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ON THE CRITICAL POINT OF THERANDOM WALK PINNING MODEL IN DIMENSION d = 3QUENTIN BERGER AND FABIO LUCIO TONINELLIAbstrat. We onsider the Random Walk Pinning Model studied in [3℄ and [2℄: this is a ran-dom walk X on Z
d, whose law is modi�ed by the exponential of β times LN (X, Y ), the ollisionloal time up to time N with the (quenhed) trajetory Y of another d-dimensional random walk.If β exeeds a ertain ritial value βc, the two walks stik together for typial Y realizations(loalized phase). A natural question is whether the disorder is relevant or not, that is whetherthe quenhed and annealed systems have the same ritial behavior. Birkner and Sun [3℄ provedthat βc oinides with the ritial point of the annealed Random Walk Pinning Model if thespae dimension is d = 1 or d = 2, and that it di�ers from it in dimension d ≥ 4 (for d ≥ 5, theresult was proven also in [2℄). Here, we onsider the open ase of the marginal dimension d = 3,and we prove non-oinidene of the ritial points.2000 Mathematis Subjet Classi�ation: 82B44, 60K35, 82B27, 60K37Keywords: Pinning Models, Random Walk, Frational Moment Method, Marginal Disorder1. IntrodutionWe onsider the RandomWalk Pinning Model (RWPM): the starting point is a zero-drift randomwalk X on Z

d (d ≥ 1), whose law is modi�ed by the presene of a seond random walk, Y .The trajetory of Y is �xed (quenhed disorder) and an be seen as the random medium. Themodi�ation of the law of X due to the presene of Y takes the Boltzmann-Gibbs form of theexponential of a ertain interation parameter, β, times the ollision loal time of X and Y upto time N , LN (X, Y ) :=
∑

1≤n≤N 1{Xn=Yn}. If β exeeds a ertain threshold value βc, then foralmost every realization of Y the walk X stiks together with Y , in the thermodynami limit
N → ∞. If on the other hand β < βc, then LN (X, Y ) is o(N) for typial trajetories.Averaging with respet to Y the partition funtion, one obtains the partition funtion of the so-alled annealed model, whose ritial point βann

c is easily omputed; a natural question is whether
βc 6= βann

c or not. In the renormalization group language, this is related to the question whetherdisorder is relevant or not. In an early version of the paper [2℄, Birkner et al. proved that βc 6= βann
cin dimension d ≥ 5. Around the same time, Birkner and Sun [3℄ extended this result to d = 4, andalso proved that the two ritial points do oinide in dimensions d = 1 and d = 2.The dimension d = 3 is the marginal dimension in the renormalization group sense, where noteven heuristi arguments like the �Harris riterion� (at least its most naive version) an preditwhether one has disorder relevane or irrelevane. Our main result here is that quenhed andannealed ritial points di�er also in d = 3.For a disussion of the onnetion of the RWPM with the �paraboli Anderson model with asingle atalyst�, and of the impliations of βc 6= βann

c about the loation of the weak-to-strongtransition for the direted polymer in random environment, we refer to [3, Se. 1.2 and 1.4℄.Our proof is based on the idea of bounding the frational moments of the partition funtion,together with a suitable hange of measure argument. This tehnique, originally introdued in[6, 9, 10℄ for the proof of disorder relevane for the random pinning model with tail exponentThis work was supported by the European Researh Counil through the �Advaned Grant� PTRELSS 228032,and by ANR through the grant LHMSHE. 1



2 QUENTIN BERGER AND FABIO LUCIO TONINELLI
α ≥ 1/2, has also proven to be quite powerful in other ases: in the proof of non-oinidene ofritial points for the RWPM in dimension d ≥ 4 [3℄, in the proof that �disorder is always strong�for the direted polymer in random environment in dimension (1 + 2) [11℄ and �nally in the proofthat quenhed and annealed large deviation funtionals for random walks in random environmentsin two and three dimensions di�er [15℄. Let us mention that for the random pinning model there isanother method, developed by Alexander and Zygouras [1℄, to prove disorder relevane: however,their method fails in the marginal situation α = 1/2 (whih orresponds to d = 3 for the RWPM).To guide the reader through the paper, let us point out immediately what are the noveltiesand the similarities of our proof with respet to the previous appliations of the frational mo-ment/hange of measure method:

• the hange of measure hosen by Birkner and Sun in [3℄ onsists essentially in orrelatingpositively eah inrement of the random walk Y with the next one. Therefore, underthe modi�ed measure, Y is more di�usive. The hange of measure we use in dimensionthree has also the e�et of orrelating positively the inrements of Y , but in our ase theorrelations have long range (the orrelation between the ith and the jth inrement deayslike |i− j|−1/2). Another ingredient whih was absent in [3℄ and whih is essential in d = 3is a oarse-graining step, of the type of that employed in [14, 10℄;
• while the sheme of the proof of our Theorem 2.8 has many points in ommon with thatof [10, Th. 1.7℄, here we need new renewal-type estimates (e.g. Lemma 4.7) and a arefulappliation of the Loal Limit Theorem to prove that the average of the partition funtionunder the modi�ed measure is small (Lemmas 4.2 and 4.3).2. Model and results2.1. The random walk pinning model. Let X = {Xn}n≥0 and Y = {Yn}n≥0 be two indepen-dent disrete-time random walks on Z

d, d ≥ 1, starting from 0, and let P
X and P

Y denote theirrespetive laws. We make the following assumption:Assumption 2.1. The random walk X is aperiodi. The inrements (Xi − Xi−1)i≥1 are i.i.d.,symmetri and have a �nite third moment (EX
[
‖X1‖3

]
< ∞, where ‖ · ‖ denotes the Eulideannorm on Z

d). Moreover, the ovariane matrix of X1, all it ΣX , is non-singular.The same assumptions hold for the inrements of Y (in that ase, we all ΣY the ovarianematrix of Y1).For β ∈ R, N ∈ N and for a �xed realization of Y we de�ne a Gibbs transformation of the pathmeasure P
X : this is the polymer path measure P

β
N,Y , absolutely ontinuous with respet to P

X ,given by dP
β
N,YdPX

(X) =
eβLN(X,Y )

1{XN =YN}

Zβ
N,Y

, (2.1)where LN (X, Y ) =
N∑

n=1
1{Xn=Yn}, and where

Zβ
N,Y = E

X [eβLN (X,Y )
1{XN =YN}] (2.2)is the partition funtion that normalizes P

β
N,Y to a probability.The quenhed free energy of the model is de�ned by

F (β) := lim
N→∞

1

N
log Zβ

N,Y = lim
N→∞

1

N
E

Y [log Zβ
N,Y ] (2.3)(the existene of the limit and the fat that it is P

Y -almost surely onstant and non-negative isproven in [3℄). We de�ne also the annealed partition funtion E
Y [Zβ

N,Y ], and the annealed freeenergy:
F ann(β) := lim

N→∞
1

N
log E

Y [Zβ
N,Y ]. (2.4)



RANDOM WALK PINNING MODEL IN d = 3 3We an ompare the quenhed and annealed free energies, via the Jensen inequality:
F (β) = lim

N→∞
1

N
E

Y [log Zβ
N,Y ] 6 lim

N→∞
1

N
log E

Y [Zβ
N,Y ] = F ann(β). (2.5)The properties of F ann(·) are well known (see the Remark 2.3), and we have the existene of ritialpoints [3℄, for both quenhed and annealed models, thanks to the onvexity and the monotoniityof the free energies with respet to β:De�nition 2.2 (Critial points). There exist 0 6 βann

c 6 βc depending on the laws of X and Ysuh that: F ann(β) = 0 if β 6 βann
c and F ann(β) > 0 if β > βann

c ; F (β) = 0 if β 6 βc and
F (β) > 0 if β > βc.The inequality βann

c 6 βc omes from the inequality (2.5).Remark 2.3. As was remarked in [3℄, the annealed model is just the homogeneous pinning model[8, Chapter 2℄ with partition funtion
E

Y [Zβ
N,Y ] = E

X−Y

[
exp

(
β

N∑

n=1

1{(X−Y )n=0}

)
1{(X−Y )N=0}

]whih desribes the random walk X −Y whih reeives the reward β eah time it hits 0. From thewell-known results on the homogeneous pinning model one sees therefore that
• If d = 1 or d = 2, the annealed ritial point βann

c is zero beause the random walk X − Yis reurrent.
• If d ≥ 3, the walk X − Y is transient and as a onsequene

βann
c = − log

[
1 − P

X−Y
(
(X − Y )n 6= 0 for every n > 0

)]
> 0.Remark 2.4. As in the pinning model [8℄, the ritial point βc marks the transition from adeloalized to a loalized regime. We observe that thanks to the onvexity of the free energy,

∂βF (β) = lim
N→∞

E
β
N,Y

[
1

N

N∑

n=1

1{XN=YN}

]
, (2.6)almost surely in Y , for every β suh that F (·) is di�erentiable at β. This is the ontat frationbetween X and Y . When β < βc, we have F (β) = 0, and the limit density of ontat between Xand Y is equal to 0: E

β
N,Y

∑N
n=1 1{XN =YN} = o(N), and we are in the deloalized regime. On theother hand, if β > βc, we have F (β) > 0, and there is a positive density of ontats between Xand Y : we are in the loalized regime.2.2. Review of the known results. The following is known about the question of the oinideneof quenhed and annealed ritial points:Theorem 2.5. [3℄ Assume that X and Y are disrete time simple random walks on Z

d.If d = 1 or d = 2, the quenched and annealed ritial points oinide: βc = βann
c = 0.If d ≥ 4, the quenched and annealed ritial points di�er: βc > βann

c > 0.Atually, the result that Birkner and Sun obtained in [3℄ is valid for slightly more general walksthan simple symmetri random walks, as pointed out in the last Remark in [3, Se.4.1℄. Moreover,an easy adaptation of the proof (f. m� ©moire de M2 : hange the measure two step at a time,on only one point) allow symmetri X and Y with ommon jump kernel pX and �nite seondmoments.In dimension d ≥ 5, the result was also proven (via a very di�erent method, and for more generalrandom walks whih inlude those of Assumption 2.1) in an early version of the paper [2℄.Remark 2.6. The method and result of [3℄ in dimensions d = 1, 2 an be easily extended beyondthe simple random walk ase (keeping zero mean and �nite variane). On the other hand, in the



4 QUENTIN BERGER AND FABIO LUCIO TONINELLIase d ≥ 4 new ideas are needed to make the hange-of-measure argument of [3℄ work for moregeneral random walks.Birkner and Sun gave also a similar result if X and Y are ontinuous-time symmetri simplerandom walks on Z
d, with jump rates 1 and ρ ≥ 0 respetively. With de�nitions of (quenhed andannealed) free energy and ritial points whih are analogous to those of the disrete-time model,they proved:Theorem 2.7. [3℄ In dimension d = 1 and d = 2, one has βc = βann

c = 0. In dimensions d ≥ 4,one has 0 < βann
c < βc for eah ρ > 0. Moreover, for d = 4 and for eah δ > 0, there exists

aδ > 0 suh that βc − βann
c ≥ aδρ

1+δ for all ρ ∈ [0, 1]. For d ≥ 5, there exists a > 0 suh that
βc − βann

c ≥ aρ for all ρ ∈ [0, 1].Our main result ompletes this piture, resolving the open ase of the ritial dimension d = 3(for simpliity, we deal only with the disrete-time model).Theorem 2.8. Under the Assumption 2.1, for d = 3, we have βc > βann
c .We point out that the result holds also in the ase where X (or Y ) is a simple random walk, a asewhih a priori is exluded by the aperiodiity ondition of Assumption 2.1; see the Remark 2.11.Also, it is possible to modify our hange-of-measure argument to prove the non-oinidene ofquenhed and annealed ritial points in dimension d = 4 for the general walks of Assumption 2.1,thereby extending the result of [3℄; see Setion 4.4 for a hint at the neessary steps.Note After this work was ompleted, M. Birkner and R. Sun informed us that in [4℄ theyindependently proved Theorem 2.8 for the ontinuous-time model.2.3. A renewal-type representation for Zβ

N,Y . From now on, we will assume that d ≥ 3.As disussed in [3℄, there is a way to represent the partition funtion Zβ
N,Y in terms of a renewalproess τ ; this rewriting makes the model look formally similar to the random pinning model [8℄.In order to introdue the representation of [3℄, we need a few de�nitions.De�nition 2.9. We let(1) pX

n (x) = P
X(Xn = x) and pX−Y

n (x) = P
X−Y

(
(X − Y )n = x

);(2) P be the law of a reurrent renewal τ = {τ0, τ1, . . .} with τ0 = 0, i.i.d. inrements andinter-arrival law given by
K(n) := P(τ1 = n) =

pX−Y
n (0)

GX−Y
where GX−Y :=

∞∑

n=1

pX−Y
n (0) (2.7)(note that GX−Y < ∞ in dimension d ≥ 3);(3) z′ = (eβ − 1) and z = z′ GX−Y ;(4) for n ∈ N and x ∈ Z

d,
w(z, n, x) = z

pX
n (x)

pX−Y
n (0)

; (2.8)(5) Žz
N,Y := z′

1+z′ Z
β
N,Y .Then, via the binomial expansion of eβLN(X,Y ) = (1 + z′)LN (X,Y ) one gets [3℄

Žz
N,Y =

N∑

m=1

∑

τ0=0<τ1<...<τm=N

m∏

i=1

K(τi − τi−1)w(z, τi − τi−1, Yτi − Yτi−1) (2.9)
= E [W (z, τ ∩ {0, . . . , N}, Y )1N∈τ ] ,where we de�ned for any �nite inreasing sequene s = {s0, s1, . . . , sl}

W (z, s, Y ) =
E

X
[∏l

n=1 z1{Xsn=Ysn}
∣∣∣Xs0 = Ys0

]

EX−Y
[∏l

n=1 1{Xsn=Ysn}

∣∣∣Xs0 = Ys0

] =

l∏

n=1

w(z, sn − sn−1, Ysn − Ysn−1). (2.10)



RANDOM WALK PINNING MODEL IN d = 3 5We remark that, taking the E
Y −expetation of the weights, we get

E
Y
[
w(z, τi − τi−1, Yτi − Yτi−1)

]
= z.Again, we see that the annealed partition funtion is the partition funtion of a homogeneouspinning model:

Žz,ann
N,Y = E

Y [Žz
N,Y ] = E

[
zRN 1{N∈τ}

]
, (2.11)where we de�ned RN := |τ ∩ {1, . . . , N}|.Sine the renewal τ is reurrent, the annealed ritial point is zann

c = 1.In the following, we will often use the Loal Limit Theorem for random walks, that one an �ndfor instane in [5, Theorem 3℄ (reall that we assumed that the inrements of both X and Y have�nite seond moments and non-singular ovariane matrix):Proposition 2.10 (Loal Limit Theorem). Under the Assumption 2.1, we get
P

X(Xn = x) =
1

(2πn)d/2(detΣX)1/2
exp

(
− 1

2n
x ·
(
Σ−1

X x
))

+ o(n−d/2), (2.12)where o(n−d/2) is uniform for x ∈ Z
d.Moreover, there exists a onstant c > 0 suh that for all x ∈ Z

d and n ∈ N

P
X(Xn = x) 6 cn−d/2. (2.13)Similar statements hold for the walk Y .(We use the notation x · y for the anonial salar produt in R

d.)In partiular, from Proposition 2.10 and the de�nition of K(·) in (2.7), we get K(n) ∼ cKn−d/2as n → ∞, for some positive cK . As a onsequene, for d = 3 we get from [7, Th. B℄ that
P(n ∈ τ)

n→∞∼ 1

2πcK
√

n
. (2.14)Remark 2.11. In Proposition 2.10, we supposed that the walk X is aperiodi, whih is not thease for the simple random walk. If X is the symmetri simple random walk on Z

d, then [12, Prop.1.2.5℄
P

X(Xn = x) = 1{n↔x}
2

(2πn)d/2(det ΣX)1/2
exp

(
− 1

2n
x ·
(
Σ−1

X x
))

+ o(n−d/2), (2.15)where +o(n−d/2) is uniform for x ∈ Z
d, and where n ↔ x means that n and x have the same parity(so that x is a possible value for Xn). Of ourse, in this ase ΣX is just 1/d times the identitymatrix. The statement (2.13) also holds.Via this remark, one an adapt all the omputations of the following setions, whih are based onProposition 2.10, to the ase where X (or Y ) is a simple random walk. For simpliity of exposition,we give the proof of Theorem 2.8 only in the aperiodi ase.3. Main result: the dimension d = 3With the de�nition F̌ (z) := limN→∞

1
N log Žz

N,Y , to prove Theorem 2.8 it is su�ient to showthat F̌ (z) = 0 for some z > 1.



6 QUENTIN BERGER AND FABIO LUCIO TONINELLI3.1. The oarse-graining proedure and the frational moment method. We onsiderwithout loss of generality a system of size proportional to L = 1
z−1 (the oarse-graining length),that is N = mL, with m ∈ N. Then, for I ⊂ {1, . . . , m}, we de�ne

ZI
z,Y := E

[
W (z, τ ∩ {0, . . . , N}, Y )1N∈τ1EI (τ)

]
, (3.1)where EI is the event that the renewal τ intersets the bloks (Bi)i∈I and only these bloks over

{1, . . . , N}, Bi being the ith blok of size L:
Bi := {(i − 1)L + 1, . . . , iL}. (3.2)Sine the events EI are disjoint, we an write

Žz
N,Y :=

∑

I⊂{1,...,m}
ZI

z,Y . (3.3)Note that ZI
z,Y = 0 if m /∈ I. We an therefore assume m ∈ I. If we denote I = {i1, i2, . . . , il}(l = |I|), i1 < . . . < il, il = m, we an express ZI

z,Y in the following way:
ZI

z,Y :=
∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)w(z, a1, Ya1)Z
z
a1,b1 (3.4)

. . . K(al − bl−1)w(z, al − bl−1, Yal
− Ybl−1

)Zz
al,N ,where

Zz
j,k := E

[
W (z, τ ∩ {j, . . . , k}, Y )1k∈τ |j ∈ τ

] (3.5)is the partition funtion between j and k.

PSfrag replaements

0 L 2L 3L 4L 5L 6L 7L 8L = N

a1 a2 a3 a4b1 b2 b3 b4 = NFigure 1. The oarse-graining proedure. Here N = 8L (the system is ut into
8 bloks), and I = {2, 3, 6, 8} (the gray zones) are the bloks where the ontatsour, and where the hange of measure proedure of the Setion 3.2 ats.Moreover, thanks to the Loal Limit Theorem (Proposition 2.10), one an note that there existsa onstant c > 0 independent of the realization of Y suh that, if one takes z 6 2 (we will take zlose to 1 anyway), one has

w(z, τi − τi−1, Yτi − Yτi−1) = z
pX

τi−τi−1
(Yτi − Yτi−1)

pX−Y
τi−τi−1

(0)
≤ c.So, the deomposition (3.4) gives

ZI
z,Y 6 c|I|

∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)Z
z
a1,b1K(a2 − b1)Z

z
a2,b2 . . . K(al − bl−1)Z

z
al,N

. (3.6)We now eliminate the dependene on z in the inequality (3.6). This is possible thanks to thehoie L = 1
z−1 . As eah Zz

ai,bi
is the partition funtion of a system of size smaller than L, we get

W (z, τ ∩ {ai, . . . , bi}, Y ) 6 zLW (z = 1, τ ∩ {ai, . . . , bi}, Y ) (reall the de�nition (2.10)). But withthe hoie L = 1
z−1 , the fator zL is bounded by a onstant c, and thanks to the equation (3.5),we �nally get

Zz
ai,bi

6 cZz=1
ai,bi

. (3.7)Notational warning: in the following, c, c′, et. will denote positive onstants, whose valuemay hange from line to line.



RANDOM WALK PINNING MODEL IN d = 3 7We note Zai,bi := Zz=1
ai,bi

and W (τ, Y ) := W (z = 1, τ, Y ). Plugging this in the inequality (3.6),we �nally get
ZI

z,Y 6 c′|I|
∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)Za1,b1K(a2 − b1)Za2,b2 . . . K(al − bl−1)Zal,N , (3.8)where there is no dependene on z anymore.The frational moment method starts from the observation that for any γ 6= 0

F̌ (z) = lim
N→∞

1

γN
E

Y
[
log
(
Žz

N,Y

)γ]
6 lim inf

N→∞
1

Nγ
log E

Y
[(

Žz
N,Y

)γ]
. (3.9)Let us �x a value of γ ∈ (0, 1) (as in [10℄, we will hoose γ = 6/7, but we will keep writing it as

γ to simplify the reading). Using the inequality (
∑

an)
γ

6
∑

aγ
n (whih is valid for ai ≥ 0), andombining with the deomposition (3.3), we get

E
Y
[(

Žz
N,Y

)γ]
6

∑

I⊂{1,...,m}
E

Y
[(

ZI
z,Y

)γ]
. (3.10)Thanks to (3.9) we only have to prove that, for some z > 1, lim supN→∞ E

Y
[(

Žz
N,Y

)γ]
< ∞.We deal with the term E

Y
[
(ZI

z,Y )γ
] via a hange of measure proedure.3.2. The hange of measure proedure. The idea is to hange the measure P

Y on eah blokwhose index belongs to I, keeping eah blok independent of the others. We replae, for �xed I,the measure P
Y (dY ) with gI(Y )PY (dY ), where the funtion gI(Y ) will have the e�et of reatinglong range positive orrelations between the inrements of Y , inside eah blok separately. Then,thanks to the Hölder inequality, we an write

E
Y
[(

ZI
z,Y

)γ]
= E

Y

[
gI(Y )γ

gI(Y )γ

(
ZI

z,Y

)γ
]

6 E
Y
[
gI(Y )−

γ
1−γ

]1−γ

E
Y
[
gI(Y )ZI

z,Y

]γ
. (3.11)In the following, we will denote ∆i = Yi − Yi−1 the ith inrement of Y . Let us introdue, for

K > 0 and εK to be hosen, the following �hange of measure�:
gI(Y ) =

∏

k∈I
(1Fk(Y ) 6 K + εK1Fk(Y )>K) ≡

∏

k∈I
gk(Y ), (3.12)where

Fk(Y ) = −
∑

i,j∈Bk

Mij∆i · ∆j , (3.13)and {
Mij = 1√

L log L
1√
|j−i|

if i 6= j

Mii = 0.
(3.14)Let us note that from the form of M , we get that ‖M‖2

:=
∑

i,j∈B1
M2

ij 6 C, where the onstant
C < ∞ does not depend on L. We also note that Fk only depends on the inrements of Y in theblok labeled k.Let us deal with the �rst fator of (3.11):

E
Y
[
gI(Y )−

γ
1−γ

]
=
∏

k∈I
E

Y
[
gk(Y )−

γ
1−γ

]
=
(

P
Y (F1(Y ) 6 K) + ε

− γ
1−γ

K P
Y (F1(Y ) > K)

)|I|
.(3.15)We now hoose

εK := P
Y (F1(Y ) > K)

1−γ
γ (3.16)suh that the �rst fator in (3.11) is bounded by 2(1−γ)|I| 6 2|I|. The inequality (3.11) �nallygives

E
Y
[(

ZI
z,Y

)γ]
6 2|I|EY

[
gI(Y )ZI

z,Y

]γ
. (3.17)



8 QUENTIN BERGER AND FABIO LUCIO TONINELLIThe idea is that when F1(Y ) is large, the weight g1(Y ) in the hange of measure is small. That iswhy the following lemma is useful:Lemma 3.1. We have the following limit:
lim

K→∞
εK = lim

K→∞
P

Y (F1(Y ) > K) = 0 (3.18)Proof . We already now that E
Y [F1(Y )] = 0, so thanks to the standard Chebyshev inequality,we only have to prove that E

Y [F1(Y )2] is bounded. We get
E

Y [F1(Y )2] =
∑

i,j∈B1

k,l∈B1

MijMklE
Y [(∆i · ∆j)(∆k · ∆l)]

=
∑

{i,j}={k,l}
M2

ijE
Y
[
(∆i · ∆j)

2
] (3.19)where we used that E

Y [(∆i · ∆j)(∆k · ∆l)] = 0 if {i, j} 6= {k, l}. Then, we an use the Cauhy-Shwarz inequality to get
E

Y [F1(Y )2] 6
∑

{i,j}={k,l}
M2

ijE
Y
[
‖∆i‖2 ‖∆j‖2

]
6 ‖M‖2σ4

Y . (3.20)
�We are left with the estimation of E

Y
[
gI(Y )ZI

z,Y

]. We set PI := P (EI , N ∈ τ), that is theprobability for τ to visit the bloks (Bi)i∈I and only these ones, and to visit also N . We now usethe following two statements.Proposition 3.2. For any η > 0, there exists z > 1 su�iently lose to 1 (or L su�iently big,sine L = (z − 1)−1) suh that for every I ⊂ {1, . . . , m} with m ∈ I, we have
E

Y
[
gI(Y )ZI

z,Y

]
6 η|I|PI . (3.21)Proposition 3.2 is the ore of the paper and is proven in the next setion.Lemma 3.3. [10, Lemma 2.4℄ There exist three onstants C1 = C1(L), C2 and L0 suh that (with

i0 := 0)
PI 6 C1C

|I|
2

|I|∏

j=1

1

(ij − ij−1)7/5
(3.22)for L ≥ L0 and for every I ∈ {1, . . . , m}.Thanks to these two statements and ombining with the inequalities (3.10) and (3.17), we get

E
Y
[(

Žz
N,Y

)γ]
6

∑

I⊂{1,...,m}
E

Y
[(

ZI
z,Y

)γ]
6 Cγ

1

∑

I⊂{1,...,m}

|I|∏

j=1

(3C2η)γ

(ij − ij−1)7γ/5
. (3.23)Sine 7γ/5 = 6/5 > 1, we an set

K̃(n) =
1

c̃n6/5
, where c̃ =

+∞∑

i=1

i−6/5 < +∞, (3.24)and K̃(·) is the inter-arrival probability of some reurrent renewal τ̃ . We an therefore interpretthe right-hand side of (3.23) as a partition funtion of a homogeneous pinning model of size m (seeFigure 2), with the underlying renewal τ̃ , and with pinning parameter log[c̃(3C2η)γ ]:
E

Y
[(

Žz
N,Y

)γ]
6 Cγ

1 Eeτ

[
(c̃(3C2η)γ)|eτ∩{1,...,m}|

]
. (3.25)



RANDOM WALK PINNING MODEL IN d = 3 9PSfrag replaements
0 1 2 3 4 5 6 7 8 = mFigure 2. The underlying renewal τ̃ is a subset of the set of bloks (Bi)1 6 i 6 m(i.e the bloks are reinterpreted as points) and the inter-arrival distribution is

K̃(n) = 1/
(
c̃n6/5

).Thanks to Proposition 3.2, we an take η arbitrary small. Let us �x η := 1/((4C2)c̃
1/γ). Then,

E
Y
[(

Žz
N,Y

)γ]
6 Cγ

1 (3.26)for every N . This implies, thanks to (3.9), that F̌ (z) = 0, and we are done. �Remark 3.4. The oarse-graining proedure redued the proof of deloalization to the proofof Proposition 3.2. Thanks to the inequality (3.8), one has to estimate the expetation, withrespet to the gI(Y )−modi�ed measure, of the partition funtions Zai,bi in eah visited blok.We will show (this is Lemma 4.1) that the expetation with respet to this modi�ed measure of
Zai,bi/P(bi − ai ∈ τ) an be arbitrarily small if L is large, and if bi − ai is of the order of L. If
bi − ai is muh smaller, we an deal with this term via elementary bounds.4. Proof of the Proposition 3.2As pointed out in Remark 3.4, Proposition 3.2 relies on the following key lemma:Lemma 4.1. For every ε and δ > 0, there exists L > 0 suh that

E
Y [g1(Y )Za,b] 6 δP(b − a ∈ τ) (4.1)for every a 6 b in B1 suh that b − a ≥ εL.Given this lemma, the proof of Proposition 3.2 is very similar to the proof of [10, Proposition2.3℄, so we will sketh only a few steps. The inequality (3.8) gives us

E
Y
[
gI(Y )ZI

z,Y

]

6 c|I|
∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)E
Y [gi1(Y )Za1,b1 ] K(a2 − b1)E

Y [gi2(Y )Za2,b2 ] . . .

. . .K(al − bl−1)E
Y [gil

(Y )Zal,N ]

= c|I|
∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)E
Y
[
g1(Y )Za1−L(i1−1),b1−L(i1−1)

]
K(a2 − b1) . . .(4.2)

. . .K(al − bl−1)E
Y
[
g1(Y )Zal−L(m−1),N−L(m−1)

]
.The terms with bi − ai ≥ εL are dealt with via Lemma 4.1, while for the remaining ones we justobserve that E

Y [g1(Y )Za,b] ≤ P(b − a ∈ τ) sine g1(Y ) ≤ 1. One has then
E

Y
[
gI(Y )ZI

z,Y

]
6 c|I|

∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)
(
δ + 1{b1−a1 6 εL}

)
P(b1 − a1 ∈ τ)

. . . K(al − bl−1)
(
δ + 1{N−al 6 εL}

)
P(N − al ∈ τ). (4.3)From this point on, the proof of Theorem 3.2 is idential to the proof of Proposition 2.3 in [10℄(one needs of ourse to hoose ε = ε(η) and δ = δ(η) su�iently small). �



10 QUENTIN BERGER AND FABIO LUCIO TONINELLI4.1. Proof of Lemma 4.1. Let us �x a, b in B1, suh that b − a ≥ εL. The small onstants
δ and ε are also �xed. We reall that for a �xed on�guration of τ suh that a, b ∈ τ , we have
E

Y
[
W (τ ∩ {a, . . . , b}, Y )

]
= 1 beause z = 1. We an therefore introdue the probability measure(always for �xed τ) dPτ (Y ) = W (τ ∩ {a, . . . , b}, Y )dP

Y (Y ) (4.4)where we do not indiate the dependene on a and b. Let us note for later onveniene that, inthe partiular ase a = 0, the de�nition (2.10) of W implies that for any funtion f(Y )

Eτ [f(Y )] = E
X

E
Y
[
f(Y )|Xi = Yi ∀i ∈ τ ∩ {1, . . . , b}

]
. (4.5)With the de�nition (3.5) of Za,b := Zz=1

a,b , we get
E

Y [g1(Y )Za,b] = E
Y
E
[
g1(Y )W (τ ∩ {a, . . . , b}, Y )1b∈τ |a ∈ τ

]
= ÊEτ [g1(Y )]P(b − a ∈ τ), (4.6)where P̂(·) := P(·|a, b ∈ τ), and therefore we have to show that ÊEτ [g1(Y )] 6 δ.With the de�nition (3.12) of g1(Y ), we get that for any K

ÊEτ [g1(Y )] 6 εK + ÊPτ (F1 < K) . (4.7)If we hoose K big enough, εK is smaller than δ/3 thanks to the Lemma 3.1. We now usetwo lemmas to deal with the seond term. The idea is to �rst prove that Eτ [F1] is big with a
P̂−probability lose to 1, and then that its variane is not too large.Lemma 4.2. For every ζ > 0 and ε > 0, one an �nd two onstants u = u(ε, ζ) > 0 and
L0 = L0(ε, ζ) > 0, suh that for every a, b ∈ B1 suh that b − a ≥ εL,

P̂

(
Eτ [F1] ≤ u

√
log L

)
≤ ζ, (4.8)for every L ≥ L0.Choose ζ = δ/3 and �x u > 0 suh that (4.8) holds for every L su�iently large. If 2K = u

√
log L(and therefore we an make εK small enough by hoosing L large), we get that

ÊPτ (F1 < K) 6 ÊPτ

[
F1 − Eτ [F1] 6 − K

]
+ P̂ (Eτ [F1] 6 2K) (4.9)

6
1

K2
ÊEτ

[
(F1 − Eτ [F1])

2
]

+ δ/3. (4.10)Putting this together with (4.7) and with our hoie of K, we have
ÊEτ [g1(Y )] 6 2δ/3 +

4

u2 log L
ÊEτ

[
(F1 − Eτ [F1])

2
] (4.11)for L ≥ L0. Then we just have to prove that ÊEτ

[
(F1 − Eτ [F1])

2
]

= o(log L). Indeed,Lemma 4.3. For every ε > 0 there exists some onstant c = c(ε) > 0 suh that
ÊEτ

[
(F1 − Eτ [F1])

2
]

6 c (log L)3/4 (4.12)for every L > 1 and a, b ∈ B1 suh that b − a ≥ εL.We �nally get that
ÊEτ [g1(Y )] 6 2δ/3 + c(log L)−1/4, (4.13)and there exists a onstant L1 > 0 suh that for L > L1

ÊEτ [g1(Y )] 6 δ. (4.14)
�



RANDOM WALK PINNING MODEL IN d = 3 114.2. Proof of Lemma 4.2. Up to now, the proof of Theorem 2.8 is quite similar to the proof ofthe main result in [10℄. Starting from the present setion, instead, new ideas and tehnial resultsare needed.Let us �x a realization of τ suh that a, b ∈ τ (so that it has a non-zero probability under P̂)and let us note τ ∩ {a, . . . b} = {τRa = a, τRa+1, . . . , τRb
= b} (reall that Rn = |τ ∩ {1, . . . , n}|).We observe (just go bak to the de�nition of Pτ ) that, if f is a funtion of the inrements of Y in

{τn−1 + 1, . . . , τn}, g of the inrements in {τm−1 + 1, . . . , τm} with Ra < n 6= m ≤ Rb, and if h isa funtion of the inrements of Y not in {a + 1, . . . , b} then
Eτ

[
f
(
{∆i}i∈{τn−1+1,...,τn}

)
g
(
{∆i}i∈{τm−1+1,...,τm}

)
h
(
{∆i}i/∈{a+1,...,b}

)] (4.15)
= Eτ

[
f
(
{∆i}i∈{τn−1+1,...,τn}

)]
Eτ

[
g
(
{∆i}i∈{τm−1+1,...,τm}

)]
E

Y
[
h
(
{∆i}i/∈{a+1,...,b}

)]
,and that

Eτ

[
f
(
{∆i}i∈{τn−1+1,...,τn}

)]
= E

X
E

Y
[
f
(
{∆i}i∈{τn−1+1,...,τn}

)
|Xτn−1 = Yτn−1 , Xτn = Yτn

]

= E
X

E
Y
[
f
(
{∆i−τn−1}i∈{τn−1+1,...,τn}

)
|Xτn−τn−1 = Yτn−τn−1

]
. (4.16)We want to estimate Eτ [F1]: sine the inrements ∆i for i ∈ B1 \ {a + 1, . . . , b} are i.i.d. andentered (like under P

Y ), we have
Eτ [F1] :=

b∑

i,j=a+1

MijEτ [−∆i · ∆j ]. (4.17)Via a time translation, one an always assume that a = 0 and we do so from now on.The key point is the followingLemma 4.4. (1) If there exists 1 ≤ n ≤ Rb suh that i, j ∈ {τn−1 + 1, . . . , τn}, then
Eτ [−∆i · ∆j ] = A(r)

r→∞∼ CX,Y

r
(4.18)where r = τn − τn−1 (in partiular, note that the expetation depends only on r) and CX,Yis a positive onstant whih depends on P

X , PY ;(2) otherwise, Eτ [−∆i · ∆j ] = 0.Proof of Lemma 4.4 Case (2). Assume that τn−1 < i ≤ τn and τm−1 < j ≤ τm with n 6= m.Thanks to (4.15)-(4.16) we have that
Eτ [∆i·∆j ] = E

X
E

Y [∆i|Xτn−1 = Yτn−1 , Xτn = Yτn ]·EX
E

Y [∆j |Xτm−1 = Yτm−1 , Xτm = Yτm ] (4.19)and both fators are immediately seen to be zero, sine the laws of X and Y are assumed to besymmetri.Case (1). Without loss of generality, assume that n = 1, so we only have to ompute
E

Y
E

X [∆i · ∆j |Xr = Yr ] . (4.20)where r = τ1. Let us �x x ∈ Z
3, and denote E

Y
r,x[·] = E

Y [· |Yr = x ].
E

Y [∆i · ∆j |Yr = x ] = E
Y
r,x

[
∆i · E

Y
r,x [∆j |∆i ]

]

= E
Y
r,x

[
∆i ·

x − ∆i

r − 1

]
=

x

r − 1
· E

Y
r,x [∆i] −

1

r − 1
E

Y
r,x

[
‖∆i‖2

]

=
1

r − 1

(
‖x‖2

r
− E

Y
r,x

[
‖∆1‖2

])
,



12 QUENTIN BERGER AND FABIO LUCIO TONINELLIwhere we used the fat that under P
Y
r,x the law of the inrements {∆i}i≤r is exhangeable. Then,we get

Eτ [∆i · ∆j ] = E
X

E
Y
[
∆i · ∆j1{Yr=Xr}

]
P

X−Y (Yr = Xr)
−1

= E
X
[
E

Y [∆i · ∆j |Yr = Xr ] PY (Yr = Xr)
]
P

X−Y (Yr = Xr)
−1

=
1

r − 1

(
E

X

[
‖Xr‖2

r
P

Y (Yr = Xr)

]
P

X−Y (Yr = Xr)
−1

−E
X

E
Y
[
‖∆1‖2

1{Yr=Xr}
]

P
X−Y (Yr = Xr)

−1
)

=
1

r − 1

(
E

X

[
‖Xr‖2

r
P

Y (Yr = Xr)

]
P

X−Y (Yr = Xr)
−1 − E

X
E

Y
[
‖∆1‖2 |Yr = Xr

])
.Next, we study the asymptoti behavior of A(r) and we prove (4.18) with CX,Y = tr(ΣY ) −

tr
(
(Σ−1

X + Σ−1
Y )−1

). Note that tr(ΣY ) = E
Y (||Y1||2) := σ2

Y . The fat that CX,Y > 0 is just aonsequene of the fat that, if A and B are two positive-de�nite matries, one has that A − B ispositive de�nite if and only if B−1 − A−1 is [13, Cor. 7.7.4(a)℄.To prove (4.18), it is enough to show that
E

X
E

Y
[
‖∆1‖2 |Yr = Xr

]
r→∞→ E

X
E

Y
[
‖∆1‖2

]
= σ2

Y , (4.21)and that
B(r) :=

E
X
[
‖Xr‖2

r P
Y (Yr = Xr)

]

PX−Y (Xr = Yr)

r→∞→ tr
(
(Σ−1

X + Σ−1
Y )−1

)
. (4.22)To prove (4.21), write

E
X

E
Y
[
‖∆1‖2 |Yr = Xr

]
= E

Y
[
‖∆1‖2

P
X(Xr = Yr)

]
P

X−Y (Xr = Yr)
−1

=
∑

y,z∈Zd

‖y‖2
P

Y (Y1 = y)
P

Y (Yr−1 = z)PX(Xr = y + z)

PX−Y (Xr − Yr = 0)
. (4.23)We know from the Loal Limit Theorem (Proposition 2.10) that the term P

X (Xr=y+z)
PX−Y (Xr−Yr=0) is uni-formly bounded from above, and so there exist a onstant c > 0 suh that for all y ∈ Z

d

∑

z∈Zd

P
Y (Yr−1 = z)PX(Xr = y + z)

PX−Y (Xr − Yr = 0)
6 c. (4.24)If we an show that for every y �xed Z

3, this term goes to 1 as r goes to in�nity, then from (4.23),a dominated onvergene argument would give that
E

X
E

Y
[
‖∆1‖2 |Yr = Xr

]
r→∞−→

∑

y∈Zd

‖y‖2
P

Y (Y1 = y) = σ2
Y . (4.25)We are now left with proving that the right term of (4.24) goes to 1 as r goes to in�nity for any�xed y ∈ Z

d.We use the Loal Limit Theorem to get
∑

z∈Zd

P
Y (Yr−1 = z)PX(Xr = y + z) =

∑

z∈Zd

cXcY

rd
e−

1
2(r−1)

z·(Σ−1
Y z)e−

1
2r (y+z)·(Σ−1

X (y+z)) + o(r−d/2)

= (1 + o(1))
∑

z∈Zd

cXcY

rd
e−

1
2 z·(Σ−1

Y z)e−
1
2r z·(Σ−1

X z) + o(r−d/2) (4.26)where cX = (2π)−d/2(det ΣX)−1/2 and similarly for cY (the onstants are di�erent in the ase ofsimple random walks: see Remark 2.11), and where we used that y is �xed to neglet y/
√

r.



RANDOM WALK PINNING MODEL IN d = 3 13Using the same reasoning, we also have (with the same onstants cX and cY )
P

X−Y (Xr = Yr) =
∑

z∈Z3

P
Y (Yr = z)PX(Xr = z)

=
∑

z∈Zd

cXcY

rd
e−

1
2r z·(Σ−1

Y z)e−
1
2r z·(Σ−1

X z) + o(r−d/2). (4.27)Putting this together with (4.26) (and onsidering that P
X−Y (Xr = Yr) ∼ c

X,Y
r−d/2), we have,for every y ∈ Z

d

∑

z∈Zd

P
Y (Yr−1 = z)PX(Xr = y + z)

PX−Y (Xr − Yr = 0)

r→∞−→ 1. (4.28)To deal with the term B(r) in (4.22), we apply the Loal Limit Theorem as in (4.27) to get
E

X

[
‖Xr‖2

r
P

Y (Yr = Xr)

]
=

cY cX

rd

∑

z∈Zd

‖z‖2

r
e−

1
2r z·(Σ−1

Y z)e−
1
2r z·(Σ−1

X z) + o(r−d/2). (4.29)Together with (4.27), we �nally get
B(r) =

∑
z∈Zd

‖z‖2

r e−
1
2r z·((Σ−1

Y +Σ−1
X )z) + o(r−d/2)

∑
z∈Zd e−

1
2r z·((Σ−1

Y +Σ−1
X )z) + o(r−d/2)

= (1 + o(1))E
[
‖N‖2

]
, (4.30)whereN ∼ N

(
0, (Σ−1

Y + Σ−1
X )−1

) is a entered Gaussian vetor of ovarianematrix (Σ−1
Y + Σ−1

X )−1.Therefore, E
[
‖N‖2

]
= tr

(
(Σ−1

Y + Σ−1
X )−1

) and (4.22) is proven.
�Remark 4.5. For later purposes, we remark that with the same method one an prove that, forany polynomials U and V suh that E

Y [‖U ({‖∆k‖}k 6 k0) ‖] < ∞, we have
E

X
E

Y

[
U ({‖∆k‖}k 6 k0)V

(‖Xr‖√
r

)∣∣∣∣Yr = Xr

]
r→∞→ E

Y
[
U ({‖∆k‖}k 6 k0)

]
E
[
V (‖N‖)

]
, (4.31)where N is as in (4.30).Let us now quikly sketh the proof: as in (4.23), we an write

E
X

E
Y

[
U ({‖∆k‖}k 6 k0)V

(‖Xr‖√
r

)∣∣∣∣Yr = Xr

]
= (4.32)

∑

y1,...,yk0
∈Zd

U ({‖yk‖}k 6 k0)
∑

z∈Zd

V

(‖z‖√
r

)
P

X(Xr = z)
P

Y (Yr−k0 = z − y1 − . . . − yk0)

PX−Y (Xr − Yr = 0)
.Then using the Loal Limit Theorem the same way as in (4.27), one an show that for any

y1, . . . , yk0 , we get similarly as (4.30)
∑

z∈Zd

V

(‖z‖√
r

)
P

X(Xr = z)
P

Y (Yr−k0 = z − y1 − . . . − yk0)

PX−Y (Xr − Yr = 0)

r→∞→ E
[
V (‖N‖)

]
. (4.33)Using a uniform bound for P

Y (Yr−k0 = z − y1 − . . . − yk0) and P
X−Y (Xr − Yr = 0), we also seethat this term is uniformly bounded for y1, . . . , yk0 ∈ Z

d by CE
X
[
V
(

‖Xr‖√
r

)]. Then, as for (4.21),we get the result thanks to a dominated onvergene argument.Given Lemma 4.4, we an resume the proof of Lemma 4.2, and lower bound the average Eτ [F1].Realling (4.17) and the fat that we redued to the ase a = 0, we get
Eτ [F1] =

Rb∑

n=1




∑

τn−1<i,j≤τn

Mij


A(∆τn), (4.34)



14 QUENTIN BERGER AND FABIO LUCIO TONINELLIwhere ∆τn := τn − τn−1. Using the de�nition (3.14) of M , we see that there exists a onstant
c > 0 suh that for 1 < m ≤ L

m∑

i,j=1

Mij ≥ c√
L logL

m3/2. (4.35)On the other hand, thanks to Lemma 4.4, there exists some r0 > 0 and two onstants c and c′suh that A(r) ≥ c
r for r ≥ r0, and A(r) ≥ −c′ for every r. Plugging this into (4.34), one gets

√
L logL Eτ [F1] ≥ c

Rb∑

n=1

√
∆τn1{∆τn≥r0} − c′

Rb∑

n=1

(∆τn)3/2
1{∆τn 6r0} ≥ c

Rb∑

n=1

√
∆τn − c′Rb. (4.36)Therefore, we get for any positive B > 0 (independent of L)

P̂

(
Eτ [F1] 6 g

√
log L

)
6 P̂

(
1√

L logL

(
c

Rb∑

n=1

√
∆τn − c′ Rb

)
6 u

√
log L

)

6 P̂

(
1√

L logL

(
c

Rb∑

n=1

√
∆τn − c′

√
LB

)
6 u

√
log L

)
+ P̂

(
Rb > B

√
L
)

6 P̂




Rb/2∑

n=1

√
∆τn ≤ (1 + o(1))

u

c

√
L log L


+ P̂(Rb > B

√
L). (4.37)Now we show that for B large enough, and L ≥ L0(B),

P̂(Rb > B
√

L) 6 ζ/2, (4.38)where ζ is the onstant whih appears in the statement of Lemma 4.2. We start with getting rid ofthe onditioning in P̂ (reall P̂(·) = P(·|b ∈ τ) sine we redued to the ase a = 0). If Rb > B
√

L,then either |τ ∩ {1, . . . , b/2}| or |τ ∩ {b/2 + 1, . . . , b}| exeeds B
2

√
L. Sine both random variableshave the same law under P̂, we have

P̂(Rb > B
√

L) 6 2P̂

(
Rb/2 >

B

2

√
L

)
≤ 2cP

(
Rb/2 >

B

2

√
L

)
, (4.39)where in the seond inequality we applied Lemma A.1. Now, we an use the Lemma A.3 in theAppendix, to get that (reall b ≤ L)

P

(
Rb/2 >

B

2

√
L

)
≤ P

(
RL/2 >

B

2

√
L

)
L→∞→ P

( |Z|√
2π

≥ B
cK√

2

)
, (4.40)with Z a standard Gaussian random variable and cK the onstant suh that K(n) ∼ cKn−3/2.The inequality (4.38) then follows for B su�iently large, and L ≥ L0(B).We are left to prove that for L large enough and u small enough

P̂




Rb/2∑

n=1

√
∆τn 6

u

c

√
L log L



 6 ζ/2. (4.41)The onditioning in P̂ an be eliminated again via Lemma A.1. Next, one notes that for any given
A > 0 (independent of L)

P




Rb/2∑

n=1

√
∆τn 6

u

c

√
L log L



 6 P




A
√

L∑

n=1

√
∆τn 6

u

c

√
L log L



+ P

(
Rb/2 < A

√
L
)

. (4.42)Thanks to the Lemma A.3 in Appendix and to b ≥ εL, we have
lim sup
L→∞

P

(
Rb/2√

L
< A

)
≤ P

(
|Z|√
2π

< AcK

√
2

ε

)
,



RANDOM WALK PINNING MODEL IN d = 3 15whih an be arbitrarily small if A = A(ε) is small enough, for L large. We now deal with theother term in (4.42), using the exponential Bienaymé-Chebyshev inequality (and the fat that the
∆τn are i.i.d.):

P



 1√
L log L

A
√

L∑

n=1

√
∆τn <

u

c

√
log L



 6 e(u/c)
√

log L
E

[
exp

(
−
√

τ1

L log L

)]A
√

L

. (4.43)To estimate this expression, we remark that, for L large enough,
E

[
1 − exp

(
−
√

τ1

L logL

)]
=

∞∑

n=1

K(n)
(
1 − e−

√
n

L log L

)

≥ c′
∞∑

n=1

1 − e−
√

n
L log L

n3/2
≥ c′′

√
log L

L
, (4.44)where the last inequality follows from keeping only the terms with n ≤ L in the sum, and notingthat in this range 1 − e−

√
n

L log L ≥ c
√

n/(L logL). Therefore,
E

[
exp

(
−
√

τ1

L log L

)]A
√

L

6

(
1 − c′′

√
log L

L

)A
√

L

≤ e−c′′A
√

log L, (4.45)and, plugging this bound in the inequality (4.43), we get
P


 1√

L logL

A
√

L∑

n=1

√
∆τn 6

u

c

√
log L


 6 e[(u/c)−c′′A]

√
log L, (4.46)that goes to 0 if L → ∞, provided that u is small enough. This onludes the proof of Lemma 4.2.

�4.3. Proof of Lemma 4.3. We an write
−F1 + Eτ [F1] = S1 + S2 :=

b∑

i6=j=a+1

MijDij +

′∑

i6=j

MijDij (4.47)where we denoted
Dij = ∆i · ∆j − Eτ [∆i · ∆j ] (4.48)and ′∑ stands for the sum over all 1 ≤ i 6= j ≤ L suh that either i or j (or both) do not fall into

{a + 1, . . . , b}. This way, we have to estimate
Eτ [(F1 − Eτ [F1])

2] ≤ 2Eτ [S2
1 ] + 2Eτ [S2

2 ] (4.49)
= 2

b∑

i6=j=a+1

b∑

k 6=l=a+1

MijMklEτ [DijDkl] + 2

′∑

i6=j

′∑

k 6=l

MijMklEτ [DijDkl].Remark 4.6. We easily deal with the part of the sum where {i, j} = {k, l}. In fat, we triv-ially bound Eτ

[
(∆i · ∆j)

2
]

≤ Eτ

[
‖∆i‖2 ‖∆j‖2

]. Suppose for instane that τn−1 < i ≤ τnfor some Ra < n ≤ Rb: in this ase, the Remark 4.5 tells that Eτ

[
‖∆i‖2 ‖∆j‖2

] onverges to
E

Y [‖∆1‖2 ‖∆2‖2
] = σ4

Y as τn − τn−1 → ∞. If, on the other hand, i /∈ {a + 1, . . . , b}, we know that
Eτ

[
‖∆i‖2 ‖∆j‖2

] equals exatly E
Y
[
‖∆1‖2

]
Eτ

[
‖∆j‖2

] whih is also bounded. As a onsequene,we have the following inequality, valid for every 1 ≤ i, j ≤ L:
Eτ

[
(∆i · ∆j)

2
]
≤ c (4.50)



16 QUENTIN BERGER AND FABIO LUCIO TONINELLIand then
L∑

i6=j=1

∑

{k,l}={i,j}
MijMklEτ [DijDkl] 6 c

L∑

i6=j=1

M2
ij 6 c′ (4.51)sine the Hilbert-Shmidt norm of M was hoosen to be �nite.Upper bound on Eτ [S2

2 ]. This is the easy part, and this term will be shown to be boundedeven without taking the average over P̂.We have to ompute ′∑
i6=j

′∑
k 6=l MijMklEτ [DijDkl]. Again, thanks to (4.15)-(4.16), we have

Eτ [DijDkl] 6= 0 only in the following ase (reall that thanks to Remark 4.6 we an disregard thease {i, j} = {k, l}):
i = k /∈ {a + 1, . . . , b} and τn−1 < j 6= l ≤ τn for some Ra < n ≤ Rb. (4.52)One should also onsider the ases where i is interhanged with j and/or k with l. Sine we arenot following onstants, we do not keep trak of the assoiated ombinatorial fators. Under theassumption (4.52), Eτ [∆i · ∆j ] = Eτ [∆i · ∆l] = 0 (f. (4.15)) and we will show that

Eτ [DijDil] = Eτ [(∆i · ∆j)(∆i · ∆l)] ≤
c

r
(4.53)where r = τn − τn−1 =: ∆τn. Indeed, using (4.15)-(4.16), we get

Eτ [(∆i · ∆j)(∆i · ∆l)] =

3∑

ν,µ=1

E
Y [∆

(ν)
i ∆

(µ)
i ]EX

E
Y [∆

(ν)
j−τn−1

∆
(µ)
l−τn−1

|Xτn−τn−1 = Yτn−τn−1]

=

3∑

ν,µ=1

Σνµ
Y E

X
E

Y
[
∆

(ν)
j−τn−1

∆
(µ)
l−τn−1

|Xr = Yr

]
. (4.54)In the remaining expetation, we an assume without loss of generality that τn−1 = 0, τn = r. Likefor instane in the proof of (4.18), one writes

E
X

E
Y
[
∆

(ν)
j ∆

(µ)
l |Xr = Yr

]
=

E
X
[
E

Y
[
∆

(ν)
j ∆

(µ)
l |Yr = Xr

]
P

Y (Yr = Xr)
]

PX−Y (Xr = Yr)
(4.55)and

E
Y
[
∆

(ν)
j ∆

(µ)
l

∣∣∣Yr = Xr

]
=

1

r(r − 1)
X(ν)

r X(µ)
r − 1

r − 1
E

Y [∆
(ν)
j ∆

(µ)
j |Yr = Xr]. (4.56)An appliation of the Loal Limit Theorem like in (4.21), (4.22) then leads to (4.53).We are now able to bound

Eτ

[
S2

2

]
= c

∑

i/∈{a+1,...,b}

Rb∑

n=Ra+1

∑

τn−1<j 6=l 6 τn

MijMilEτ [DijDil]

6
c

L logL

∑

i/∈{a+1,...,b}

Rb∑

n=Ra+1

∑

τn−1<j,l 6 τn

1√
|i − j|

1√
|i − l|

1

∆τn
. (4.57)Assume for instane that i > b (the ase i ≤ a an be treated similarly):

c

L log L

∑

i>b

Rb∑

n=Ra+1

∑

τn−1<j,l 6 τn

1√
i − j

1√
i − l

1

∆τn

≤ c

L logL

∑

i>b

Rb∑

n=Ra+1

∑

τn−1<j,l 6 τn

1

(i − τn)∆τn
≤ c

L logL
(b − a)

L∑

i=1

1

i
≤ c′.Upper bound on Eτ [S2

1 ]. Thanks to time translation invariane, one an redue to the ase
a = 0. We have to distinguish various ases (reall Remark 4.6: we assume that {i, j} 6= {k, l}).



RANDOM WALK PINNING MODEL IN d = 3 17(1) Assume that τn−1 < i, j ≤ τn, τm−1 < k, l ≤ τm, with 1 ≤ n 6= m ≤ Rb. Then, thanks to(4.15), we get Eτ [DijDkl] = Eτ [Dij ]Eτ [Dkl] = 0, beause Eτ [Dij ] = 0. For similar reasons,one has that Eτ [DijDkl] = 0 if one of the indexes, say i, belongs to one of the intervals
{τn−1 + 1, . . . , τn}, and the other three do not.(2) Assume that τn−1 < i, j, k, l ≤ τn for some n ≤ Rb. Using (4.16), we have

Eτ [DijDkl] = E
Y

E
X
[
DijDkl

∣∣Xτn−1 = Yτn−1 , Xτn = Yτn

]
,and with a time translation we an redue to the ase n = 1 (we all τ1 = r). Thanks to theomputation of Eτ [∆i · ∆j ] in Setion 4.2, we see that Eτ [∆i · ∆j ] = Eτ [∆k · ∆l] = −A(r)so that

Eτ [DijDkl] = Eτ [(∆i · ∆j)(∆k · ∆l)] − A(r)2 6 Eτ [(∆i · ∆j)(∆k · ∆l)]. (4.58)(a) If i = k, j 6= l (and τn−1 < i, j, l ≤ τn for some n ≤ Rb), then
Eτ [(∆i · ∆j)(∆i · ∆l)] ≤

c

∆τn
. (4.59)The omputations are similar to those we did in Setion 4.2 for the omputation of

Eτ [∆i · ∆j ]. See Appendix A.1 for details.(b) If {i, j} ∩ {k, l} = ∅ (and τn−1 < i, j, k, l ≤ τn for some n ≤ Rb), one gets
Eτ [(∆i · ∆j)(∆k · ∆l)] ≤

c

(∆τn)2
. (4.60)See Appendix A.2 for a (sketh of) the proof, whih is analogous to that of (4.59).(3) The only remaining ase is that where i ∈ {τn−1 + 1, . . . , τn}, j ∈ {τm−1 + 1, . . . , τm} with

m 6= n ≤ Rb, and eah of these two intervals ontains two indexes in i, j, k, l. Let us supposefor de�niteness n < m and k ∈ {τn−1 + 1, . . . , τn}. Then Eτ [∆i · ∆j ] = Eτ [∆k · ∆l] = 0(f. Lemma 4.4), and Eτ [DijDkl] = Eτ [(∆i ·∆j)(∆k ·∆l)]. We will prove in Appendix A.3that
Eτ [(∆i · ∆j)(∆k · ∆l)] 6

c

∆τn∆τm
(4.61)and that

Eτ [(∆i · ∆j)(∆i · ∆l)] 6
c

∆τm
. (4.62)We are now able to ompute Eτ [S2

1 ]. We onsider �rst the ontribution of the terms whoseindexes i, j, k, l are all in the same interval {τn−1 + 1, . . . , τn}, i.e. ase (2) above. Reall that wedrop the terms {i, j} = {k, l} (see Remark 4.6):
∑

τn−1<i,j,k,l 6 τn

{i,j}6={k,l}

MijMklEτ [DijDkl] 6
c

∆τn

∑

l∈{i,j} or k∈{i,j}
τn−1<i,j,k,l 6 τn

MijMkl +
c

∆τ2
n

∑

{i,j}∩{k,l}=∅
τn−1<i,j,k,l≤τn

MijMkl

6
c′

L log L




1

∆τn

∑

1≤i<j<k≤∆τn

1√
j − i

1√
k − j

+
1

∆τ2
n




∑

1≤i<j≤∆τn

1√
j − i




2



6
c′′

L log L
∆τn. (4.63)Altogether, we see that

b∑

i6=j=1

b∑

k 6=l=1
{i,j}6={k,l}

MijMklEτ [DijDkl]1{∃n≤Rb:i,j∈{τn−1+1,...,τn}}

=

Rb∑

n=1

∑

τn−1<i,j,k,l≤τn

{i,j}6={k,l}

MijMklEτ [DijDkl] 6
c

L logL

Rb∑

n=1

∆τn ≤ c

log L
.(4.64)



18 QUENTIN BERGER AND FABIO LUCIO TONINELLIFinally, we onsider the ontribution to Eτ [S2
1 ] oming from the terms of point (3). We have(reall that n < m)

∑

τn−1<i,k≤τn

τm−1<j,l≤τm

{i,j}6={k,l}

MijMklEτ [DijDkl] 6
c

L log L

1

∆τn∆τm

∑

τn−1<i6=k≤τn

τm−1<j 6=l≤τm

1√
j − i

1√
l − k

(4.65)
+

c

L logL

1

∆τn

∑

τn−1<i6=k≤τn

τm−1<j≤τm

1√
j − i

1√
j − k

+
c

L logL

1

∆τm

∑

τn−1<i≤τn

τm−1<j 6=l≤τm

1√
j − i

1√
l − i

.But as j > τm−1

∑

τn−1<i 6 τn

1√
j − i

6
∑

τn−1<i 6 τn

1√
τm−1 − i + 1

6 c
(√

τm−1 − τn−1 −
√

τm−1 − τn

)
, (4.66)and as k 6 τn

∑

τm−1<l 6 τm

1√
l − k

6
∑

τm−1<l 6 τm

1√
l − τn

6 c
(√

τm − τn −
√

τm−1 − τn

)
, (4.67)so that

∑

τn−1<i,k≤τn

τm−1<j,l≤τm

{i,j}6={k,l}

MijMklEτ [DijDkl] 6
c

L logL

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)
,(4.68)where we noted Tnm = τm−1 − τn. Realling (4.64) and the de�nition (4.49) of S1, we an �nallywrite

Ê
[
Eτ [S2

1 ]
]
≤ c


1 + Ê




Rb−1∑

n=1

∑

n<m≤Rb

∑

τn−1<i,k≤τn

τm−1<j,l≤τm

MijMklEτ [DijDkl]







6 c +
c

L log L
Ê




∑

1≤n<m≤Rb

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)


 .The remaining average an be estimated via the following Lemma.Lemma 4.7. There exists a onstant c > 0 depending only on K(·), suh that
Ê




∑

1≤n<m≤Rb

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)

 6 cL(log L)7/4. (4.69)Of ourse this implies that ÊEτ [S2

1 ] ≤ c(log L)3/4, whih together with (4.57) implies the laimof Lemma 4.3. �Proof of Lemma 4.7. One has the inequality
(√

Tnm + ∆τn −
√

Tnm

)(√
Tnm + ∆τm −

√
Tnm

)
6
√

∆τn

√
∆τm, (4.70)whih is a good approximation when Tnm is not that large ompared with ∆τn and ∆τm, and

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)
6 c

∆τn∆τm

Tnm
, (4.71)



RANDOM WALK PINNING MODEL IN d = 3 19whih is aurate when Tnm is large. We use these bounds to ut the expetation (4.69) into twoparts, a term where m − n 6 HL and one where m − n > HL, with HL to be hosen later:
Ê

[
Rb∑

n=1

Rb∑

m=n+1

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)]

6 Ê




Rb∑

n=1

(n+HL)∧Rb∑

m=n+1

√
∆τn

√
∆τm



+ c Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm

]
. (4.72)We laim that there exists a onstant c suh that for every l ≥ 1,

Ê

[
Rb−l∑

n=1

√
∆τn

√
∆τn+l

]
6 c

√
L(log L)2+

1
12 (4.73)(the proof is given later). Then the �rst term in the right-hand side of (4.72) is

Ê




Rb∑

n=1

(n+HL)∧Rb∑

m=n+1

√
∆τn

√
∆τm



 =

HL∑

l=1

Ê

[
Rb−l∑

n=1

√
∆τn

√
∆τn+l

]
6 cHL

√
L(log L)2+1/12.If we hoose HL =

√
L(log L)−1/3, we get from (4.72)

Ê

[
Rb∑

n=1

Rb∑

m=n+1

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)] (4.74)
6 cL(log L)7/4 + c Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm

]
.As for the seond term in (4.72), reall that Tnm = τm−1 − τn and deompose the sum in twoparts, aording to whether Tnm is larger or smaller than a ertain KL > 1 to be �xed:

Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm

]

≤ Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm
1{Tnm>KL}

]
+ Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm1{Tnm 6 KL}

]

6
1

KL
Ê



(

Rb∑

n=1

∆τn

)2

+ L2

Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

1{τn+HL
−τn 6 KL}

]

6
L2

KL
+ L4

P̂ (τHL 6 KL) . (4.75)We now set KL = L(log L)−7/4, so that we get in the previous inequality
Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm

]
6 L(logL)7/4 + L4

P̂ (τHL 6 KL) , (4.76)and we are done if we prove for instane that P̂ (τHL 6 KL) = o(L−4). Indeed,
P̂ (τHL 6 KL) = P̂ (RKL ≥ HL) 6 cP (RKL ≥ HL) (4.77)where we used Lemma A.1 to take the onditioning o� from P̂ := P(·|b ∈ τ) (in fat, KL 6 b/2sine b ≥ εL). Realling the hoies of HL and KL, we get that HL/

√
KL = (log L)13/24 and,ombining (4.77) with Lemma A.2, we get

P̂ (τHL 6 KL) 6 c′ e−c(log L)13/12

= o(L−4) (4.78)



20 QUENTIN BERGER AND FABIO LUCIO TONINELLIwhih is what we needed.To onlude the proof of Lemma 4.7, we still have to prove (4.73). Note that
Ê

[
Rb−l∑

n=1

√
∆τn

√
∆τn+l1{Rb>l}

]
= Ê

[
1{Rb>l}

Rb−l∑

n=1

Ê

[√
∆τn

√
∆τn+l |Rb

]]

= Ê

[
1{Rb>l}(Rb − l)Ê

[√
τ1

√
τ2 − τ1 |Rb

]]

≤ Ê
[
Rb

√
τ1

√
τ2 − τ11{Rb≥2}

] (4.79)where we used the fat that, under P̂(·|Rb = p) for a �xed p, the law of the jumps {∆τn}n≤p isexhangeable. We �rst bound (4.79) when Rb is large:
Ê

[
Rb

√
τ1

√
τ2 − τ11{Rb≥κ

√
L log L}

]
6 L2

P̂

(
Rb ≥ κ

√
L logL

)

6 L2
P(b ∈ τ)−1

P

(
Rb ≥ κ

√
L logL

)
. (4.80)In view of (2.14), we have P(b ∈ τ)−1 = O(

√
L). Thanks to Lemma A.2 in the Appendix, andhoosing κ large enough, we get

P

(
Rb ≥ κ

√
L log L

)
6 e−cκ2 log L+o(log L) = o(L−5/2), (4.81)and therefore

Ê

[
Rb

√
τ1

√
τ2 − τ11{Rb≥κ

√
L log L}

]
= o(1). (4.82)As a onsequene,

Ê
[
Rb

√
τ1

√
τ2 − τ11{Rb≥2}

]
= Ê

[
Rb

√
τ1

√
τ2 − τ11{2≤Rb<κ

√
L log L}

]
+ o(1)

6
√

L(log L)1/12
Ê
[√

τ1

√
τ2 − τ11{Rb≥2}

]

+ κ
√

L logLÊ

[√
τ1

√
τ2 − τ11{Rb>

√
L(log L)1/12}

]
+ o(1). (4.83)Let us deal with the seond term:

Ê

[
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√
L(log L)1/12}

√
τ1

√
τ2 − τ1

]

=
1

P(b ∈ τ)

b∑

i=1

b−i∑
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√
i
√

jP
(
τ1 = i, τ2 − τ1 = j, b ∈ τ, Rb >

√
L(log L)1/12

)

=
1

P(b ∈ τ)

b∑

i=1

b−i∑
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√
i
√

jK(i)K(j)P
(
b − i − j ∈ τ, Rb−i−j >

√
L(log L)1/12 − 2

)
.(4.84)But we have

P

(
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√
L(log L)1/12 − 2 |b − i − j ∈ τ

)
6 2P

(
R(b−i−j)/2 >

1

2

√
L(log L)1/12 − 1 |b − i − j ∈ τ

)

6 cP

(
R(b−i−j)/2 >

1

2

√
L(log L)1/12 − 1

)

6 cP

(
RL >

1

2

√
L(log L)1/12 − 1

)
6 c′ e−c(log L)1/6(4.85)



RANDOM WALK PINNING MODEL IN d = 3 21where we �rst used Lemma A.1 to take the onditioning o�, and then Lemma A.2. Putting (4.84)and (4.85) together, we get
Ê

[
1{Rb>

√
L(log L)1/12}

√
τ1

√
τ2 − τ1

]

6 c′e−c(log L)1/6 1

P(b ∈ τ)

b∑

i=1

b−i∑
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√
i
√

jK(i)K(j)P (b − i − j ∈ τ)

= c′e−c(log L)1/6

Ê
[√

τ1

√
τ2 − τ11{Rb≥2}

]
. (4.86)So, realling (4.83), we have

Ê
[
Rb

√
τ1

√
τ2 − τ11{Rb≥2}

]
6 2

√
L(log L)1/12

Ê
[√

τ1

√
τ2 − τ11{Rb≥2}

]
+ o(1) (4.87)and we only have to estimate (reall (2.14))

Ê
[√

τ1

√
τ2 − τ11{Rb≥2}

]
=

b−1∑

p=1

b−p∑

q=1

√
p
√

qK(p)K(q)
P(b − p − q ∈ τ)

P(b ∈ τ)

6 c
√

b

b−1∑

p=1

b−p∑

q=1

1

p q

1√
b + 1 − p − q

. (4.88)Using twie the elementary estimate
M−1∑

k=1

1

k

1√
M − k

≤ c
1√
M

log M,we get̂
E
[√

τ1

√
τ2 − τ11{Rb≥2}

]
6 c

√
b

b−1∑

p=1

1

p

1√
b − p + 1

log(b − p + 1) 6 c
√

b
1√
b
(log L)2. (4.89)Together with (4.87), this proves the desired estimate (4.73).

�4.4. Dimension d = 4 (a sketh). As we mentioned just after Theorem 2.8, it is possible toadapt the hange-of-measure argument to prove non-oinidene of quenhed and annealed ritialpoints in dimension d ≥ 4 for the general walks of Assumption 2.1, while the method of Birknerand Sun [3℄ does not seem to adapt easily muh beyond the simple random walk ase. In thissetion, we only deal with the ase d = 4, sine the Theorem 2.8 is obtained for d ≥ 5 in [2℄, withmore general ondition than Assumption 2.1. We will not give details, but for the interested readerwe hint at the �right� hange of measure whih works in this ase.The �hange of measure funtion� gI(Y ) is still of the form (3.12), fatorized over the blokswhih belong to I, but this time M is a matrix with a �nite bandwidth:
Fk(Y ) = − 1√

L

kL−p0∑

i=L(k−1)+1

∆i · ∆i+p0 , (4.90)where p0 is an integer. The role of the normalization L−1/2 is to guarantee that ‖M‖ < ∞. Theinteger p0 is to be hosen suh that A(p0) > 0, where A(·) is the funtion de�ned in Lemma 4.4.The existene of suh p0 is guaranteed by the asymptotis (4.18), whose proof for d = 4 is thesame as for d = 3.For the rest, the sheme of the proof of βc 6= βann
c (in partiular, the oarse-graining proedure)is analogous to that we presented for d = 3, and the omputations involved are onsiderablysimpler.



22 QUENTIN BERGER AND FABIO LUCIO TONINELLIAppendix A. Some tehnial estimatesLemma A.1. (Lemma A.2 in [9℄) Let P be the law of a reurrent renewal whose inter-arrival lawsatis�es K(n)
n→∞∼ cKn−3/2 for some cK > 0. There exists a onstant c > 0, that depends onlyon K(·), suh that for any non-negative funtion fN(τ) whih depends only on τ ∩{1, . . . , N}, onehas

sup
N>0

E[fN(τ) |2N ∈ τ ]

E[fN (τ)]
6 c. (A.1)Lemma A.2. Under the same assumptions as in Lemma A.1, and with RN := |τ ∩ {1, . . . , N}|,there exists a onstant c > 0, suh that for any positive funtion α(N) whih diverges at in�nityand suh that α(N) = o(

√
N), we have
P

(
RN ≥

√
Nα(N)

)
6 e−cα(N)2+o(α(N)2). (A.2)Proof. For every λ > 0
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√
Nα(N)

)
= P

(
τ√Nα(N) 6 N

)
= P

(
λα(N)2

τ√Nα(N)

N
6 λα(N)2

) (A.3)
6 eλα(N)2

E
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e−λ α(N)2

N τ√
Nα(N)

]
= eλα(N)2

E

[
e−λα(N)2

τ1
N

]√Nα(N)

.The asymptoti behavior of E

[
e−λα(N)2

τ1
N

] is easily obtained:
1 − E
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τ1
N

]
=

∑

n∈N
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(
1 − e−nλα(N)2/N

)

N→∞∼ c

√
λα(N)√

N
, c = cK

∫ ∞

0

1 − e−x

x3/2
dx, (A.4)where the ondition α(N)2/N → 0 was used to transform the sum into an integral. Therefore, weget
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e−λα(N)2

τ1
N

]√Nα(N)
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(
1 − c

√
λα(N)√

N
+ o

(
α(N)√

N

))√
Nα(N)

= e−c
√

λα(N)2+o(α(N)2). (A.5)Then, for any λ > 0,
P

(
RN ≥

√
Nα(N)

)
6 e(λ−c

√
λ)α(N)2+o(α(N)2) (A.6)and taking λ = c2/4 we get the desired bound. �We need also the following standard result (f. for instane [10, Setion 5℄):Lemma A.3. Under the same hypothesis as in Lemma A.1, we have the following onvergene inlaw:

cK√
N

RN
N→∞⇒ 1√

2π
|Z| (Z ∼ N (0, 1)). (A.7)



RANDOM WALK PINNING MODEL IN d = 3 23A.1. Proof of (4.59). We wish to show that for distint i, j, l smaller than r,
E

X
E

Y [(∆i · ∆j)(∆i · ∆l)|Xr = Yr] ≤
c

r
. (A.8)We use the same method as in Setion 4.2: we �x x ∈ Z

d, and we use the notation E
Y
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E
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])and we an take by symmetry i = 1, j = 2. Therefore,
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, (A.9)where
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‖Xr‖√
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‖∆1‖3

+ ‖∆1‖3 ‖∆1‖ .At this point, one an apply diretly the result of the Remark 4.5. �A.2. Proof of (4.60). We wish to prove that, for distint i, j, k, l ≤ r,
Eτ [(∆i · ∆j)(∆k · ∆l)] 6

c

r2
. (A.10)The proof is very similar to that of (A.8), so we skip details. What one gets is that
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, (A.11)where Q′ is a polynomial of degree 4 in the variable ‖Xr‖/

√
r and of degree at most 3 in eah ofthe ‖∆i‖. Again, like after (A.9), one uses the Remark 4.5 to get the desired result.A.3. Proof of (4.61)-(4.62). In view of (4.15), in order to prove (4.61) it su�es to prove thatfor 0 < i 6= k ≤ r, 0 < j 6= l ≤ s

3∑
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E
X

E
Y [∆

(ν)
i ∆

(µ)
k |Xr = Yr]E

X
E

Y [∆
(ν)
j ∆

(µ)
l |Xs = Ys] ≤

c

rs
. (A.12)Both fators in the left-hand side have already been omputed in (4.55)-(4.56). Using these twoexpressions and one more the Loal Limit Theorem, one arrives easily to (A.12). The proof of(4.62) is essentially idential. AknowledgmentsF. T. would like to thank Rongfeng Sun for several enlightening disussions, and for showing usthe preprint [4℄ before its publiation.
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