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Abstract

Deriving a meaningful functional brain parcellation is a very challenging is-
sue in task-related fMRI analysis. The joint parcellation detection estimation
model addresses this issue by inferring the parcels from fMRI data. However,
it requires a priori fixing the number of parcels through an initial mask for
parcellation. Hence, this difficult task generally depends on the subject. The
proposed automatic parcellation approach in this paper overcomes this limita-
tion at the subject-level relying on a Dirichlet process mixture model combined
with a hidden Markov random field to estimate the parcels and their number
online. The proposed method adopts a variational expectation maximization
strategy for inference. Compared to the model selection procedure in the joint
parcellation detection estimation framework, our method appears more efficient
in terms of computational time and does not require finely tuned initialization.
Synthetic data experiments show that our method is able to estimate the right
model order and an accurate parcellation. Real data results demonstrate the
ability of our method to aggregate parcels with similar hemodynamic behaviour
in the right motor and bilateral occipital cortices while its discriminating power
is increased compared to its ancestors. Moreover, the obtained HRF estimates
are close to the canonical HRF in both cortices.

Keywords: fMRI, hemodynamic parcellation, VEM, Dirichlet process mixture
model, Non-parametric Bayesian, HMRF

1. Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging
technique that indirectly measures neural activity from the blood-oxygen-level
dependent (BOLD) signal (Ogawa et al., 1990). This signal reflects the varia-
tions in the blood oxygenation level induced by oxygen consumption of neural
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population involved during task performance. Task-related fMRI data analysis
generally focuses on two main issues: i) detecting the activated brain areas in
response to a given stimulus, and ii) estimating the underlying dynamics asso-
ciated with such an activation through the estimation of the so called hemody-
namic response function (HRF).

So far, many approaches have been proposed to characterize the link between
stimuli and the induced BOLD signal through the brain, the simplest relying on
a general linear model (GLM) where the link between the stimulus onset and the
BOLD effect is actually modelled through a convolution between the HRF and
a binary stimulus sequence. The GLM has been primarily used for detecting
task-related brain activity in a massive univariate manner (Friston et al., 1995),
considering a constant and fixed canonical HRF shape (Boynton et al., 1996).
Then, it has been progressively extended to account for the HRF variability
using more regressors and hence more flexible design matrices (Glover, 1999;
Friston et al., 2000; Lindquist et al., 2009). Nonetheless, due to the increase
of regressors the main difficulty that comes up in this context is the decrease
of statistical sensitivity in the subsequent tests, making the detection task less
reliable. Besides, other approaches that rely on physiologically-informed non-
linear models (e.g., the Balloon model) have been pushed forward for recovering
hemodynamics but most often they are deployed in brain regions where evoked
activity has already been detected (Buxton and Frank, 1997; Friston et al.,
2000; Riera et al., 2004; Deneux and Faugeras, 2006). Their computational
cost is actually prohibitive for whole brain analysis and some identifiability
issues (different pairs of state variables and parameters give the same goodness-
of-fit) arise because of the presence of noise. The above mentioned approaches
mainly address detection of evoked activity and HRF recovery as a two-step
procedure whereas both tasks are strongly linked. A precise localization of
activations depends on a reliable HRF estimate, while a robust HRF shape is
only achievable in brain regions eliciting task-related activity (Kershaw et al.,
1999; Ciuciu et al., 2003). Moreover, most of linear and non-linear models are
designed for univariate inference whereas it is known that the BOLD signal is
spatially smooth and thus the HRF shapes remain similar over a certain spatial
distance (Ciuciu et al., 2004; Handwerker et al., 2012; Badillo et al., 2013b).

One of the approaches that accounts for this interdependence is the joint
detection-estimation (JDE) framework, where both tasks are performed jointly
(Makni et al., 2008; Vincent et al., 2010; Chaari et al., 2013). To improve ro-
bustness in the estimation task and account for spatial correlation of the BOLD
signal, a single HRF shape model was assumed for a specific group of voxels, also
referred to as a parcel. Within this JDE formalism, two approaches for posterior
inference have been developed, the first one relying on computationally intensive
stochastic sampling (Makni et al., 2008; Vincent et al., 2010) and the second one
based on the variational expectation maximization (VEM) algorithm (Chaari
et al., 2013) to achieve numerical convergence at lower cost. However, whatever
the numerical algorithm deployed, the JDE formalism requires a prior parcella-
tion of the brain into functionally homogeneous regions. These parcels should
achieve a fair compromise between homogeneity and reliability (Thirion et al.,
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2014). Homogeneity means that the parcels should be small enough to meet
the assumption of HRF shape invariance within each parcel, whereas reliability
should guarantee that parcels are large enough to ensure reliable HRF estima-
tion and detection performance. This issue has motivated a number of recent
developments that try to cope with the identification of relevant brain parcel-
lation of the brain (Flandin et al., 2002; Thirion et al., 2006; Lashkari et al.,
2010, 2012; Eickhoff et al., 2011). In (Lashkari et al., 2012), a non-parametric
Bayesian approach, relying on a Dirichlet process mixture model, is considered
for the activation classes in a multi-subject framework but they assume that the
HRF is fixed for a given region of interest. However, among the latter works,
none tries to uncover functional regions that appear homogeneous with respect
to their hemodynamic profile. To the best of our knowledge, this issue has
been rarely addressed in the literature. In (Badillo et al., 2013a) the hemody-
namic parcellation has been addressed using random parcellation and consensus
clustering. A multivariate Gaussian probabilistic modelling has also been used
in (Fouque et al., 2009) to cope with the hemodynamic parcellation issue. A
joint parcellation within the JDE framework has been proposed in (Chaari et al.,
2012, 2015), giving rise to the joint parcellation detection estimation (JPDE)
appraoch. This strategy performs online parcellation during the detection and
estimation steps through the selection of hemodynamic territories, i.e., sets of
voxels that share the same HRF pattern. Although automated inference of par-
cellation is performed in the JPDE methodology, the algorithm still requires the
manual setting of the number of parcels. In a previous work (Albughdadi et al.,
2014), we have proposed to finely tune this parameter using an off-line model
selection strategy. This procedure was based on the computation of the free en-
ergy associated with models of increasing complexity, (i.e., with an increasing
number of parcels) in the VEM framework. The best model was then selected
as the one maximizing the free energy. This technique was however of limited
interest since it requires to run the JPDE algorithm for many candidate models,
which is quite time-consuming especially when no prior information is available
on the approximate number of parcels. Moreover, even if many analysis have
to be conducted on the same subject, running the above-mentioned procedure
to select the best model cannot be used only once since the best parcellation
and estimation of HRF patterns also depend on the data and not only the num-
ber of parcels. Even if the number of parcels is right, the final result can be
sub-optimal.

This paper proposes a more original technique to perform on-line model
selection by adopting a non-parametric Bayesian (NPB) model. A Dirichlet
process (DP) prior combined with a hidden Markov random field is specifically
used to estimate the number of parcels from the data itself without any prior
knowledge on the initial parcellation. Injected within the JPDE formulation,
we end up with an algorithm that needs to be run only once for getting an
estimate of the number of parcels and the corresponding HRF territories, with
their own hemodynamic signature and evoked responses. Compared with other
parcellation techniques, the proposed model allows an automatic estimation of
the hemodynamic brain parcels and their number which in turn helps to improve
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the detection task and localize the brain regions involved in some mental task.
Besides, it allows the hard constraints of a single HRF profile over a given parcel
to be relaxed and hence leads to more flexibility in brain analyses. Through this
paper, we will refer to the proposed model as the NP-JPDE model.

The rest of the paper is organized as follows. Section 2 introduces the
Dirichlet process that will be used for hemodynamic brain parcellation. The
non-parametric Bayesian model is presented in Section 3. The inference strat-
egy adopted for the proposed model is described in Section 4. Experimental
validations on synthetic and real fMRI data are presented in Section 5. Finally,
discussions and conclusions are drawn in Section 6.

2. Dirichlet Process

Dirichlet processes were first proposed in (Ferguson, 1973) as distributions
placed over distributions. A Dirichlet process (DP), denoted by DP (G0, α),
is characterized by a base distribution G0 and a positive scaling parameter α.
More precisely, a random distribution G is distributed according to a Dirichlet
Process (Ferguson, 1973) with scaling parameter α and base distribution G0, if
for all natural numbers k and for all k-partitions {B1, ..., Bk}

(G(B1), G (B2) , ..., G (Bk)) ∼ Dir (αG0 (B1) , αG0 (B2) , ..., αG0 (Bk)) (1)

where Dir (αG0 (B1) , αG0 (B2) , ..., αG0 (Bk)) is the Dirichlet distribution with
parameter (αG0 (B1) , . . . , αG0 (Bk)).
A Dirichlet process mixture model (DPMM) uses the DP as a non-parametric
prior in a hierarchical Bayesian model. Let us consider a mixture model where
ηn is the parameter associated with the n-th data point xn, ηn is not observed
and the DP is used to induce a prior on the ηn’s. If G is a measure generated
according to a DP, G is discrete with probability one. As a consequence, the
following hierarchical representation can be seen as a countable infinite mixture
model

xn | ηn ∼ p(xn | ηn) , ηn | G ∼ G
G | {α,G0} ∼ DP (α,G0) (2)

where n = 1, . . . , N . Among the generated parameter values ηn, a number
of them are equal. These unique values are used to partition the generated
x1, . . . , xN into clusters. Thus, the DPMM is a flexible mixture model with
a random number of clusters which grows with new observed data. An ex-
plicit DP characterization, which will be useful hereafter, is provided in terms
of stick-breaking construction (Blei et al., 2006). Consider two infinite collec-
tions of independent random variables τ i ∼ Be(1, α) ,where Be(1, α) is a beta
distribution with parameters 1 and α, and η∗i ∼ G0, for i = 1, 2, . . .. With
τ = τ1, τ2, . . . , the stick-breaking representation of G is

πi(τ ) = τi

i−1∏
j=1

(1− τj) and G =

∞∑
i=1

πi(τ )δη∗i . (3)

It is clear that G is a discrete distribution whose mixing proportions πi(τ ) are
given by successively breaking a unit length stick into an infinite number of
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pieces. The size of each successive piece is proportional to the rest of the stick
and is given by an independent draw from a beta distribution Be(1, α). Let
zn be the cluster assignment variable of the n-th data point. The hierarchical
model of a Dirichlet process mixture model can be represented as follows

(i) τi | α ∼ Be(1, α), i = 1, 2, ...

(ii) η∗i | G0 ∼ G0, i = 1, 2, ...

(iii) for the n-th data point

(a) zn | τ is distributed according to a multinomial distribution, i.e., zn | τ ∼
Mult(π(τ )) with τ = τ1, τ2, . . .

(b) xn | zn ∼ p(xn | η∗zn)

3. Non-parametric Bayesian Joint Parcellation Detection Estimation
Model

3.1. Notation

In this paper, a vector is by convention a column vector. The transpose is
denoted by t. Matrices and vectors are denoted with bold capital and lower-case
letters (e.g., X and z). We use letters j,m as indexes that run over voxels and
experimental conditions, respectively.

3.2. Observation model

The proposed NP-JPDE model considers the observation model used in the
JPDE framework proposed in (Chaari et al., 2012, 2015). The JPDE model is
the extension of the parcel-based JDE model developed in (Makni et al., 2008;
Vincent et al., 2010) to a whole-brain or a large brain area. We start by recasting
the NP-JPDE model. Let P be the set of voxels of interest within the brain
mask or the mask of the region of interest (ROI) under study. At voxel j, the
fMRI time series yj is measured at times {tn, n = 1, ..., N}, where tn = nTR,
N being the number of scans and TR the time of repetition. The number of
different stimulus types or experimental conditions is M . The observed data
Y = {yj ∈ RN , j ∈ P} is linked to the unknown voxel-dependent HRFs H =
{hj , j ∈ P} and the unknown response amplitudes A = {am,m = 1, . . . ,M}
via a unique BOLD signal model. More precisely, the observation model at
each voxel j ∈ P can be expressed as

yj =

M∑
m=1

amj Xmhj + P`j + bj (4)

where amj is the amplitude at voxel j for the m-th experimental condition with

am =
{
amj , j ∈ P

}
. The amj ’s are generally referred to as neural response

levels (NRL). Each NRL is assumed to be in one of I groups specified by latent
activation class assignment variables Q = {qm,m = 1, . . . ,M} where qm ={
qmj , j ∈ P

}
and qmj ∈ {1, ..., I} represents the activation class at voxel j for

the m-th experimental condition. Two classes are considered here (I = 2) where
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i = 0 and i = 1 refer to non-activated and activated voxels, respectively. The
binary matrixXm = {xn−d∆t

m , n = 1, . . . , N, d = 0, . . . , D−1} is a known binary
matrix of size N × D that provides information on the stimulus occurrences
for the m-th experimental condition, where ∆t ≤ TR is the sampling period
of the unknown HRFs. The voxel-dependent HRF is denoted as hj ∈ RD.
Each hj is associated with an HRF group. However, the NP-JPDE model does
not require to a priori set the optimum number of parcels as in the JPDE
model where this number is fixed a priori. Similarly to the activation groups,
these HRF groups are specified by a set of latent labels z = {zj , j ∈ P} where
zj ∈ {1, 2, ...} and zj = k means that the voxel j belongs to the k-th HRF
group. An estimation of z corresponds to a partition of the domain into K
hemodynamic territories whose connected components define a parcellation of
the brain or of the considered ROI. Following the stick breaking representation
of DP, the mixing proportions of these HRF groups are specified by their stick
lengths τ = τ1, τ2, . . . . Finally, the rest of the signal is made of the vector P`j ,
which corresponds to low frequency drifts where P is an N×O matrix, `j ∈ RO
is a vector to be estimated and L = {`j , j ∈ P}. Regarding the observation
noise, the bj ’s are assumed to be independent, zero-mean Gaussian vectors with
precision matrix Γj . The set of all unknown precision matrices is denoted by
Γ = {Γj , j ∈ P}.

3.3. Hierarchical Bayesian model
Adopting a Bayesian formulation for the NP-JPDE model, the joint distri-

bution of the variables Y ,A,H,Q, z and τ is defined as follows

p(Y ,A,H,Q,z, τ ; Θ) =p(Y |A,H; Θ) p(A |Q; Θ) p(Q; Θ)p(H |z; Θ) p(z|τ ; Θ) p(τ ; Θ)
(5)

where Θ is the set of all parameters which will be defined later. More details
about the right-hand side term of (5) are provided below.

(a) Likelihood
An autoregressive (AR) noise model has been adopted to account for serial

correlation in fMRI time series akin to (Makni et al., 2008; Woolrich et al.,
2001; Chaari et al., 2011, 2012, 2015). Following this model, the covariance
matrix at voxel #j is denoted as Γj = σ−2

j Λj where Λj is a tridiagonal

symmetric matrix whose components depend on the AR(1) parameter ρj .
Using the notation θ0 = (σ2

j , ρj)1≤j≤J and yj = yj − P`j − Sjhj with

Sj =
M∑
m=1

amj Xm, the likelihood factorizes over voxels as follows

p(Y |A,H;θ0) ∝
J∏
j=1

[√
det Λj

σNj

]
exp

(
−
yt
jΛjyj
2σ2

j

)
. (6)

(b) Neural response levels
The NRLs are assumed to be statistically independent across conditions, i.e.,

p
(
A; θ{1:M}

)
=

M∏
m=1

p(am;θm) (7)
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where θm gathers the parameters for the m-th condition. A mixture model
is then adopted by using the latent allocation variables qmj to discriminate
between non-activated voxels (qmj = 0) and activated ones (qmj = 1). For
the m-th condition, and conditionally to the assignment variables qm, the
NRLs are assumed to be independent, i.e.,

p(am | qm;θm) =
∏
j∈P

p(amj | qmj ;µm,vm) (8)

with p(amj | qmj = i;θm) ∼ N (µmi, vmi). All the means and variances of
the response amplitudes are gathered in the two unknown vectors µ =
{µmi,m = 1, . . . ,M, i = 0, 1} and v = {vmi,m = 1, . . . ,M, i = 0, 1}, re-
spectively. Note that for non-activating voxels (i = 0) we have set µm0 =0
for all m = 1, . . . ,M . The other parameters are unknown and will be esti-
mated.

(c) Activation classes
As in (Vincent et al., 2010), the M experimental conditions are assumed
to be independent a priori regarding the activation class assignments, i.e.,

p(Q)=
∏M
m=1 p(q

m;βm) with p(qm;βm) a Markov random field prior, namely
a Potts model with a positive interaction parameter βm that controls the
spatial regularization. This parameter is different from one stimulus type
to another and will be estimated. The Potts models prior reads

p(qm;βm) = W (βm)−1 exp
(
βmU(qm)

)
(9)

where U(qm) =
∑
j∼l I(qmj = qml ), W (βm) is a normalizing constant and I

is an indicator function such that I(a = b) = 1 if a = b and 0 otherwise.
The notation j ∼ l means that the sum ranges over all neighboring voxels.
Moreover, the neighboring system is a 6-connexity 3D scheme. This Markov
random field prior accounts for the spatial correlation of the activity, which
is one of the physiological properties of the fMRI signal (Vincent et al.,
2010).

(d) HRF patterns
The voxel-dependent HRF hj is expressed coniditonally to the HRF group
variable zj following the JPDE model

p(H|z) =
∏
j∈P

p(hj | zj) (10)

with p(hj | zj = k) ∼ N (h̄k, Σ̄k) where h̄k denotes the mean HRF pattern
of group #k, while Σ̄k = νID adjusts the stochastic perturbations around
h̄k via the value of the hyperparameter ν. The HRF pattern is a priori
assigned a zero mean Gaussian distribution h̄k ∼ N (0, σ2

hR) to ensure its
smoothness, with R = (∆t)4 (Dt

2D2)−1 , where D2 is the second-order
finite difference matrix and σ2

h is a parameter to be estimated or fixed.
Moreover, h̄k0 = h̄kD∆t = 0 as in (Makni et al., 2008; Vincent et al., 2010;
Chaari et al., 2011). Hence, h̄k ∈ RD−1.
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(e) HRF groups
Following the line of DPMM, we address the issue of automatically selecting
the number of parcels by considering a countable infinite number of parcels.
This requires the extension of the standard finite state space Potts model
to a countable infinite number of states in which we use a DP prior on the
z variable in the JPDE formulation. Our proposal differs from the one in
(Chatzis and Tsechpenakis, 2010) in that it is not a mean field approxi-
mation by a set of independent variables but a direct generalization of the
Potts model that uses a stick breaking representation. The stick breaking
representation is used to allow for the representation of an infinite number
of states. For such a generalization, we need to consider the Potts model
with an external field defined over z = {z1, . . . , zJ} for all j = 1, . . . , J ,
zj ∈ {1, . . . ,K} such that

p(z;βz,α) ∝ exp

(
J∑
j=1

αzj + βz
∑
i∼j

I(zi = zj)

)
, (11)

where βz is an interaction parameter and α is a parameter vector such that
α = {α1, . . . , αK} represents an additional external field parameter where
each αk is scalar. Such a Potts model is defined up to a multiplicative
constant depending on α, meaning that the distribution (11) can be also
obtained when adding the same constant value to all the αk’s. To avoid
such an identifiability issue, it is common to consider additional constraints
on the αk’s. One way to make the parameter vector α unique is to asssume

αk = log πk with
∑K
k=1 πk = 1. The Potts model in (11) then rereads

p(z;βz,π) ∝ exp

(
J∑
j=1

log πzj + βz
∑
i∼j

I(zi = zj)

)

∝

(
J∏
j=1

πzj

)
exp

(
βz
∑
i∼j

I(zi = zj)

)
. (12)

Define V (z;π, βz) =
∑J
j=1 log πzj + βz

∑
i∼j I(zi = zj), which is called the

energy function, where the first and the second sum respectively represents
the first and the second order potentials. In the finite state space case, such
a representation is equivalent, via the Hammersley-Clifford theorem (Besag,
1974), to assume that the distribution in (11) is a Markov random field.

Using the stick breaking construction, we can then consider a countable
infinite number of probabilities πk that sum to 1, i.e.,

∑∞
k=1 πk = 1. From

this, we can define the same energy function V as before but consider it
over an infinite countable set (homogeneous to the set of positive integers),

V (z;π, βz) =

J∑
j=1

log πzj + βz
∑
i∼j

I(zi = zj)

for zj ∈ {1, 2, . . .}. Next, using the Gibbs representation p(z) ∝ exp(V (z;π, βz)),
the Hammersley-Clifford theorem still holds if

∑
z exp(V (z;π, βz)) < ∞.
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Our choice of π ensures this property. Indeed,

∑
z

exp(V (z;π, βz)) =
∑
z

(
J∏
j=1

πzj

)
exp

(
βz
∑
i∼j

I(zi = zj)

)

< exp (βzJ(J − 1))
∑
z

J∏
j=1

πzj

< exp (βzJ(J − 1)) <∞

where J(J − 1) is the maximum number of neighbors among J sites. We
also used that for all j = 1, . . . , J ,

∑
zj
πzj =

∑∞
k=1 πk = 1. It follows

that p(z;π, βz), in the infinite state space case, is still a valid probability
distribution and is a Markov field by the Hammersley-Clifford theorem.
Note that such a generalization of the Potts model is possible because of
the presence of the external field parameters πk that satisfy

∑∞
k=1 πk = 1.

A Potts model with equal external field parameters cannot be as simply
extended to an infinite countable state space. For a Potts model with no
external field, such an extension is not possible because in the K-state case
this Potts model is equivalent to πk = 1/K for all k where their sum does
not tend to 1 when K tends to infinity. In the stick breaking setting, we

then consider πk(τ ) = τk
∏k−1
l=1 (1− τl) and

p(z;βz, τ ) ∝

(
J∏
j=1

πzj (τ )

)
exp

(
βz
∑
i∼j

I(zi = zj)

)
. (13)

Such a construction is valid for any set of parameters τ = {τk}∞k=1 with
each τk ∈ [0, 1].

(f) Stick lengths
Following (13) would leave us with an infinite number of parameters τk
to estimate. The Bayesian point of view solves this problem by assuming
that all τk’s are i.i.d. variables following the same Be(1, α) distribution
so that the number of parameters to estimate is now reduced to a single
parameter α. The stick lengths are a priori assigned a beta distribution
with parameters 1 and α, i.e.,

p(τk | α) ∼ Be(1, α) for k = 1, 2, . . . . (14)

The scaling parameter α may have a significant effect on the growth of the
number of parcels. Following (Blei et al., 2006), a gamma prior is placed
over α with parameters s1 and s2, i.e., α ∼ gamma(s1, s2) where α, s1 and
s2 will be estimated.

The extension of JPDE model to an infinite number of parcels therefore consists
of augmenting the original JPDE formulation with additional variables {τk}∞k=1

and of considering the following hierarchical construction that yields the NP-
JPDE model

(i) p(τk | α) ∼ Be(1, α), k = 1, 2, ...
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(ii) (Θ∗k = (h̄k, Σ̄k) | G0) ∼ G0, k = 1, 2, ... where G0 = N (0, σ2
hR)⊗ δνI

(iii) p(z|τ ;βz) ∝ (
∏J
j=1 πzj (τ )) exp(βz

∑
i∼j I(zi = zj))

(iv) hj | zj ∼ p(hj |Θ∗zj ), where p(hj |Θ∗k) = N (hj ; h̄k, Σ̄k) is a Gaussian distribution

whose parameters h̄k, Σ̄k are associated with the k-th parcel1.

where Θ =
{
Γ,L,θa, βz, σ

2
h, (h̄k)1≤k≤K , ν, α

}
. The probabilities p(τ ) =

∏∞
k=1 p(τk)

and p(z|τ ) are defined in steps (i) and (iii), respectively.
Fig. 1 illustrates the hierarchical model of the NP-JPDE model.

Figure 1: Graphical model describing dependencies between observed and latent variables
involved in the NP-JPDE generative model for a given region of interest with J voxels. Ob-
served variables are shaded in grey. J andM refer to the voxel and stimulus levels, respectively.

4. Variational Expectation Maximization Algorithm

Different inference strategies can be used to estimate the missing variables
A,H,Q, z and τ in addition to the parameters Θ from the posterior
p(A,H,Q, z, τ | Y ; Θ) associated with (5). Due to the computational com-
plexity of MCMC methods, we here use a VEM algorithm to derive an ap-
proximation of the true posterior distribution p(A,H,Q, z, τ | Y ; Θ) of the
form

p̃(A,H,Q,z, τ ; Θ) = p̃A(A) p̃H(H)

J∏
j=1

p̃Qj (Qj)
J∏
j=1

p̃zj (zj) p̃τ (τ ). (15)

In the variational distribution above, the approximations
∏J
j=1 p̃Qj (Qj) and∏J

j=1 p̃zj (zj) are sought in a form that factorizes over voxels (mean field) to

1The other distributions defining the model remain the same as in the standard JPDE
model. Note that in the extended version above we assume νk = ν for all k to define G0.
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handle intractability due to the spatial neighborhood. Following (Blei et al.,
2006), the infinite state space for z is dealt with by considering a truncation to a
number K which consists of assuming that the variational distribution satisfies

p̃zj (k) = 0 for k > K and p̃τ (τ ) =
∏K−1
k=1 p̃τk(τk). This amounts to setting

τk = 1 for k ≥ K or p̃τk(τk) = δ1(τk). It is worth noticing that in this case the
Dirichlet process is still full and not truncated. Moreover, the truncation level is
freely adjusted without being a part of the prior model specification (Blei et al.,
2006).
The VEM approach requires five steps associated with five expectations referred
to as: VE-H, VE-A, VE-Q, VE-Z and VE-τ . The resulting E-steps can be
written as

VE-H: p̃
(r)
H (H) ∝ exp

(
E
p̃
(r−1)
A

p̃
(r−1)
z

[
log p(H |Y ,A,z; Θ(r−1)]) (16)

VE-A: p̃
(r)
A (A) ∝ exp

(
E
p̃
(r)
H
p̃
(r−1)
Q

[
log p(A |Y ,H,Q; Θ(r−1))

])
(17)

VE-Q: p̃
(r)
Q (Q) ∝ exp

(
E
p̃
(r)
A

[
log p(Q |Y ,A; Θ(r−1))

])
(18)

VE-τ : p̃(r)
z (τ ) ∝ exp

(
E
p̃
(r)
z

[
log p(τ |Y ,z; Θ(r−1))

])
(19)

VE-Z: p̃(r)
z (z) ∝ exp

(
E
p̃
(r)
H
p̃
(r)
τ

[
log p(z |Y ,H, τ ; Θ(r−1))

])
. (20)

Compared to the standard JPDE model, the new steps are the VE-Z and VE-τ
steps which are detailed below. To make the paper self-contained, more details
about the other expectation steps are provided in Appendix A.

• VE-τ step This step is straightforwardly driven from results on varia-
tional approximation in the exponential family. Given (3) and for k =
1, . . . ,K − 1,

p̃τk (τk) ∝ p(τk) exp

(
J∑
j=1

Ep̃zj p̃τ\{k}
[
log πzj (τ )

])
(21)

∝ p(τk) exp

(
J∑
j=1

K∑
l=k+1

p̃zj (l) log(1− τk) +

J∑
j=1

p̃zj (k) log(τk)

)
(22)

∝ Be(γk,1, γk,2) (23)

with

γk,1 = 1 +

J∑
j=1

p̃zj (k) and γk,2 = α+

J∑
j=1

K∑
l=k+1

p̃zj (l). (24)

• VE-Z step This step is divided into J VE-Zj steps. Since we assume
p̃zj (zj) = 0 for zj > K, we only need to compute the distributions for
zj ≤ K,

p̃zj (zj) ∝ exp

(
Ep̃Hj

[
log p(hj |zj)

]
+ Ep̃τ

[
log πzj (τ )

]
+ βz

∑
i∼j

p̃zi(zj)

)
(25)

where

Ep̃τ
[
log πk(τ )

]
= Ep̃τk

[
log τk

]
+

k−1∑
l=1

Ep̃τl

[
log(1− τl)

]
. (26)
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The expectations above can be computed using the fact that p̃τk is a beta
distribution, i.e., Be(γk,1, γk,2) defined by (24)

Ep̃τk

[
log(τk)

]
= Ψ(γk,1)−Ψ(γk,1 + γk,2) (27)

Ep̃τk

[
log(1− τk)

]
= Ψ(γk,2)−Ψ(γk,1 + γk,2) (28)

where Ψ(.) is the digamma function defined by

Ψ(z) = d
dz

log Γ(z) = Γ′(z)
Γ(z)

.

The term Ep̃Hj
[
log p(hj |zj)

]
is computed as

Ep̃Hj

[
log p(hj |zj)

]
∝ N (mHj ; h̄k, Σ̄k). (29)

wheremHj is the mean of the voxel-dependent HRF obtained in the VE-H
step (see Appendix A(i)).

• VM step The maximization step in this extended NP-JPDE is different
when compared to the one of the JPDE model in (Chaari et al., 2015).
As a consequence of the added hierarchical terms, it can be rewritten as

Θ(r) = arg max
Θ

{ E
p̃
(r)
A
p̃
(r)
H

[
log p(Y |A,h;L,Γ)

]
+ E

p̃
(r)
A
p̃
(r)
Q

[
log p(A |Q;µ,v)

]
+ E

p̃
(r)
H
p̃
(r)
z

[
log p(h|z; {h̄k, Σ̄k}k=1:K

]
+ E

p̃
(r)
Q

[
log p(Q;β)

]
+ E

p̃
(r)
z p̃

(r)
τ

[
log p(z | τ ;βz)

]
+ E

p̃
(r)
τ

[
log p(τ ;α)

]
}. (30)

The two new maximization steps of the NP-JPDE model when compared
to the JPDE one are associated with the parameters α and βz. Maximizing
(30) with respect to α leads to

α(r) = arg max
α

E
p̃
(r)
τ

[
log p(τ ;α)

]
(31)

where a gamma prior is placed over the scaling parameter α with param-
eters (ŝ1, ŝ2). The gamma distribution is conjugate to the stick lengths
and the parameters ŝ1 and ŝ2 are given by

ŝ1 = s1 +K − 1 and ŝ2 = s2 −
K−1∑
k=1

Ep̃τk

[
log(1− τk)

]
. (32)

After computing these parameters, we replace α in (24) with its expecta-
tion Eq

[
α
]

= ŝ1
ŝ2

.

Maximizing (30) with respect to βz leads to

β(r)
z = arg max

βz

E
p̃
(r)
z p̃

(r)
τ

[
log p(z|τ ;βz)

]
. (33)

This step does not admit an explicit closed-form expression but can be
solved numerically using gradient ascent schemes. This solution is compu-
tationally expensive. For this reason, the experiments considered hereafter
were conducted with a fixed value of βz adjusted using cross validation.
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5. Validation

The NP-JPDE model was validated using synthetic and real data experi-
ments via appropriate comparisons to assess its performance2. These experi-
ments are described in this section.

5.1. Synthetic fMRI time series

First, the proposed non-parametric Bayesian algorithm is compared with
the strategy adopted in (Albughdadi et al., 2014) which consists of selecting the
model that provides the highest free energy. In a second step, the performance
of the NP-JPDE model is assessed for large grid size and number of parcels in
the ROI under study. The final part is dedicated to highlight the difference
between the automatic hemodynamic brain parcellation provided by the NP-
JPDE model and other parcellation techniques from the literature.

• NP-JPDE model validation and comparison with other hemo-
dynamic parcellation algorithms (JPDE model)
To validate the NP-JPDE model, three different synthetic experiments

referred to as Exps 1-3 were conducted. Different parcellation masks were
used in each experiment to generate BOLD signal according to (4). Two
experimental conditions (M = 2) were considered with 30 trials for each
of them. The reference activation labels are shown in Fig. 2(q1 and
q2). Using Pyhrf, the NRLs were drawn according to their prior dis-

q1 q2 a1 a2

Figure 2: Reference activation labels and NRLs for the two experimental conditions (grid
size = 20× 20).

tribution conditionally to the activation labels Q of Fig. 2. Given these
20 × 20 binary labels, the NRLs were simulated as follows, for m = 0, 1:
amj | qmj = 0 ∼ N (0, 0.5) and amj | qmj = 1 ∼ N (3.2, 0.5) (Fig. 2(a1 and

a2)). The onsets of these trials were randomly generated with a mean
inter stimuli interval of 3 s and a variance of 5 s. The fMRI time series
yj were then generated according to (4) using ∆t = 0.5 and TR = 1
s. As a ground truth for the parcellation, different HRFs groups were
considered, each with Kω = ω + 1 parcels where ω ∈ {1, . . . , 3}. The

2These experiments were implemented in Python within the framework offered by the
Pyhrf software (Vincent et al., 2014), see also http://pyhrf.org.
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HRFs associated with these groups were selected from the ground truth
HRFs (h̄k)K

ω

k=1 shown in Fig. 3. Reference parcellations for the three

Figure 3: Ground truth HRF shapes (h̄k, k = 1, . . . ,Kω with ω = {1, . . . , 3}) used for
generating synthetic fMRI time series.

Exp 1 Exp 2 Exp 3
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Figure 4: Ground truth parcellations used for the 3 experiments and corresponding initial-
ization masks (only used for the original version of the JPDE approach) (grid size = 20× 20).

experiments are displayed in Fig. 4. These reference parcellations were
chosen with different cardinalities and overlap with activation areas in
order to investigate the robustness of the NP-JPDE model to the total
amount of evoked activity in each parcel. Indeed, from a statistical point
of view, the estimation of parcels involving a large amount of activated
voxels should be more accurate than the estimation of parcels overlapping
only a few activated voxels. Importantly, to mimic a real scenario in all
experiments, we set the percentage of the activated voxels to be approxi-
mately 53% of the total number of voxels (this percentage was calculated
by performing a bitwise OR between the reference activation binary labels
of the two experimental conditions Fig. 2). Tab. 1 reports for each experi-
ment the percentage of activated voxels in each parcel of the ground truth.
These synthetic fMRI time series were then processed by the JPDE and
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Table 1: Percentage of activated voxels in each parcel of the ground truth parcellations for
the three experiments. The parcels indexes are shown in Fig. 4

# Parcel Exp 1 Exp 2 Exp 3

1 66.7% 22.2% 19.5%
2 33.3% 44.5% 44.5%
3 − 33.3% 33.3%
4 − − 2.7%

NP-JPDE models. Results obtained with the two models were compared
especially in terms of model selection. When using the original JPDE,
three competing models Kω = ω + 1 where ω ∈ {1, . . . , 3} were run and
their corresponding free energy values were computed following the pro-
posed model selection procedure in (Albughdadi et al., 2014). As regards
the NP-JPDE, it is worth noting that we do not need to specify any
specific initialization. Hence, the latter was done randomly in contrast to
the shown initializations for the original JPDE reported in Fig. 4[bottom].
The NP-JPDE model only requires to set the maximum number of parcels
K (truncation level) for the variational approximation. This number was
set to K = 20 for the three experiments, while the Potts parameter βz was
fixed to 1.2 for the spatial regularity of the parcellation 3. The parame-
ter βm for activation classes which corresponds to the m-th experimental
condition is estimated in the maximization step (as in Appendix A(v)).
The prior values over the scaling parameter α of the DPMM were set to
ŝ1 = 20, ŝ2 = 5 to be estimated in the VEM algorithm. The estimated
parcellations obtained by the two JPDE versions are shown in Fig. 5.
This figure shows accurate parcellation estimates from a visual point of
view. A comparison with the ground truth allows one to conclude that
the proposed NP-JPDE algorithm recovers accurate parcels especially for
activated parcels. Quantitative evaluation of the parcellation estimates is
provided in Tab. 2 where the error rate with respect to the ground truth is
given. First, one can notice the small error probabilities for both models
in all experiments. Furthermore, the NP-JPDE outperforms the original
JPDE seen in the error reported for experiments 2 and 3. This remark cor-
roborates the better visual performance of the proposed NP-JPDE model.
To investigate more deeply the robustness of the parcellation estimation
using the NP-JPDE model, the confusion matrix for each of the three ex-
periments was computed and shown in Tabs. 3-5. We observed that the
proposed NP-JPDE is highly accurate regarding the parcellation estima-
tion step as the overlap between the reference and estimate for each parcel
is larger than 95% in all experiments.

In order to further investigate the robustness of the proposed model, Tab. 6
provides the mean square errors (MSEs) for the NRLs and activation la-

3This value of βz was adjusted by cross validation.
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Figure 5: Parcellation estimates for the three experiments using the original JPDE and
NP-JPDE (grid size = 20× 20).

Table 2: Error probabilities on the parcellation estimates using the original JPDE and the
NP-JPDE algorithms.

Model Exp 1 Exp 2 Exp 3

NP-JPDE 1.5% 0.25% 1.5%
JPDE 1.5% 2.75% 3.25%

Table 3: Confusion matrix for Exp 1. (NP-JPDE model). RP and EP refer to the reference
and the estimated parcellations, respectively.

PPPPPPPEP
RP

Parcel 1 Parcel 2

Parcel 1 1.0 0.046
Parcel 2 0.0 0.954

Table 4: Confusion matrix for Exp 2. (NP-JPDE model). RP and EP refer to the reference
and the estimated parcellations, respectively.

PPPPPPPEP
RP

Parcel 1 Parcel 2 Parcel 3

Parcel 1 1.0 0.0 0.008
Parcel 2 0.0 1.0 0.0
Parcel 3 0.0 0.0 0.992
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Table 5: Confusion matrix for Exp 3. (NP-JPDE model). RP and EP refer to the reference
and the estimated parcellations, respectively.

PPPPPPPEP
RP

Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 1.0 0.013 0.0 0.0
Parcel 2 0.00 0.961 0.0 0.0
Parcel 3 0.0 0.0 1.0 0.023
Parcel 4 0.0 0.026 0.0 0.977

bels associated with the JPDE and NP-JPDE models. These results cor-

Table 6: MSEs of NRL estimates and activation labels for the JPDE and NP-JPDE models.

Exp 1 Exp 2 Exp 3
JPDE NP-JPDE JPDE NP-JPDE JPDE NP-JPDE

NRLs
m = 1 0.016 0.007 0.017 0.008 0.017 0.008
m = 2 0.012 0.006 0.012 0.006 0.012 0.006

Labels
m = 1 0.003 0.004 0.011 0.003 0.011 0.003
m = 2 0.003 0.003 0.003 0.002 0.003 0.003

roborate the fact that the NP-JPDE model ensures precise estimation of
the NRLs for both experimental conditions and outperforms the classi-
cal JPDE version. The construction of the parcellation for the NP-JPDE
model has therefore very little impact on the NRL estimates and the de-
tection task. Next, we investigated the accuracy of the estimation task by
looking at the HRF estimates using the NP-JPDE model as reported in
Fig. 6. A comparison between the reference and estimated HRF shapes
shows that the NP-JPDE model is able to recover precise hemodynamics
profiles and they are close to the HRF estimates of the original JPDE
version (shown in the same figure).

Last, we studied the convergence of the number of parcels over iterations
within the NP-JPDE. To this end, we present in Fig. 7 the parcellation
estimate for Exp 2 along different iterations until convergence. Starting
with a random initialization, this figure shows that after about 7 itera-
tions all the main parcels are well established. Furthermore, for the same
experiment, fifty runs of the VEM algorithm using different random ini-
tializations were performed and the subsequent box plot graph was drawn
to investigate the sensitivity of the NP-JPDE model to this setting. Fig. 8
shows the evolution of the number of parcels over iterations for the fifty
runs. It appears first that all the parcels were present after the first few
iterations. Second, this number decreased through the iterations. Fi-
nally, we investigated the computational load. For doing so, we computed
the running time for the standard JPDE framework by accumlating all
elapsed times required for assessing the free energy associated with each
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(a) Exp 1 (b) Exp 2

(c) Exp 3

Figure 6: HRF estimates for the three experiments using JPDE and NP-JPDE models.

candidate model, as done in (Albughdadi et al., 2014). Using a machine
with 8 cores, each corresponding to an Intel® Xeon(R) CPU E3-1240 v3
chipset clocking at 3.40GHz processor and 16 GB of RAM, the four in-
vestigated models in the classical JPDE framework run in about 35 mins
whereas for the NP-JPDE model it takes less than 9 mins. Thus, the
computational cost of the NP-JPDE model is reduced when compared to
free energy calculations of many candidate models.

Initial Iter. 2 Iter. 4 Iter. 7 Iter. 11 Iter. 37

Figure 7: Parcellation estimates for Exp 2 using the NP-JPDE model along successive
iterations (grid size = 20× 20).

• Case study: The NP-JPDE model for a large grid size and more
parcels
Exp 4 was conducted using synthetic BOLD fMRI time series for a grid
size of 200×200 with 11 parcels. The generated synthetic data was tested
using the NP-JPDE model with the same experimental setup described
in Section 5.1. The estimated parcellation using the NP-JPDE model
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Figure 8: Boxplot for fifty different runs of Exp 2 using the NP-JPDE model showing the
convergence of the parcellation up to 30 iterations. The convergence is achieved from iteration
16.

is shown in Fig. 9 along with the ground truth parcellation. The error
probability of parcellation was 1.6%. As regards the HRF profiles of the
estimated parcels, they are shown in Fig. 10 along with their ground truths
where we can see a good match between the estimates and references.
Moreover, it is interesting to note that even the HRFs of parcel 5, 6
and 8, 11 have similar characteristics, the NP-JPDE model is still able
to discriminate them. The time to peak (TTP) and full width at half
maximum (FWHM) values of the ground truth and estimated HRFs are
summarized in Tab 7. These results confirm that the NP-JPDE model is
still reliable for larger number of parcels and grid size.

(a) Ground truth (b) Estimated par-
cellation

Figure 9: Parcellation estimates obtained using the NP-JPDE model for a syn-
thetic fMRI BOLD time series with 11 parcels (grid size = 200× 200).

• Comparison with other parcellation methods
Finally, we use the synthetic data of Exp 2 to compare the hemodynamic
parcellation obtained using the NP-JPDE model with other parcellation
approaches as the K-means and Ward’s algorithms (Thirion et al., 2014;
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Figure 10: HRF estimates obtained using the NP-JPDE model for a synthetic
fMRI BOLD time series with 11 parcels (Exp 4).

Table 7: Computed TTP and FWHM for the ground truth and estimated HRFs of the
parcels in Exp 4 where the identical values are in bold font.

HRF
Ground truth Estimated

HRF
Ground truth Estimated

TTP FWHM TTP FWHM TTP FWHM TTP FWHM

HRF 1 2.0 5.5 2.0 5.5 HRF 7 10.0 7.0 10.0 6.5
HRF 2 5.0 6.0 5.0 6.0 HRF 8 11.0 7.5 10.5 7.5
HRF 3 6.0 7.0 6.0 7.0 HRF 9 12.0 7.5 11.5 7.5
HRF 4 8.0 8.5 8.0 8.5 HRF 10 9.5 7.5 9.5 7.5
HRF 5 4.0 9.0 3.5 9.0 HRF 11 11.0 7.0 11.0 7.5
HRF 6 5.0 9.5 5.5 9.5
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Ward and Joe, 1963). The parcellation results of these algorithms are
shown in Fig. 11. It is clear that both algorithms are not able to detect
the three hemodynamic territories in the ground truth (Fig 4[middle-top]).
Moreover, the estimated parcellations are also affected by the activation
labels of the two experimental conditions. This observation confirms that
the standard parcellation techniques can be easily influenced by the BOLD
signal level in the activated area.

K=3 K=5 K=7

K
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s
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Figure 11: Parcellation estimates obtained using the K-means and Ward’s algorithms with
3, 5 and 7 parcels for the synthetic BOLD time series of Exp 2.

5.2. Real data

Two experiments were conducted on real fMRI data to validate the pro-
posed NP-JPDE model with two regions of interest (ROI) under consideration.
Exp 7 and Exp 8 focused on the right motor and bilateral occipital ROIs, re-
spectively. These ROIs are shown in Fig. 12 and were defined from the sta-
tistical results of a standard subject-level GLM analysis of fMRI data. More
precisely, Student−t maps associated with the two contrasts of interest, namely
(Left Click - Right Click) and (Visual stimuli - Auditory stimuli),
were thresholded at p = 0.05, corrected for multiple comparisons according to
the FWER criterion, see (Badillo et al., 2013b; Chaari et al., 2014) for details.
The fMRI data were collected using a gradient-echo EPI sequence (TE = 30
ms/TR = 2.4s/thickness = 3 mm/FOV = 192×192 mm2, matrix size: 96×96)
at a 3 Tesla during a localizer experiment (Pinel et al., 2007). Sixty auditory,
visual and motor stimuli were involved in the paradigm and defined in ten ex-
perimental conditions (M = 10) (see (Badillo et al., 2013b; Chaari et al., 2014)
for details). During this paradigm, N = 128 scans were acquired. For both
experiments, we considered the truncation level K = 20, the parameter of the
HMRF βz was empirically set to 1.8 and the parameters of the gamma prior for
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(a) Right motor ROI (b) Bilateral occipital ROI

Figure 12: Anatomical localization of brain regions. On top, the ROI is located in the
right motor cortex and consists of a single connected component. At the bottom, the ROI is
located in the primary visual cortex and made up of two connected components, one in each
hemisphere.

the scaling parameter α were set to ŝ1 = 20, ŝ2 = 5.4

In Exp 5, two parcels were estimated in the right motor cortex. Different slices
of the estimated parcellation are shown in Fig. 13. The HRF shape estimates

(a) Slice. 1 (b) Slice. 2

Figure 13: Consecutive slices of the estimated parcellation located in the right motor cortex.

are shown in Fig. 14(a) along with the canonical HRF and the HRF estimated
with the JDE model. These HRF estimates have the same value of the time
to peak (TTP) and the full width at half maximum (FWHM): TTP = 4.8 s
and FWHM = 4.2 s. As regards the HRF obtained with JDE, the TTP and
FWHM values are 4.8 s and 3.6 s, respectively. We notice that both models
recover the same TTP whereas the JDE yields a slightly narrower HRF (lower
FWHM). The Euclidean distances between the HRF estimates themselves and
the canonical HRF are reported in Tab. 8 indicate that the NP-JPDE model
provides closer HRF estimates to the canonical one (average Euclidean distance
of 0.4) compared to the JDE model (average Euclidean distance of 0.43). In this
sense, the NP-JPDE model provides more coherent results than the JDE one
in terms of closeness of the HRF estimates to the canonical shape in the motor
cortex as it has already been shown in the literature (Badillo et al., 2013b). As
regards the NRL estimates, the focus of the experiment is on the left and right
click visual and auditory experimental conditions which are expected to elicit
evoked activity in the right motor cortex. Taking the left and right auditory
experimental conditions as an example, Fig 15 shows the NRL estimates using
the NP-JPDE and JDE models (with respect to the left and right auditory ex-

4These parameters were determined empirically by cross validation.
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(a) Exp 6 (b) Exp 7

Figure 14: HRF shape estimates using the NP-JPDE and JDE models in the right motor
cortex (a) and the bilateral occipital cortex (b) along with the canonical HRF.

Table 8: Euclidean distance between the HRF estimates in the right motor cortex and the
canonical HRF. Distance between the individual NP-JPDE HRF estimates are also provided.

HRF 1 HRF 2 JDE

Canonical HRF 0.37 0.43 0.43
HRF 2 0.30 − −

perimental conditions) and the computed contrast (auditory left click-auditory
right click). These results confirm the coherence between the NRL estimates
obtained with the JDE and NP-JPDE models, especially in terms of maximum
activation location and amplitude values.

The NP-JPDE was also run for Exp 6 on the bilateral occipital cortex.
Four parcels were detected as shown in Fig. 16. The corresponding HRF shape
estimates for these parcels are shown in Fig. 14(b). These HRF estimates are
displayed along with the canonical HRF and the one estimated using the JDE
model. The computed TTP for the HRF profiles of parcels 1, 2 and 4 is TTP =
5.4 s, while for parcel 3 we have TTP = 6.0 s. The FWHM was also computed
and is equal to 4.2 s for parcels 1 and 4, and to 4.8 s for parcels 2 and 3. As
regards the HRF estimated using the JDE model, we have TTP = 5.4 s and
FWHM = 4.2 s. Moreover, Tab. 9 reports the computed Euclidean distances
between the different HRF estimates and the canonical HRF. It also reports the
same distance between the individual NP-JPDE HRF estimates. The reported
distances indicate that the NP-JPDE model provides closer HRF estimates to
the canonical shape with average Euclidean distance of 0.42. More interestingly,
it is clear that the NP-JPDE model is able to discriminate between parcels that
have very close HRFs in terms of Euclidean distance, namely those of parcels 1
and 2. Indeed, these two parcels have similar TTPs, but different FWHM values.
They are therefore detected as different parcels by the NP-JPDE model.

Fig. 17 shows the NRL estimates for some of the experimental conditions
which are supposed to induce evoked activity in the bilateral occipital cortex
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(a) Auditory left click (NP-JPDE) (b) Auditory left click (JDE)

(c) Auditory right click (NP-JPDE) (d) Auditory right click (JDE)

(e) Left click-Right click contrast (NP-JPDE) (f) Left click-Right click contrast (JDE)

Figure 15: NRL estimates for the auditory left and right click experimental conditions and
their computed contrast (left click-right click) using NP-JPDE and JDE models.

(a) Slice.1 (b) Slice.2

Figure 16: Consecutive slices of the estimated parcellation located in the occipital cortex.

Table 9: Euclidean distance between the HRF estimates in the bilateral occipital cortex
and the canonical HRF. Dinstance between the individual NP-JPDE HRF estimates are also
provided.

HRF 1 HRF 2 HRF 3 HRF 4 JDE

Canonical HRF 0.42 0.41 0.43 0.41 0.47
HRF 2 0.06 − 0.22 0.20 −
HRF 3 0.17 − − 0.35 −
HRF 4 0.23 − − − −
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(namely, video calculations and video sentences). The obtained NRL estimates
with the NP-JPDE and the JDE are similar in terms of amplitude values and
the location of the highest activation.

(a) Video calculations (NP-JPDE) (b) Video calculations (JDE)

(c) Video sentences (NP-JPDE) (d) Video sentences (JDE)

Figure 17: NRL estimates for the visual sentences and calculation experimental conditions
using NP-JPDE and JDE models.

6. Discussion and Conclusion

In this paper, we proposed a new approach to estimate the number of hemo-
dynamic parcels in fMRI data analysis where model selection was formulated
as a clustering issue. This approach is based on a Dirichlet process mixture
model combined with a hidden Markov random field. A direct generalization of
the Potts model that uses a stick breaking representation allows for the repre-
sentation of an infinite number of states. The proposed non-parametric HMRF
framework allows an automatic estimation of number of parcels from the fMRI
data and adds spatial constraints on the connexity of the estimated parcels. The
JPDE model, proposed in (Chaari et al., 2012, 2015), was extended using this
non-parametric Bayesian HMRF yielding the so called NP-JPDE model. The
NP-JPDE relies on the VEM as an inference strategy as in the JPDE model
but with two new expectations steps (namely, VE−Z and VE−τ steps) while
the others remain the same as in the classical JPDE model. Moreover, two
new maximization steps result from the added hierarchical levels (VM-α and
VM-βz).
Synthetic and real data experiments were used to validate the proposed ap-
proach. Using synthetic data experiments, the proposed NP-JPDE model pro-
vided more accurate parcellation estimates when compared to the JPDE model
with model selection (Albughdadi et al., 2014) . Moreover, the HRF estimates
and activation detection results obtained using both models were consistent. We
also investigated the performance of the NP-JPDE in terms of convergence speed
and computational time, and we showed again its superiority over its ancestor.
On real fMRI data, we used two ROIs to validate the proposed approach, the
right motor cortex and the bilateral occipital area embodying the primary visual
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cortices. In the right motor cortex, two different parcels were estimated with
HRF estimates close to the canonical HRF. These results came consistent with
the HRF estimate of the JDE model and with the conclusion in (Badillo et al.,
2013b). In the bilateral occipital cortex, the left and the right parcels showed
similar hemodynamic territories. The HRF estimates with the NP-JPDE were
close to the canonical HRF especially in terms of TTP and they were better
recovered than using the JDE model. For both experiments, the NRL estimates
using the JDE and NP-JPDE models were coherent. Future work will focus on
extending the NP-JPDE model for multi-subject studies to derive a meaningful
group-level parcellation and HRF estimates in a non-parametric framework.

Appendix A. Other VEM steps

(i) VE-H step: Using (16) and standard algebra, p̃
(r)
Hj

is shown to be a Gaus-

sian distribution, i.e., p̃
(r)
Hj
∼ N (m

(r)
Hj
,Σ

(r)
Hj

), where Σ
(r)
Hj

= (V1j + V2j)
−1

and m
(r)
Hj

= Σ
(r)
Hj

(m1j +m2j) are defined for voxel j = {1, . . . , J} with
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k (A.1)

where S̃j =
∑M
m=1m

(r−1)
Amj

Xm. Note that m
(r−1)
Amj

, υ
(r−1)

Amj A
m′
j
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and (m,m′) entries of m
(r−1)
Aj

and Σ
(r−1)
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, respectively.

(ii) VE-A step : Standard algebra is used to identify a Gaussian distribution

in (17), (i.e., p̃
(r)
Aj
∼ N (m
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Aj
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(A.2)

Denote as, µ
(r−1)
i =
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]t
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[
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where G =
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(iii) VE-Q step: A product approximation is assumed such that p̃Q(Q) =∏J
j=1 p̃Qj (qj) with p̃Qj (qj) =

M∏
m=1

p̃Qmj (qmj ). This step includes M × J

sub-steps. Using (18), for m = 1, . . . ,M and j = 1, . . . , J , the following
result is obtained
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q\m
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[
log p
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)])

(A.4)

where qm\j = {qmj′ , j′ 6= j} and q\m = {qm′ ,m′ 6= m}. If we remove the

terms which do not depend on qmj and knowing that qmj = i, straightfor-
ward computations of (A.4) lead to
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(iv) M-(µ,v): Maximizing (30) w.r.t (µ,v) yields(
µ(r),v(r)

)
= arg max
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E
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]
(A.6)

For i ∈ {0, 1} and m ∈ {1, . . . ,M} the following result is obtained
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where p̃
(r)
mi =

∑
j∈P p̃

(r)
qmj

(i).

(v) M-β: Maximizing with respect to β, (30) reads

β(r) = arg max
β

E
p̃
(r)
Q

[
log p(Q;β)

]
. (A.8)

Using the mean-field approximation (Celeux et al., 2003) leads to a func-
tion that can be optimized using a gradient algorithm. An exponential
prior with mean λβm is used to penalize each βm. The expression to
optimize βm is

β(r)
m = arg max
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(vi) M-(L,Γ): Maximizing with respect to (L,Γ) and factorizing over voxels
j ∈ P, the following expression needs to be computed(
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Maximizing w.r.t `j leads to the following result
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Knowing that Γj = σ−2
j Λj and computing the derivative w.r.t `j yields
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where F1 is a function linking the estimates `
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where F2 is a function linking the estimates σ2
j

(r)
with `

(r)
j and ρ

(r)
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with |Λj | = 1−ρ2
j and Λ̃j has the same expression as for Λ̃
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j . The matrix

U1 = Σ
(r)
Aj

+m
(r)
Aj
m

(r)
Aj

t
is of size M×M while U2 = y

(r)
j

(
y

(r)
j + 2G̃m

(r)
Aj

)t

is of size N × N . The derivative of the matrix Λj can be written as
Λ′j = 2ρjB+C, where all entries of B and C are zeros except (B)n,n = 1
for n = 2, . . . , N − 1 and (C)n,n+1 = (C)n+1,n = −1 for n = 1, . . . , N − 1.
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(vii) M-h̄:
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Maximizing w.r.t h̄k for a given k yields
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