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ON THE CRITICAL POINT OF THERANDOM WALK PINNING MODEL IN DIMENSION d = 3QUENTIN BERGER AND FABIO LUCIO TONINELLIAbstra
t. We 
onsider the Random Walk Pinning Model studied in [3℄ and [2℄: this is a ran-dom walk X on Z
d, whose law is modi�ed by the exponential of β times LN (X, Y ), the 
ollisionlo
al time up to time N with the (quen
hed) traje
tory Y of another d-dimensional random walk.If β ex
eeds a 
ertain 
riti
al value βc, the two walks sti
k together for typi
al Y realizations(lo
alized phase). A natural question is whether the disorder is relevant or not, that is whetherthe quen
hed and annealed systems have the same 
riti
al behavior. Birkner and Sun [3℄ provedthat βc 
oin
ides with the 
riti
al point of the annealed Random Walk Pinning Model if thespa
e dimension is d = 1 or d = 2, and that it di�ers from it in dimension d ≥ 4 (for d ≥ 5, theresult was proven also in [2℄). Here, we 
onsider the open 
ase of the marginal dimension d = 3,and we prove non-
oin
iden
e of the 
riti
al points.2000 Mathemati
s Subje
t Classi�
ation: 82B44, 60K35, 82B27, 60K37Keywords: Pinning Models, Random Walk, Fra
tional Moment Method, Marginal Disorder1. Introdu
tionWe 
onsider the RandomWalk Pinning Model (RWPM): the starting point is a zero-drift randomwalk X on Z

d (d ≥ 1), whose law is modi�ed by the presen
e of a se
ond random walk, Y .The traje
tory of Y is �xed (quen
hed disorder) and 
an be seen as the random medium. Themodi�
ation of the law of X due to the presen
e of Y takes the Boltzmann-Gibbs form of theexponential of a 
ertain intera
tion parameter, β, times the 
ollision lo
al time of X and Y upto time N , LN (X, Y ) :=
∑

1≤n≤N 1{Xn=Yn}. If β ex
eeds a 
ertain threshold value βc, then foralmost every realization of Y the walk X sti
ks together with Y , in the thermodynami
 limit
N → ∞. If on the other hand β < βc, then LN (X, Y ) is o(N) for typi
al traje
tories.Averaging with respe
t to Y the partition fun
tion, one obtains the partition fun
tion of the so-
alled annealed model, whose 
riti
al point βann

c is easily 
omputed; a natural question is whether
βc 6= βann

c or not. In the renormalization group language, this is related to the question whetherdisorder is relevant or not. In an early version of the paper [2℄, Birkner et al. proved that βc 6= βann
cin dimension d ≥ 5. Around the same time, Birkner and Sun [3℄ extended this result to d = 4, andalso proved that the two 
riti
al points do 
oin
ide in dimensions d = 1 and d = 2.The dimension d = 3 is the marginal dimension in the renormalization group sense, where noteven heuristi
 arguments like the �Harris 
riterion� (at least its most naive version) 
an predi
twhether one has disorder relevan
e or irrelevan
e. Our main result here is that quen
hed andannealed 
riti
al points di�er also in d = 3.For a dis
ussion of the 
onne
tion of the RWPM with the �paraboli
 Anderson model with asingle 
atalyst�, and of the impli
ations of βc 6= βann

c about the lo
ation of the weak-to-strongtransition for the dire
ted polymer in random environment, we refer to [3, Se
. 1.2 and 1.4℄.Our proof is based on the idea of bounding the fra
tional moments of the partition fun
tion,together with a suitable 
hange of measure argument. This te
hnique, originally introdu
ed in[6, 9, 10℄ for the proof of disorder relevan
e for the random pinning model with tail exponentThis work was supported by the European Resear
h Coun
il through the �Advan
ed Grant� PTRELSS 228032,and by ANR through the grant LHMSHE. 1
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α ≥ 1/2, has also proven to be quite powerful in other 
ases: in the proof of non-
oin
iden
e of
riti
al points for the RWPM in dimension d ≥ 4 [3℄, in the proof that �disorder is always strong�for the dire
ted polymer in random environment in dimension (1 + 2) [11℄ and �nally in the proofthat quen
hed and annealed large deviation fun
tionals for random walks in random environmentsin two and three dimensions di�er [15℄. Let us mention that for the random pinning model there isanother method, developed by Alexander and Zygouras [1℄, to prove disorder relevan
e: however,their method fails in the marginal situation α = 1/2 (whi
h 
orresponds to d = 3 for the RWPM).To guide the reader through the paper, let us point out immediately what are the noveltiesand the similarities of our proof with respe
t to the previous appli
ations of the fra
tional mo-ment/
hange of measure method:

• the 
hange of measure 
hosen by Birkner and Sun in [3℄ 
onsists essentially in 
orrelatingpositively ea
h in
rement of the random walk Y with the next one. Therefore, underthe modi�ed measure, Y is more di�usive. The 
hange of measure we use in dimensionthree has also the e�e
t of 
orrelating positively the in
rements of Y , but in our 
ase the
orrelations have long range (the 
orrelation between the ith and the jth in
rement de
ayslike |i− j|−1/2). Another ingredient whi
h was absent in [3℄ and whi
h is essential in d = 3is a 
oarse-graining step, of the type of that employed in [14, 10℄;
• while the s
heme of the proof of our Theorem 2.8 has many points in 
ommon with thatof [10, Th. 1.7℄, here we need new renewal-type estimates (e.g. Lemma 4.7) and a 
arefulappli
ation of the Lo
al Limit Theorem to prove that the average of the partition fun
tionunder the modi�ed measure is small (Lemmas 4.2 and 4.3).2. Model and results2.1. The random walk pinning model. Let X = {Xn}n≥0 and Y = {Yn}n≥0 be two indepen-dent dis
rete-time random walks on Z

d, d ≥ 1, starting from 0, and let P
X and P

Y denote theirrespe
tive laws. We make the following assumption:Assumption 2.1. The random walk X is aperiodi
. The in
rements (Xi − Xi−1)i≥1 are i.i.d.,symmetri
 and have a �nite third moment (EX
[
‖X1‖3

]
< ∞, where ‖ · ‖ denotes the Eu
lideannorm on Z

d). Moreover, the 
ovarian
e matrix of X1, 
all it ΣX , is non-singular.The same assumptions hold for the in
rements of Y (in that 
ase, we 
all ΣY the 
ovarian
ematrix of Y1).For β ∈ R, N ∈ N and for a �xed realization of Y we de�ne a Gibbs transformation of the pathmeasure P
X : this is the polymer path measure P

β
N,Y , absolutely 
ontinuous with respe
t to P

X ,given by dP
β
N,YdPX

(X) =
eβLN(X,Y )

1{XN =YN}

Zβ
N,Y

, (2.1)where LN (X, Y ) =
N∑

n=1
1{Xn=Yn}, and where

Zβ
N,Y = E

X [eβLN (X,Y )
1{XN =YN}] (2.2)is the partition fun
tion that normalizes P

β
N,Y to a probability.The quen
hed free energy of the model is de�ned by

F (β) := lim
N→∞

1

N
log Zβ

N,Y = lim
N→∞

1

N
E

Y [log Zβ
N,Y ] (2.3)(the existen
e of the limit and the fa
t that it is P

Y -almost surely 
onstant and non-negative isproven in [3℄). We de�ne also the annealed partition fun
tion E
Y [Zβ

N,Y ], and the annealed freeenergy:
F ann(β) := lim

N→∞
1

N
log E

Y [Zβ
N,Y ]. (2.4)



RANDOM WALK PINNING MODEL IN d = 3 3We 
an 
ompare the quen
hed and annealed free energies, via the Jensen inequality:
F (β) = lim

N→∞
1

N
E

Y [log Zβ
N,Y ] 6 lim

N→∞
1

N
log E

Y [Zβ
N,Y ] = F ann(β). (2.5)The properties of F ann(·) are well known (see the Remark 2.3), and we have the existen
e of 
riti
alpoints [3℄, for both quen
hed and annealed models, thanks to the 
onvexity and the monotoni
ityof the free energies with respe
t to β:De�nition 2.2 (Criti
al points). There exist 0 6 βann

c 6 βc depending on the laws of X and Ysu
h that: F ann(β) = 0 if β 6 βann
c and F ann(β) > 0 if β > βann

c ; F (β) = 0 if β 6 βc and
F (β) > 0 if β > βc.The inequality βann

c 6 βc 
omes from the inequality (2.5).Remark 2.3. As was remarked in [3℄, the annealed model is just the homogeneous pinning model[8, Chapter 2℄ with partition fun
tion
E

Y [Zβ
N,Y ] = E

X−Y

[
exp

(
β

N∑

n=1

1{(X−Y )n=0}

)
1{(X−Y )N=0}

]whi
h des
ribes the random walk X −Y whi
h re
eives the reward β ea
h time it hits 0. From thewell-known results on the homogeneous pinning model one sees therefore that
• If d = 1 or d = 2, the annealed 
riti
al point βann

c is zero be
ause the random walk X − Yis re
urrent.
• If d ≥ 3, the walk X − Y is transient and as a 
onsequen
e

βann
c = − log

[
1 − P

X−Y
(
(X − Y )n 6= 0 for every n > 0

)]
> 0.Remark 2.4. As in the pinning model [8℄, the 
riti
al point βc marks the transition from adelo
alized to a lo
alized regime. We observe that thanks to the 
onvexity of the free energy,

∂βF (β) = lim
N→∞

E
β
N,Y

[
1

N

N∑

n=1

1{XN=YN}

]
, (2.6)almost surely in Y , for every β su
h that F (·) is di�erentiable at β. This is the 
onta
t fra
tionbetween X and Y . When β < βc, we have F (β) = 0, and the limit density of 
onta
t between Xand Y is equal to 0: E

β
N,Y

∑N
n=1 1{XN =YN} = o(N), and we are in the delo
alized regime. On theother hand, if β > βc, we have F (β) > 0, and there is a positive density of 
onta
ts between Xand Y : we are in the lo
alized regime.2.2. Review of the known results. The following is known about the question of the 
oin
iden
eof quen
hed and annealed 
riti
al points:Theorem 2.5. [3℄ Assume that X and Y are dis
rete time simple random walks on Z

d.If d = 1 or d = 2, the quenched and annealed 
riti
al points 
oin
ide: βc = βann
c = 0.If d ≥ 4, the quenched and annealed 
riti
al points di�er: βc > βann

c > 0.A
tually, the result that Birkner and Sun obtained in [3℄ is valid for slightly more general walksthan simple symmetri
 random walks, as pointed out in the last Remark in [3, Se
.4.1℄. Moreover,an easy adaptation of the proof (
f. m� 
©moire de M2 : 
hange the measure two step at a time,on only one point) allow symmetri
 X and Y with 
ommon jump kernel pX and �nite se
ondmoments.In dimension d ≥ 5, the result was also proven (via a very di�erent method, and for more generalrandom walks whi
h in
lude those of Assumption 2.1) in an early version of the paper [2℄.Remark 2.6. The method and result of [3℄ in dimensions d = 1, 2 
an be easily extended beyondthe simple random walk 
ase (keeping zero mean and �nite varian
e). On the other hand, in the
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ase d ≥ 4 new ideas are needed to make the 
hange-of-measure argument of [3℄ work for moregeneral random walks.Birkner and Sun gave also a similar result if X and Y are 
ontinuous-time symmetri
 simplerandom walks on Z
d, with jump rates 1 and ρ ≥ 0 respe
tively. With de�nitions of (quen
hed andannealed) free energy and 
riti
al points whi
h are analogous to those of the dis
rete-time model,they proved:Theorem 2.7. [3℄ In dimension d = 1 and d = 2, one has βc = βann

c = 0. In dimensions d ≥ 4,one has 0 < βann
c < βc for ea
h ρ > 0. Moreover, for d = 4 and for ea
h δ > 0, there exists

aδ > 0 su
h that βc − βann
c ≥ aδρ

1+δ for all ρ ∈ [0, 1]. For d ≥ 5, there exists a > 0 su
h that
βc − βann

c ≥ aρ for all ρ ∈ [0, 1].Our main result 
ompletes this pi
ture, resolving the open 
ase of the 
riti
al dimension d = 3(for simpli
ity, we deal only with the dis
rete-time model).Theorem 2.8. Under the Assumption 2.1, for d = 3, we have βc > βann
c .We point out that the result holds also in the 
ase where X (or Y ) is a simple random walk, a 
asewhi
h a priori is ex
luded by the aperiodi
ity 
ondition of Assumption 2.1; see the Remark 2.11.Also, it is possible to modify our 
hange-of-measure argument to prove the non-
oin
iden
e ofquen
hed and annealed 
riti
al points in dimension d = 4 for the general walks of Assumption 2.1,thereby extending the result of [3℄; see Se
tion 4.4 for a hint at the ne
essary steps.Note After this work was 
ompleted, M. Birkner and R. Sun informed us that in [4℄ theyindependently proved Theorem 2.8 for the 
ontinuous-time model.2.3. A renewal-type representation for Zβ

N,Y . From now on, we will assume that d ≥ 3.As dis
ussed in [3℄, there is a way to represent the partition fun
tion Zβ
N,Y in terms of a renewalpro
ess τ ; this rewriting makes the model look formally similar to the random pinning model [8℄.In order to introdu
e the representation of [3℄, we need a few de�nitions.De�nition 2.9. We let(1) pX

n (x) = P
X(Xn = x) and pX−Y

n (x) = P
X−Y

(
(X − Y )n = x

);(2) P be the law of a re
urrent renewal τ = {τ0, τ1, . . .} with τ0 = 0, i.i.d. in
rements andinter-arrival law given by
K(n) := P(τ1 = n) =

pX−Y
n (0)

GX−Y
where GX−Y :=

∞∑

n=1

pX−Y
n (0) (2.7)(note that GX−Y < ∞ in dimension d ≥ 3);(3) z′ = (eβ − 1) and z = z′ GX−Y ;(4) for n ∈ N and x ∈ Z

d,
w(z, n, x) = z

pX
n (x)

pX−Y
n (0)

; (2.8)(5) Žz
N,Y := z′

1+z′ Z
β
N,Y .Then, via the binomial expansion of eβLN(X,Y ) = (1 + z′)LN (X,Y ) one gets [3℄

Žz
N,Y =

N∑

m=1

∑

τ0=0<τ1<...<τm=N

m∏

i=1

K(τi − τi−1)w(z, τi − τi−1, Yτi − Yτi−1) (2.9)
= E [W (z, τ ∩ {0, . . . , N}, Y )1N∈τ ] ,where we de�ned for any �nite in
reasing sequen
e s = {s0, s1, . . . , sl}

W (z, s, Y ) =
E

X
[∏l

n=1 z1{Xsn=Ysn}
∣∣∣Xs0 = Ys0

]

EX−Y
[∏l

n=1 1{Xsn=Ysn}

∣∣∣Xs0 = Ys0

] =

l∏

n=1

w(z, sn − sn−1, Ysn − Ysn−1). (2.10)



RANDOM WALK PINNING MODEL IN d = 3 5We remark that, taking the E
Y −expe
tation of the weights, we get

E
Y
[
w(z, τi − τi−1, Yτi − Yτi−1)

]
= z.Again, we see that the annealed partition fun
tion is the partition fun
tion of a homogeneouspinning model:

Žz,ann
N,Y = E

Y [Žz
N,Y ] = E

[
zRN 1{N∈τ}

]
, (2.11)where we de�ned RN := |τ ∩ {1, . . . , N}|.Sin
e the renewal τ is re
urrent, the annealed 
riti
al point is zann

c = 1.In the following, we will often use the Lo
al Limit Theorem for random walks, that one 
an �ndfor instan
e in [5, Theorem 3℄ (re
all that we assumed that the in
rements of both X and Y have�nite se
ond moments and non-singular 
ovarian
e matrix):Proposition 2.10 (Lo
al Limit Theorem). Under the Assumption 2.1, we get
P

X(Xn = x) =
1

(2πn)d/2(detΣX)1/2
exp

(
− 1

2n
x ·
(
Σ−1

X x
))

+ o(n−d/2), (2.12)where o(n−d/2) is uniform for x ∈ Z
d.Moreover, there exists a 
onstant c > 0 su
h that for all x ∈ Z

d and n ∈ N

P
X(Xn = x) 6 cn−d/2. (2.13)Similar statements hold for the walk Y .(We use the notation x · y for the 
anoni
al s
alar produ
t in R

d.)In parti
ular, from Proposition 2.10 and the de�nition of K(·) in (2.7), we get K(n) ∼ cKn−d/2as n → ∞, for some positive cK . As a 
onsequen
e, for d = 3 we get from [7, Th. B℄ that
P(n ∈ τ)

n→∞∼ 1

2πcK
√

n
. (2.14)Remark 2.11. In Proposition 2.10, we supposed that the walk X is aperiodi
, whi
h is not the
ase for the simple random walk. If X is the symmetri
 simple random walk on Z

d, then [12, Prop.1.2.5℄
P

X(Xn = x) = 1{n↔x}
2

(2πn)d/2(det ΣX)1/2
exp

(
− 1

2n
x ·
(
Σ−1

X x
))

+ o(n−d/2), (2.15)where +o(n−d/2) is uniform for x ∈ Z
d, and where n ↔ x means that n and x have the same parity(so that x is a possible value for Xn). Of 
ourse, in this 
ase ΣX is just 1/d times the identitymatrix. The statement (2.13) also holds.Via this remark, one 
an adapt all the 
omputations of the following se
tions, whi
h are based onProposition 2.10, to the 
ase where X (or Y ) is a simple random walk. For simpli
ity of exposition,we give the proof of Theorem 2.8 only in the aperiodi
 
ase.3. Main result: the dimension d = 3With the de�nition F̌ (z) := limN→∞

1
N log Žz

N,Y , to prove Theorem 2.8 it is su�
ient to showthat F̌ (z) = 0 for some z > 1.
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oarse-graining pro
edure and the fra
tional moment method. We 
onsiderwithout loss of generality a system of size proportional to L = 1
z−1 (the 
oarse-graining length),that is N = mL, with m ∈ N. Then, for I ⊂ {1, . . . , m}, we de�ne

ZI
z,Y := E

[
W (z, τ ∩ {0, . . . , N}, Y )1N∈τ1EI (τ)

]
, (3.1)where EI is the event that the renewal τ interse
ts the blo
ks (Bi)i∈I and only these blo
ks over

{1, . . . , N}, Bi being the ith blo
k of size L:
Bi := {(i − 1)L + 1, . . . , iL}. (3.2)Sin
e the events EI are disjoint, we 
an write

Žz
N,Y :=

∑

I⊂{1,...,m}
ZI

z,Y . (3.3)Note that ZI
z,Y = 0 if m /∈ I. We 
an therefore assume m ∈ I. If we denote I = {i1, i2, . . . , il}(l = |I|), i1 < . . . < il, il = m, we 
an express ZI

z,Y in the following way:
ZI

z,Y :=
∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)w(z, a1, Ya1)Z
z
a1,b1 (3.4)

. . . K(al − bl−1)w(z, al − bl−1, Yal
− Ybl−1

)Zz
al,N ,where

Zz
j,k := E

[
W (z, τ ∩ {j, . . . , k}, Y )1k∈τ |j ∈ τ

] (3.5)is the partition fun
tion between j and k.

PSfrag repla
ements

0 L 2L 3L 4L 5L 6L 7L 8L = N

a1 a2 a3 a4b1 b2 b3 b4 = NFigure 1. The 
oarse-graining pro
edure. Here N = 8L (the system is 
ut into
8 blo
ks), and I = {2, 3, 6, 8} (the gray zones) are the blo
ks where the 
onta
tso

ur, and where the 
hange of measure pro
edure of the Se
tion 3.2 a
ts.Moreover, thanks to the Lo
al Limit Theorem (Proposition 2.10), one 
an note that there existsa 
onstant c > 0 independent of the realization of Y su
h that, if one takes z 6 2 (we will take z
lose to 1 anyway), one has

w(z, τi − τi−1, Yτi − Yτi−1) = z
pX

τi−τi−1
(Yτi − Yτi−1)

pX−Y
τi−τi−1

(0)
≤ c.So, the de
omposition (3.4) gives

ZI
z,Y 6 c|I|

∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)Z
z
a1,b1K(a2 − b1)Z

z
a2,b2 . . . K(al − bl−1)Z

z
al,N

. (3.6)We now eliminate the dependen
e on z in the inequality (3.6). This is possible thanks to the
hoi
e L = 1
z−1 . As ea
h Zz

ai,bi
is the partition fun
tion of a system of size smaller than L, we get

W (z, τ ∩ {ai, . . . , bi}, Y ) 6 zLW (z = 1, τ ∩ {ai, . . . , bi}, Y ) (re
all the de�nition (2.10)). But withthe 
hoi
e L = 1
z−1 , the fa
tor zL is bounded by a 
onstant c, and thanks to the equation (3.5),we �nally get

Zz
ai,bi

6 cZz=1
ai,bi

. (3.7)Notational warning: in the following, c, c′, et
. will denote positive 
onstants, whose valuemay 
hange from line to line.



RANDOM WALK PINNING MODEL IN d = 3 7We note Zai,bi := Zz=1
ai,bi

and W (τ, Y ) := W (z = 1, τ, Y ). Plugging this in the inequality (3.6),we �nally get
ZI

z,Y 6 c′|I|
∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)Za1,b1K(a2 − b1)Za2,b2 . . . K(al − bl−1)Zal,N , (3.8)where there is no dependen
e on z anymore.The fra
tional moment method starts from the observation that for any γ 6= 0

F̌ (z) = lim
N→∞

1

γN
E

Y
[
log
(
Žz

N,Y

)γ]
6 lim inf

N→∞
1

Nγ
log E

Y
[(

Žz
N,Y

)γ]
. (3.9)Let us �x a value of γ ∈ (0, 1) (as in [10℄, we will 
hoose γ = 6/7, but we will keep writing it as

γ to simplify the reading). Using the inequality (
∑

an)
γ

6
∑

aγ
n (whi
h is valid for ai ≥ 0), and
ombining with the de
omposition (3.3), we get

E
Y
[(

Žz
N,Y

)γ]
6

∑

I⊂{1,...,m}
E

Y
[(

ZI
z,Y

)γ]
. (3.10)Thanks to (3.9) we only have to prove that, for some z > 1, lim supN→∞ E

Y
[(

Žz
N,Y

)γ]
< ∞.We deal with the term E

Y
[
(ZI

z,Y )γ
] via a 
hange of measure pro
edure.3.2. The 
hange of measure pro
edure. The idea is to 
hange the measure P

Y on ea
h blo
kwhose index belongs to I, keeping ea
h blo
k independent of the others. We repla
e, for �xed I,the measure P
Y (dY ) with gI(Y )PY (dY ), where the fun
tion gI(Y ) will have the e�e
t of 
reatinglong range positive 
orrelations between the in
rements of Y , inside ea
h blo
k separately. Then,thanks to the Hölder inequality, we 
an write

E
Y
[(

ZI
z,Y

)γ]
= E

Y

[
gI(Y )γ

gI(Y )γ

(
ZI

z,Y

)γ
]

6 E
Y
[
gI(Y )−

γ
1−γ

]1−γ

E
Y
[
gI(Y )ZI

z,Y

]γ
. (3.11)In the following, we will denote ∆i = Yi − Yi−1 the ith in
rement of Y . Let us introdu
e, for

K > 0 and εK to be 
hosen, the following �
hange of measure�:
gI(Y ) =

∏

k∈I
(1Fk(Y ) 6 K + εK1Fk(Y )>K) ≡

∏

k∈I
gk(Y ), (3.12)where

Fk(Y ) = −
∑

i,j∈Bk

Mij∆i · ∆j , (3.13)and {
Mij = 1√

L log L
1√
|j−i|

if i 6= j

Mii = 0.
(3.14)Let us note that from the form of M , we get that ‖M‖2

:=
∑

i,j∈B1
M2

ij 6 C, where the 
onstant
C < ∞ does not depend on L. We also note that Fk only depends on the in
rements of Y in theblo
k labeled k.Let us deal with the �rst fa
tor of (3.11):

E
Y
[
gI(Y )−

γ
1−γ

]
=
∏

k∈I
E

Y
[
gk(Y )−

γ
1−γ

]
=
(

P
Y (F1(Y ) 6 K) + ε

− γ
1−γ

K P
Y (F1(Y ) > K)

)|I|
.(3.15)We now 
hoose

εK := P
Y (F1(Y ) > K)

1−γ
γ (3.16)su
h that the �rst fa
tor in (3.11) is bounded by 2(1−γ)|I| 6 2|I|. The inequality (3.11) �nallygives

E
Y
[(

ZI
z,Y

)γ]
6 2|I|EY

[
gI(Y )ZI

z,Y

]γ
. (3.17)



8 QUENTIN BERGER AND FABIO LUCIO TONINELLIThe idea is that when F1(Y ) is large, the weight g1(Y ) in the 
hange of measure is small. That iswhy the following lemma is useful:Lemma 3.1. We have the following limit:
lim

K→∞
εK = lim

K→∞
P

Y (F1(Y ) > K) = 0 (3.18)Proof . We already now that E
Y [F1(Y )] = 0, so thanks to the standard Chebyshev inequality,we only have to prove that E

Y [F1(Y )2] is bounded. We get
E

Y [F1(Y )2] =
∑

i,j∈B1

k,l∈B1

MijMklE
Y [(∆i · ∆j)(∆k · ∆l)]

=
∑

{i,j}={k,l}
M2

ijE
Y
[
(∆i · ∆j)

2
] (3.19)where we used that E

Y [(∆i · ∆j)(∆k · ∆l)] = 0 if {i, j} 6= {k, l}. Then, we 
an use the Cau
hy-S
hwarz inequality to get
E

Y [F1(Y )2] 6
∑

{i,j}={k,l}
M2

ijE
Y
[
‖∆i‖2 ‖∆j‖2

]
6 ‖M‖2σ4

Y . (3.20)
�We are left with the estimation of E

Y
[
gI(Y )ZI

z,Y

]. We set PI := P (EI , N ∈ τ), that is theprobability for τ to visit the blo
ks (Bi)i∈I and only these ones, and to visit also N . We now usethe following two statements.Proposition 3.2. For any η > 0, there exists z > 1 su�
iently 
lose to 1 (or L su�
iently big,sin
e L = (z − 1)−1) su
h that for every I ⊂ {1, . . . , m} with m ∈ I, we have
E

Y
[
gI(Y )ZI

z,Y

]
6 η|I|PI . (3.21)Proposition 3.2 is the 
ore of the paper and is proven in the next se
tion.Lemma 3.3. [10, Lemma 2.4℄ There exist three 
onstants C1 = C1(L), C2 and L0 su
h that (with

i0 := 0)
PI 6 C1C

|I|
2

|I|∏

j=1

1

(ij − ij−1)7/5
(3.22)for L ≥ L0 and for every I ∈ {1, . . . , m}.Thanks to these two statements and 
ombining with the inequalities (3.10) and (3.17), we get

E
Y
[(

Žz
N,Y

)γ]
6

∑

I⊂{1,...,m}
E

Y
[(

ZI
z,Y

)γ]
6 Cγ

1

∑

I⊂{1,...,m}

|I|∏

j=1

(3C2η)γ

(ij − ij−1)7γ/5
. (3.23)Sin
e 7γ/5 = 6/5 > 1, we 
an set

K̃(n) =
1

c̃n6/5
, where c̃ =

+∞∑

i=1

i−6/5 < +∞, (3.24)and K̃(·) is the inter-arrival probability of some re
urrent renewal τ̃ . We 
an therefore interpretthe right-hand side of (3.23) as a partition fun
tion of a homogeneous pinning model of size m (seeFigure 2), with the underlying renewal τ̃ , and with pinning parameter log[c̃(3C2η)γ ]:
E

Y
[(

Žz
N,Y

)γ]
6 Cγ

1 Eeτ

[
(c̃(3C2η)γ)|eτ∩{1,...,m}|

]
. (3.25)



RANDOM WALK PINNING MODEL IN d = 3 9PSfrag repla
ements
0 1 2 3 4 5 6 7 8 = mFigure 2. The underlying renewal τ̃ is a subset of the set of blo
ks (Bi)1 6 i 6 m(i.e the blo
ks are reinterpreted as points) and the inter-arrival distribution is

K̃(n) = 1/
(
c̃n6/5

).Thanks to Proposition 3.2, we 
an take η arbitrary small. Let us �x η := 1/((4C2)c̃
1/γ). Then,

E
Y
[(

Žz
N,Y

)γ]
6 Cγ

1 (3.26)for every N . This implies, thanks to (3.9), that F̌ (z) = 0, and we are done. �Remark 3.4. The 
oarse-graining pro
edure redu
ed the proof of delo
alization to the proofof Proposition 3.2. Thanks to the inequality (3.8), one has to estimate the expe
tation, withrespe
t to the gI(Y )−modi�ed measure, of the partition fun
tions Zai,bi in ea
h visited blo
k.We will show (this is Lemma 4.1) that the expe
tation with respe
t to this modi�ed measure of
Zai,bi/P(bi − ai ∈ τ) 
an be arbitrarily small if L is large, and if bi − ai is of the order of L. If
bi − ai is mu
h smaller, we 
an deal with this term via elementary bounds.4. Proof of the Proposition 3.2As pointed out in Remark 3.4, Proposition 3.2 relies on the following key lemma:Lemma 4.1. For every ε and δ > 0, there exists L > 0 su
h that

E
Y [g1(Y )Za,b] 6 δP(b − a ∈ τ) (4.1)for every a 6 b in B1 su
h that b − a ≥ εL.Given this lemma, the proof of Proposition 3.2 is very similar to the proof of [10, Proposition2.3℄, so we will sket
h only a few steps. The inequality (3.8) gives us

E
Y
[
gI(Y )ZI

z,Y

]

6 c|I|
∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)E
Y [gi1(Y )Za1,b1 ] K(a2 − b1)E

Y [gi2(Y )Za2,b2 ] . . .

. . .K(al − bl−1)E
Y [gil

(Y )Zal,N ]

= c|I|
∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)E
Y
[
g1(Y )Za1−L(i1−1),b1−L(i1−1)

]
K(a2 − b1) . . .(4.2)

. . .K(al − bl−1)E
Y
[
g1(Y )Zal−L(m−1),N−L(m−1)

]
.The terms with bi − ai ≥ εL are dealt with via Lemma 4.1, while for the remaining ones we justobserve that E

Y [g1(Y )Za,b] ≤ P(b − a ∈ τ) sin
e g1(Y ) ≤ 1. One has then
E

Y
[
gI(Y )ZI

z,Y

]
6 c|I|

∑

a1,b1∈Bi1
a1 6 b1

∑

a2,b2∈Bi2
a2 6 b2

. . .
∑

al∈Bil

K(a1)
(
δ + 1{b1−a1 6 εL}

)
P(b1 − a1 ∈ τ)

. . . K(al − bl−1)
(
δ + 1{N−al 6 εL}

)
P(N − al ∈ τ). (4.3)From this point on, the proof of Theorem 3.2 is identi
al to the proof of Proposition 2.3 in [10℄(one needs of 
ourse to 
hoose ε = ε(η) and δ = δ(η) su�
iently small). �



10 QUENTIN BERGER AND FABIO LUCIO TONINELLI4.1. Proof of Lemma 4.1. Let us �x a, b in B1, su
h that b − a ≥ εL. The small 
onstants
δ and ε are also �xed. We re
all that for a �xed 
on�guration of τ su
h that a, b ∈ τ , we have
E

Y
[
W (τ ∩ {a, . . . , b}, Y )

]
= 1 be
ause z = 1. We 
an therefore introdu
e the probability measure(always for �xed τ) dPτ (Y ) = W (τ ∩ {a, . . . , b}, Y )dP

Y (Y ) (4.4)where we do not indi
ate the dependen
e on a and b. Let us note for later 
onvenien
e that, inthe parti
ular 
ase a = 0, the de�nition (2.10) of W implies that for any fun
tion f(Y )

Eτ [f(Y )] = E
X

E
Y
[
f(Y )|Xi = Yi ∀i ∈ τ ∩ {1, . . . , b}

]
. (4.5)With the de�nition (3.5) of Za,b := Zz=1

a,b , we get
E

Y [g1(Y )Za,b] = E
Y
E
[
g1(Y )W (τ ∩ {a, . . . , b}, Y )1b∈τ |a ∈ τ

]
= ÊEτ [g1(Y )]P(b − a ∈ τ), (4.6)where P̂(·) := P(·|a, b ∈ τ), and therefore we have to show that ÊEτ [g1(Y )] 6 δ.With the de�nition (3.12) of g1(Y ), we get that for any K

ÊEτ [g1(Y )] 6 εK + ÊPτ (F1 < K) . (4.7)If we 
hoose K big enough, εK is smaller than δ/3 thanks to the Lemma 3.1. We now usetwo lemmas to deal with the se
ond term. The idea is to �rst prove that Eτ [F1] is big with a
P̂−probability 
lose to 1, and then that its varian
e is not too large.Lemma 4.2. For every ζ > 0 and ε > 0, one 
an �nd two 
onstants u = u(ε, ζ) > 0 and
L0 = L0(ε, ζ) > 0, su
h that for every a, b ∈ B1 su
h that b − a ≥ εL,

P̂

(
Eτ [F1] ≤ u

√
log L

)
≤ ζ, (4.8)for every L ≥ L0.Choose ζ = δ/3 and �x u > 0 su
h that (4.8) holds for every L su�
iently large. If 2K = u

√
log L(and therefore we 
an make εK small enough by 
hoosing L large), we get that

ÊPτ (F1 < K) 6 ÊPτ

[
F1 − Eτ [F1] 6 − K

]
+ P̂ (Eτ [F1] 6 2K) (4.9)

6
1

K2
ÊEτ

[
(F1 − Eτ [F1])

2
]

+ δ/3. (4.10)Putting this together with (4.7) and with our 
hoi
e of K, we have
ÊEτ [g1(Y )] 6 2δ/3 +

4

u2 log L
ÊEτ

[
(F1 − Eτ [F1])

2
] (4.11)for L ≥ L0. Then we just have to prove that ÊEτ

[
(F1 − Eτ [F1])

2
]

= o(log L). Indeed,Lemma 4.3. For every ε > 0 there exists some 
onstant c = c(ε) > 0 su
h that
ÊEτ

[
(F1 − Eτ [F1])

2
]

6 c (log L)3/4 (4.12)for every L > 1 and a, b ∈ B1 su
h that b − a ≥ εL.We �nally get that
ÊEτ [g1(Y )] 6 2δ/3 + c(log L)−1/4, (4.13)and there exists a 
onstant L1 > 0 su
h that for L > L1

ÊEτ [g1(Y )] 6 δ. (4.14)
�



RANDOM WALK PINNING MODEL IN d = 3 114.2. Proof of Lemma 4.2. Up to now, the proof of Theorem 2.8 is quite similar to the proof ofthe main result in [10℄. Starting from the present se
tion, instead, new ideas and te
hni
al resultsare needed.Let us �x a realization of τ su
h that a, b ∈ τ (so that it has a non-zero probability under P̂)and let us note τ ∩ {a, . . . b} = {τRa = a, τRa+1, . . . , τRb
= b} (re
all that Rn = |τ ∩ {1, . . . , n}|).We observe (just go ba
k to the de�nition of Pτ ) that, if f is a fun
tion of the in
rements of Y in

{τn−1 + 1, . . . , τn}, g of the in
rements in {τm−1 + 1, . . . , τm} with Ra < n 6= m ≤ Rb, and if h isa fun
tion of the in
rements of Y not in {a + 1, . . . , b} then
Eτ

[
f
(
{∆i}i∈{τn−1+1,...,τn}

)
g
(
{∆i}i∈{τm−1+1,...,τm}

)
h
(
{∆i}i/∈{a+1,...,b}

)] (4.15)
= Eτ

[
f
(
{∆i}i∈{τn−1+1,...,τn}

)]
Eτ

[
g
(
{∆i}i∈{τm−1+1,...,τm}

)]
E

Y
[
h
(
{∆i}i/∈{a+1,...,b}

)]
,and that

Eτ

[
f
(
{∆i}i∈{τn−1+1,...,τn}

)]
= E

X
E

Y
[
f
(
{∆i}i∈{τn−1+1,...,τn}

)
|Xτn−1 = Yτn−1 , Xτn = Yτn

]

= E
X

E
Y
[
f
(
{∆i−τn−1}i∈{τn−1+1,...,τn}

)
|Xτn−τn−1 = Yτn−τn−1

]
. (4.16)We want to estimate Eτ [F1]: sin
e the in
rements ∆i for i ∈ B1 \ {a + 1, . . . , b} are i.i.d. and
entered (like under P

Y ), we have
Eτ [F1] :=

b∑

i,j=a+1

MijEτ [−∆i · ∆j ]. (4.17)Via a time translation, one 
an always assume that a = 0 and we do so from now on.The key point is the followingLemma 4.4. (1) If there exists 1 ≤ n ≤ Rb su
h that i, j ∈ {τn−1 + 1, . . . , τn}, then
Eτ [−∆i · ∆j ] = A(r)

r→∞∼ CX,Y

r
(4.18)where r = τn − τn−1 (in parti
ular, note that the expe
tation depends only on r) and CX,Yis a positive 
onstant whi
h depends on P

X , PY ;(2) otherwise, Eτ [−∆i · ∆j ] = 0.Proof of Lemma 4.4 Case (2). Assume that τn−1 < i ≤ τn and τm−1 < j ≤ τm with n 6= m.Thanks to (4.15)-(4.16) we have that
Eτ [∆i·∆j ] = E

X
E

Y [∆i|Xτn−1 = Yτn−1 , Xτn = Yτn ]·EX
E

Y [∆j |Xτm−1 = Yτm−1 , Xτm = Yτm ] (4.19)and both fa
tors are immediately seen to be zero, sin
e the laws of X and Y are assumed to besymmetri
.Case (1). Without loss of generality, assume that n = 1, so we only have to 
ompute
E

Y
E

X [∆i · ∆j |Xr = Yr ] . (4.20)where r = τ1. Let us �x x ∈ Z
3, and denote E

Y
r,x[·] = E

Y [· |Yr = x ].
E

Y [∆i · ∆j |Yr = x ] = E
Y
r,x

[
∆i · E

Y
r,x [∆j |∆i ]

]

= E
Y
r,x

[
∆i ·

x − ∆i

r − 1

]
=

x

r − 1
· E

Y
r,x [∆i] −

1

r − 1
E

Y
r,x

[
‖∆i‖2

]

=
1

r − 1

(
‖x‖2

r
− E

Y
r,x

[
‖∆1‖2

])
,



12 QUENTIN BERGER AND FABIO LUCIO TONINELLIwhere we used the fa
t that under P
Y
r,x the law of the in
rements {∆i}i≤r is ex
hangeable. Then,we get

Eτ [∆i · ∆j ] = E
X

E
Y
[
∆i · ∆j1{Yr=Xr}

]
P

X−Y (Yr = Xr)
−1

= E
X
[
E

Y [∆i · ∆j |Yr = Xr ] PY (Yr = Xr)
]
P

X−Y (Yr = Xr)
−1

=
1

r − 1

(
E

X

[
‖Xr‖2

r
P

Y (Yr = Xr)

]
P

X−Y (Yr = Xr)
−1

−E
X

E
Y
[
‖∆1‖2

1{Yr=Xr}
]

P
X−Y (Yr = Xr)

−1
)

=
1

r − 1

(
E

X

[
‖Xr‖2

r
P

Y (Yr = Xr)

]
P

X−Y (Yr = Xr)
−1 − E

X
E

Y
[
‖∆1‖2 |Yr = Xr

])
.Next, we study the asymptoti
 behavior of A(r) and we prove (4.18) with CX,Y = tr(ΣY ) −

tr
(
(Σ−1

X + Σ−1
Y )−1

). Note that tr(ΣY ) = E
Y (||Y1||2) := σ2

Y . The fa
t that CX,Y > 0 is just a
onsequen
e of the fa
t that, if A and B are two positive-de�nite matri
es, one has that A − B ispositive de�nite if and only if B−1 − A−1 is [13, Cor. 7.7.4(a)℄.To prove (4.18), it is enough to show that
E

X
E

Y
[
‖∆1‖2 |Yr = Xr

]
r→∞→ E

X
E

Y
[
‖∆1‖2

]
= σ2

Y , (4.21)and that
B(r) :=

E
X
[
‖Xr‖2

r P
Y (Yr = Xr)

]

PX−Y (Xr = Yr)

r→∞→ tr
(
(Σ−1

X + Σ−1
Y )−1

)
. (4.22)To prove (4.21), write

E
X

E
Y
[
‖∆1‖2 |Yr = Xr

]
= E

Y
[
‖∆1‖2

P
X(Xr = Yr)

]
P

X−Y (Xr = Yr)
−1

=
∑

y,z∈Zd

‖y‖2
P

Y (Y1 = y)
P

Y (Yr−1 = z)PX(Xr = y + z)

PX−Y (Xr − Yr = 0)
. (4.23)We know from the Lo
al Limit Theorem (Proposition 2.10) that the term P

X (Xr=y+z)
PX−Y (Xr−Yr=0) is uni-formly bounded from above, and so there exist a 
onstant c > 0 su
h that for all y ∈ Z

d

∑

z∈Zd

P
Y (Yr−1 = z)PX(Xr = y + z)

PX−Y (Xr − Yr = 0)
6 c. (4.24)If we 
an show that for every y �xed Z

3, this term goes to 1 as r goes to in�nity, then from (4.23),a dominated 
onvergen
e argument would give that
E

X
E

Y
[
‖∆1‖2 |Yr = Xr

]
r→∞−→

∑

y∈Zd

‖y‖2
P

Y (Y1 = y) = σ2
Y . (4.25)We are now left with proving that the right term of (4.24) goes to 1 as r goes to in�nity for any�xed y ∈ Z

d.We use the Lo
al Limit Theorem to get
∑

z∈Zd

P
Y (Yr−1 = z)PX(Xr = y + z) =

∑

z∈Zd

cXcY

rd
e−

1
2(r−1)

z·(Σ−1
Y z)e−

1
2r (y+z)·(Σ−1

X (y+z)) + o(r−d/2)

= (1 + o(1))
∑

z∈Zd

cXcY

rd
e−

1
2 z·(Σ−1

Y z)e−
1
2r z·(Σ−1

X z) + o(r−d/2) (4.26)where cX = (2π)−d/2(det ΣX)−1/2 and similarly for cY (the 
onstants are di�erent in the 
ase ofsimple random walks: see Remark 2.11), and where we used that y is �xed to negle
t y/
√

r.



RANDOM WALK PINNING MODEL IN d = 3 13Using the same reasoning, we also have (with the same 
onstants cX and cY )
P

X−Y (Xr = Yr) =
∑

z∈Z3

P
Y (Yr = z)PX(Xr = z)

=
∑

z∈Zd

cXcY

rd
e−

1
2r z·(Σ−1

Y z)e−
1
2r z·(Σ−1

X z) + o(r−d/2). (4.27)Putting this together with (4.26) (and 
onsidering that P
X−Y (Xr = Yr) ∼ c

X,Y
r−d/2), we have,for every y ∈ Z

d

∑

z∈Zd

P
Y (Yr−1 = z)PX(Xr = y + z)

PX−Y (Xr − Yr = 0)

r→∞−→ 1. (4.28)To deal with the term B(r) in (4.22), we apply the Lo
al Limit Theorem as in (4.27) to get
E

X

[
‖Xr‖2

r
P

Y (Yr = Xr)

]
=

cY cX

rd

∑

z∈Zd

‖z‖2

r
e−

1
2r z·(Σ−1

Y z)e−
1
2r z·(Σ−1

X z) + o(r−d/2). (4.29)Together with (4.27), we �nally get
B(r) =

∑
z∈Zd

‖z‖2

r e−
1
2r z·((Σ−1

Y +Σ−1
X )z) + o(r−d/2)

∑
z∈Zd e−

1
2r z·((Σ−1

Y +Σ−1
X )z) + o(r−d/2)

= (1 + o(1))E
[
‖N‖2

]
, (4.30)whereN ∼ N

(
0, (Σ−1

Y + Σ−1
X )−1

) is a 
entered Gaussian ve
tor of 
ovarian
ematrix (Σ−1
Y + Σ−1

X )−1.Therefore, E
[
‖N‖2

]
= tr

(
(Σ−1

Y + Σ−1
X )−1

) and (4.22) is proven.
�Remark 4.5. For later purposes, we remark that with the same method one 
an prove that, forany polynomials U and V su
h that E

Y [‖U ({‖∆k‖}k 6 k0) ‖] < ∞, we have
E

X
E

Y

[
U ({‖∆k‖}k 6 k0)V

(‖Xr‖√
r

)∣∣∣∣Yr = Xr

]
r→∞→ E

Y
[
U ({‖∆k‖}k 6 k0)

]
E
[
V (‖N‖)

]
, (4.31)where N is as in (4.30).Let us now qui
kly sket
h the proof: as in (4.23), we 
an write

E
X

E
Y

[
U ({‖∆k‖}k 6 k0)V

(‖Xr‖√
r

)∣∣∣∣Yr = Xr

]
= (4.32)

∑

y1,...,yk0
∈Zd

U ({‖yk‖}k 6 k0)
∑

z∈Zd

V

(‖z‖√
r

)
P

X(Xr = z)
P

Y (Yr−k0 = z − y1 − . . . − yk0)

PX−Y (Xr − Yr = 0)
.Then using the Lo
al Limit Theorem the same way as in (4.27), one 
an show that for any

y1, . . . , yk0 , we get similarly as (4.30)
∑

z∈Zd

V

(‖z‖√
r

)
P

X(Xr = z)
P

Y (Yr−k0 = z − y1 − . . . − yk0)

PX−Y (Xr − Yr = 0)

r→∞→ E
[
V (‖N‖)

]
. (4.33)Using a uniform bound for P

Y (Yr−k0 = z − y1 − . . . − yk0) and P
X−Y (Xr − Yr = 0), we also seethat this term is uniformly bounded for y1, . . . , yk0 ∈ Z

d by CE
X
[
V
(

‖Xr‖√
r

)]. Then, as for (4.21),we get the result thanks to a dominated 
onvergen
e argument.Given Lemma 4.4, we 
an resume the proof of Lemma 4.2, and lower bound the average Eτ [F1].Re
alling (4.17) and the fa
t that we redu
ed to the 
ase a = 0, we get
Eτ [F1] =

Rb∑

n=1




∑

τn−1<i,j≤τn

Mij


A(∆τn), (4.34)



14 QUENTIN BERGER AND FABIO LUCIO TONINELLIwhere ∆τn := τn − τn−1. Using the de�nition (3.14) of M , we see that there exists a 
onstant
c > 0 su
h that for 1 < m ≤ L

m∑

i,j=1

Mij ≥ c√
L logL

m3/2. (4.35)On the other hand, thanks to Lemma 4.4, there exists some r0 > 0 and two 
onstants c and c′su
h that A(r) ≥ c
r for r ≥ r0, and A(r) ≥ −c′ for every r. Plugging this into (4.34), one gets

√
L logL Eτ [F1] ≥ c

Rb∑

n=1

√
∆τn1{∆τn≥r0} − c′

Rb∑

n=1

(∆τn)3/2
1{∆τn 6r0} ≥ c

Rb∑

n=1

√
∆τn − c′Rb. (4.36)Therefore, we get for any positive B > 0 (independent of L)

P̂

(
Eτ [F1] 6 g

√
log L

)
6 P̂

(
1√

L logL

(
c

Rb∑

n=1

√
∆τn − c′ Rb

)
6 u

√
log L

)

6 P̂

(
1√

L logL

(
c

Rb∑

n=1

√
∆τn − c′

√
LB

)
6 u

√
log L

)
+ P̂

(
Rb > B

√
L
)

6 P̂




Rb/2∑

n=1

√
∆τn ≤ (1 + o(1))

u

c

√
L log L


+ P̂(Rb > B

√
L). (4.37)Now we show that for B large enough, and L ≥ L0(B),

P̂(Rb > B
√

L) 6 ζ/2, (4.38)where ζ is the 
onstant whi
h appears in the statement of Lemma 4.2. We start with getting rid ofthe 
onditioning in P̂ (re
all P̂(·) = P(·|b ∈ τ) sin
e we redu
ed to the 
ase a = 0). If Rb > B
√

L,then either |τ ∩ {1, . . . , b/2}| or |τ ∩ {b/2 + 1, . . . , b}| ex
eeds B
2

√
L. Sin
e both random variableshave the same law under P̂, we have

P̂(Rb > B
√

L) 6 2P̂

(
Rb/2 >

B

2

√
L

)
≤ 2cP

(
Rb/2 >

B

2

√
L

)
, (4.39)where in the se
ond inequality we applied Lemma A.1. Now, we 
an use the Lemma A.3 in theAppendix, to get that (re
all b ≤ L)

P

(
Rb/2 >

B

2

√
L

)
≤ P

(
RL/2 >

B

2

√
L

)
L→∞→ P

( |Z|√
2π

≥ B
cK√

2

)
, (4.40)with Z a standard Gaussian random variable and cK the 
onstant su
h that K(n) ∼ cKn−3/2.The inequality (4.38) then follows for B su�
iently large, and L ≥ L0(B).We are left to prove that for L large enough and u small enough

P̂




Rb/2∑

n=1

√
∆τn 6

u

c

√
L log L



 6 ζ/2. (4.41)The 
onditioning in P̂ 
an be eliminated again via Lemma A.1. Next, one notes that for any given
A > 0 (independent of L)

P




Rb/2∑

n=1

√
∆τn 6

u

c

√
L log L



 6 P




A
√

L∑

n=1

√
∆τn 6

u

c

√
L log L



+ P

(
Rb/2 < A

√
L
)

. (4.42)Thanks to the Lemma A.3 in Appendix and to b ≥ εL, we have
lim sup
L→∞

P

(
Rb/2√

L
< A

)
≤ P

(
|Z|√
2π

< AcK

√
2

ε

)
,
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h 
an be arbitrarily small if A = A(ε) is small enough, for L large. We now deal with theother term in (4.42), using the exponential Bienaymé-Chebyshev inequality (and the fa
t that the
∆τn are i.i.d.):

P



 1√
L log L

A
√

L∑

n=1

√
∆τn <

u

c

√
log L



 6 e(u/c)
√

log L
E

[
exp

(
−
√

τ1

L log L

)]A
√

L

. (4.43)To estimate this expression, we remark that, for L large enough,
E

[
1 − exp

(
−
√

τ1

L logL

)]
=

∞∑

n=1

K(n)
(
1 − e−

√
n

L log L

)

≥ c′
∞∑

n=1

1 − e−
√

n
L log L

n3/2
≥ c′′

√
log L

L
, (4.44)where the last inequality follows from keeping only the terms with n ≤ L in the sum, and notingthat in this range 1 − e−

√
n

L log L ≥ c
√

n/(L logL). Therefore,
E

[
exp

(
−
√

τ1

L log L

)]A
√

L

6

(
1 − c′′

√
log L

L

)A
√

L

≤ e−c′′A
√

log L, (4.45)and, plugging this bound in the inequality (4.43), we get
P


 1√

L logL

A
√

L∑

n=1

√
∆τn 6

u

c

√
log L


 6 e[(u/c)−c′′A]

√
log L, (4.46)that goes to 0 if L → ∞, provided that u is small enough. This 
on
ludes the proof of Lemma 4.2.

�4.3. Proof of Lemma 4.3. We 
an write
−F1 + Eτ [F1] = S1 + S2 :=

b∑

i6=j=a+1

MijDij +

′∑

i6=j

MijDij (4.47)where we denoted
Dij = ∆i · ∆j − Eτ [∆i · ∆j ] (4.48)and ′∑ stands for the sum over all 1 ≤ i 6= j ≤ L su
h that either i or j (or both) do not fall into

{a + 1, . . . , b}. This way, we have to estimate
Eτ [(F1 − Eτ [F1])

2] ≤ 2Eτ [S2
1 ] + 2Eτ [S2

2 ] (4.49)
= 2

b∑

i6=j=a+1

b∑

k 6=l=a+1

MijMklEτ [DijDkl] + 2

′∑

i6=j

′∑

k 6=l

MijMklEτ [DijDkl].Remark 4.6. We easily deal with the part of the sum where {i, j} = {k, l}. In fa
t, we triv-ially bound Eτ

[
(∆i · ∆j)

2
]

≤ Eτ

[
‖∆i‖2 ‖∆j‖2

]. Suppose for instan
e that τn−1 < i ≤ τnfor some Ra < n ≤ Rb: in this 
ase, the Remark 4.5 tells that Eτ

[
‖∆i‖2 ‖∆j‖2

] 
onverges to
E

Y [‖∆1‖2 ‖∆2‖2
] = σ4

Y as τn − τn−1 → ∞. If, on the other hand, i /∈ {a + 1, . . . , b}, we know that
Eτ

[
‖∆i‖2 ‖∆j‖2

] equals exa
tly E
Y
[
‖∆1‖2

]
Eτ

[
‖∆j‖2

] whi
h is also bounded. As a 
onsequen
e,we have the following inequality, valid for every 1 ≤ i, j ≤ L:
Eτ

[
(∆i · ∆j)

2
]
≤ c (4.50)



16 QUENTIN BERGER AND FABIO LUCIO TONINELLIand then
L∑

i6=j=1

∑

{k,l}={i,j}
MijMklEτ [DijDkl] 6 c

L∑

i6=j=1

M2
ij 6 c′ (4.51)sin
e the Hilbert-S
hmidt norm of M was 
hoosen to be �nite.Upper bound on Eτ [S2

2 ]. This is the easy part, and this term will be shown to be boundedeven without taking the average over P̂.We have to 
ompute ′∑
i6=j

′∑
k 6=l MijMklEτ [DijDkl]. Again, thanks to (4.15)-(4.16), we have

Eτ [DijDkl] 6= 0 only in the following 
ase (re
all that thanks to Remark 4.6 we 
an disregard the
ase {i, j} = {k, l}):
i = k /∈ {a + 1, . . . , b} and τn−1 < j 6= l ≤ τn for some Ra < n ≤ Rb. (4.52)One should also 
onsider the 
ases where i is inter
hanged with j and/or k with l. Sin
e we arenot following 
onstants, we do not keep tra
k of the asso
iated 
ombinatorial fa
tors. Under theassumption (4.52), Eτ [∆i · ∆j ] = Eτ [∆i · ∆l] = 0 (
f. (4.15)) and we will show that

Eτ [DijDil] = Eτ [(∆i · ∆j)(∆i · ∆l)] ≤
c

r
(4.53)where r = τn − τn−1 =: ∆τn. Indeed, using (4.15)-(4.16), we get

Eτ [(∆i · ∆j)(∆i · ∆l)] =

3∑

ν,µ=1

E
Y [∆

(ν)
i ∆

(µ)
i ]EX

E
Y [∆

(ν)
j−τn−1

∆
(µ)
l−τn−1

|Xτn−τn−1 = Yτn−τn−1]

=

3∑

ν,µ=1

Σνµ
Y E

X
E

Y
[
∆

(ν)
j−τn−1

∆
(µ)
l−τn−1

|Xr = Yr

]
. (4.54)In the remaining expe
tation, we 
an assume without loss of generality that τn−1 = 0, τn = r. Likefor instan
e in the proof of (4.18), one writes

E
X

E
Y
[
∆

(ν)
j ∆

(µ)
l |Xr = Yr

]
=

E
X
[
E

Y
[
∆

(ν)
j ∆

(µ)
l |Yr = Xr

]
P

Y (Yr = Xr)
]

PX−Y (Xr = Yr)
(4.55)and

E
Y
[
∆

(ν)
j ∆

(µ)
l

∣∣∣Yr = Xr

]
=

1

r(r − 1)
X(ν)

r X(µ)
r − 1

r − 1
E

Y [∆
(ν)
j ∆

(µ)
j |Yr = Xr]. (4.56)An appli
ation of the Lo
al Limit Theorem like in (4.21), (4.22) then leads to (4.53).We are now able to bound

Eτ

[
S2

2

]
= c

∑

i/∈{a+1,...,b}

Rb∑

n=Ra+1

∑

τn−1<j 6=l 6 τn

MijMilEτ [DijDil]

6
c

L logL

∑

i/∈{a+1,...,b}

Rb∑

n=Ra+1

∑

τn−1<j,l 6 τn

1√
|i − j|

1√
|i − l|

1

∆τn
. (4.57)Assume for instan
e that i > b (the 
ase i ≤ a 
an be treated similarly):

c

L log L

∑

i>b

Rb∑

n=Ra+1

∑

τn−1<j,l 6 τn

1√
i − j

1√
i − l

1

∆τn

≤ c

L logL

∑

i>b

Rb∑

n=Ra+1

∑

τn−1<j,l 6 τn

1

(i − τn)∆τn
≤ c

L logL
(b − a)

L∑

i=1

1

i
≤ c′.Upper bound on Eτ [S2

1 ]. Thanks to time translation invarian
e, one 
an redu
e to the 
ase
a = 0. We have to distinguish various 
ases (re
all Remark 4.6: we assume that {i, j} 6= {k, l}).



RANDOM WALK PINNING MODEL IN d = 3 17(1) Assume that τn−1 < i, j ≤ τn, τm−1 < k, l ≤ τm, with 1 ≤ n 6= m ≤ Rb. Then, thanks to(4.15), we get Eτ [DijDkl] = Eτ [Dij ]Eτ [Dkl] = 0, be
ause Eτ [Dij ] = 0. For similar reasons,one has that Eτ [DijDkl] = 0 if one of the indexes, say i, belongs to one of the intervals
{τn−1 + 1, . . . , τn}, and the other three do not.(2) Assume that τn−1 < i, j, k, l ≤ τn for some n ≤ Rb. Using (4.16), we have

Eτ [DijDkl] = E
Y

E
X
[
DijDkl

∣∣Xτn−1 = Yτn−1 , Xτn = Yτn

]
,and with a time translation we 
an redu
e to the 
ase n = 1 (we 
all τ1 = r). Thanks to the
omputation of Eτ [∆i · ∆j ] in Se
tion 4.2, we see that Eτ [∆i · ∆j ] = Eτ [∆k · ∆l] = −A(r)so that

Eτ [DijDkl] = Eτ [(∆i · ∆j)(∆k · ∆l)] − A(r)2 6 Eτ [(∆i · ∆j)(∆k · ∆l)]. (4.58)(a) If i = k, j 6= l (and τn−1 < i, j, l ≤ τn for some n ≤ Rb), then
Eτ [(∆i · ∆j)(∆i · ∆l)] ≤

c

∆τn
. (4.59)The 
omputations are similar to those we did in Se
tion 4.2 for the 
omputation of

Eτ [∆i · ∆j ]. See Appendix A.1 for details.(b) If {i, j} ∩ {k, l} = ∅ (and τn−1 < i, j, k, l ≤ τn for some n ≤ Rb), one gets
Eτ [(∆i · ∆j)(∆k · ∆l)] ≤

c

(∆τn)2
. (4.60)See Appendix A.2 for a (sket
h of) the proof, whi
h is analogous to that of (4.59).(3) The only remaining 
ase is that where i ∈ {τn−1 + 1, . . . , τn}, j ∈ {τm−1 + 1, . . . , τm} with

m 6= n ≤ Rb, and ea
h of these two intervals 
ontains two indexes in i, j, k, l. Let us supposefor de�niteness n < m and k ∈ {τn−1 + 1, . . . , τn}. Then Eτ [∆i · ∆j ] = Eτ [∆k · ∆l] = 0(
f. Lemma 4.4), and Eτ [DijDkl] = Eτ [(∆i ·∆j)(∆k ·∆l)]. We will prove in Appendix A.3that
Eτ [(∆i · ∆j)(∆k · ∆l)] 6

c

∆τn∆τm
(4.61)and that

Eτ [(∆i · ∆j)(∆i · ∆l)] 6
c

∆τm
. (4.62)We are now able to 
ompute Eτ [S2

1 ]. We 
onsider �rst the 
ontribution of the terms whoseindexes i, j, k, l are all in the same interval {τn−1 + 1, . . . , τn}, i.e. 
ase (2) above. Re
all that wedrop the terms {i, j} = {k, l} (see Remark 4.6):
∑

τn−1<i,j,k,l 6 τn

{i,j}6={k,l}

MijMklEτ [DijDkl] 6
c

∆τn

∑

l∈{i,j} or k∈{i,j}
τn−1<i,j,k,l 6 τn

MijMkl +
c

∆τ2
n

∑

{i,j}∩{k,l}=∅
τn−1<i,j,k,l≤τn

MijMkl

6
c′

L log L




1

∆τn

∑

1≤i<j<k≤∆τn

1√
j − i

1√
k − j

+
1

∆τ2
n




∑

1≤i<j≤∆τn

1√
j − i




2



6
c′′

L log L
∆τn. (4.63)Altogether, we see that

b∑

i6=j=1

b∑

k 6=l=1
{i,j}6={k,l}

MijMklEτ [DijDkl]1{∃n≤Rb:i,j∈{τn−1+1,...,τn}}

=

Rb∑

n=1

∑

τn−1<i,j,k,l≤τn

{i,j}6={k,l}

MijMklEτ [DijDkl] 6
c

L logL

Rb∑

n=1

∆τn ≤ c

log L
.(4.64)



18 QUENTIN BERGER AND FABIO LUCIO TONINELLIFinally, we 
onsider the 
ontribution to Eτ [S2
1 ] 
oming from the terms of point (3). We have(re
all that n < m)

∑

τn−1<i,k≤τn

τm−1<j,l≤τm

{i,j}6={k,l}

MijMklEτ [DijDkl] 6
c

L log L

1

∆τn∆τm

∑

τn−1<i6=k≤τn

τm−1<j 6=l≤τm

1√
j − i

1√
l − k

(4.65)
+

c

L logL

1

∆τn

∑

τn−1<i6=k≤τn

τm−1<j≤τm

1√
j − i

1√
j − k

+
c

L logL

1

∆τm

∑

τn−1<i≤τn

τm−1<j 6=l≤τm

1√
j − i

1√
l − i

.But as j > τm−1

∑

τn−1<i 6 τn

1√
j − i

6
∑

τn−1<i 6 τn

1√
τm−1 − i + 1

6 c
(√

τm−1 − τn−1 −
√

τm−1 − τn

)
, (4.66)and as k 6 τn

∑

τm−1<l 6 τm

1√
l − k

6
∑

τm−1<l 6 τm

1√
l − τn

6 c
(√

τm − τn −
√

τm−1 − τn

)
, (4.67)so that

∑

τn−1<i,k≤τn

τm−1<j,l≤τm

{i,j}6={k,l}

MijMklEτ [DijDkl] 6
c

L logL

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)
,(4.68)where we noted Tnm = τm−1 − τn. Re
alling (4.64) and the de�nition (4.49) of S1, we 
an �nallywrite

Ê
[
Eτ [S2

1 ]
]
≤ c


1 + Ê




Rb−1∑

n=1

∑

n<m≤Rb

∑

τn−1<i,k≤τn

τm−1<j,l≤τm

MijMklEτ [DijDkl]







6 c +
c

L log L
Ê




∑

1≤n<m≤Rb

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)


 .The remaining average 
an be estimated via the following Lemma.Lemma 4.7. There exists a 
onstant c > 0 depending only on K(·), su
h that
Ê




∑

1≤n<m≤Rb

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)

 6 cL(log L)7/4. (4.69)Of 
ourse this implies that ÊEτ [S2

1 ] ≤ c(log L)3/4, whi
h together with (4.57) implies the 
laimof Lemma 4.3. �Proof of Lemma 4.7. One has the inequality
(√

Tnm + ∆τn −
√

Tnm

)(√
Tnm + ∆τm −

√
Tnm

)
6
√

∆τn

√
∆τm, (4.70)whi
h is a good approximation when Tnm is not that large 
ompared with ∆τn and ∆τm, and

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)
6 c

∆τn∆τm

Tnm
, (4.71)
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h is a

urate when Tnm is large. We use these bounds to 
ut the expe
tation (4.69) into twoparts, a term where m − n 6 HL and one where m − n > HL, with HL to be 
hosen later:
Ê

[
Rb∑

n=1

Rb∑

m=n+1

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)]

6 Ê




Rb∑

n=1

(n+HL)∧Rb∑

m=n+1

√
∆τn

√
∆τm



+ c Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm

]
. (4.72)We 
laim that there exists a 
onstant c su
h that for every l ≥ 1,

Ê

[
Rb−l∑

n=1

√
∆τn

√
∆τn+l

]
6 c

√
L(log L)2+

1
12 (4.73)(the proof is given later). Then the �rst term in the right-hand side of (4.72) is

Ê




Rb∑

n=1

(n+HL)∧Rb∑

m=n+1

√
∆τn

√
∆τm



 =

HL∑

l=1

Ê

[
Rb−l∑

n=1

√
∆τn

√
∆τn+l

]
6 cHL

√
L(log L)2+1/12.If we 
hoose HL =

√
L(log L)−1/3, we get from (4.72)

Ê

[
Rb∑

n=1

Rb∑

m=n+1

(√
Tnm + ∆τn −

√
Tnm

)(√
Tnm + ∆τm −

√
Tnm

)] (4.74)
6 cL(log L)7/4 + c Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm

]
.As for the se
ond term in (4.72), re
all that Tnm = τm−1 − τn and de
ompose the sum in twoparts, a

ording to whether Tnm is larger or smaller than a 
ertain KL > 1 to be �xed:

Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm

]

≤ Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm
1{Tnm>KL}

]
+ Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm1{Tnm 6 KL}

]

6
1

KL
Ê



(

Rb∑

n=1

∆τn

)2

+ L2

Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

1{τn+HL
−τn 6 KL}

]

6
L2

KL
+ L4

P̂ (τHL 6 KL) . (4.75)We now set KL = L(log L)−7/4, so that we get in the previous inequality
Ê

[
Rb∑

n=1

Rb∑

m=n+HL+1

∆τn∆τm

Tnm

]
6 L(logL)7/4 + L4

P̂ (τHL 6 KL) , (4.76)and we are done if we prove for instan
e that P̂ (τHL 6 KL) = o(L−4). Indeed,
P̂ (τHL 6 KL) = P̂ (RKL ≥ HL) 6 cP (RKL ≥ HL) (4.77)where we used Lemma A.1 to take the 
onditioning o� from P̂ := P(·|b ∈ τ) (in fa
t, KL 6 b/2sin
e b ≥ εL). Re
alling the 
hoi
es of HL and KL, we get that HL/

√
KL = (log L)13/24 and,
ombining (4.77) with Lemma A.2, we get

P̂ (τHL 6 KL) 6 c′ e−c(log L)13/12

= o(L−4) (4.78)
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h is what we needed.To 
on
lude the proof of Lemma 4.7, we still have to prove (4.73). Note that
Ê

[
Rb−l∑

n=1

√
∆τn

√
∆τn+l1{Rb>l}

]
= Ê

[
1{Rb>l}

Rb−l∑

n=1

Ê

[√
∆τn

√
∆τn+l |Rb

]]

= Ê

[
1{Rb>l}(Rb − l)Ê

[√
τ1

√
τ2 − τ1 |Rb

]]

≤ Ê
[
Rb

√
τ1

√
τ2 − τ11{Rb≥2}

] (4.79)where we used the fa
t that, under P̂(·|Rb = p) for a �xed p, the law of the jumps {∆τn}n≤p isex
hangeable. We �rst bound (4.79) when Rb is large:
Ê

[
Rb

√
τ1

√
τ2 − τ11{Rb≥κ

√
L log L}

]
6 L2

P̂

(
Rb ≥ κ

√
L logL

)

6 L2
P(b ∈ τ)−1

P

(
Rb ≥ κ

√
L logL

)
. (4.80)In view of (2.14), we have P(b ∈ τ)−1 = O(

√
L). Thanks to Lemma A.2 in the Appendix, and
hoosing κ large enough, we get

P

(
Rb ≥ κ

√
L log L

)
6 e−cκ2 log L+o(log L) = o(L−5/2), (4.81)and therefore

Ê

[
Rb

√
τ1

√
τ2 − τ11{Rb≥κ

√
L log L}

]
= o(1). (4.82)As a 
onsequen
e,

Ê
[
Rb

√
τ1

√
τ2 − τ11{Rb≥2}

]
= Ê

[
Rb

√
τ1

√
τ2 − τ11{2≤Rb<κ

√
L log L}

]
+ o(1)

6
√

L(log L)1/12
Ê
[√

τ1

√
τ2 − τ11{Rb≥2}

]

+ κ
√

L logLÊ

[√
τ1

√
τ2 − τ11{Rb>

√
L(log L)1/12}

]
+ o(1). (4.83)Let us deal with the se
ond term:

Ê

[
1{Rb>

√
L(log L)1/12}

√
τ1

√
τ2 − τ1

]

=
1

P(b ∈ τ)

b∑

i=1

b−i∑

j=1

√
i
√

jP
(
τ1 = i, τ2 − τ1 = j, b ∈ τ, Rb >

√
L(log L)1/12

)

=
1

P(b ∈ τ)

b∑

i=1

b−i∑

j=1

√
i
√

jK(i)K(j)P
(
b − i − j ∈ τ, Rb−i−j >

√
L(log L)1/12 − 2

)
.(4.84)But we have

P

(
Rb−i−j >

√
L(log L)1/12 − 2 |b − i − j ∈ τ

)
6 2P

(
R(b−i−j)/2 >

1

2

√
L(log L)1/12 − 1 |b − i − j ∈ τ

)

6 cP

(
R(b−i−j)/2 >

1

2

√
L(log L)1/12 − 1

)

6 cP

(
RL >

1

2

√
L(log L)1/12 − 1

)
6 c′ e−c(log L)1/6(4.85)
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onditioning o�, and then Lemma A.2. Putting (4.84)and (4.85) together, we get
Ê

[
1{Rb>

√
L(log L)1/12}

√
τ1

√
τ2 − τ1

]

6 c′e−c(log L)1/6 1

P(b ∈ τ)

b∑

i=1

b−i∑

j=1

√
i
√

jK(i)K(j)P (b − i − j ∈ τ)

= c′e−c(log L)1/6

Ê
[√

τ1

√
τ2 − τ11{Rb≥2}

]
. (4.86)So, re
alling (4.83), we have

Ê
[
Rb

√
τ1

√
τ2 − τ11{Rb≥2}

]
6 2

√
L(log L)1/12

Ê
[√

τ1

√
τ2 − τ11{Rb≥2}

]
+ o(1) (4.87)and we only have to estimate (re
all (2.14))

Ê
[√

τ1

√
τ2 − τ11{Rb≥2}

]
=

b−1∑

p=1

b−p∑

q=1

√
p
√

qK(p)K(q)
P(b − p − q ∈ τ)

P(b ∈ τ)

6 c
√

b

b−1∑

p=1

b−p∑

q=1

1

p q

1√
b + 1 − p − q

. (4.88)Using twi
e the elementary estimate
M−1∑

k=1

1

k

1√
M − k

≤ c
1√
M

log M,we get̂
E
[√

τ1

√
τ2 − τ11{Rb≥2}

]
6 c

√
b

b−1∑

p=1

1

p

1√
b − p + 1

log(b − p + 1) 6 c
√

b
1√
b
(log L)2. (4.89)Together with (4.87), this proves the desired estimate (4.73).

�4.4. Dimension d = 4 (a sket
h). As we mentioned just after Theorem 2.8, it is possible toadapt the 
hange-of-measure argument to prove non-
oin
iden
e of quen
hed and annealed 
riti
alpoints in dimension d ≥ 4 for the general walks of Assumption 2.1, while the method of Birknerand Sun [3℄ does not seem to adapt easily mu
h beyond the simple random walk 
ase. In thisse
tion, we only deal with the 
ase d = 4, sin
e the Theorem 2.8 is obtained for d ≥ 5 in [2℄, withmore general 
ondition than Assumption 2.1. We will not give details, but for the interested readerwe hint at the �right� 
hange of measure whi
h works in this 
ase.The �
hange of measure fun
tion� gI(Y ) is still of the form (3.12), fa
torized over the blo
kswhi
h belong to I, but this time M is a matrix with a �nite bandwidth:
Fk(Y ) = − 1√

L

kL−p0∑

i=L(k−1)+1

∆i · ∆i+p0 , (4.90)where p0 is an integer. The role of the normalization L−1/2 is to guarantee that ‖M‖ < ∞. Theinteger p0 is to be 
hosen su
h that A(p0) > 0, where A(·) is the fun
tion de�ned in Lemma 4.4.The existen
e of su
h p0 is guaranteed by the asymptoti
s (4.18), whose proof for d = 4 is thesame as for d = 3.For the rest, the s
heme of the proof of βc 6= βann
c (in parti
ular, the 
oarse-graining pro
edure)is analogous to that we presented for d = 3, and the 
omputations involved are 
onsiderablysimpler.



22 QUENTIN BERGER AND FABIO LUCIO TONINELLIAppendix A. Some te
hni
al estimatesLemma A.1. (Lemma A.2 in [9℄) Let P be the law of a re
urrent renewal whose inter-arrival lawsatis�es K(n)
n→∞∼ cKn−3/2 for some cK > 0. There exists a 
onstant c > 0, that depends onlyon K(·), su
h that for any non-negative fun
tion fN(τ) whi
h depends only on τ ∩{1, . . . , N}, onehas

sup
N>0

E[fN(τ) |2N ∈ τ ]

E[fN (τ)]
6 c. (A.1)Lemma A.2. Under the same assumptions as in Lemma A.1, and with RN := |τ ∩ {1, . . . , N}|,there exists a 
onstant c > 0, su
h that for any positive fun
tion α(N) whi
h diverges at in�nityand su
h that α(N) = o(

√
N), we have
P

(
RN ≥

√
Nα(N)

)
6 e−cα(N)2+o(α(N)2). (A.2)Proof. For every λ > 0

P

(
RN ≥

√
Nα(N)

)
= P

(
τ√Nα(N) 6 N

)
= P

(
λα(N)2

τ√Nα(N)

N
6 λα(N)2

) (A.3)
6 eλα(N)2

E

[
e−λ α(N)2

N τ√
Nα(N)

]
= eλα(N)2

E

[
e−λα(N)2

τ1
N

]√Nα(N)

.The asymptoti
 behavior of E

[
e−λα(N)2

τ1
N

] is easily obtained:
1 − E

[
e−λα(N)2

τ1
N

]
=

∑

n∈N

K(n)
(
1 − e−nλα(N)2/N

)

N→∞∼ c

√
λα(N)√

N
, c = cK

∫ ∞

0

1 − e−x

x3/2
dx, (A.4)where the 
ondition α(N)2/N → 0 was used to transform the sum into an integral. Therefore, weget

E

[
e−λα(N)2

τ1
N

]√Nα(N)

=

(
1 − c

√
λα(N)√

N
+ o

(
α(N)√

N

))√
Nα(N)

= e−c
√

λα(N)2+o(α(N)2). (A.5)Then, for any λ > 0,
P

(
RN ≥

√
Nα(N)

)
6 e(λ−c

√
λ)α(N)2+o(α(N)2) (A.6)and taking λ = c2/4 we get the desired bound. �We need also the following standard result (
f. for instan
e [10, Se
tion 5℄):Lemma A.3. Under the same hypothesis as in Lemma A.1, we have the following 
onvergen
e inlaw:

cK√
N

RN
N→∞⇒ 1√

2π
|Z| (Z ∼ N (0, 1)). (A.7)



RANDOM WALK PINNING MODEL IN d = 3 23A.1. Proof of (4.59). We wish to show that for distin
t i, j, l smaller than r,
E

X
E

Y [(∆i · ∆j)(∆i · ∆l)|Xr = Yr] ≤
c

r
. (A.8)We use the same method as in Se
tion 4.2: we �x x ∈ Z

d, and we use the notation E
Y
r,x[·] =

E
Y [· |Yr = x ]. Then,

E
Y
r,x [(∆i · ∆j)(∆i · ∆l)] = E

Y
r,x

[
(∆i · ∆j)

(
∆i · EY

r,x [∆l |∆i, ∆j ]
)]

=
1

r − 2
E

Y
r,x [(∆i · ∆j) (∆i · (x − ∆i − ∆j))]

=
1

r − 2
E

Y
r,x

[
(∆i · ∆j)

(
(x · ∆i) − ‖∆i‖2

)
− (∆i · ∆j)

2
]

6
1

r − 2

(
E

Y
r,x

[
(x · ∆i)

(
∆i · E

Y
r,x [∆j |∆i ]

)]
+ E

Y
r,x[‖∆i‖3 ‖∆j‖]

)

=
1

r − 2

(
1

r − 1
E

Y
r,x

[
(x · ∆i)

2 − (x · ∆i) ‖∆i‖2
]

+ E
Y
r,x[‖∆i‖3 ‖∆j‖]

)

6
c

r

(
E

Y
r,x

[
‖x‖2

r
‖∆i‖2 +

‖x‖
r

‖∆i‖3 + ‖∆i‖3 ‖∆j‖
])and we 
an take by symmetry i = 1, j = 2. Therefore,

E
X

E
Y
[

(∆i · ∆j)(∆i · ∆l)|Xr = Yr

]
= E

X

[
E

Y [(∆i · ∆j)(∆i · ∆l) |Yr = Xr ]
P

Y (Yr = Xr)

PX−Y (Yr = Xr)

]

≤ c

r
E

X
E

Y

[
Q

(‖Xr‖
r1/2

, ‖∆1‖, ‖∆2‖
)∣∣∣∣Yr = Xr

]
, (A.9)where

Q

(‖Xr‖
r1/2

, ‖∆1‖, ‖∆2‖
)

=
‖Xr‖2

r
‖∆1‖2

+
‖Xr‖√

r
‖∆1‖3

+ ‖∆1‖3 ‖∆1‖ .At this point, one 
an apply dire
tly the result of the Remark 4.5. �A.2. Proof of (4.60). We wish to prove that, for distin
t i, j, k, l ≤ r,
Eτ [(∆i · ∆j)(∆k · ∆l)] 6

c

r2
. (A.10)The proof is very similar to that of (A.8), so we skip details. What one gets is that

Eτ [(∆i · ∆j)(∆k · ∆l)] 6
c

r2

E
X
[
E

Y
[
Q′
(

‖Xr‖
r1/2 , {‖∆i‖}i=1,2,3

)∣∣∣Yr = Xr

]
P

Y (Yr = Xr)
]

PX−Y (Yr = Xr)
, (A.11)where Q′ is a polynomial of degree 4 in the variable ‖Xr‖/

√
r and of degree at most 3 in ea
h ofthe ‖∆i‖. Again, like after (A.9), one uses the Remark 4.5 to get the desired result.A.3. Proof of (4.61)-(4.62). In view of (4.15), in order to prove (4.61) it su�
es to prove thatfor 0 < i 6= k ≤ r, 0 < j 6= l ≤ s

3∑

ν,µ=1

E
X

E
Y [∆

(ν)
i ∆

(µ)
k |Xr = Yr]E

X
E

Y [∆
(ν)
j ∆

(µ)
l |Xs = Ys] ≤

c

rs
. (A.12)Both fa
tors in the left-hand side have already been 
omputed in (4.55)-(4.56). Using these twoexpressions and on
e more the Lo
al Limit Theorem, one arrives easily to (A.12). The proof of(4.62) is essentially identi
al. A
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