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THE EFFECT OF DISORDER ON THE FREE-ENERGY FOR THE

RANDOM WALK PINNING MODEL: SMOOTHING OF THE PHASE

TRANSITION AND LOW TEMPERATURE ASYMPTOTICS

QUENTIN BERGER AND HUBERT LACOIN

Abstract. We consider the continuous time version of theRandomWalk Pinning Model

(RWPM), studied in [5, 6, 7]. Given a fixed realization of a random walk Y on Z
d with

jump rate ρ (that plays the role of the random medium), we modify the law of a ran-

dom walk X on Z
d with jump rate 1 by reweighting the paths, giving an energy reward

proportional to the intersection time Lt(X,Y ) =
∫ t

0
1Xs=Ys

ds: the weight of the path
under the new measure is exp(βLt(X,Y )), β ∈ R. As β increases, the system exhibits
a delocalization/localization transition: there is a critical value βc, such that if β > βc

the two walks stick together for almost-all Y realizations. A natural question is that of
disorder relevance, that is whether the quenched and annealed systems have the same
behavior. In this paper we investigate how the disorder modifies the shape of the free
energy curve: (1) We prove that, in dimension d > 3, the presence of disorder makes
the phase transition at least of second order. This, in dimension d > 4, contrasts with
the fact that the phase transition of the annealed system is of first order. (2) In any
dimension, we prove that disorder modifies the low temperature asymptotic of the free
energy.

2000 Mathematics Subject Classification: 82B44, 60K37, 60K05
Keywords: Pinning/Wetting Models, Polymer, Disordered Models, Harris Criterion,
Smoothing/Rounding Effect.

1. Model and results

1.1. The random walk pinning model. Let X = (Xs)s > 0 and Y = (Ys)s > 0 be two
independent continuous time random walks on Z

d, d > 1, starting from 0, with jump rates
1 and ρ > 0 respectively, and which have identical irreducible symmetric jump probability
kernels. We also make the assumption that the increments X and Y on Z

d have finite
second moments. We denote by P

X , PY,ρ the associated probability laws.
For β ∈ R (when β > 0, it should be considered as the inverse temperature), t ∈ R+,

and for a fixed realization of Y , we define a Gibbs transformation of the path measure PX :

the polymer path measure µY,pin
t,β . It is absolutely continuous with respect to P

X , and its

Radon-Nikodym derivative is given by

dµY,pin
t,β

dPX
(X) =

eβLt(X,Y ) 1{Xt=Yt}

ZY,pin
t,β

, (1.1)

where Lt(X,Y ) :=
∫ t
0 1{Xs=Ys} ds is the intersection time between X and Y , and

ZY,pin
t,β := E

X
[
eβLt(X,Y ) 1{Xt=Yt}

]
(1.2)

is the so-called partition function of the system: it is the factor that normalizes µY,pin
t,β to

a probability law. One can think of µY,pin
t,β as a measure under which the walk X is given
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an energy reward β for staying in touch with Y . The superscript “pin” refers to the fact
that X is constrained to be pinned to Y at its end point Yt. This constrain is taken for
practical reasons (see below) and it can be removed without affecting the main features
of the model.

Given a trajectory Y = (Ys)s > 0, we also define the partition function along a time
interval [t1, t2] as

ZY,pin
[t1,t2],β

:= Z
θt1Y,pin

t2−t1,β
, (1.3)

where θtY := (Ys+t − Yt)s > 0 (θt is the shift operator along time, it preserves the law of
Y ).

We give now a physical interpretation to this model: The graph of the random walk
(s,Xs)s∈[0,t] models a 1-dimensional polymer chain living in a (d + 1)-dimensional space

interacting with a random defect line (s, Ys)s∈[0,t]. The Gibbs measure µY,pin
t,β is the measure

that gives the law of the polymer configuration (s,Xs)s∈[0,t] at inverse temperature β,
given a fixed realization of the defect line Y . We are interested in the typical behavior of
large systems, that is with large t. At low temperature (large β), the interaction energy
dominates the entropy and the polymer sticks to Y , and it is said to be localized. At high
temperature (small β), the entropy dominates and the polymer wanders away from Y , and
it is said to be delocalized. The aim of this paper is to get a better understanding of the
phase transition in β between the delocalized and localized phase, that is the behavior at
the critical temperature, and of the low temperature behavior of the polymer.

As it is shown later in the introduction this is natural to compare this model with a
simpler and exactly solvable model where the random defect line (s, Ys)s∈[0,t], is replaced
by a deterministic one [0, t]× {0}.

More physical motivation for the model are given in the introduction of [6].

Remark 1.1 (Superadditivity). One fundamental property of the pinned partition func-

tion, is the stochastic superadditivity of logZY,pin
t,β . Indeed, for any 0 6 s 6 t and β ∈ R,

ZY,pin
t,β > E

X
[
1{Xs=Ys}e

βLt(X,Y )1{Xt=Yt}

]
= ZY,pin

s,β ZY,pin
[s,t],β. (1.4)

This remark applies also to the partition function along any time interval:

ZY,pin
[u,w],β > ZY,pin

[u,v],βZ
Y,pin
[v,w],β, for any u 6 v 6 w. (1.5)

This crucial property allows (with some additional effort) to prove the existence of the
Lyapunov exponent of free energy:

Proposition 1.2 (from [6] Thm.1.1 and Cor.1.3). The limit

f(β, ρ) := lim
t→∞

1

t
logZY,pin

t,β (1.6)

exists and is non-random P
Y,ρ almost surely. We call it the quenched free energy. In

addition we have

lim
t→∞

1

t
E
Y,ρ
[
logZY,pin

t,β

]
= sup

t>0

1

t
E
Y,ρ
[
logZY,pin

t,β

]
= f(β, ρ). (1.7)

Moreover β 7→ f(β, ρ) is non-decreasing and non-negative so that there exists a value βc(ρ)
such that

f(β, ρ) > 0 ⇔ β > βc(ρ).
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The free-energy of the averaged system is called the annealed free energy and is defined by

fann(β, ρ) := lim
t→∞

1

t
logEY,ρ

[
ZY,pin
t,β

]
,

βann
c (ρ) := inf {β | fann(β, ρ) > 0} .

(1.8)

We have by Jensen inequality that f(β, ρ) 6 fann(β, ρ), and βc(ρ) > βann
c (ρ).

Remark 1.3. The critical value βc(ρ) identifies the phase transition between the localized
and the delocalized phase. The fact that X sticks to Y when β > βc(ρ) can be seen from
the fact that

∂

∂β
logZY,pin

t,β = µY,pin
t,β (Lt(X,Y )), (1.9)

so that, using convexity and passing to the limit

lim
t→∞

1

t
µY,pin
t,β (Lt(X,Y )) = f′(β, ρ) (1.10)

whenever the right-hand side exists. This shows that Lt(X,Y ) is asymptotically of order
t in the localized phase.

1.2. The pure model. In order to be able to compare the quenched free energy curve
with the annealed one, one needs to give some accurate description about the annealed

free energy curve. As it was remarked in [6], the annealed partition function E
Y,ρ[ZY,pin

t,β ]
is simply the partition function of a homogeneous pinning model

E
Y,ρ
[
ZY,pin
t,β

]
= E

X
E
Y,ρ
[
eβLt(X−Y,0)1{(X−Y )t=0}

]
.

Under EX
E
Y,ρ, X − Y is a symmetric random walk with jump rate (1 + ρ). By rescaling

time so that the random walk X − Y has jump rate 1, one obtains that

fann(β, ρ) = (1 + ρ)f(β/(1 + ρ), 0). (1.11)

We write f(β) for f(β, 0).
The model is in fact exactly solvable in the sense that one has an explicit formula for

the free energy. This fact was remarked in the celebrated paper of Fisher [9] for a discrete
version of this model. We give a complete description of the pure model in the Appendix.

Let pt(·) := P
X(Xt = ·) denote the transition probability kernel of X at time t, and set

G :=
∫∞
0 pt(0) dt (G < ∞ when d > 3).

Proposition 1.4. For d > 1, the annealed critical point is βc(0) = G−1 (we use the
convention that G−1 = 0 if G = ∞, for d = 1, 2), and in view of (1.11), βann

c (ρ) =
(1 + ρ)/G. One has also the critical behavior of the annealed free energy:

• for d = 1, 3,

f(β)
β↓βann

c∼ c0(β − βann
c )2. (1.12)

• for d = 2,

f(β)
β↓βann

c= exp

(
−c0

1 + o(1)

β

)
. (1.13)

• for d = 4,

f(β)
β↓βann

c∼ c0(β − βann
c )/ log(β − βann

c ). (1.14)

• for d > 5

f(β)
β↓βann

c∼ c0(β − βann
c ). (1.15)
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(c0 is a constant that can be made explicit, and that depends on G, the dimension and the
second moment of the jump kernel).
In any dimension, we also have

lim
β→∞

f(β) − β + 1 = 0. (1.16)

Part of the above result (namely, the value of βc), was proved in [6]. We have included
here also the asymptotic behavior near βc in order to know the specific heat exponent in
any dimension. The knowledge of the annealed specific heat exponent (the free energy
behaves like (β − βc)

2−α when β → β+
c where α is the specific heat exponent) allows to

make prediction concerning disorder relevance.

1.3. Harris criterion and disorder relevance. The physicist A.B. Harris gave a gen-
eral criterion for disordered systems to predict disorder relevance (for arbitrarily small
strength of disorder) on a heuristic level. The criterion is based on the specific heat ex-
ponent of the pure system: if the specific heat exponent is negative then disorder should
be irrelevant, if it is positive, disorder should be relevant, and this corresponds to d > 4
for our model. The Harris criterion gives no prediction for the marginal case when the
specific heat exponent vanishes (and in that case, it is believed that disorder relevance
depends on the model which is considered).

For the Random Walk Pinning Model, various pieces of work have brought this predic-
tion on rigorous grounds [5, 6, 7]. One of the main questions is to determine whether the
annealed and quenched critical points differ or not. If βc(ρ) = βann

c (ρ), then the disor-
der is said to be irrelevant, and the quenched model’s critical behavior is believed to be
similar to the one of the annealed model. Otherwise, the disorder shifts the critical point
(βc(ρ) > βann

c (ρ)), and is said to be relevant. The question of the relevance or irrelevance
of disorder for the RWPM is now solved, also for the marginal case d = 3, both for the
continuous time model [6, 7] and for the discrete time model [5, 6].

Theorem 1.5 ([6, 7], Continuous time RWPM). In dimension d = 1 and d = 2, one has
βc(ρ) = βann

c (ρ) = 0 for any positive ρ. In dimension d > 3, one has βc > βann
c > 0 for

each ρ > 0. Moreover, we have a bound on the shift of the critical point :

• For d > 5, there exists a > 0 such that βc − βann
c > aρ for all ρ ∈ [0, 1].

• For d = 4 and for each δ > 0, there exists aδ > 0 such that βc − βann
c > aδρ

1+δ for
all ρ ∈ [0, 1].

• For d = 3 and for any ζ > 2, there exists c(ζ) > 0 such that βc − βann
c > e−c(ζ)ρ−ζ

for all ρ ∈ (0, 1].

Let us also mention that the picture of disorder relevance/irrelevance for the renewal
pinning model (see [10] for a complete introduction to this model) is mostly complete,
thanks to a series of recent articles [2, 8, 11]. It has been showed that the Harris criterion
is verified, and that in the marginal case, disorder is relevant.

Another issue that has been given much attention is the so called smoothing of the free
energy curve. It is believed that for many systems, the presence of disorder makes the free
energy curve more regular: the phase transition is at least of second order (there is no
discontinuity in the derivative). In particular this means that if the annealed specific heat
exponent is negative, quenched and annealed exponent have to differ. This underlines
disorder relevance, and gives further justification for the Harris criterion.
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Smoothing type results have been shown by Aizenman and Wehr for disordered Ising
model [1], and more recently by Giacomin and Toninelli for the random pinning model
based on renewal process [12] (and also for a hierarchical version of the same model [14]).

We also mention that there exist some peculiar pinning models for which there is no
smoothing phenomenon and the quenched and annealed systems have always the same
behavior, even if the critical points are different (see e.g. [3]).

1.4. Smoothing of the phase transition. The first result we present for the disordered
model is the smoothing of the free-energy curve around the phase transition. This phe-
nomenon occurs in dimension d > 3. For d = 1, 2, the model is a bit different because of
recurrence of the random walk in these dimensions, see later.

Theorem 1.6. For all d > 3, ρ > 0, β > 0, we have

f(β, ρ) 6
3dG2

ρ
(β − βc(ρ))

2
+. (1.17)

This shows that if d > 4, the disorder makes the phase transition at least of second order,
whereas it is of first order for the annealed model (see Proposition 1.4). The methods that
has been used to prove the previous smoothing results [1, 12] have been a strong source
of inspiration for our proof, but, as the nature of the disorder is very different here, some
new ideas are necessary. A crucial point is to use an estimate on how f(β, ρ) varies with ρ,
which is present in [7]. It has been proved for the renewal pinning model that the critical
exponent for the free-energy is related to the asymptotics of the number of contacts at the
critical point [13, Prop. 1.3]. For the random walk pinning model an analogous relation
holds (where the number of contact is replaced by Lt(X,Y )) and gives the following result.
We include also its proof, which is very similar to what is done in [13], for the sake of
completeness.

Corollary 1.7. Let us fix ρ > 0, d > 3 and ε > 0. Then, under P
Y,ρ,

lim
t→∞

µY,pin
t,βc(ρ)

(
Lt(X,Y ) > t1/2+ε

)
= 0, (1.18)

in probability.

Remark 1.8. This result contrasts with what happens for the pure model (ρ = 0), where
typically Lt(X, 0) ≍ t at βc for d > 5 (as shown in Corollary A.5). In analogy with what
happens for the discrete renewal pinning model see [10], one believes that at the critical
temperature, Lt(X, 0) > t1−ε with high probability for any ε > 0 in dimension d = 4. This
underlines a change in the critical behavior also in this dimension.

Proof. Suppose there exists some c > 0 such that one can find an arbitrarily large value
of t for which

P
Y
{
µY,pin
t,βc(ρ)

(
Lt(X,Y ) > t1/2+ε

)
> c
}

> c. (1.19)

Then we define t0 large enough such that the above holds, u := t
−1/2
0 and βc := βc(ρ).

One has

ZY,pin
t0,βc+u = E

X
[
e(βc+u)Lt0 (X,Y )1{Xt0=Yt0}

]
= ZY,pin

t0,βc
µY,pin
t0,βc

(
euLt0 (X,Y )

)
, (1.20)
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so that

E
Y,ρ
[
logZY,pin

t0,βc+u

]
= E

Y,ρ
[
logZY,pin

t0,βc
+ log µY,pin

t0,βc

(
exp

(
uLt0(X,Y )

))]

> E
Y,ρ [log pt0(Yt0)] + E

Y,ρ

[
log
(
c exp(ut

1/2+ε
0 )

)
1{

µY,pin
t0,βc

(Lt0 (X,Y ) > t01/2+ε) > c
}
]

> −d log t0 + c(tε0 + log c) > t
ε/2
0 , (1.21)

where in the first inequality we used that ZY,pin
t0,βc

> pt0(Yt0) (recall the notation introduced

just before Proposition 1.4, this is just using the fact that βc > 0). The second inequality
uses an estimate from [6, Lemma 3.1] which is valid if t0 is large enough for the first term,
and (1.19) for the second term. The last inequality is valid if t0 is large enough. This
implies, by (1.5)

f
(
βc(ρ) + u, ρ

)
>

1

t0
E
Y,ρ
[
logZY,pin

t0,βc+u

]
> t

ε/2−1
0 > u2−ε. (1.22)

This contradicts Theorem 1.6, therefore (1.19) cannot hold. �

In dimension 1 or 2, the situation is a bit different due to recurrence of the random
walk. In dimension d = 2, the coincidence of quenched and annealed critical point, and
the fact that the phase transition is of infinite order of the annealed system implies that
the phase transition is also of infinite order (i.e. smoother than any power of (β−βc) ) for
the quenched system. In dimension d = 1, one also shows that disorder does not change
the nature of the phase transition (or at least not in a significant way).

Proposition 1.9 (Quenched free-energy at high temperature for d = 1). There exist a
constant c > 0 such that for any ρ there exists β0 such that

f(β, ρ) >
c

1 + ρ
β2 log(1/β)−1, ∀β ∈ [0, β0]. (1.23)

Thus, f and fann have the same critical exponent.

Proof. By Jensen inequality one has (for some constant C1) that for every t and ρ > 0

E
Y,ρ
[
logEX

[
eβLt(X,Y )

∣∣ Xt = Yt

]]
> βEY,ρ

E
X
[
Lt(X,Y )

∣∣ Xt = Yt

]
> C1

β
√
t√

1 + ρ
.

(1.24)
The last inequality can be obtain by integrating the local central limit Theorem (see [15,
Prop. 7.9, Ch. II] for the discrete time version, the proof being identical for continuous
time). Therefore

E
Y,ρ
[
logZY,pin

t,β

]
= E

Y,ρ
[
logEX

[
eβLt(X,Y )

∣∣Xt = Yt

]]
+ E

Y,ρ
[
log PX (Xt = Yt)

]

> C1
β
√
t√

1 + ρ
− log t, (1.25)

where we also used [6, Lemma 3.1] to bound the second term (the bound being valid for
t large enough, say t > t0(ρ)). Now, if we set T := C2(1 + ρ)β−2[log(1/β)]2, the previous

inequality holds for all β 6 t
−1/2
0 , and gives

E
Y,ρ
[
logZY,pin

T,β

]
> C1

√
C2 log(1/β) + 2 log β +O

(
log log(1/β)

)
> log(1/β) (1.26)
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if C2 is large enough. From (1.7), we finally have

f(β) >
1

T
E
Y,ρ
[
logZY,pin

T,β

]
>

1

C2(1 + ρ)
β2 log(1/β)−1. (1.27)

�

Remark 1.10. We believe that the factor log(1/β)−1 above is an artifact of the proof
and that f(β, ρ) ∼ c(ρ)β2. A clear reason to believe so is to consider an alternative
Brownian model where (Yt)t > 0 is a realization Brownian motion with covariance function
EY [Ys, Yt] = ρ(s ∧ t). The partition function is given by

ZY
t,β = EX

[
eβLt(X,Y )

]
, (1.28)

where under PX , X is a standard Brownian Motion (independent of Y ) and Lt(X,Y ) the
intersection local time between X and Y . For this model, Brownian scaling implies that

Ltβ2(X,Y )
(law)
= βLt(X,Y ), which implies that there exists a constant c(ρ) (= f̄(1, ρ))

such that for all β > 0,

f̄(β, ρ) := lim
t→∞

1

t
EY logZY

t,β = c(ρ)β2. (1.29)

This model should be the high-temperature scaling-limit of our random walk pinning
model and hence share the same critical properties.

1.5. Low temperature asymptotics. The quenched low-temperature asymptotic also
exhibits contrasts with the annealed one. The reason is that to optimize the local-time,
X has to follow Y closely, which has an extra entropic cost. In the annealed case, one can
force X not to jump. For the sake of simplicity, we present the result only in the case of
the simple symmetric random walk in Z

d (for any d > 1) but the result holds in the more
general framework given in Section 1.1. This result gives again a contrasts with the pure
model, see (1.16).

Theorem 1.11. When Y is the simple symmetric random walk in Z
d, one has

f(β, ρ) = β − ρ log dβ − 1 + o(1) as β → ∞. (1.30)

In general, for a walk Y with a kernel jump pY which as finite second moment, the
result also holds with log d replaced by −∑x∈Zd pY (x) log(pY (x)/2).

Remark 1.12. The proof of Theorem 1.11 does not only gives the result but also a clear
idea of how a typical path X behaves under the polymer measure at high temperature.
Essentially X follows every jump of Y , and the distance between jumps of X and Y are
i.i.d. exponential variables of mean 1/β. In particular the asymptotic contact fraction is
close to 1− ρβ−1 (whereas it is more of order 1− β−2 for the pure model).

The sequel of the paper is organized as follows:

• In Section 2 we prove Theorem 1.6,
• In Section 3 we prove Theorem 1.11,
• In the Appendix we prove some statements for the pure model, including Propo-
sition 1.4.

Section 2 and Section 3 are independent.
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2. Proof of Theorem 1.6

In the proof, we make use of the following three statements. The first two are extracted
from Proposition 1.4 and Theorem 1.5, the third one is extracted from [7].

Proposition 2.1. For d > 3, we have

(i) βann
c (ρ) = 1+ρ

G ,
(ii) for any ρ > 0, one has βann

c (ρ) < βc(ρ),
(iii) the function ρ 7→ βc(ρ)/(1 + ρ) is non-decreasing [7, Thm 1.3].

Let ρ be fixed and d > 3 be fixed. Given β > βc(ρ), we define ρ′ = ρ′(β) by

ρ′ := ρ+G(β − βc(ρ)). (2.1)

Note that f(ρ′, β) = 0. Indeed, we have

1 + ρ′

1 + ρ
= 1 +G

β − βc(ρ)

1 + ρ
= 1 +

β − βc(ρ)

βann
c (ρ)

>
β

βc(ρ)
, (2.2)

so that by (iii) of the above proposition, β 6 βc(ρ
′).

Our strategy to prove Theorem 1.6 is to find a lower bound for f(ρ′, β) that involves

f(ρ, β), by considering the contribution of exceptional (under P
Y,ρ′) stretches where the

empirical jump rate of Y is of order ρ.

First we bound from below the probability that under PY,ρ′, the partition function ZY,pin
L,β

is greater than exp
(
L(1− ε)f(β, ρ)

)
.

Lemma 2.2. For any ε > 0, one can find L0 (depending on β, ρ and ε) such that for all
L > L0

log
(
P
Y,ρ′
{
logZY,pin

L,β > L(1− ε)f(β, ρ)
})

> − L
(ρ′ − ρ)2

ρ′
− log 4. (2.3)

Proof. From the definition of the free-energy one can find L0 such that for all L > L0

P
Y,ρ(A) := P

Y,ρ
{
logZY,pin

L,β > L(1− ε)f(β, ρ)
}

> 1/2. (2.4)

By Cauchy-Schwartz inequality, we have

1/4 6 P
Y,ρ(A)2 =

(
E
Y,ρ′
[
dPY,ρ

dPY,ρ′
1A

])2

6 E
Y,ρ′

[(
dPY,ρ

dPY,ρ′

)2
]
P
Y,ρ′(A). (2.5)

Let κYL denote he number of jumps of the walk Yt in [0, L]. Under P
Y,ρ, it is a Poisson

variable of mean ρL. One has

dPY,ρ

dPY,ρ′
= eL(ρ

′−ρ)

(
ρL

ρ′L

)κY
L

, (2.6)

and therefore

E
Y,ρ′

[(
dPY,ρ

dPY,ρ′

)2
]
= eL(ρ

′−2ρ)
∞∑

k=0

1

k!

(
(ρL)2

ρ′L

)k

= e
L

(ρ′−ρ)2

ρ′ , (2.7)

which inserted in (2.5) gives the result. �
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We keep the notation A :=
{
logZY,pin

L,β > L(1− ε)f(β, ρ)
}

and write q := P
Y,ρ′(A). Let

an arbitrary ε > 0 be fixed, consider L large enough so that Lemma 2.2 is valid, and that
some conditions later mentioned in the proof are fullfilled.

For our purpose we find a lower bound involving f(β, ρ) for E
Y,ρ′
[
logZY,pin

T,β

]
for a

system length T := L⌈q−1⌉. Then we use the fact that EY,ρ′
[
logZY,pin

T,β

]
6 Tf(β, ρ′) = 0

(recall (1.7)).
We divide the length of the system into ⌈q−1⌉ blocks of size L, Bi := [(i− 1)L, iL], for

i ∈ {1, . . . , ⌈q−1⌉}. With this definition, under P
Y,ρ′ , the random variables (ZY,pin

Bi,β
) are

i.i.d. distributed with the same distribution as ZY,pin
L,β .

Define

H :=
{
∃i ∈ [1, ⌈q−1⌉] ∩ Z, logZY,pin

Bi,β
> L(1− ε)f(β, ρ)

}
. (2.8)

We define also A = A(Y ) the set of blocks Bi such that logZY,pin
Bi,β

> L(1− ε)f(β, ρ).

Note that with our choice for the number of blocks considered, PY,ρ′(H) = 1−(1−q)⌈q
−1⌉

is uniformly bounded away from zero and one.

One splits EY,ρ′
[
logZY,pin

T,β

]
into two contributions according to the occurrence of H.

E
Y,ρ′
[
logZY,pin

T,β

]
= E

Y,ρ′
[
1Hc logZY,pin

T,β

]
+ E

Y,ρ′
[
1H logZY,pin

T,β

]
. (2.9)

• The first term is dealt with easily, using that ZY,pin
T,β > pT (YT ), and then

E
Y,ρ′
[
1Hc logZY,pin

T,β

]
> E

Y,ρ′ [log pT (YT )] > − (1 + ε)
d

2
log T, (2.10)

where the last estimate comes from [6, Lemma 3.1], (provided that T = L⌈q−1⌉ is large
enough).

• For the second term, we only have to decompose the expectation according to the

position of the first block for which logZY,pin
Bi,β

> L(1− ε)f(β, ρ),

E
Y,ρ′
[
1H logZY,pin

T,β

]
>

⌈q−1⌉∑

i=1

E
Y,ρ′
[
1{Bi∈A,Bj /∈A ∀1 6 j<i} logZ

Y,pin
T,β

]
. (2.11)

By (1.5), one obtains on the event {Bi ∈ A, Bj /∈ A ∀1 6 j < i}, that

ZY,pin
T,β > ZY,pin

(i−1)L,βZ
Y,pin
Bi,β

ZY,pin
[T−iL,T ],β

> eL(1−ε)f(β,ρ)p(i−1)L(Y(i−1)L)pT−iL(YT − YiL). (2.12)

Therefore we get

E
Y,ρ′
[
1{Bi∈A,Bj /∈A ∀1 6 j<i} logZ

Y,pin
T,β

]
>

E
Y,ρ′
[
1{Bi∈A,Bj /∈A ∀1 6 j<i}

(
L(1− ε)f(β, ρ)

+ log p(i−1)L(Y(i−1)L) + log pT−iL(YT − YiL)
)]
. (2.13)

We can estimate separately the three terms on the right-hand side. Note that by block
independence, PY,ρ′ [Bi ∈ A, Bj /∈ A ∀1 6 j < i] = q(1−q)(i−1). This gives the value of the
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first term. When i 6= ⌈q−1⌉ (in which case the third term is zero), using block independence
and translation invariance, the third one can be estimated as follows

E
Y,ρ′
[
1{Bi∈A,Bj /∈A ∀1 6 j<i} log pT−iL(YT − YiL)

]
= q(1− q)i−1

E
Y,ρ′ [pT−iL(YT−iL)]

> − (1− q)i−1q(1 + ε)
d

2
log(T − iL) > − q(1 + ε)

d

2
log T, (2.14)

where the last inequality is given again by [6, Lemma 3.1], provided L is large enough.
When i 6= 1 (in which case the second term is zero), block independence gives us

E
Y,ρ′
[
1{Bi∈A,Bj /∈A ∀1 6 j<i} log p(i−1)L(Y(i−1)L)

]

= qEY,ρ′
[
1{Bj /∈A ∀1 6 j<i} log p(i−1)L(Y(i−1)L)

]
> qEY,ρ′

[
log p(i−1)L(Y(i−1)L)

]

> − q(1 + ε)
d

2
log((i− 1)L) > − q(1 + ε)

d

2
log T. (2.15)

Summing along all the contributions, one gets

E
Y,ρ′
[
1HZY,pin

T,β

]
>

(
1− (1− q)⌈q

−1⌉
)
L(1− ε)f(ρ, β) − (1 + ε)d log T. (2.16)

Together with (2.9) and (2.10) this gives

0 > E
Y,ρ′
[
logZY,pin

T,β

]
>
(
1− e−1

)
L(1− ε)f(ρ, β) − (1 + ε)

3d

2
log T, (2.17)

and hence

f(ρ, β) 6
1 + ε

1− ε

3d

2(1− e−1)

log(L⌈q−1⌉)
L

. (2.18)

From Lemma 2.2, one has (when L is large enough)

log(L⌈q−1⌉)
L

6 (1 + ε)
(ρ′ − ρ)2

ρ′
6 (1 + ε)

G2 (β − βc(ρ))
2

ρ
, (2.19)

which, as ε is arbitrary, gives the result (here we also use (1− e−1) > 1/2).
�

3. Proof of Theorem 1.11

Our bounds are obtained by decomposing the partition function into a product, each
term of the product corresponding to a time interval.

To describe our decomposition, we need some definitions. We fix a typical realization
of Y . Let Ti be the time of the i-th jump. For some β (large) fixed and i > 1, we define
the times

T−
i = Ti − ε−i with ε−i = β−2/3 ∧ Ti − Ti−1

2
,

T+
i = Ti + ε+i with ε+i = β−2/3 ∧ Ti+1 − Ti

2
,

(3.1)

where we used the convention that T0 = 0, and set also T+
0 = 0. The value β−2/3 in

the definition is an ad hoc choice for the proof of the upper bound, and has no deep

signification. We also define εi := ε−i + ε+i = T+
i − T−

i . We bound ZY,pin

T+
k ,β

by bounding the

contributions of the intervals [T+
i−1, T

−
i ) and [T−

i , T+
i ), i = 1 . . . k.
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Lower Bound. To lower bound logZY,pin

T+
k ,β

, we use superadditivity:

logZY,pin

T+
k ,β

>

k∑

i=1

(
logZY,pin

[T+
i−1,T

−

i ]
+ logZY,pin

[T−

i ,T+
i ]

)
. (3.2)

Let us note that Y makes no jump on [T+
i−1, T

−
i ], so that

ZY,pin

[T+
i−1,T

−

i ]
= E

X

[
e
L
T−

i
−T+

i−1
(X,0)

1{X
T−

i
−T+

i−1
=0}

]
. (3.3)

Then, constraining X not to jump either, we get that for all t > 0

E
X
[
eLt(X,0)1{Xt=0}

]
> eβtPX (Xs = 0 for all 0 6 s 6 t) = e(β−1)t. (3.4)

To bound logZY,pin

[T−

i ,T+
i ]
, let use notice that for i > 1, Y makes one jump (and only one) in

the interval [T−
i , T+

i ) (of length εi). Hence

ZY,pin

[T−

i ,T+
i ]

= E
X
0

[
eLεi (X,Y (i))1{Xεi=Yεi}

]
, (3.5)

where Y (i) = (Y
(i)
s )s∈[0,εi) is defined by Y

(i)
s = 0 for s ∈ [0, ε−i ), Y

(i)
s = e1 = (1, 0, . . . , 0)

for s ∈ [ε−i , εi) (by symmetry and the fact that the random walk is neirest neighbor the
direction of the jump has no importance). We will compute the contribution of the terms
in which X does one and only one jump, furthermore in the right direction e1. We have

E
X
0

[
eLεi (X,Y (i))1{X makes one jump, Xεi=e1}

]
=

1

2d
e−εi

∫ εi

0
eβ(εi−|s−ε−i |) ds

=
1

2d
e−εi

∫ ε+i

−ε−i

eβ(εi−|s′|) ds′ =
e(β−1)εi

dβ

[
1− e−βε−i

2
− e−βε+i

2

]
. (3.6)

The term 1
2de

−εi ds is the probability of having only one jump in [0, εi] located in the time

increment [s, s + ds], that goes in the right direction (cf. factor (2d)−1), εi − |s − ε−i | is
the value of the intersection time of X and Y on [0, εi) if X jumps at time s. Combining
(3.4)-(3.6) with the inequality (3.2), we obtain

1

T+
k

logZY,pin

T+
k ,β

> (β − 1) +
k

T+
k

[
− log(dβ) +

1

k

k∑

i=1

log

(
1− e−βε−i + e−βε+i

2

)]
. (3.7)

The sequence log
(
1− 1

2

(
e−βε−i + e−βε+i

))
is ergodic (the dependence between terms

has range only one). Then using the ergodic theorem one obtains that PY,ρ-a.s.

lim
k→∞

1

k

k∑

i=1

log

(
1− e−βε−i + e−βε+i

2

)
= E

Y,ρ

[
log

(
1− e−βε−1 + e−βε+1

2

)]
= o(1), (3.8)

where o(1) is with respect to β → ∞. The last inequality is easy to get, as ε±1 are truncated

exponential variables of mean 1/2 and that the truncation at β−1/3 is harmless. Moreover,
by the law of large numbers, we have that PY,ρ-a.s,

lim
k→∞

k

T+
k

= lim
k→∞

k

Tk
= ρ. (3.9)
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This gives us

lim
k→∞

1

T+
k

logZY,pin

T+
k ,β

> (β − 1)− ρ log dβ + o(1). (3.10)

Upper Bound. We are now ready to prove the upper bound. We cut the trajectory
X on the intervals [T+

i−1, T
−
i ) and [T−

i , T+
i ) for i > 1 and use the properties of Y on these

intervals, the way we did for the lower bound. In order to get an upper bound, we have
to maximize over the contribution of intermediate points,

ZY,pin

T+
k ,β

6

k∏

i=1

max
x1∈Zd

E
X
x1

[
e
βL

T−

i
−T+

i−1
(X,0)

]
max
x2∈Zd

E
X
x2

[
eβLεi (X,Y (i))

]
. (3.11)

We can bound the first part of the terms by using Lemma A.7 (that we prove later on):

max
x∈Zd

E
X
x

[
eβLt(0,X)

]
= E

X
0

[
eLt(0,X)

]
6 e

(

β−1+ 1
β

)

t
(
1 +

1

β

)
, (3.12)

where the first equality is due to Markov property for X applied at the first hitting time
of zero, and the fact that EX

0

[
eLt(0,X)

]
is a non-decreasing function of t.

For the other terms one has to analyze the contributions of all possible trajectories of
X. The main contribution is given by paths X starting from zero that make one jump
and such that Xεi = e1: we already computed the value of this contribution in (3.6). If
X makes no jump or one jump but not in the right direction (or if X makes at most one
jump but does not start from zero), it spends some portion of the time away from Y and
then Lεi(X,Y (i)) 6 ε−1 ∨ ε+i 6 β−2/3. Therefore the total contribution of such paths is

bounded by eβ
1/3

. The probability that X makes more than two jumps is bounded by
4β−4/3 if β is large enough (the number of jump is a Poisson variable of parameter εi,

which is at most 2β−2/3). In addition eβLεi (X,Y (0)) 6 eβεi so that the total contribution of

paths making more than two jumps is bounded by 4β−4/3eβεi . Hence we have

max
x∈Zd

E
X
x

[
eβLεi

(X,Y (i))
]

6
1

dβ
e(β−1)εi + eβ

1/3
+ 4β−4/3eβεi

6
1

dβ
e(β−1)εi

(
1 + C(βeβ

1/3−βεi + β−1/3)
)
. (3.13)

Combining all these inequalities one finally gets

ZY,pin

T+
k ,β

6 e(β−1+β−1)T+
k (1 + β−1)k(dβ)−k

k∏

i=1

(
1 + C(βeβ

1/3−βεi + β−1/3)
)
, (3.14)

and hence

1

T+
k

logZY,pin

T+
k ,β

6 β − 1 + β−1

+
k

T+
k

[
log(1 + β−1)− log(dβ) +

1

k

k∑

i=1

log
(
1 + C(βeβ

1/3−βεi + β−1/3)
)]

. (3.15)

Applying the ergodic theorem, one obtains that PY,ρ-a.s.

lim
k→∞

1

k

k∑

i=1

log
(
1 + C(βeβ

1/3−βεi + β−1/3)
)

= E
Y,ρ
[
log
(
1 + C(βeβ

1/3−βε1 + β−1/3)
)]

= o(1), (3.16)
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where we used the definition of ε1 to estimate the last expectation (εi is equal to 2β−2/3

with probability 1−O(β−2/3) when β is large).
Furthermore, as already noticed, k/T+

k converges almost surely to ρ, so that we have

lim
k→∞

1

T+
k

logZY,pin

T+
k ,β

6 β − 1− ρ log βd+ o(1). (3.17)

�

Appendix A. The homogeneous case

We give in this section several results on the pure model, which are to be compared
with the results on the quenched system. In the homogeneous case, (when ρ = 0) the
model is just the pinning of a random walk on a deterministic defect line R+ × {0}. It
turns out here that a more general view point makes the problem easier to solve, and that
is the reason why we introduce now a more general version of our pinning model.

We consider two increasing sequences (τ ′i)i > 1 and (τi)i > 0 such that τ0 = 0, and
(τ ′i+1 − τi)i > 0 and (τi − τ ′i)i > 1 are two independent i.i.d. sequences, where τ ′1 is a mean 1
exponential variable, and where the distribution of τ1 − τ ′1 has support in R+ ∪ {∞} (if
τn = ∞ for some n, we choose by convention τ ′k and τk = ∞ for all k > n). We further
assume that the distribution of (τ1− τ ′1)1 > 0, when restricted to R+, is absolutely continu-
ous with respect to the Lebesgue measure, with density that we denote by K(·), and that∫∞
0 exp(εt)K(t) dt = ∞ for all ε > 0. We denote by µ the joint law of the two sequences,
and we remark that under µ, both sequences (τi)i > 0 and (τ ′i − τ ′1) are renewal sequences.
We may use the notation K(∞) = µ(τ1 − τ ′1 = ∞) = µ(τ1 = ∞).

Set T :=
⋃∞

i=0[τi, τ
′
i), and call it the set of contact.

Given β ∈ R, we now modify the law of the sequences (τ ′i)i > 0 and (τi)i > 0 by introduc-

ing a Gibbs transform µpin
t,β of the measure µ

dµpin
t,β

dµ
=

eβ|T ∩[0,t]|

Zpin
t,β

1{t∈T }, (A.1)

where |A| stands for the Lebesgue measure of a set A ⊂ R, and where

Zpin
t,β = µ

[
eβ|T ∩[0,t]|1{t∈T }

]
. (A.2)

We also define

f(β) := lim
t→∞

1

t
logZpin

t,β (A.3)

which is well defined, by superadditivity.

Remark A.1. In the case of a continuous time random walk X with jump rate 1 (of law
P
X), we set τ0 = 0 and for all i > 1

τ ′i := inf{t > τi−1,Xt 6= 0},
τi := inf{t > τ ′i ,Xt = 0}.

(A.4)

One can check that (τi − τ ′i)i > 1 and (τ ′i+1 − τi)i > 0 are independent i.i.d. sequences (for
d > 3, there are only finitely many terms in the sequences) that satisfies the assumptions

given above. Therefore, our definition (1.1) of µpin
t,β (with Y replaced with 0) coincides

with the one of (A.1). This underlines two things:



14 QUENTIN BERGER AND HUBERT LACOIN

• The pinning model we present in this section is indeed a generalization of the pure
(or annealed) model for the random walk-pinning.

• In annealed random-walk pinning, the Gibbs transformation changes only the re-
turn time to zero and the time X spends on zero. Conditionally on these times,
the law of the excursions out of the origin remains the same that under PX .

We can describe the measure µpin
t,β in a very simple way, because we are interested only

in the law of T ∩ [0, t] (as it is the only part that is modified by the Gibbs transformation).
We introduce some definitions to describe the measure.

If (1− β)−1
∫∞
0 K(t) dt > 1 or β > 1, let b > 0 be defined by

(1− β + b)−1

∫ ∞

0
e−btK(t) dt = 1 (A.5)

and b = 0 if (1− β)−1
∫∞
0 K(t) dt < 1.

For notational reasons, define λ := (1− β + b). Then, we define K̃β(t) := λ−1e−btK(t) for

t ∈ (0,∞), and K̃β(∞) = 1−
∫∞
0 K̃β(t) dt. Finally, let µ̃β be another probability law for

(τ, τ ′) defined by:

• τ0 = 0 µ̃β-a.s.
• (τ ′i+1 − τi)i > 0 and (τi − τ ′i)i > 1 are independent i.i.d. sequences,

• τ ′1 is an exponential variable of mean λ−1,
• τ1 − τ ′1 has support R+ ∪ {∞}. On R+, its law is absolutely continuous w.r.t.

Lebesgue measure with density K̃β(·), and µ̃β(τ1 − τ ′1 = ∞) = K̃β(∞).

Let Ft denote the sigma algebra generated by T ∩ [0, t]. We have the following lemma,

describing the measure µpin
t,β .

Lemma A.2. For any A ∈ Ft, one has

µ
[
1A eβ|T ∩[0,t]|1{t∈T }

]
= ebtµ̃β(A ∩ {t ∈ T }). (A.6)

As a consequence

µpin
t,β (A) := µ̃β(A | t ∈ T ). (A.7)

Proof. We write Zpin
t,β (A) := µ

[
1A eβ|T ∩[0,t]|1{t∈T }

]
, and we decompose Zpin

t,β (A) according

to the number of jumps made before t. As A ∈ Ft, 1A can be written as a function of

({τi |τi < t}, {τ ′i |τ ′i < t}) and one has the following integral form for Zpin
t,β (A),

Zpin
t,β (A) =

∞∑

n=0

∫

0 6 t′1 6 t1 6 ... 6 t′n 6 tn<t
1A e(β−1)(t−tn)

n∏

i=1

e(β−1)(t′i−ti−1)K(ti − t′i) dt
′
i dti

= ebt
∞∑

n=0

∫

0 6 t′1 6 t1 6 ... 6 t′n 6 tn<t
1A λeλ(tn−t)

n∏

i=1

eλ(t
′

i−ti−1)K̃β(ti − t′i) dt
′
i dti

= ebtµ̃β(A ∩ {t ∈ T }). (A.8)

�

We can now prove some statements from Proposition 1.4,

Proposition A.3. We have, for b defined as above in (A.5), b = f(β). Moreover, b can
alternatively be defined by ∫ ∞

0
e−btµ(t ∈ T ) dt := β−1, (A.9)
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if the equation has a solution and b = 0 if not. Let βc = inf{β, f(β) > 0}, then

βc :=

(∫ ∞

0
µ(t ∈ T ) dt

)−1

. (A.10)

Moreover, if b > 0, or if β = βc and
∫∞
0 tK(t) dt < ∞, then

lim
t→∞

µ̃β(t ∈ T ) =
1

1 +
∫∞
0 e−bttK(t) dt

. (A.11)

Remark A.4. In the case of the homogeneous Random Walk Pinning Model, one can
get the asymptotics of f(β) around βc given in Proposition 1.4, by using the local central
limit Theorem for Xt (see [15, Prop. 7.9, Ch. II] for the discrete time version, the proof
being identical for continuous time). We have

µ(t ∈ T ) = pt(0) = (cst.+ o(1))t−d/2. (A.12)

Then, Proposition 1.4 follows from (A.9), and an application of an Abelian theorem (see
[10, Theorem 2.1] for the discrete case).

Proof. We start with the proof of the last item. Thanks to the Markov property, one has
the following recursion equation

µ̃β(t ∈ T ) = µ̃β(τ ′1 > t) +

∫ t

0
µ̃β (t ∈ T , τ1 ∈ [s, s+ ds)) ds

= exp(−λt) +

∫ t

0
µ̃β(τ1 ∈ [s, s+ ds))µ̃β(t− s ∈ T ) ds. (A.13)

By the key renewal theorem, [4, Theorem 4.7, Ch. V], one has

lim
t→∞

µ̃β(t ∈ T ) :=

∫∞
0 e−λt dt

λ−1 +
∫∞
0 tK̃β(t) dt

=
1

1 +
∫∞
0 e−bttK(t) dt

. (A.14)

When b > 0 or K(t) is integrable, the limit is positive. In that case equation (A.6) with
A equals Ω to the full space gives

Zpin
t,β = (cst.+ o(1)) exp(bt), (A.15)

so that b = f(β). For all the other cases, we have necessarily f(β) 6 0 as Zpin
t,β 6 λ−1.

To get that f(β) = 0 it is therefore sufficient to prove that f(β) is non-negative. This
is done for the random-walk pinning in [6], here it could be done using the assumption∫∞
0 eεtK(t) dt = ∞ for all ε (which is also necessary).

Now, we turn to the proof of (A.9). Let K1(t) = e−t be the density with respect to the
Lebesgue measure of τ ′1 (under µ). For t > 0,

µ(t ∈ T ) = e−t +

∫ t

0

∞∑

n=1

µ(τn ∈ [s, s+ ds))e−(t−s) ds =

∞∑

n=0

[(K1 ∗K)∗n ∗K1](t). (A.16)

Therefore using the fact that Laplace transform transforms convolutions into products,
one obtains, for all b > 0
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∫ ∞

0
e−btµ(t ∈ T ) dt =

∞∑

n=0

(∫ ∞

0
e−(b+1)t dt

)n+1(∫ ∞

0
e−btK(t) dt

)n

=
1

1 + b

1

1− 1
1+b

∫∞
0 e−btK(t) dt

, (A.17)

which with (A.5) gives us the right result (the case f(β) = 0 is obtained by continuity and
non-negativity of the free-energy). The value of βc is then an easy consequence. �

We now give a Corollary that describes the local intersection time Lt(X, 0) under µpin
t,β .

Corollary A.5. When b > 0 or when β = βc and
∫∞
0 tK(t) dt < ∞, |T ∩[0,t]|

t under µpin
t,β

converges in probability to

1

1 +
∫∞
0 e−bttK(t) dt

> 0. (A.18)

Proof. As
∫∞
0 tK(t) dt < ∞, the law of large numbers (applied first for the renewal process

τ and then to the sum of independent exponential times) tells us that

lim
t→∞

|T ∩ [0, t]|
t

=
1

1 +
∫∞
0 e−bttK(t) dt

, µ̃β − a.s, (A.19)

and therefore the convergence also holds in probability.

Restricted on Ft, the measure µpin
t,β is equal to µ̃β(· |t ∈ T ) and we also have that

µ̃β(t ∈ T ) is bounded away from zero by (A.11). This gives us that the law of |T ∩[0,t]|
t

under µpin
t,β converges in probability to the same limit. �

Remark A.6. In dimension d, as noted in Remark A.4, the local central limit Theorem
gives

µ(t ∈ T ) = P
X(Xt = 0) = (cst.+ o(1))t−d/2. (A.20)

For d > 5 this implies that
∫∞
0 tK(t) dt < ∞. Indeed for t large enough

P
X(Xt = 0) >

∫

0<t1<t2<t
e−t1K(t2 − t1)e

−(t−t2) dt1 dt2 > cst.

∫ t−1

t−2
K(s) ds, (A.21)

so that
∫ t−1
t−2 K(s) ds = O(t−d/2). Therefore, one can apply Corollary A.5 to get that

Lt(X, 0) is of order t for β = βc.

We present here an advanced version of (1.16), which was used for the proof of the
upper bound in Theorem 1.11.

Lemma A.7. For any value of t, for any random walk X with jump rate 1 one has

e(β−1)t 6 E
X
[
eLt(X,0)

]
6 e

(

β−1+ 1
β

)

t
(
1 +

1

β

)
. (A.22)

Proof. The left hand side inequality is simply obtained by considering the contribution of
trajectories that never jumps. To obtain the other inequality we decompose the partition
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function according to the time t′i, ti that are respectively the i-th jump out of zero, and

the i-th return to zero. We write Zt,β = E
X
[
eLt(X,0)

]
,

Zt,β = e(β−1)t
∞∑

n=0

∫

0<t′1<t1<···<tn<t

n∏

i=1

e−β(t′i−ti−1)K(ti − t′i) dt
′
i dti

[
1 +

∫ t

tn

e−β(t−t′n+1) dt′n+1

∫ ∞

t
K(tn+1 − t′n+1) dtn+1

]
. (A.23)

Then one remark that for the random walk K(t) 6 1 for all t. Indeed the probability
that after the first jump, the first excursion returns within a time in the interval [t, t+ dt]
(which is equal to K(t) dt) is smaller than the probability that X makes a jump in the
interval [t, dt] (which is equal to dt). Hence

∫ ti

ti−1

e−β(t′i−ti−1)K(ti − t′i) dt
′
i 6

1

β
,

∫ t

tn

e−β(t−t′n+1) dt′n+1 6
1

β
∫ ∞

t
K(tn+1 − t′n+1) dtn+1 6 1.

(A.24)

Therefore

Zt,β 6 e(β−1)t
∞∑

n=0

∫

0<t1<···<tn

1

βn

(
1 +

1

β

)
dt1 . . . dtn

= e(β−1)t

(
1 +

1

β

) ∞∑

n=0

tn

βnn!
(A.25)

which is exactly the result. �
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Università degli Studi “Roma Tre”, Largo San Leonardo Murialdo, 00146 Roma

E-mail address: lacoin@math.jussieu.fr


