 1
η ≤ t ≤ θ, the lemma follows

from Proposition 1.

Lemma 5. The function (t, a, b, η) 7→ st(a, b, η) is continuous with respect to t, and uniformly Lipschitz with
respect to (a, b, η) on ∪{Ωt, t ∈ [0, θ]}.

Proof. Let us first establish the Lipschitz property for (a, b, η) ∈ ∪{Ωt, t ∈ [tn, tn+1] ∩ [0, θ]}. Note that the
condition |ω(a, b, η)| ≤ c implies that η ≤ c

2 . Besides, we have η ≥ t−1 ≥ θ−1. By definition of U(a, b, η) in
(15), with simple geometric arguments, it is clear that in the 1D case we have

‖U(a, b, η)− U(a′, b′, η′)‖L1(dx) ≤ ‖U(a, b, η)− U(a, b, η′)‖L1(dx) + ‖U(a, b, η′)− U(a′, b′, η′)‖L1(dx)

≤ |η − η′|+ |a− a′|+ |b− b′|,

where dx is the standard Lebesgue measure on R. By applying the estimate componentwise, the same result
follows in dimension d. By Lemma 4, there exists P > 0 such that ‖µ(t)‖L∞ ≤M for every t ∈ [0, θ], hence

‖U(a, b, η)− U(a′, b′, η′)‖L1(µ(t)) ≤ P (|a− a′|+ |b− b′|+ |η − η′|),

and thus (10) implies that st(a, b, η) is Lipschitz with respect to (a, b, η), with Lipschitz constant KP .
The function st(a, b, η) is continuous with respect to t, as a consequence of the continuity of LugV given

by (11).

Lemma 6. Assume that µ(tn) ∈ Pacc (Rd). If Ωtn is nonempty then stn(a, b, η) has a maximizer in Ωtn .

Proof. It suffices to observe that Ωtn can be considered as being compact: indeed, each choice (a, b, η) ∈ Ωtn
can be replaced by an equivalent choice (a′, b′, η) with a, b ∈ B0(R+2c) since ‖U(a, b, η)−U(a′, b′, η)‖L1(µ) =

0, since µ has zero mass outside of B(0, R). In other terms, one can restrict the choice of the parameters
a, b to a compact set. Similarly, we have η ∈ [t−1

n , c2 ]. Since, by Lemma 5, stn is a continuous function of its
arguments, then it admits a maximizer.

We are now in a position to prove Theorem 1. We split the proof into three steps:

Step 1. For each time tn, the n-th step of the algorithm univocally determines a control satisfying the
constraint (U), the corresponding solution of (2) and a time tn+1 > tn.

Step 2. We have tn → +∞.

Step 3. We have limt→+∞ Lf+ugV [µ(t)] = 0. This fact, together with the choice of maximizing controls
and of the hysteresis, provides convergence to the sets in which the maximizers of st(a, b, η) give zero
control. Since the constraint η ≥ t−1 is negligible for t → +∞, the strategy provides convergence of
µ(t) to Z.

Proof of Step 1. Let us prove that the algorithm of Theorem 1 univocally defines a control strategy, by
induction. We have t0 = 0 and µ(0) = µ0 ∈ Pacc (Rd). Let us prove that, for a given time tn, the time tn+1

is well defined and satisfies tn+1 > tn.
We first observe that the control χωu is a well-defined function, Lipschitz with respect to x. Setting

t̃ = 1
2

(
c

|B0(1)|

)1/d

, we note that Ωt = ∅ for every t ∈ [0, t̃) since any function of the form χη[a,b] has a support

of size larger than (2η)d|B0(1)|. For t ≥ t̃, the set Ωt is nonempty and Lemma 6 yields the existence of a
maximizer (a∗, b∗, η∗) in Ωt. We thus have two cases:

• If stn(a∗, b∗, η∗) < t−1
n or Ωt empty, then the control χωu = 0 is well defined and is Lipschitz.
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• If stn(a∗, b∗, η∗) ≥ t−1
n , then the control χωu = U(a∗, b∗, η∗) is well defined and is Lipschitz, as a

consequence of the Lipschitz property in (14).

Let us now prove that there exists a unique minimum tn+1 defined by the algorithm, and that it satisfies
tn+1 > tn. For t ∈ [0, t̃), there is nothing to prove, since t1 ≥ t̃. For t ≥ t̃, we have two cases:

• If stn(a∗, b∗, η∗) < t−1
n , then the set

A =
{
t ≥ tn | st(a, b, η) ≥ t−1 for some (a, b, η) ∈ Ω′t

}
is closed or empty. If it is nonempty, there exists a minimal element tn+1 ≥ tn. Moreover, tn+1 6= tn,
since stn(a, b, η) ≤ stn(a∗, b∗, η∗) < t−1

n for all (a, b, η) ∈ Ωtn . If A is empty then +∞ = tn+1 > tn.

• If stn(a∗, b∗, η∗) ≥ t−1
n , then, similarly to the previous case, since the function st(a

∗, b∗, η∗) is continuous
with respect to the time t, the set

A′ =

{
t ≥ tn | st(a∗, b∗, η∗) ≤

t−1
n

2

}
is closed or empty, and it does not contain tn. We now consider the set

B′ =

{
t ≥ tn such that there exists (ā, b̄, η̄) ∈ Ω′t for which

st(ā, b̄, η̄) ≥ (1− h)−1st(a
∗, b∗, η∗) ≥ (1− h)−1 t−1

2 .

}
.

Let us prove that it is closed and that tn 6∈ B′. Take a sequence (ti, ai, bi, ηi) such that ti ∈ B′ is a

sequence converging to some t̂, and (ai, bi, ηi) satisfy sti(a
i, bi, ηi) ≥ (1 − h)−1sti(a

∗, b∗, η∗) ≥ τ(ti)
2 .

Observing that the compact set Ω′t varies smoothly with respect to time, we can restrict ourselves to
a sequence (ai, bi, ηi) converging to some (ā, b̄, η̄) ∈ Ω′t̄. Then, by continuity of st, we have st̄(ā, b̄, η̄) ≥
(1−h)−1st̄(a

∗, b∗, η∗), hence t̄ ∈ B′. Moreover, t̄ 6= tn, otherwise (a∗, b∗, η∗) would not be a maximizer
of stn .

Since both A′ and B′ are closed or empty, not containing tn, then A′ ∪B′ is closed or empty and does
not contain tn. If it is closed, then it admits a minimal element tn+1 > tn; if it is empty, then we have
+∞ = tn+1 > tn.

Proof of Step 2. We now prove that the sequence tn of times given by the algorithm converges to +∞.
Since tn is increasing, it has a limit T . By contradiction, if T < +∞, then µ(t) is defined for every t ∈ [0, T ].
Indeed, since ‖f + ug‖L∞ ≤ 2M , the curve t 7→ µ(t) is Lipschitz, and thus µ(T ) is well defined.

If we have stn(a∗, b∗, η∗) < t−1
n at time tn, then at the next time tn+1 we must have stn+1

(ā, b̄, η̄) ≥ t−1
n+1

for some (ā, b̄, η̄) ∈ Ωtn+1
, by definition of the algorithm itself. As a consequence, the sequence tn converging

to T contains an infinite number of times tni such that stni (a
i, bi, ηi) ≥ t−1

ni , where (ai, bi, ηi) is a maximizer
of stni in Ωtni .

The sequence (ai, bi, ηi) is bounded, and its converging subsequences have their limit in ΩT . Indeed,
we can restrict ourselves to (ai, bi) ∈ B0(R + 2c), and we have ηi ≥ T−1 and ηi ≤ c

2 . Hence, taking a

subsequence if necessary, we have the existence of a limit (â, b̂, η̂) ∈ ΩT .
Observe now that, at time tni+1, one of the two conditions leading to switching of the control holds.

Since the sequence tni+1 has an infinite number of terms, at least one of the conditions holds for an infinite
subsequence (that we do not relabel). We show now that this is in contradiction with the fact that tn
converges to a finite time T . We have two cases:

• If stni (a
i, bi, ηi) ≥ t−1

ni and stni+1(ai, bi, ηi) ≤ t−1
ni

2 , then, taking a subsequence converging to (â, b̂, η̂) ∈
ΩT , we have a contradiction with the continuity of sT in (â, b̂, η̂). Indeed, we have

sT (â, b̂, η̂) = lim
i→+∞

stni (a
i, bi, ηi) ≥ t−1

ni >
t−1
ni

2
≥ lim
i→+∞

stni+1(ai, bi, ηi) = sT (â, b̂, η̂).
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• If there exists (āi, b̄i, η̄i) ∈ Ω′tni+1
such that

stni+1
(ai, bi, ηi) ≤ (1− h)stni+1

(āi, b̄i, η̄i), (30)

then, for ni → +∞, we have Ω′tni+1
⊂ Ωtni , since 2t−1

ni+1 ≥ t−1
ni , as a consequence of the fact that

limi→+∞(tni+1 − tni) = 0. Since (ai, bi, ηi) is a maximizer of stni in Ωtni+1 , we have

stni (ā
i, b̄i, η̄i) ≤ stni (a

i, bi, ηi). (31)

One can take a converging subsequence of (āi, b̄i, η̄i), for the same reasons given above for the sequence
(ai, bi, ηi). Denoting by (ā∗, b̄∗, η̄∗) and (a∗, b∗, η∗) the two limits, and using continuity of st(a, b, η)
with respect to all its arguments, we get from (30)-(31) that

sT (a∗, b∗, η∗) ≤ (1− h)sT (ā∗, b̄∗, η̄∗) ≤ (1− h)sT (a∗, b∗, η∗),

which is in contradiction with sT (a∗, b∗, η∗) ≥ T−1 > 0.

Then tn cannot converge to a finite value T . Therefore either tn → +∞ or there exists a tn such that
tn+1 = +∞. In both cases, the control strategy is defined for every t ∈ [0,+∞).

Proof of Step 3. It remains to prove that µ(t) converges to Z. This is the hardest part of the proof, in
which the choice of the admissible controls in Ωt plays a crucial role.

Thanks to Step 2, we have, for every time, µ(t) ∈ Pc(B(0, R)), that is compact with respect to the weak
topology, which coincides with the topology of the Wasserstein distance. Then Assumptions (H) imply that
V is a continuous function and thus is bounded below.

We now prove that the function V (t) = V [µ(t)] is differentiable for almost every t, and that it satisfies

V̇ (t) = limt→0
V [et(f+ug)µ]−V [µ]

t ≤ 0. Differentiability on the open time interval (tn, tn+1) follows from the

fact that V̇ (t) = Lf+ugV [µ(t)] is continuous, as a consequence of Assumptions (H). Clearly, the set of times
tn on which differentiability is not ensured is countable, hence V (t) is differentiable for almost every t.

For t ∈ (tn, tn+1), we have V̇ = Lf+ugV [µ] = LfV [µ] + LugV [µ]. If at time tn the algorithm defines the
control χωu ≡ 0, then clearly

V̇ = LfV [µ] ≤ 0, (32)

for every t ∈ (tn, tn+1). If instead the control given by the algorithm is χωu in (20), we have

V̇ = LfV [µ] + LχωugV [µ] ≤ −sign(LU(a∗,b∗,η∗)g[µ(tn)]V [µtn ])(LU(a∗,b∗,η∗)g[µ(t)]V [µt]). (33)

It is clear that, at the beginning of the interval, we have

lim
t→t+n

sign(LU(a∗,b∗,η∗)g[µ(tn)]V [µtn ])(LU(a∗,b∗,η∗)g[µ(tn)]V [µtn ]) ≥ stn(a∗, b∗, η∗) ≥ τ(tn) > 0,

and hence V̇ (t+n ) < 0. Since V̇ (t) is a continuous function, we either have V̇ (t) < 0 for every t ∈ (tn, tn+1),
or there exists t ∈ (tn, tn+1) such that LU(a∗,b∗,η∗)g[µ(t)]V [µ(t)] = 0. This is equivalent to state that

st(a
∗, b∗, η∗) = 0, which is in contradiction with st(a

∗, b∗, η∗) > τ(t)
2 > 0 for every t ∈ (tn, tn+1), by

definition of the time tn+1.
We now prove that limt→∞ µ(t) ∈ Z. Since Pc(B(0, R)) is compact, all sequences have limits. Consider

a sequence tj →∞ such that limj→∞ µ(tj) = µ∗. We are going to prove that µ∗ ∈ Z.

Since V is continuous, bounded below and V̇ (t) ≤ 0 for almost every t, we have limt→+∞ V (t) = V ∗ for
some V ∗. The existence and continuity of the second-order derivatives Lf+ugLf+ugV [µ] on the compact space

Pc(B(0, R)) implies the existence of a uniform bound on V̈ . As a consequence, we have limt→∞ V̇ (t) = 0.
Since V̇ ≤ LfV ≤ 0 by either (32) or (33), this in turn implies limj→∞ LfV [µ(tj)] = 0, hence LfV [µ∗] = 0
by continuity of LfV .

We now prove that LugV [µ∗] = 0 for all u ∈ U . By contradiction, assume that there exists u∗ ∈ U such
that |Lu∗gV [µ∗]| 6= 0. Without loss of generality, by using (9), we assume that ‖u∗‖L∞ = 1. Similarly, by
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decomposing u∗ = u+ − u− with u+, u− non-negative Lipschitz functions, and using additivity of the Lie
derivative, we can replace u∗ with either u+ or u− and assume that it is nonnegative and that |Lu∗gV [µ∗]| =
C∗ 6= 0. Finally, by observing that µ∗ has compact support, we can replace u∗ with a nonnegative Lipschitz
function with compact support.

We now approximate u∗ in L∞ by a family of functions of the form
∑I
i=1 k

iχη[ai,bi], where the number I

of terms depends on the approximation error, but not on the (sufficiently small) parameter η.
For simplicity, we only give the construction in the 1D case.
Since u∗ is Lipschitz with bounded support, it is Riemann integrable. In particular, by using an approxi-

mation of u∗ from below, we have the following: take a grid step ∆x and define the rectangles kiχ[ãi,b̃i] with

b̃i − ãi = ∆x, for which

I∑
i=1

kiχ[ãi,b̃i] ≤ u
∗ and ‖u∗ −

I∑
i=1

kiχ[ãi,b̃i]‖L∞ ≤ ε. (34)

for some ε. The Riemann integrability of u∗ implies that, for any ε > 0 there exists ∆x such that (34) is
satisfied. Note that ‖u∗‖L∞ = 1 also implies ki ≤ 1.

We now prove that we can replace kiχ[ãi,b̃i] with their mollified version kiχη[ai,bi] for any sufficiently small

η, while keeping (34) satisfied. We provide here the explicit construction. First denote with L′ the Lipschitz
constant of u∗. To replace kiχ[ãi,b̃i] with kiχη[ai,bi], we have two cases:

• If b̃i−1 < ãi, then keep both bi−1 = b̃i−1 and ai = ãi, and choose η ≤ min
{
ãi−b̃i−1

2 , k
i−1

L′ ,
ki

L′

}
.

• If b̃i−1 = ãi, then choose η ≤ min
{
ki−1

L′ ,
ki

L′

}
. If ki−1 > ki, then define bi−1 = b̃i and ai = ãi + η.

Otherwise, take bi−1 = b̃i − η and ai = ãi.

Figure 1: Construction of the approximation kiχη[ai,bi].

Note that the constraints imposed on η are higher bounds, and they are in finite number. Then, η can
be chosen in a whole interval (0, η′], where η′ depends on ε only. By construction, we have

∑I
i=1 k

iχ[ãi,b̃i] ≤∑I
i=1 k

iχη[ai,bi] ≤ u
∗, thus both conditions in (34) are satisfied. Note that this construction depends only on

u∗ and not on µ∗. We denote this new function by uη =
∑I
i=1 k

iχη[ai,bi].

Consider now the sequence of measures µ(tj) converging to µ∗. If tj is a switching time tn for the
algorithm, replace it with a slightly larger time. Then we can assume that µ(tj) keeps converging to µ∗, with
no switching times. By continuity of Lu∗gV [µ] given by (11), we have |Lu∗gV [µ(tj)]| ≥ C∗

2 for sufficiently
large indices. Note that

|L(u∗−uη)gV [µ(tj)]| ≤ K‖u− uη‖L1(µ(tj)) ≤ K‖u− uη‖L∞ ≤ Kε.

Then, choose a sufficiently small ε ≤ C∗

2K and a corresponding ∆x > 0 such that (34) is satisfied. If ∆x ≥ c
2 ,

then replace it with c
2 : by integrability of u∗, (34) is still satisfied when refining the grid. Then, the
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previous construction shows that there exists η′ such that uη satisfies (34) for every η ∈ (0, η′]. Choose then
η∗ ∈ (0, η′]. For a sufficiently large j, we have |Luη∗gV [µ(tj)]| ≥ C∗

2 .

Note now that uη
∗

is a sum of I terms of the form kiχη
∗

[ai,bi]. Then, for each j there exists at least one

term such that

|L
χη
∗

[ai,bi]
g
V [µ(tj)]| ≥ |L

kiχη
∗

[ai,bi]
g
V [µ(tj)]| ≥ C∗

2I
,

where we have used that ki ≤ 1 and that the number I does not depend on the parameter η∗. Observe
now that, for a sufficiently large T , we have (ai, bi, η∗) ∈ Ω′t for every t ≥ T . Similarly, taking a larger T if
necessary, we have stj (a

i, bi, η∗) ≥ C∗

2I ≥ t
−1
j . As a consequence, the control algorithm provides a maximizer

(aj , bj , ηj) ∈ Ω′tj of stj , for which

stj (a
j , bj , ηj) ≥ (1− h)stj (a

i, bi, η∗) ≥ (1− h)
C∗

2I
.

The corresponding derivative satisfies

V̇ (tj) = Lf+U(aj ,bj ,ηj)gV [µ(tj)] ≤ 0− (1− h)
C∗

2I
.

In particular, this is in contradiction with the fact that limt→∞ V̇ (t) = 0. The theorem is proved.

5 Generalization to several controls

In this section, we show how to extend our result to a transport equation with a finite number of controlled
vector fields,

∂tµ+∇ ·

((
f [µ] +

m∑
i=1

χωiuigi[µ]

)
µ

)
= 0.

Now, Assumptions (H) are done for all vector fields f, g1, . . . , gm. In this setting, one can require the control
constraint (C), together with the following additional constraint.

Componentwise sparsity constraint

For every t ∈ [0,+∞), there exists at most one index i such that ui(t, ·) is not identically zero.

This sparsity constraint was first considered in the finite-dimensional setting for crowd models in [11, 12].
We recently generalized the Jurdjevic–Quinn stabilization method with this additional constraint in [13].
Under such additional assumptions, we can adapt the control algorithm of Theorem 1 as follows.
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Step n

At time tn, choose the maximizer (a∗, b∗, η∗, i∗) of |LU(a,b,η)giV [µ(tn)]| in the space Ωtn × {1, . . . ,m}.
Observe that we only added the index i in the maximization process.
Then, we have two cases:

• If |LU(a∗,b∗,η∗)gi∗V [µ(tn)]| < t−1
n or if Ωtn is empty, then choose the zero control

χωu(t, x) ≡ 0

and let the measure µ(t), starting at µ(tn), evolve according to (17) over the time interval [tn, tn+1],
where tn+1 is the smallest time greater than tn such that there exists (ā, b̄, η̄, ī) ∈ Ω′tn+1

× {1, . . . ,m}
for which |LU(ā,b̄,η̄)gī

V [µ(tn+1)]| ≥ 2t−1.

• If |LU(a∗,b∗,η∗)gi∗V [µ(tn)]| ≥ t−1
n , then choose the control

χωu(t, ·) = −U(a∗, b∗, η∗) sign(LU(a∗,b∗,η∗)gi∗ [µ(t)]V [µ(t)])

and let the measure µ(t), starting at µ(tn), evolve according to (17) over the time interval [tn, tn+1],
where tn+1 is the smallest time greater than tn satisfying at least one of the following conditions:

– either |LU(a∗,b∗,η∗)gi∗ [µ(tn+1)]| ≤ t−1
n+1

2 ;

– or there exists (ā, b̄, η̄, ī) ∈ Ω′tn+1
× {1, . . . ,m} such that

|LU(a∗,b∗,η∗)gi∗ [µ(tn+1)]| ≤ (1− h)|LU(ā,b̄,η̄)gī
[µ(tn+1)]|.

The proof of convergence of µ(t) to Z is obtained by combining the proof of Theorem 1 in Section 4 with
the proof of the finite-dimensional sparse Jurdjevic–Quinn stabilization method with hysteresis given in [13].
We do not provide details.

6 Application to crowd models

In this section, we give some relevant models to which Theorem 1 can be applied. Control problems for
equations of the form (17) arise naturally when studying large crowds of interaction agents. Consider a
system of N interacting agents in which the dynamics of the state xi ∈ Rd of the i-th agent are influenced
by the state of the other N − 1 agents, according to the time evolution

ẋi =
1

N

∑
j 6=i

F (xi, xj), i = 1, . . . , N, (35)

where F ∈ Lip(Rd×Rd,Rd) represents interaction rules, that are the same for any pair of agents. When the
number N of agents is large, it is often convenient to describe the evolution of the system as a mean-field
equation. In the mean-field limit, when N → +∞, the evolution of the mass of the agents µ ∈ Pc(Rd) is
described by (1) with

f [µ](x) =

∫
F (x, y) dµ(y). (36)

Indeed, to derive the mean-field model (1) from the finite-dimensional multi-agent models (35), it suffices to

consider the empirical measure µ(t) = 1
N

∑N
i=1 δxi(t).

We consider then the controlled version of the multi-agent system (35), given by

ẋi =
1

N

∑
j 6=i

F (xi, xj) + uigi(x1, . . . , xN ), i = 1, . . . , N, (37)
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for some Lipschitz vector field (g1, . . . , gN ) on (Rd)N and controls (u1, . . . , uN ) in some subset of (Rd)N . In
the case in which the control vector field is defined, for every agent i, only via the interaction between the
other agents and the action of the control is the same on any agent, namely if there exists an interaction
kernel G ∈ Lip(Rd × Rd,Rd) such that

gi(x1, . . . , xN ) =
1

N

∑
j 6=i

G(xi, xj),

for every i = 1, . . . , N , and if ui = uj for all i, j ∈ {1, . . . , N}, then we can consider the limit of (37) as
N → +∞, which gives the mean-field equation (2) with (36) and

g[µ](x) =

∫
G(x, y) dµ(y). (38)

The controllability problem is then the following: given an initial measure µ0 and a final measure µ1, find a
suitable control function (t, x) 7→ u(t, x) steering the system (2) from µ0 to µ1. We refer to [32] for a first
result on the control of a mean-field equation of the form (2) with constraint (U) and (U’). In particular the
paper focuses on the controlled version of the kinetic Cucker–Smale system introduced in [22] with constant
g, and the existence of a control steering the system to a neighborhood of a Dirac measure is proved.

Existence and uniqueness for the mean-field equation (2) when the vector fields are given by (36) and (38)
are ensured by Theorem 2 provided that F (x, y) and G(x, y) have compact support. Indeed if F (x, y) and
G(x, y) have compact support, then the vector fields f [µ] and g[µ] satisfy Assumptions (H).

Multi-agent models with a compactly supported interaction potential are sometimes called “bounded
confidence” or homophilous models. The idea is that the agents interact only with the ones having closer
states. This kind of interaction is used, for instance, to model opinion formation in first-order systems. One
of the most influential models in opinion formation is, indeed, the Bounded Confidence Model by Hegselmann
and Krause [23] (see also [6]). The main feature of this model is that the interaction is zero when the distance
between two opinions is larger than a certain threshold:

F (xi, xj) =

{
(xj − xi) if |xi − xj | ≤ 1,

0 otherwise.

It has been proved in [6] that, for almost every initial configuration, the opinions converge asymptotically to
clusters. In particular, the system does not reach global consensus in general. Since the right-hand side is
discontinuous with respect to the state variable, for some configurations, the system has no unique solution,
hence we consider the more general first-order consensus model

ẋi =
1

N

∑
j 6=i

φ(xj − xi)(xj − xi) i = 1, . . . , N, (39)

where the function φ is defined by

φ(x) =


1 if |x| < 1,

− |x|ε + 1 + 1
ε if |x| ∈ [1, 1 + ε],

0 if |x| > 1 + ε,

(40)

for some small ε > 0. This is a variant of the Hegselmann–Krause model, in which the Lipschitz property
of φ ensures existence and uniqueness of solutions of (39). Therefore the associated vector field for the
mean-field equation (2) is

f [µ](x) =

∫
φ(y − x)(y − x) dµ(y). (41)

The kinetic version of the Hegselmann–Krause model has been first studied in [10] for discrete-time dynamics.
Existence of solutions has been first proved in [7] for a general bounded decreasing φ(x) such that |xφ′(x)| ≤
φ(x). Moreover, if φ(x) is everywhere nonzero, then the system converges unconditionally to consensus,
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meaning that for every µ0 the solution µ(t) converges asymptotically to a Dirac mass. If φ(x) is compactly
supported, as in our case, however, then the large time behavior of the dynamics is not yet completely
understood and a precise description of the asymptotic dynamics is, in general, a hard task. As in the finite-
dimensional analogue, generically the solution µ(t) converges to a finite sum of Dirac deltas, representing
the clusters of opinion, but sufficient conditions for global consensus are still unknown. Theorem 1 provides
then a useful tool to establish convergence to global consensus.

Here we consider the controlled kinetic Hegselmann–Krause model in dimension d = 1 with drift vector
field given by (41), control vector field g = 1, and Lyapunov function

V [µ] =

∫
x2 dµ(x).

Then LugV [µ] = 0 for every u ∈ U ⇔ µ = δ0. Since Lf [δ0] = 0, it follows that Z = {δ0}.
We claim that if µ = 1

2 (δx + δy) for some x, y ∈ R, then LfV [µ] ≤ 0. The same statement is valid for

the Lie derivative of V along any combination of Dirac 1
N

∑N
i=1 δxi for some xi ∈ R, but for the sake of

readability let us prove it for the sum of two Dirac masses. Noting that

f

[
δx + δy

2

]
(z) =

1

2
φ(x− z)(x− z) +

1

2
φ(y − z)(y − z),

we have

LfV [µ] =
1

2

d

dt |t=0

V (etf [δx]) +
1

2

d

dt |t=0

V (etf [δy])

= xf

[
δx + δy

2

]
(x) + yf

[
δx + δy

2

]
(y)

=
1

2
φ(y − x)(y − x)x+

1

2
φ(x− y)(x− y)y

= −φ(x− y)

2
‖x− y‖2 ≤ 0.

Then, using the continuity conditions (11) and the density of the sum of Dirac deltas in Pc(R), one can
extend the estimate on Pc(R).

In particular this system fits into the framework of Theorem 1, which thus provides the existence of a
control strategy concentrating the mass at 0, in other words, steering the system to global consensus.

Theorem 1 also gives an explicit construction of a control achieving consensus. Assume that at a certain
switching time, say t, the solution is µ(t) = 1

2χ[−1,1]. In this case, we can write explicitly the slope function

st(a, b, η) = |LU(a,b,η)g[µ]V [µ]| = | d
dt |t=0

V (etU(a,b,η)µ)| = 2|
∫
R
xU(a, b, η)(x)dµ(x)|

= 2

∣∣∣∣∣1η
∫ a

a−η
x(x− a+ η)dµ(x) +

∫ b

a

xdµ(x) +
1

η

∫ b+η

b

x(−x+ b+ η)dµ(x)

∣∣∣∣∣ ,
where b− a+ 2η ≤ c. For η large, the biggest contribution is given by the second integral term∫ b

a

x dµ(x) =
1

4

(
min(b, 1)2 −max(a,−1)2

)
.

If c < 2, then the control set ω cannot cover the whole support of µ and it will be close to −1 or 1. The action
of the control steers the mass in the region ω toward 0 breaking the symmetry of the measure µ. It may
happen therefore that the region ω will lose the optimality of the slope function and the control will switch
to another region on the opposite side. In general, if the measure µ is symmetric with respect to the origin,
then the control may chatter. This is the rationale for the introduction of an hysteresis parameter h: the
control acts on a set and holds it also sometimes after losing optimality in order to prevent high-oscillating
controls.
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Here we present numerical simulations for this system. We consider an initial data µ0 randomly dis-
tributed on the interval [0, 10] and we apply the control given in Theorem 1 with three different choice of
the hysteresis parameter h. In Figure 2 the free evolution of the system, i.e. with u = 0. Notice that the
solution tends to a finite combination of Dirac deltas representing clusters. The action of Theorem 1, with
the variance as Lyapunov function, is represented in Figure 3. In this case the whole mass tends to a single
Dirac delta, representing consensus.

Figure 2: Uncontrolled kinetic Hegselmann–Krause model. Blue lines represent the evolution µ(t). The
evolution of max and min of the support of µ(t) are represented with red lines.

Chattering may usually happen when dealing with sparse controls designed with optimality criteria.
Sparsity of the control in finite dimension is usually coded in terms of control acting on the smallest number
of components/agents and the term sparsity comes from the fact that the control operator gi in (37) is a
sparse vector. This notion has been introduced in [11, 12] for second-order alignment systems (see also [36]
for the controllability via leader of the Hegselmann–Krause finite-dimensional model).

In the infinite-dimensional framework, the assumption that agents are indistinguishable is crucial for
defining mean-field limits; therefore, the notion of componentwise sparsity loses its sense. The infinite-
dimensional analogue of componentwise sparsity is the sparsity population constraint (U’). In Section 3, we
have described the issues arising from this definition.

The sparsity space constraint given in (U) is, on the other hand, the natural definition of sparsity for
mean-field equation of the form (2). The constraint is in some sense geographical, since the control can act
only on a region of the space. The finite-dimensional analogue of such a control is the so-called decentralized
control. A decentralized control acts based on partial information on the agents inside a certain neighborhood
of the controlled ones. The decentralized control for multi-agent systems is a well-established topic, we refer
for instance to the works [17, 34, 37] for decentralized consensus algorithms, see also [8] for a recent result
with L∞ constraints on the control of the form (4).

7 Conclusion and open questions

In this paper, we have generalized the classical Jurdjevic–Quinn stabilization method to infinite-dimensional
control systems described by transport partial differential equations with non-local terms. Such equations
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(a) h = 0.9

(b) h = 0.5

(c) h = 0.2

Figure 3: Application of the control strategy of Theorem 1 for different values of the hysteresis parameter
h. The yellow region is the controlled area.

arise in crowd models that are mean-field limits of particle systems for a finite number of agents: for this
reason, it is natural to require some sparsity constraint to the control.

We established a mean-field Jurdjevic–Quinn stabilization method under the sparsity constraint (U): the
control acts on a small set of the configuration space, with a bounded strength.

Improving Theorem 1 in the original spirit of Jurdjevic and Quinn may be done in several ways: on the
one side, by reducing the target goal to the largest subset of Z that is invariant under the uncontrolled
dynamics f [µ]; on the other side, by reducing the target by imposing zero higher-order derivatives, i.e., when
Z is defined by

Z =
{
µ ∈ Pc(B(0, R)) | LfV [µ] = LkfLugiV [µ] = 0 ∀u ∈ Lip(Rd,R), i = 1, . . . ,m, k ∈ N

}
.

Dealing with iterated Lie derivatives, that is, with Lie brackets, in the kinetic setting is an open perspective.
Addressing more general systems than those presented in Section 5 is also of great interest. In particular,

it would be interesting to develop similar approaches to enforce stabilization of a transport equation to a
specific set Z of configurations, such as steady-states or periodic trajectories. In this spirit, a remarkable
result for describing cell migrations is given in [18], where steady-states are “rosettes”, that are symmetric
configurations of cells leading to emergence of specific macroscopic structures.
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[13] M. Caponigro, B. Piccoli, F. Rossi, E. Trélat, Sparse Jurdjevic–Quinn stabilization of dissipative
systems, preprint hal-01397843, submitted.

[14] I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N. Franks, Collective memory and spatial
sorting in animal groups, J Theor Biol, 218, 2002.

[15] E. Cristiani, P. Frasca, B. Piccoli, Effects of anisotropic interactions on the structure of animal
groups, Journal of mathematical biology 62, no. 4, pp. 569–588, 2011.

[16] E. Cristiani, B. Piccoli, A. Tosin, Multiscale Modeling of Pedestrian Dynamics, Springer MS &
A: Modeling, Simulation and Applications, 2014.

[17] M.C. De Gennaro and A. Jadbabaie, Decentralized control of connectivity for multi-agent systems,
In Proceedings of the 45th IEEE Conference on Decision and Control, pp. 3628–3633, 2006.

[18] E. Di Costanzo, R. Natalini, L. Preziosi, A hybrid mathematical model for self-organizing cell
migration in the zebrafish lateral line, J. Math. Biol. 71, pp. 171–214, 2015.

[19] M. Fornasier, B. Piccoli, F. Rossi, Mean-field sparse optimal control, Philosophical Transaction
Royal Society A, 372, 2014.

22



[20] I. Giardina, Collective behavior in animal groups: theoretical models and empirical studies, Human
Frontier Science Program Journal, (205219), 2008.

[21] P. Goatin, F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and
micro-macro limit, Comm. Math. Sciences, to appear.

[22] S.-Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic and
Related Methods, v. 1 (3), pp. 415–435, 2008.

[23] R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence models, analysis, and sim-
ulation, Journal of Artificial Societies and Social Simulation, 5(3), 2002.

[24] Ali Jadbabaie, Jie Lin, A Stephen Morse, Coordination of groups of mobile autonomous agents
using nearest neighbor rules, Automatic Control, IEEE Transactions on, 48(6) pp. 988–1001, 2003.

[25] R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence: models, analysis and sim-
ulation, Journal of Artificial Societies and Social Simulation, 5(3), 2002.

[26] D. Helbing, I. Farkas, T. Viscek, Simulating dynamical features of escape panic, Nature, 407,
pp. 487–490, 2000.

[27] M. Herty, L. Pareschi, S. Steffensen, Mean-field control and Riccati equations, Networks and
Heterogeneous Media, 10(3), pp. 699–715, 2015.

[28] V. Jurdjevic, J.P. Quinn, Controllability and stability, Journal of Differential Equations, Volume
28, Issue 3, pp. 381–389, 1978.

[29] Reza Olfati-Saber, J Alex Fax, Richard M Murray, Consensus and cooperation in networked
multi-agent systems, Proceedings of the IEEE, 95(1): pp. 215–233, 2007.

[30] B. Piccoli, F. Rossi, Generalized Wasserstein distance and its application to transport equations
with source, Archive for Rational Mechanics and Analysis, Volume 211, Issue 1, pp. 335-358, 2014.

[31] B. Piccoli, F. Rossi, Transport equation with nonlocal velocity in Wasserstein spaces: convergence
of numerical schemes, Acta Applicandae Mathematicae, 124, pp. 73–105, 2013.
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