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ON THE CRITICAL POINT OF THE
RANDOM WALK PINNING MODEL IN DIMENSION d =3

QUENTIN BERGER AND FABIO LUCIO TONINELLI

ApsTracT. We consider the Random Walk Pinning Model studied in [3] and [2]: this is a ran-
dom walk X on Z?, whose law is modified by the exponential of 3 times Ly (X,Y), the collision
local time up to time N with the (quenched) trajectory Y of another d-dimensional random walk.
If B exceeds a certain critical value (3., the two walks stick together for typical Y realizations
(localized phase). A natural question is whether the disorder is relevant or not, that is whether
the quenched and annealed systems have the same critical behavior. Birkner and Sun [3] proved
that B. coincides with the critical point of the annealed Random Walk Pinning Model if the
space dimension is d =1 or d = 2, and that it differs from it in dimension d > 4 (for d > 5, the
result was proven also in [2]). Here, we consider the open case of the marginal dimension d = 3,
and we prove non-coincidence of the critical points.

2000 Mathematics Subject Classification: 82B4/4, 60K35, 82B27, 60K37

Keywords: Pinning Models, Random Walk, Fractional Moment Method, Marginal Disorder

1. INTRODUCTION

We consider the Random Walk Pinning Model (RWPM): the starting point is a zero-drift random
walk X on Z? (d > 1), whose law is modified by the presence of a second random walk, Y.
The trajectory of Y is fixed (quenched disorder) and can be seen as the random medium. The
modification of the law of X due to the presence of Y takes the Boltzmann-Gibbs form of the
exponential of a certain interaction parameter, 3, times the collision local time of X and Y up
to time N, Ly(X,Y) := >, -y 1{x,=v,}- If B exceeds a certain threshold value /3., then for
almost every realization of Y the walk X sticks together with Y, in the thermodynamic limit
N — oo. If on the other hand § < ., then Ly (X,Y) is o(IN) for typical trajectories.

Averaging with respect to Y the partition function, one obtains the partition function of the so-
called annealed model, whose critical point 8" is easily computed; a natural question is whether
Be # B¢ or not. In the renormalization group language, this is related to the question whether
disorder is relevant or not. In an early version of the paper [2], Birkner et al. proved that 3. # %"
in dimension d > 5. Around the same time, Birkner and Sun [3] extended this result to d = 4, and
also proved that the two critical points do coincide in dimensions d =1 and d = 2.

The dimension d = 3 is the marginal dimension in the renormalization group sense, where not
even heuristic arguments like the “Harris criterion” (at least its most naive version) can predict
whether one has disorder relevance or irrelevance. Our main result here is that quenched and
annealed critical points differ also in d = 3.

For a discussion of the connection of the RWPM with the “parabolic Anderson model with a
single catalyst”, and of the implications of 8. # (¢"" about the location of the weak-to-strong
transition for the directed polymer in random environment, we refer to [3, Sec. 1.2 and 1.4].

Our proof is based on the idea of bounding the fractional moments of the partition function,
together with a suitable change of measure argument. This technique, originally introduced in
[6, 9, 10] for the proof of disorder relevance for the random pinning model with tail exponent

This work was supported by the European Research Council through the “Advanced Grant” PTRELSS 228032,
and by ANR through the grant LHMSHE.
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a > 1/2, has also proven to be quite powerful in other cases: in the proof of non-coincidence of
critical points for the RWPM in dimension d > 4 [3], in the proof that “disorder is always strong”
for the directed polymer in random environment in dimension (1 + 2) [11] and finally in the proof
that quenched and annealed large deviation functionals for random walks in random environments
in two and three dimensions differ [15]. Let us mention that for the random pinning model there is
another method, developed by Alexander and Zygouras [1], to prove disorder relevance: however,
their method fails in the marginal situation & = 1/2 (which corresponds to d = 3 for the RWPM).

To guide the reader through the paper, let us point out immediately what are the novelties
and the similarities of our proof with respect to the previous applications of the fractional mo-
ment/change of measure method:

e the change of measure chosen by Birkner and Sun in [3] consists essentially in correlating
positively each increment of the random walk Y with the next one. Therefore, under
the modified measure, Y is more diffusive. The change of measure we use in dimension
three has also the effect of correlating positively the increments of Y, but in our case the
correlations have long range (the correlation between the i*" and the j** increment decays
like |i — j|~'/2). Another ingredient which was absent in [3] and which is essential in d = 3
is a coarse-graining step, of the type of that employed in [14, 10];

e while the scheme of the proof of our Theorem 2.8 has many points in common with that
of [10, Th. 1.7], here we need new renewal-type estimates (e.g. Lemma 4.7) and a careful
application of the Local Limit Theorem to prove that the average of the partition function
under the modified measure is small (Lemmas 4.2 and 4.3).

2. MODEL AND RESULTS

2.1. The random walk pinning model. Let X = {X,,},,>0 and Y = {Y¥,,},,>0 be two indepen-
dent discrete-time random walks on Z%, d > 1, starting from 0, and let P¥X and PY denote their
respective laws. We make the following assumption:

Assumption 2.1. The random walk X is aperiodic. The increments (X; — X;_1);>1 are i.i.d.,
symmetric and have a finite third moment (E¥ [||X1[*] < oo, where || - || denotes the Euclidean
norm on Zd). Moreover, the covariance matrix of X5, call it X x, is non-singular.

The same assumptions hold for the increments of Y (in that case, we call Xy the covariance
matrix of Y7).

For 8 € R, N € N and for a fixed realization of Y we define a Gibbs transformation of the path
measure PX: this is the polymer path measure P%ﬂy, absolutely continuous with respect to PX,
given by

dP]BV,Y eBLN(X,Y) 1{XN:YN}

X) = (2.1)
X b
dP Z}?;,y

N
where Ly(X,Y) = > 1(x,-v,}, and where
n=1

sz = EX [PV 10y (2.2)

is the partition function that normalizes P%Y to a probability.
The quenched free energy of the model is defined by

1 1
F(B):= lim —logZyy = lim —E¥[log Zy y] (2.3)

(the existence of the limit and the fact that it is PY-almost surely constant and non-negative is
proven in [3]). We define also the annealed partition function EY [Zf, v, and the annealed free
energy:

1
FO(3) == lim Nlog]EY[Zf,,Y]. (2.4)

N—o0
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We can compare the quenched and annealed free energies, via the Jensen inequality:
: 1 Y B8 : 1 Y 78 ann
F(B) = ]\}Enoo NE log Zyy y] < 1\}£noo N logE" [Z) y] = F*""(B). (2.5)

The properties of F""(-) are well known (see the Remark 2.3), and we have the existence of critical
points [3], for both quenched and annealed models, thanks to the convexity and the monotonicity
of the free energies with respect to [3:

Definition 2.2 (Critical points). There exist 0 < 89" < (. depending on the laws of X and Y
such that: F""(3) = 0 if B < B2 and F"(B) > 0 if 8 > p¢""; F(B) = 0if 8 < (. and
F(B)>04f B> B

The inequality 89" < 3. comes from the inequality (2.5).

Remark 2.3. As was remarked in [3], the annealed model is just the homogeneous pinning model
[8, Chapter 2] with partition function

EY (Zyy] =EX Y

N
exp (5 Z 1{(X—Y)n—0}> 1{(X—Y)N—0}]

n=1
which describes the random walk X — Y which receives the reward 3 each time it hits 0. From the
well-known results on the homogeneous pinning model one sees therefore that

o If d=1or d =2, the annealed critical point 5¢"" is zero because the random walk X —Y
is recurrent.
o If d > 3, the walk X — Y is transient and as a consequence

BEm = —log [L —P* 7Y ((X —Y), # 0 for every n > 0)] > 0.

Remark 2.4. As in the pinning model [8], the critical point [, marks the transition from a
delocalized to a localized regime. We observe that thanks to the convexity of the free energy,

1 N
N Z l{XN—YN}‘| ) (2.6)

n=1

OpF(P) = lim EY v

almost surely in Y, for every § such that F(-) is differentiable at 3. This is the contact fraction
between X and Y. When 8 < 3., we have F () = 0, and the limit density of contact between X
and Y is equal to 0: Eﬁ/,y 2521 lixy=yy} = 0(N), and we are in the delocalized regime. On the
other hand, if 8 > (., we have F() > 0, and there is a positive density of contacts between X
and Y: we are in the localized regime.

2.2. Review of the known results. The following is known about the question of the coincidence
of quenched and annealed critical points:

Theorem 2.5. [3] Assume that X and Y are discrete time simple random walks on Z2.
If d =1 or d =2, the quenched and annealed critical points coincide: (3. = B = 0.
If d > 4, the quenched and annealed critical points differ: B. > 2" > 0.

Actually, the result that Birkner and Sun obtained in [3] is valid for slightly more general walks
than simple symmetric random walks, as pointed out in the last Remark in [3, Sec.4.1]. Moreover,
an easy adaptation of the proof (cf. mA@moire de M2 : change the measure two step at a time,
on only one point) allow symmetric X and Y with common jump kernel p* and finite second
moments.

In dimension d > 5, the result was also proven (via a very different method, and for more general
random walks which include those of Assumption 2.1) in an early version of the paper [2].

Remark 2.6. The method and result of [3] in dimensions d = 1,2 can be easily extended beyond
the simple random walk case (keeping zero mean and finite variance). On the other hand, in the
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case d > 4 new ideas are needed to make the change-of-measure argument of [3] work for more
general random walks.

Birkner and Sun gave also a similar result if X and Y are continuous-time symmetric simple
random walks on Z?, with jump rates 1 and p > 0 respectively. With definitions of (quenched and
annealed) free energy and critical points which are analogous to those of the discrete-time model,
they proved:

Theorem 2.7. [3] In dimension d =1 and d = 2, one has B, = %" = 0. In dimensions d > 4,
one has 0 < B¢ < B. for each p > 0. Moreover, for d = 4 and for each § > 0, there exists
as > 0 such that B, — 2" > asp' ™ for all p € [0,1]. For d > 5, there exists a > 0 such that
Be — BY™ > ap for all p € [0,1].

Our main result completes this picture, resolving the open case of the critical dimension d = 3
(for simplicity, we deal only with the discrete-time model).

Theorem 2.8. Under the Assumption 2.1, for d = 3, we have . > F3™".

We point out that the result holds also in the case where X (or Y) is a simple random walk, a case
which a priori is excluded by the aperiodicity condition of Assumption 2.1; see the Remark 2.11.

Also, it is possible to modify our change-of-measure argument to prove the non-coincidence of
quenched and annealed critical points in dimension d = 4 for the general walks of Assumption 2.1,
thereby extending the result of [3]; see Section 4.4 for a hint at the necessary steps.

Note After this work was completed, M. Birkner and R. Sun informed us that in [4] they
independently proved Theorem 2.8 for the continuous-time model.

2.3. A renewal-type representation for Zf, y- From now on, we will assume that d > 3.

As discussed in [3], there is a way to represent the partition function Z f, y in terms of a renewal
process T; this rewriting makes the model look formally similar to the random pinning model [8].
In order to introduce the representation of [3], we need a few definitions.

Definition 2.9. We let
(1) pyf (x) = PX(X, = x) and p{~Y (x) = P* V(X = Y)y = 2);
(2) P be the law of a recurrent renewal T = {70, 71,...} with 19 = 0, 4.i.d. increments and
inter-arrival law given by

K(n):=P(n =n) = pg;i_@ where GX=Y = ;pf—y(()) (2.7)

(note that GX~Y < co in dimension d > 3);
(3) 2/ =(e —1) and z = 2/ GXY;
(4) forn € N and x € Z¢,

(5) Ziy = 252Ny

Then, via the binomial expansion of #ZV(XY) = (1 4 2/)In(XY) one gets [3]
N

Z Z HK(Ti — Ti_l)w(z, Ti — Ti—1, Yﬂ. — YTi—l) (29)

m=171o=0<m<...<Tpy=N i=1
= E[W(zv’rﬁ{oa-"?N}vy)lNG'r]5

where we defined for any finite increasing sequence s = {sg, $1,..., 8}

EX {Hflzl 2lyx, =v, 1| Xso = YsU} !

72
ZN,Y

Wi(z,sY)= Ty T =
EX- [anl 1{Xsn: sn}‘Xso :Y90:| n=1

w(z, 8y — Sn—1,Ys, — Ys, ,). (2.10)
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We remark that, taking the EY —expectation of the weights, we get
EY [w(z, Ti— Tie1, Yo, — YTFI)] = 2.

Again, we see that the annealed partition function is the partition function of a homogeneous
pinning model:
ZyY" =BV [Z5y] = E [ inen] (2.11)

where we defined Ry = |t N{l,...,N}|.
Since the renewal 7 is recurrent, the annealed critical point is 2" = 1.

In the following, we will often use the Local Limit Theorem for random walks, that one can find
for instance in [5, Theorem 3] (recall that we assumed that the increments of both X and Y have
finite second moments and non-singular covariance matrix):

Proposition 2.10 (Local Limit Theorem). Under the Assumption 2.1, we get

1
(27n)%/2(det X x)

PX(X, =z) = 73 OXP <—%x : (E}lx)> + o(n~%?), (2.12)

where o(n=%?2) is uniform for x € 7.
Moreover, there exists a constant ¢ > 0 such that for all € Z¢ and n € N

PY(X, =) < en” 42, (2.13)
Similar statements hold for the walk Y .

(We use the notation z - y for the canonical scalar product in R%.)

In particular, from Proposition 2.10 and the definition of K (-) in (2.7), we get K (n) ~ cxn~%/?
as n — oo, for some positive cx. As a consequence, for d = 3 we get from [7, Th. B] that
n— 00 1
Pner) ~ (2.14)

2me/n’

Remark 2.11. In Proposition 2.10, we supposed that the walk X is aperiodic, which is not the
case for the simple random walk. If X is the symmetric simple random walk on Z?, then [12, Prop.
1.2.5]

2 1
X o _ C(y—1 —d/2
P (X = 2) = 1nea) )72 (det )12 exp ( o % (Tx z)) +o(n ), (2.15)

where +0(n*d/2) is uniform for € Z?, and where n < x means that n and z have the same parity
(so that x is a possible value for X,,). Of course, in this case Xx is just 1/d times the identity
matrix. The statement (2.13) also holds.

Via this remark, one can adapt all the computations of the following sections, which are based on
Proposition 2.10, to the case where X (or Y') is a simple random walk. For simplicity of exposition,
we give the proof of Theorem 2.8 only in the aperiodic case.

3. MAIN RESULT: THE DIMENSION d = 3

With the definition F/(2) := limy_ e + log ZVIZV,W to prove Theorem 2.8 it is sufficient to show
that F'(z) = 0 for some z > 1.
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3.1. The coarse-graining procedure and the fractional moment method. We consider

without loss of generality a system of size proportional to L = —5 (the coarse-graining length),
that is N = mL, with m € N. Then, for Z C {1,...,m}, we define
ZIy =E[W(z,70{0,...,N},Y)lye 15, (1)], (3.1)

where E7 is the event that the renewal 7 intersects the blocks (B;);cz and only these blocks over
{1,..., N}, B; being the i‘" block of size L:

B, :={(i—-1)L+1,...,iL}. (3.2)
Since the events E7 are disjoint, we can write
Ziy = >, Zly. (3.3)
Zc{1,...m}

Note that ZZI,Y =01if m ¢ Z. We can therefore assume m € Z. If we denote Z = {i1,i2,...,0}
(I=|Z|), i1 < ... <1y, iy = m, we can express Ziy in the following way:

Zry = > S Klaw(z,an,Ya,) 22, (3.4)

a1,b1€B;; az,b2€Bi, a1 € By,
a; < by az < b2

.. .K(al - bl,l)w(z, a; — blfl, Yal — Yblf1)Z§l,N7

where
S =EW (0. kLY ) ke | e 7] (3.5)
is the partition function between j and k.

bz i3 b,
0 L "9L 3L AL 5L 6L 7L "SL=N

FIGURE 1. The coarse-graining procedure. Here N = 8L (the system is cut into
8 blocks), and 7 = {2,3,6,8} (the gray zones) are the blocks where the contacts
occur, and where the change of measure procedure of the Section 3.2 acts.

Moreover, thanks to the Local Limit Theorem (Proposition 2.10), one can note that there exists
a constant ¢ > 0 independent of the realization of Y such that, if one takes z < 2 (we will take z
close to 1 anyway), one has

pq)'ifnfl(y‘ri _YT'L—I) <e
o

Pri—miy

’LU(Z,Ti - Ti—laYTi - YTifl) =z

So, the decomposition (3.4) gives
ZIy <y o> K(a) 2,y Klag =) 2,4, K —bi1)Z;, n. (3.6)

a1,b1€B;; a2,b2€B;, a € By,

a1 <b1 a2 < b
We now eliminate the dependence on z in the inequality (3.6). This is possible thanks to the
choice L = Z—il As each Z;. 1, 1s the partition function of a system of size smaller than L, we get
Wz, 70 {a;,...,b;},Y) < 2EW(z=1,7N{a;,...,b;},Y) (recall the definition (2.10)). But with
the choice L = L, the factor 2% is bounded by a constant ¢, and thanks to the equation (3.5),

we finally get

Z7 oy, Szl (3.7)
Notational warning: in the following, ¢, ¢/, etc. will denote positive constants, whose value

may change from line to line.
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We note Z,, p, := Z; 5, and W(7,Y) := W(z = 1,7,Y). Plugging this in the inequality (3.6),
we finally get

ZIy < PN S Y K(a1)Zay 0, K (a2 = b1) Zay by - K (a1 = bi—1)Za, N, (3.8)

a1,b1€B;, a2,b2€Bi, a; €8y,
a1 < by az < b2

where there is no dependence on z anymore.
The fractional moment method starts from the observation that for any v # 0
- . 1 SN oo 1 SN
F(z) = A}gnoo V_NEY [log (ZXy) } < l}\l;rl_}gof e log EY [(ZN,Y) } . (3.9)
Let us fix a value of v € (0,1) (as in [10], we will choose v = 6/7, but we will keep writing it as
7 to simplify the reading). Using the inequality (3 a,)” < > a) (which is valid for a; > 0), and
combining with the decomposition (3.3), we get

EY [(wa)”} < Y B [(z;{y)q . (3.10)
Ic{1,....m}
Thanks to (3.9) we only have to prove that, for some z > 1, limsupy_, . EY {(ZVMY)’Y} < 00.

We deal with the term EY [(ZZ,,)"] via a change of measure procedure.

3.2. The change of measure procedure. The idea is to change the measure P¥ on each block
whose index belongs to Z, keeping each block independent of the others. We replace, for fixed Z,
the measure PY (dY') with gz(Y)PY (dY), where the function gz(Y) will have the effect of creating
long range positive correlations between the increments of Y, inside each block separately. Then,
thanks to the Holder inequality, we can write

B [(250)] =B | 255 (27| < 2 [ ] TR ) 2] )

In the following, we will denote A; = Y; — Y;_; the i" increment of Y. Let us introduce, for
K >0 and ek to be chosen, the following “change of measure”:

9r(Y) = H(le(Y) <Kk Teklp(v)>K) = H ge(Y), (3.12)
kET keT
where
Fp(Y) = - Z Mi;A; - A, (3.13)
i,jJEBy},
and
My =—te 2 if i
v (3.14)
Mii =0.
Let us note that from the form of M, we get that ||M|* := >ijen, M7 < C, where the constant

C < oo does not depend on L. We also note that F) only depends on the increments of Y in the
block labeled k.
Let us deal with the first factor of (3.11):

% - % - 1% “TE Y 1
E {gI(Y) 1—7} ~-I[E {gk(y) l—w} — (IP’ (FL(Y) < K) + e PY (FL(Y) >K)) .
ke
(3.15)
We now choose .

e =PV (F(Y)>K) 7 (3.16)
such that the first factor in (3.11) is bounded by 2= < 2/ZI. The inequality (3.11) finally
gives

EY [(Zgy)”} <2TIEY [g7(V)2Zy]" . (3.17)
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The idea is that when F(Y) is large, the weight ¢1(Y") in the change of measure is small. That is
why the following lemma is useful:

Lemma 3.1. We have the following limit:
i ex = lim PY(F(Y)>K)=0 (3.18)

Proof . We already now that EY[F;(Y)] = 0, so thanks to the standard Chebyshev inequality,
we only have to prove that EY [F(Y)?] is bounded. We get

EV[F(Y)] = > MiyMuEY [(A;- 85)(Ak - A)]
i,j€B1
k,l€B;
= > MZEY [(A-Ay)7] (3.19)
{i.y={k.1}

where we used that EY [(A; - A;)(Ag - A;)] = 0 if {i,j} # {k,1}. Then, we can use the Cauchy-
Schwarz inequality to get

BRI Y MEEY (AP IAP] < a)2ed. (3.20)
{5}y ={k.l}
g

We are left with the estimation of EY [gI(Y)ZZIy]. We set Pr := P (Ez, N € 7), that is the
probability for 7 to visit the blocks (B;);cz and only these ones, and to visit also N. We now use
the following two statements.

Proposition 3.2. For any n > 0, there exists z > 1 sufficiently close to 1 (or L sufficiently big,
since L = (z — 1)™1) such that for every T C {1,...,m} with m € Z, we have

EY [gz(Y)ZIy] <n?Pr. (3.21)

Proposition 3.2 is the core of the paper and is proven in the next section.

Lemma 3.3. [10, Lemma 2.4] There ezist three constants C1 = C1(L), Cy and Ly such that (with

io = 0)
. ]|
< 10y H L (3.22)
for L > Ly and for every T € {1,...,m}.
Thanks to these two statements and combining with the inequalities (3.10) and (3.17), we get
|Z]
Y (52 ol Y T \7 v (30277)V
E [(ZN,Y) } < ) E |:(ZZ,Y) } <l > H i — i, (3:23)
Zc{1,...,m} Ic{l,...,m}j=1"7
Since 7v/5 =6/5 > 1, we can set
- 1 = /
_ ~_ —6/5
K(n) = =5 where ¢ = Zz < 400, (3.24)

i=1

and K () is the inter-arrival probability of some recurrent renewal 7. We can therefore interpret
the right-hand side of (3.23) as a partition function of a homogeneous pinning model of size m (see
Figure 2), with the underlying renewal 7, and with pinning parameter log[¢(3Can)7]:

EY [(Z%y)"] < C7E= [@3Com) 70 0m1]. (3.25)
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0 1 2 3 4 ) 6 7 8=

F1GURE 2. The underlying renewal 7 is a subset of the set of blocks (B;)1 < i <m
(i.e the blocks are reinterpreted as points) and the inter-arrival distribution is
K(n) =1/ (en%?).

Thanks to Proposition 3.2, we can take 7 arbitrary small. Let us fix 5 := 1/((4C2)¢"/7). Then,
EY [(Z&y)"] <7 (3.26)
for every N. This implies, thanks to (3.9), that F(z) = 0, and we are done. O

Remark 3.4. The coarse-graining procedure reduced the proof of delocalization to the proof
of Proposition 3.2. Thanks to the inequality (3.8), one has to estimate the expectation, with
respect to the gz(Y)—modified measure, of the partition functions Z,, p, in each visited block.

i

We will show (this is Lemma 4.1) that the expectation with respect to this modified measure of
Za; v; /P(b; — a; € T) can be arbitrarily small if L is large, and if b; — a; is of the order of L. If
b; — a; is much smaller, we can deal with this term via elementary bounds.

4. PROOF OF THE PROPOSITION 3.2

As pointed out in Remark 3.4, Proposition 3.2 relies on the following key lemma:
Lemma 4.1. For every € and § > 0, there exists L > 0 such that

EY [91(Y)Zap] <OP(b—a€T) (4.1)

for every a < b in By such thatb—a > L.

Given this lemma, the proof of Proposition 3.2 is very similar to the proof of [10, Proposition
2.3], so we will sketch only a few steps. The inequality (3.8) gives us

EY [gI(Y)Z,Z-Y}
< C|I| Z Z Z 911 (Y)Zal,bl] K(a2 - bl)EY [giz (Y)Zambz] ce

a1,b1€B;; a2,b2€B;, a € B,
a1 < by a2z < b2

- K(ap—bi-1)EY [g;, (Y)Zal N]

= 7 Z Z Z Y01 (Y) Zay— L~ 1)1 LG —1)) K (a2 — b1) .. (4.2)

a1,b1€B;; az,b2€B;, a€B;y,
a1 < b1 a2 < b2

K (ar = bi—)EY [91(Y) Zay— 1.m—1),N—L(m—1)] -

The terms with b; — a; > €L are dealt with via Lemma 4.1, while for the remaining ones we just
observe that EY [g1(Y)Z,5] < P(b—a € 7) since g1(Y) < 1. One has then

EY [QI(Y)ZZ?Y} < C‘ZI Z Z . Z 5 + 1{b1 —a; < EL}) P(bl — a S 7')

a1,b1€B;; az2,b2€B;, a;€B;,
a; < by az < b2

..K(alfbl,ﬁ (5+1{N—al geL}) P(N—al ET). (43)

From this point on, the proof of Theorem 3.2 is identical to the proof of Proposition 2.3 in [10]
(one needs of course to choose ¢ = ¢(n) and § = §(n) sufficiently small). O
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4.1. Proof of Lemma 4.1. Let us fix a,b in By, such that b — a > L. The small constants
0 and ¢ are also fixed. We recall that for a fixed configuration of 7 such that a,b € 7, we have
EY [W(rn{a,...,b},Y)] =1 because z = 1. We can therefore introduce the probability measure
(always for fixed 7)

dP.(Y) = W(rn{a,...,b},Y)dPY (V) (4.4)

where we do not indicate the dependence on a and b. Let us note for later convenience that, in
the particular case a = 0, the definition (2.10) of W implies that for any function f(Y)

E-[f(Y) =EXEY[f(V)|X; =Y; Vie rn{Ll,...,b}]. (4.5)
With the definition (3.5) of Z, 4 := Z23", we get
EY [g1(Y)Zap) = EVE[g: (Y)W (7 N {a,...,b},Y) e, la € 7 | = EE,[g1(Y)P(b—a € 7), (4.6)

where 13() :=P(:|a,b € 7), and therefore we have to show that EE, [g1(Y)] < 9.
With the definition (3.12) of ¢1(Y), we get that for any K

EE.[g1(Y)] < ex + EP, (F} < K). (4.7)

If we choose K big enough, £k is smaller than §/3 thanks to the Lemma 3.1. We now use
two lemmas to deal with the second term. The idea is to first prove that E [Fi] is big with a
P —probability close to 1, and then that its variance is not too large.

Lemma 4.2. For every ¢ > 0 and € > 0, one can find two constants v = u(e,{) > 0 and
Lo = Lo(e,¢) > 0, such that for every a,b € By such that b—a > €L,

ii (ET [Fl] <u V 10g L) < Ca (48)
for every L > L.

Choose ¢ = §/3 and fix u > 0 such that (4.8) holds for every L sufficiently large. If 2K = u+/log L
(and therefore we can make 5 small enough by choosing L large), we get that

EP, (F <K) < EP[F -E/[R]< - K] +P(E[F]<2K) (4.9)
1 ~
< EE {(F1 - IET[Fl])Q} +6/3. (4.10)
Putting this together with (4.7) and with our choice of K, we have
~ 4 =~ 2
EE,[g:(Y)] <2 —— —EE, |(F, — E.[F 4.11
Ao (V)] < 26/3 + 3 BE, [(Fy ~ E-[F)’] (4.11)

for L > Ly. Then we just have to prove that EE, {(Fl -E, [Fl])z] = o(log L). Indeed,
Lemma 4.3. For every € > 0 there exists some constant ¢ = c(g) > 0 such that

EE, |(F, - E. [Fl])ﬂ < c(log L)*/* (4.12)
for every L > 1 and a,b € By such thatb—a > eL.

We finally get that

EE.[g1(Y)] < 26/3 + c(log L)~ /4, (4.13)
and there exists a constant L; > 0 such that for L > L,
EE.[g:(Y)] < 6. (4.14)
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4.2. Proof of Lemma 4.2. Up to now, the proof of Theorem 2.8 is quite similar to the proof of
the main result in [10]. Starting from the present section, instead, new ideas and technical results
are needed. N

Let us fix a realization of 7 such that a,b € 7 (so that it has a non-zero probability under P)
and let us note 7 N {a,...b} = {rr, = a,7R,+1,.-.,7r, = b} (recall that R, = |7 N {1,...,n}|).
We observe (just go back to the definition of P;) that, if f is a function of the increments of ¥ in
{Tn-1+1,...,7n}, g of the increments in {7,,—1 + 1,...,7pn} with R, < n # m < Ry, and if h is
a function of the increments of ¥ not in {a +1,...,b} then

E: [f({A}icrn r1,md) 9({Ai i trm b1t )R ({ A ig fat1,01) ] (4.15)
= E [f({A}ictrn vitmt) |Er[9({A S ictrn it ) JEY [R({A Y ig ot 1) ]

and that

ET [f({Ai}ie{rn,l—i-l,...ﬂ'n})] = EXEY [f({Ai}ie{rn,lﬁ-l,...ﬁn})|X'rn,1 = Y‘rnflaXTn == Y‘rn}
=E*EY I:f({Ai_Tn—l}iE{Tn—l‘i’l ..... Tn})|XTn_Tn71 = YTn,_Tn—l]' (4.16)

We want to estimate E,[F1]: since the increments A; for i € By \ {a + 1,...,b} are i.i.d. and
centered (like under PY), we have

b
E [R) = ) MyE-[-A;- A (4.17)
i,j=a+1

Via a time translation, one can always assume that a = 0 and we do so from now on.
The key point is the following

Lemma 4.4. (1) If there exists 1 <n < Ry such that i,j € {T,—1+1,..., 7.}, then

E [-A; - Aj] = A(r) "= Cxy (4.18)

r

where r = 7, — To—1 (in particular, note that the expectation depends only on r) and Cx y
is a positive constant which depends on PX PY ;
(2) otherwise, E.[—A; - A;] =0.

Proof of Lemma 4.4 Case (2). Assume that 7,1 < i < 7, and 7,1 < j < 7, With n # m.
Thanks to (4.15)-(4.16) we have that

=Y,

Tm—17

X

Tm

=Y,

ET[Ai'AJ] =E*E" [AilX‘rnq =Y., ,, X5, = YTn]'EXEY [Aj|X Tm] (4-19)

Tm—1

and both factors are immediately seen to be zero, since the laws of X and Y are assumed to be
symmetric.
Case (1). Without loss of generality, assume that n = 1, so we only have to compute

EYEX [A; - A X, =Y, ]. (4.20)
where = 71. Let us fix 2 € Z?, and denote EY [] = EY[-|Y, = z].
EV[A- AV, =2] = EY, [AE [A|A]]
= EY, [Ai. T Ai] - T B A~ EY, [||Ai||2}
r—1 r—1 r—1

r—1 r e ! ’
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where we used the fact that under Pzz the law of the increments {A;};<, is exchangeable. Then,
we get

E-[A; - A;] =EXEY [A; - Ajlyy,—x, 3] PX7V (Y, = X,) 7!
- EX []EY (A - A Y, = X, ]PY (Y, = X,«)} PX-Y(y, = X,)!

r—1 r

1 X1
—_ <EX || || PY(}/T :XT) PX*Y(YT :XT)71

“EYEY [ A1) 1y | PYY (Y, = X))

1 X7
(EX ” TH PY(Y'T _ Xr) IEDX—Y(Y;_ = XT)_l —EXEY |:||A1||2 |va~ = XT}) :

r—1 r

Next, we study the asymptotic behavior of A(r) and we prove (4.18) with Cxy = tr(Zy) —
tr (%" +23")71). Note that tr(Xy) = EY(|[Y1]|?) := of. The fact that Cx,y > 0 is just a
consequence of the fact that, if A and B are two positive-definite matrices, one has that A — B is
positive definite if and only if B=! — A~! is [13, Cor. 7.7.4(a)].

To prove (4.18), it is enough to show that

EXEY [V, = X, | "= EXEY [|A)P] = o3, (4.21)
and that

B(r) := PNV (X, =)

" (B 4+ 2. (4.22)

To prove (4.21), write

EE [Py =X ] = B (AP BN (X, = v BY(X, = )

S I (0 = ) e e (429)

y,2€7%

We know from the Local Limit Theorem (Proposition 2.10) that the term m is uni-

formly bounded from above, and so there exist a constant ¢ > 0 such that for all y € Z¢

PY (Y, 1 = 2)PX (X, =
3 Yo =2)P7 (X, =yt2) (4.24)
PX-Y(X, -V, =0)
z€Z3
If we can show that for every y fixed Z3, this term goes to 1 as r goes to infinity, then from (4.23),
a dominated convergence argument, would give that
EXEY a4 1%, = X, ] =5 3 [9lPPY (vi = y) = o} (4.25)
IS
We are now left with proving that the right term of (4.24) goes to 1 as r goes to infinity for any
fixed y € Z<.
We use the Local Limit Theorem to get
S P (Y = P (X, =yt 2) = Y KX m () d o (5 ) o012
z€Z3 ze7d

_ (1+0(1)) Z C):‘SYe—%z‘(z;lz)e—%p(z;lz) +O(7’7d/2) (426)
Z€EZA

where ¢y = (2m)~%2(det ©x)~/? and similarly for ¢y (the constants are different in the case of
simple random walks: see Remark 2.11), and where we used that y is fixed to neglect y/+/r.
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Using the same reasoning, we also have (with the same constants cx and cy)

PP =) = ) P = aPY(X =2)
z€L3
= Y g (B e () o). (42
z€Z%

Putting this together with (4.26) (and considering that PX~Y (X, = Y,) ~ ¢, ,r~%?), we have,
for every y € Z¢

PY (Yoo =2)PX (X, =y +2) rooo

1. 4.28
Y —xvxvoo (4.28)

z€Z4

To deal with the term B(r) in (4.22), we apply the Local Limit Theorem as in (4.27) to get
X l”X || ]P)Y(YT —X ] . CYCX Z ||Z|| )67%2(2;12) +O(T7d/2). (429)
r
z€Z4

Together with (4.27), we finally get

ZzEZd [E THZG_? ((Z +Xx )z) +O(T_d/2)
e e PV 4or-dre)

B(r) = = (1 +o(WE[INVIP],  (4:30)

where N ~ N (0, (23" + %171 is a centered Gaussian vector of covariance matrix (X3! + $3") 7L
Therefore, [||/\/'|| } =tr (33" +X%")7") and (4.22) is proven.
O

Remark 4.5. For later purposes, we remark that with the same method one can prove that, for
any polynomials U and V such that EY [||U ({||Ak]|}x < &) ||] < o0, we have

B¥E | (o <)V () v = x| =2 B 0 @ade <) JEIVOND)L @30

where AV is as in (4.30).
Let us now quickly sketch the proof: as in (4.23), we can write

EXEY [v({nAkn}k <)V (@)

< v r— =Z—Y —...—
> Ullecr) X v (B erin - ln mion e ci),

Y1y Ykg €zd z€Z4

Y, = XT] = (4.32)

Then using the Local Limit Theorem the same way as in (4.27), one can show that for any
Yis- - Yke, We get similarly as (4.30)

S v(iF)re=2" mﬂ;’:‘?&_y}_”bf o) = gy @)
ZeZd r T

Using a uniform bound for PY (Y, _, =2 —y1 — ... — yk,) and PX~Y (X, — Y, = 0), we also see
that this term is uniformly bounded for y1,...,yx, € Zd by CEX [V (%)} . Then, as for (4.21),

we get the result thanks to a dominated convergence argument.

Given Lemma 4.4, we can resume the proof of Lemma 4.2, and lower bound the average E. [F}].
Recalling (4.17) and the fact that we reduced to the case a = 0, we get

Ry,

ER] = > > My | A(AT), (4.34)

n=1 \Tn-1<0,j<7n



14 QUENTIN BERGER AND FABIO LUCIO TONINELLI

where A7, := 7, — T,—1. Using the definition (3.14) of M, we see that there exists a constant
¢ > 0 such that for 1 <m < L

——m?/2, 4.35
:E:: ij = \//jjizsé;——77l ( )

3,7=1
On the other hand, thanks to Lemma 4.4, there exists some rg > 0 and two constants ¢ and ¢’
such that A(r) > ¢ for r > rg, and A(r) > —c’ for every r. Plugging this into (4.34), one gets

Ry Ry Ry
VLI0g LE[Fy] > ¢ N/ Aruliarsgy — ¢ D (A7) 1iar, <oy = ¢ > VAT, — Ry (4.36)
n=1 n=1 n=1

Therefore, we get for any positive B > 0 (independent of L)

IS(IET[Fl] <y 1ogL) <§<W< Z\/ATn*C Rb> gu\/logL>

< IA)(W( Z\/ATnC\/_B> gu\/logL>+13(Rb>B\/Z)

Ry /2

S VAL <(1+ 0(1))%\/ZlogL +P(R, > BVL). (4.37)

Now we show that for B large enough, and L > Lo(B),
P(R, > BVL) < (/2, (4.38)

where ( is the constant which appears in the statement of Lemma 4.2. We start with getting rid of
the conditioning in P (recall P(-) = P(-|b € 7) since we reduced to the case a = 0). If R, > BV,
then either |7 N {1,...,b/2}| or [r N {b/2+1,...,b}| exceeds £1/L. Since both random variables

have the same law under f’, we have
~ ~ B B
P(R, > BVL) < 2P (Rb/2 > Ex/f) < 2cP (Rb/2 > 5\/5) , (4.39)

where in the second inequality we applied Lemma A.1. Now, we can use the Lemma A.3 in the
Appendix, to get that (recall b < L)

P (Rb/2 > gx/f) <P (RL/2 > gﬁ) Lz p (\l/i_lr > B\/_)

with Z a standard Gaussian random variable and cx the constant such that K(n) ~ cxn=>3/2.
The inequality (4.38) then follows for B sufficiently large, and L > Ly(B).
We are left to prove that for L large enough and u small enough

(4.40)

Ry )2

Z VAT, < %\/ZlogL < (/2. (4.41)
n=1

The conditioning in P can be eliminated again via Lemma A.1. Next, one notes that for any given
A > 0 (independent of L)

Ry )2

AVL
3 VAT < %\/ZlogL <P |3 Van < %\/ZlogL +P (Rb/2 < A\/f) . (4.42)
n=1 n=1

Thanks to the Lemma A.3 in Appendix and to b > L, we have

. Ry ) 12| \F
limsup P <A)|<P|—< Ac -1,
LHoop ( \/Z N vV 2 K £




RANDOM WALK PINNING MODEL IN d = 3 15

which can be arbitrarily small if A = A(e) is small enough, for L large. We now deal with the
other term in (4.42), using the exponential Bienaymé-Chebyshev inequality (and the fact that the
A7, are i.i.d.):

1 AV U T AVL
NiATS Z VAT, < E\/logL < elw/eVies L [exp (— LlolgL)] . (4.43)
n=1

To estimate this expression, we remark that, for L large enough,

E[l—exp (— L]ZlgL):| = ZK(n) (1_67\/nggL)
1—e VTlsT log L
c Z —7 c”q/T, (4.44)

where the last inequality follows from keeping only the terms with n < L in the sum, and noting

that in this range 1 — e VTW%eZ > ¢\/n/(LlogL). Therefore,

AVL oo L AVL
T1 /" og —c""A/Tog L
E — < | 1-— < € 4.4

{eXp< LlogLﬂ < VI ) = ’ (4.45)

and, plugging this bound in the inequality (4.43), we get

u u/c ” O,
W Z VAT, < ZMlogL < el@/)=c"AlViog L (4.46)

that goes to 0 if L — oo, provided that wu is small enough. This concludes the proof of Lemma 4.2.

O
4.3. Proof of Lemma 4.3. We can write
b /
7F1 + ET[Fl] = Sl + SQ = Z MijDij + ZM”D” (447)
i#j=a+1 i
where we denoted

/
and Y stands for the sum over all 1 < i # j < L such that either ¢ or j (or both) do not fall into
{a+1,...,b}. This way, we have to estimate

E-[(Fy — E-[F1])?] < 2E,[S7] + 2E,[S3] (4.49)
b b
=2 Y > M;MuE[Di;Du] +2ZZ i M Er[Di; Dya].
i#j=a+1 k#l=a+1 i#£j k#l

Remark 4.6. We easily deal with the part of the sum where {i,j} = {k,l}. In fact, we triv-
ially bound E. [(A;-Aj)?] < E, {HAZ-HQ ||Aj|\2] Suppose for instance that 7,1 < i < 7,

for some R, < n < Rp: in this case, the Remark 4.5 tells that E. {HAIH2 ||Aj||2i| converges to
EY[|AL )7 |A2]*] = 0% as 7, — Tn_1 — oo. If, on the other hand, i ¢ {a+1,...,b}, we know that
E, {HAZ-HQ ||Aj||2} equals exactly EY {HAlHQ} E, [||AJ||2} which is also bounded. As a consequence,
we have the following inequality, valid for every 1 <i,5 < L:

E- [ 2;)%] <c (4.50)
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and then

L
> Y MyMuE.[Di;Dy) < Z (4.51)
i#j=1{k,1}={i,j} i#j=1
since the Hilbert-Schmidt norm of M was choosen to be finite.
Upper bound on E.[S3]. This is the easy part, and this term will be shown to be bounded
even without taking the average over P.
/ /
We have to compute >, ;> MijMuE;[D;;Dy]. Again, thanks to (4.15)-(4.16), we have
E;[D;;Dii] # 0 only in the following case (recall that thanks to Remark 4.6 we can disregard the
case {i.j} = {k.1}):
i=k¢{a+1,....0}and 7,—1 < j #1 < 7, for some R, <n < Ry. (4.52)
One should also consider the cases where 4 is interchanged with j and/or k with [. Since we are
not following constants, we do not keep track of the associated combinatorial factors. Under the
assumption (4.52), E-[A; - A;] =E;[A; - A;] =0 (cf. (4.15)) and we will show that
C

E;[D;jDiy| = E-[(A; - Aj) (A - Ay)] < . (4.53)
where r = 7, — Tp,—1 =: A7,. Indeed, using (4.15)-(4.16), we get
EAA A A) = 30 BYAVAVENEY Y, AP X = Yo, ]
v,pu=1
_ Z S EXEY [A(”) A X, = Y} (4.54)
v,u=1

In the remaining expectation, we can assume without loss of generality that 7,,_1 = 0, 7,, = r. Like
for instance in the proof of (4.18), one writes

EX |:EY [A§V)Al(#)|y'r :XT]]P)Y(Y'T :XT)i|

XY [ A @) A (R _ _
EXE [Aj AW X, = YT} - X =T (4.55)
and
EY [A(.”)A(“)‘YT - XT} _ 1 _xwxw_ L gramamy, - x,) (4.56)
gl r(r—1)" " r—1 7
An application of the Local Limit Theorem like in (4.21), (4.22) then leads to (4.53).
We are now able to bound
Ry
E-,— [522} =cC Z Z Z MijMilE‘r[DijDil]
i¢{a+1,..., b} n=Ro+17, 1<j#l < Tn
(4.57)

c i 1 1 1
LIOng¢{a+Zl b}n—RZaJrl‘rnl;j,;g‘rn \% |Zi]| \% |Z*l| ATn-

.....

Assume for instance that ¢ > b (the case i < a can be treated similarly):

1 11
LlogLZZ Z Vi—jVi—1Am,

i>bn=Rq+171h-1<j,l < ™

1 L
LlogLZ Z D (i—Tn)ATn<LlogL ;2

i>bn=Rq+171,-1<j,l < 7

Upper bound on E.[S?]. Thanks to time translation invariance, one can reduce to the case
a = 0. We have to distinguish various cases (recall Remark 4.6: we assume that {i,j} # {k,}).
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(1) Assume that 7,—1 < i,7 < T, Tin—1 < k,1 < 7, with 1 <n # m < Rp. Then, thanks to
(4.15), we get E-[D;;Dy] = E;[D;;]E-[Dy] = 0, because E,[D;;] = 0. For similar reasons,
one has that E,[D;;Dy;] = 0 if one of the indexes, say ¢, belongs to one of the intervals
{Tn—1+1,...,7}, and the other three do not.

(2) Assume that 7,1 < i,7,k,l <7, for some n < R;. Using (4.16), we have

ET[DijDkl] =E"EX [DijDkl ‘Xrn,l = Y‘rn,laXTn = an} ;
and with a time translation we can reduce to the case n = 1 (we call 71 = r). Thanks to the
computation of E;[A; - A;] in Section 4.2, we see that E-[A; - A;] = E-[Ag - A)] = —A(r)
so that
E;[Dij D] = E-[(Ai - A)(Ag - A)] = A(r)? S E-[(Aq - A7) (Ak - Ay))- (4.58)
(a) Ifi=k, j#1 (and 7,1 < 1,7,1 <7, for some n < R}), then

E-[(Ai - Aj)(Ai- Ay)] <

&
. 4.
AT, (4.59)
The computations are similar to those we did in Section 4.2 for the computation of
E,[A; - A;]. See Appendix A.1 for details.
(b) If {i,j} N {k, 1} =0 (and 7,1 < i,7,k,1 < 7, for some n < Ry), one gets

E-[(Ai - Aj)(Ag - A)] < (4.60)

¢

(AT,)2
See Appendix A.2 for a (sketch of) the proof, which is analogous to that of (4.59).

(3) The only remaining case is that where i € {7,—1 +1,..., 7}, j € {Tm-1+1,..., 7} with

m # n < Ry, and each of these two intervals contains two indexes in 4, j, k, [. Let us suppose

for definiteness n < m and k € {7,—1 + 1,...,7,}. Then E;[A; - A;] = E;[Ar-A] =0

(cf. Lemma 4.4), and E-[D;; D] = E-[(A; - A;)(Ag - Ay)]. We will prove in Appendix A.3

that .
E [(A; - Aj)(Ag - A)] € ——— 4.61
(A0 A)) (A A)] € 55— (161)
and that
&
E-[(A; - Aj)(A; - Ay)] < . 4.62
[( i) DIy v (4.62)
We are now able to compute E,[S?]. We consider first the contribution of the terms whose
indexes i, j, k, [ are all in the same interval {7,,—1 + 1,...,7,}, i.e. case (2) above. Recall that we
drop the terms {i,j} = {k,l} (see Remark 4.6):
& C
Z Mij M7 [Djj D] < A Z Mij My + Z M;j Mg
T 1 <Gkl < o " 1efig} or ke{ij} {0,y {k,1}=0
{i.g3y#{k,1} Tn—1<i,5,k,0 < ™ Tn—1<%,§,k,1<Tn

_ o 1 Z 1 1 i 1 Z 1
< _— | — — — 2 /7 — 4
LlogL | AT, 1<i<j<h<ar VI TUV k—j A 1<i<j<ar, VT

/!

C
< ATy, 4.63
LlogL ™" (4.63)
Altogether, we see that
b b
Z Z My Mg B [Di Dia)1{3n< Rysije{mn—1 41, }}
i£j=1 k#l=1
{4,3}#{k, 1}
Ry . Ry .
- M;; My B [Di; D] < Ar, < ——(4.64
Z Z s MuEr|Di; D] LlogLZ i ogL( )
n=1r7,_1<4,j,k, <1, n=1

{i.5}#{k.1}
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Finally, we consider the contribution to E,[S?] coming from the terms of point (3). We have
(recall that n < m)

c 1 1 1
> MiMuE.[DijDp] < s D — (4.65)
a1 <i k<7 Llog L AmlATm S5, VI —iVI—k
T —1<J,0<Tm Tm—1<JAI<Tm

{a.9}#{k1}

Llog L AT, < Vi—ivgj—k
Tn—1<t#k<Ty
Tm—1<J<Tm

Llog L ATy, : Vi—iVl—1i
Tn—1<i<Tp
Tm—1<JAI<Tm

But as j > 7,,—1

1 1
Z —3 < Z \/ﬁ <c (\/Tm—l — Tn—1 — \/Tm—l - Tn) ) (4-66)

Tn—1<i < T J Tn—1<i < Tp

and as k < 7,

1 1
Z m< Z \/T—Tn<0(¢7m—7n—\/m_1—m), (4.67)

Tm—1<l < Tm Tm—1<l < Tm
so that
&
Z MiijlET [DijDkl] < m (\/Tnm + ATn - \/Tnm) (\/Tnm + A7-7n - \/Tnm) )

Tn—1<i,k<Tp
Tm—1<J,{<Tm

{i.g}#{k,1}

(4.68)
where we noted T,,,, = Tyn—1 — Tn. Recalling (4.64) and the definition (4.49) of S7, we can finally
write

Rp—1
E[E S]] <c|[1+E|> > > MMy [Di;Dy]

n=1 n<m<Rp Tpn_1<i,k<7p,
Tm—1<J,{<Tm

< et B Y (VI A%~ VTum) (VTum + A7 = Vo)

LlogL Py

The remaining average can be estimated via the following Lemma.

Lemma 4.7. There ezists a constant ¢ > 0 depending only on K(-), such that

E| Y (\/Tnm AT, — \/Tnm) (\/Tnm ¥ Ar, — \/Tnm) <cL(logL)4.  (4.69)

1<n<m<R,

Of course this implies that EE,[S?] < c(log L)3/4, which together with (4.57) implies the claim
of Lemma, 4.3. O

Proof of Lemma 4.7. One has the inequality

(\/Tnm ¥ Ar, — \/Tnm) (\/Tnm  Ar, — \/Tnm) < VAT AT, (4.70)

which is a good approximation when T, is not that large compared with A7, and A7,,, and

(\/Tnm + AT, — \/Tnm) (\/Tnm + A7y — \/Tnm) < c%

: (4.71)
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which is accurate when T, is large. We use these bounds to cut the expectation (4.69) into two
parts, a term where m — n < Hy, and one where m —n > Hp,, with Hy, to be chosen later:

f: Z (VT + A7 = VT ) (VT + A7 = VT

n=1m=n+1

| B (n+Hr)ARy Ry, Ar Ar
< BSOS VERE| B[S 3 SlTn - (a7)
n=1 m=n+1 n=1m=n+Hp+1 nm
We claim that there exists a constant ¢ such that for every [ > 1,
Ry—1
Z VAT AT, VL(log L)** 1z (4.73)

(the proof is given later). Then the first term in the right-hand side of (4.72) is

Ry (n+HL)ARy Hy Ry—1
Z Z VAT AT, ZE Z VAT A/ AT cHL\/_ L(log L) 2+1/12
n=1 m=n+1 n=

If we choose H;, = v/L(log L)~'/3, we get from (4.72)

E imgﬂ (Vo + 870 = VT ) (VT + A7 = /T ) (4.74)

Ry

AT, AT,
Z S, AnAm

n=1m=n+Hp+1 nm

< cL(logL)/* + ¢E

As for the second term in (4.72), recall that T}, = 7n—1 — 7, and decompose the sum in two
parts according to whether Tj,,, is larger or smaller than a certain K > 1 to be fixed:

B AT, AT,
Z S, Amim

n=1m=n+Hp+1 nim

Ry

AT, AT,
Z Z TT - L, >k

n=1m=n+Hp+1

+E

Z Z AT AT T, < KL}}

n=1m=n+Hp+1

2

Ry
S 1 LA REE ) ol o T
n=1 n=1m=n+Hyp+1
L? -~
< — +L'P(ry, <K1). (4.75)
Ky,

We now set Kj = L(log L)~7/%, so that we get in the previous inequality

Ry

AT, AT,
Z S, AmAm

n=1lm=n+Hp+1 nm

< L(log L)"/* + L*P (t, < K1), (4.76)

and we are done if we prove for instance that P (18, < K1) = o(L™*). Indeed,
P(rm, <K1) = P(Rg,>Hy) <cP(Rg, > Hy) (4.77)

where we used Lemma A.1 to take the conditioning off from P := P(:|b € 7) (in fact, K1 < b/2
since b > €L). Recalling the choices of Hy, and K, we get that Hy /K7 = (logL)'3/?* and,
combining (4.77) with Lemma A.2, we get

P (71, < K1) < e 05D — (14 (4.78)
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which is what we needed.

To conclude the proof of Lemma 4.7, we still have to prove (4.73). Note that
Ry—1 Ry—l

E Z \/ATn\/ATn+l1{Rb>l}‘| == l{Rb>l} Z E[\/ATn\/ATn+l|Rb:|
n=1 n=1

= B[lneon (B - DB [VAVE =7 IR

< E[Rw/TvVT — mil(g,>2] (4.79)

where we used the fact that, under P(:|R, = p) for a fixed p, the law of the jumps {AT, }n<p 18
exchangeable. We first bound (4.79) when Ry is large:

E Rb\/ﬁml{gbzﬁm}} < L*P (Rb > Ky LlogL)
< L?P(her)'P (Rb > ky/L 1ogL) . (4.80)

In view of (2.14), we have P(b € 7)~! = O(V/L). Thanks to Lemma A.2 in the Appendix, and
choosing « large enough, we get

P (Rb > kK /LIOgL) < e—cnz log L+o(log L) _ O(L_5/2), (481)
and therefore
E [Rb\/ﬁ\/ T2 — Tll{szn\/m}} == 0(1) (482)

As a consequence,

E [Rb\/ﬁ\/TQ — Tl]_{szg}:I = E [Rbﬁ\/TQ — T11{2S3b<ﬁ\/m}:| —+ 0(1)
< VI(og L)Y2E [\/TiVm — Til{g,>2]
+ K LlogLE |:\/7Tl\/7'2 — Tll{Rb>\/f(logL)1/12}} + o(1). (4.83)

Let us deal with the second term:

E |:1{Rb>\E(IOgL 1/12}\/%\/7’2 - Tl}

b b—i

ZZ\/_\/_P(H*Z 7'2*7'1—],1)67Rb>\/_(logL)1/12)

=1 j=1

b b—i

bGT ZZ\[\/’K (b_@—JGTRb i—j > VL(log L)}/ — ).(4.84)

i=1 j=1

bGT

But we have
1
P (Rb_i_j > VEL(logL)'/'2 —2|pb—i—j € T) < 2P (R(b”)/g > 5\/Z(logL)l/” —1jb—i—j€ T)
1
< P (R(bij)/Q > 5\/Z(log L)1/12 _ 1)

1/6

1
< P <RL > 5\/Z(log L)Y12 1) < ¢ eeloe L) (4 85)
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where we first used Lemma A.1 to take the conditioning off, and then Lemma A.2. Putting (4.84)
and (4.85) together, we get

E |:1{Rb>\/f(log L)1/12}\/E\/ T2 — 7—1i|

b b—i
o 1/6 o
< demellosl) bET > > ViViK(i)K (b—i—jeT)
i=1 j=1
—c(lo 1/
—  Je—cllogl) ° [ /Ty — Tll{Rb>2}} (4.86)

So, recalling (4.83), we have
E [Ryy/TiVT — Til(r,>2] <2VL(log L)Y?E [yTivT — ml(g,>0] +o(1) (4.87)

and we only have to estimate (recall (2.14))

b—1b—p
- Pb—-p—qer
E [\/HV7_2*711{R1,22}] = Z\/ﬁ\/@K(p)K(Q)Q
o Pber)
b—1b—p 1
< oV Z (4.88)
=t =]
Using twice the elementary estimate
M—1
1 1 1
- <c log M,
LMk VM
we get
_ =1 1 1
E [VTiVT2 — T11{R,>2}] <Cﬁz—710g(b p+1) < evVb—(log L)% (4.89)
HpVb-p+1 Vb
Together with (4.87), this proves the desired estimate (4.73).
(|

4.4. Dimension d = 4 (a sketch). As we mentioned just after Theorem 2.8, it is possible to
adapt the change-of-measure argument to prove non-coincidence of quenched and annealed critical
points in dimension d > 4 for the general walks of Assumption 2.1, while the method of Birkner
and Sun [3] does not seem to adapt easily much beyond the simple random walk case. In this
section, we only deal with the case d = 4, since the Theorem 2.8 is obtained for d > 5 in [2], with
more general condition than Assumption 2.1. We will not give details, but for the interested reader
we hint at the “right” change of measure which works in this case.

The “change of measure function” g7 (Y) is still of the form (3.12), factorized over the blocks
which belong to Z, but this time M is a matrix with a finite bandwidth:

1 kL—po
Fe(Y) = —— A Ajipgs (4.90)
VL i—L(kZ—1)+1 o

where pg is an integer. The role of the normalization L~'/2 is to guarantee that ||M|| < co. The
integer pg is to be chosen such that A(pg) > 0, where A(-) is the function defined in Lemma 4.4.
The existence of such pg is guaranteed by the asymptotics (4.18), whose proof for d = 4 is the
same as for d = 3.

For the rest, the scheme of the proof of 5. # 2" (in particular, the coarse-graining procedure)
is analogous to that we presented for d = 3, and the computations involved are considerably
simpler.
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APPENDIX A. SOME TECHNICAL ESTIMATES

Lemma A.1. (Lemma A.2 in [9]) Let P be the law of a recurrent renewal whose inter-arrival law
satisfies K (n) "~ cxn~3/2 for some cx > 0. There exists a constant ¢ > 0, that depends only
on K(-), such that for any non-negative function fn (1) which depends only on TN{1,..., N}, one
has
sup Blfn(r) 12N € 7] <ec. (A1)
N>0 E[fn(7)]

Lemma A.2. Under the same assumptions as in Lemma A.1, and with Ry := |7 N{l,..., N},
there exists a constant ¢ > 0, such that for any positive function a(N) which diverges at infinity
and such that a(N) = o(vV'N), we have

P (R = VNa(N)) < oo elov?) (A2
Proof. For every A\ > 0

_ _ 2 TVNa(N) 2
P (RN > \/Na(N)) - P (TWQ(N) < N) =P ()\a(N) 2 < a(w) (A.3)

N

Q)| [eA“(j\v’)ZTWQ(M] — Qe R [e—m(zvf%} VN _

is easily obtained:

The asymptotic behavior of E [e—/\a(zvf%}

1-E {ean(N)Z%} _ Z K(n) (1 _ efn/\a(N)Z/N)
neN
Nooo  VAa(N) B Cl—e*
~ Cw, C=Cg /0 W d.’L', (A4)

where the condition a(N)?/N — 0 was used to transform the sum into an integral. Therefore, we
get

VNa(N)
IWINCER RALIC) Va(N) a(N)
E {e * N} = 1—c +o

U

_ e*C\/Xa(N)ZJrO(a(N)Z). (A5)
Then, for any A > 0,

P (RN > \/Na(N)) < ePr=evNa)*+o(a(N)?) (A.6)
and taking \ = ¢?/4 we get the desired bound. O

We need also the following standard result (cf. for instance [10, Section 5]):

Lemma A.3. Under the same hypothesis as in Lemma A.1, we have the following convergence in
law:

CK

VN

N—o0 1

Ry "3 = 2] (2 ~N(0,1)). (A7)
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A.1. Proof of (4.59). We wish to show that for distinct 4, 7,/ smaller than r,
EXEY[(A - A)(A: - A)IX, = Y] < & (A8)
T

We use the same method as in Section 4.2: we fix 2 € Z%, and we use the notation IE}“/I[] =
EY [ Y, = 2]. Then,

Ere (A - A)(A-A)] = By, [(Ai-A)) (A - By, [Ar]AG, A])]
= LA A) (A (o A - A))]
= e[ (@A) - Ia0P) - (2 a7
< 5 (B [ a0 (A BV 18, 180)] +EX DA 1450)

= ! L gy 32 _ . 112 v B NA
N r—2 (7’ IET’I |:($ Az) (‘T Al) ”AZ” } +Er,z[HA1H ”AJH)

)

EPRT[(A - 4g)(Ai - A Xp = Y] = BY {EY (A A))(A A) [V = X,] %]

N

C X X
(E [” g+ 12+ gae i)

and we can take by symmetry ¢ = 1, j = 2. Therefore,

Xy
< e o (Ll s paar) | v - x. . (4.9)
r r
where
[ X | HX I” X1l
Q ( 17z 1Bl 1Al 1AL]* + == NG 1AL+ AP 1A
At this point, one can apply directly the result of the Remark 4.5. |

A.2. Proof of (4.60). We wish to prove that, for distinct ¢, j, k,1 <,
¢
E-[(Ai - A7) (Ak - A < 5 (A.10)
The proof is very similar to that of (A.8), so we skip details. What one gets is that

E, [(A; - A)(Ag - A)] < & E {EY {QI (M {”Ai”}izlv%)

7—[( i J)( k- l)] X T_g ]P’X*Y(YT :Xr>
where @' is a polynomial of degree 4 in the variable || X,.||/+/r and of degree at most 3 in each of
the |A;]|. Again, like after (A.9), one uses the Remark 4.5 to get the desired result.

A.3. Proof of (4.61)-(4.62). In view of (4.15), in order to prove (4.61) it suffices to prove that
forO0<i#k<r,0<j#Il<s
3

Y EXEVAPAPX, = VEYE AV AM|X, = Vi) < —. (A.12)

v,pu=1 rs
Both factors in the left-hand side have already been computed in (4.55)-(4.56). Using these two
expressions and once more the Local Limit Theorem, one arrives easily to (A.12). The proof of
(4.62) is essentially identical.

P = X,

, (A.11)
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