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Abstract

For linear inverse problems Y = Aµ + ξ, it is classical to recover
the unknown signal µ by iterative regularisation methods (µ̂(m),m =
0, 1, . . .) so that the weak (or prediction) error ‖A(µ̂(τ) − µ)‖2 is con-
trolled for some early stopping rule τ based on a discrepancy princi-
ple. In the context of statistical estimation with stochastic noise ξ, we
study oracle adaptation in strong squared-error E

[
‖µ̂(τ) − µ‖2

]
. We

give precise lower bounds for estimation by early stopping. For a stop-
ping rule based on the residual process oracle adaptation bounds are
established for general linear iterative methods. The proofs use bias
and variance transfer techniques from weak prediction error to strong
L2-error as well as convexity arguments and concentration bounds for
the stochastic part. For Sobolev balls the adaptation bounds are shown
to match the lower bounds. Adaptive early stopping for the Landweber
and spectral cutoff methods are studied in further detail.
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1 Introduction and main results

1.1 Motivation

Statistical linear inverse problems

We wish to recover a function (a signal, an image) from noisy data when the
observation of the signal is further challenged by the action of a linear oper-
ator. As an illustrative example, we consider the model of inverse regression
in dimension d = 1 over [0, 1]. We observe

Yk = Aµ(k/n) + σξk, k = 1, . . . , n (1.1)

where µ ∈ L2([0, 1]) is the signal of interest, A : L2([0, 1]) → L2([0, 1])
is a bounded linear operator (with Aµ a continuous function), σ > 0 is
a measurement noise level and ξ1, . . . , ξn are independent standard normal
random variables. An idealised version of (1.1) is given by the continuous
observation of

Y (t) = Aµ(t) + δẆ (t), t ∈ [0, 1], (1.2)

where Ẇ is a Gaussian white noise in L2([0, 1]) with noise level

δ =
σ√
n
. (1.3)

For the asymptotics n → ∞ the rigorous statistical equivalence between
(1.1) and (1.2) goes back to Brown and Low [8] and was extended to higher
dimensions and possibly σ → 0 in Reiß [31]. This setting of statistical inverse
problems is classical and has numerous practical applications, see among
many other references Johnstone and Silverman [21], Mair and Ruymgaart
[26], Cohen et al. [13], Bissantz et al. [6] and the survey by Cavalier [9].

The problem of early stopping

Most implemented estimation or recovery methods for µ are based on a
combination of discretisation and iterative inversion or regularisation. Start
with an approximation space VD ⊆ L2([0, 1]) with dim(VD) = D ≤ n. First,
assume for further simplicity that (1.1) is observed without noise, i.e., σ = 0.
An approximation µD for µ is obtained by minimising the criterion

‖Y −Aµ‖2n =
1

n

n∑
k=1

(
Yk −Aµ(k/n)

)2 → min
µ∈VD

!
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By gradient descent, a common algorithm consists in implementing a fixed
point iteration for A = A|VD :

µ(0) = 0, µ(m+1) = µ(m) + A∗
(
Y − Aµ(m)

)
. (1.4)

If ‖A∗A‖ < 2, we have the convergence µ(m) → µD as m → ∞. The same
program applies when the data are noisy: we fix a large approximation space
VD and transfer our data into the approximating linear model

Y = Aµ+ σξ (1.5)

with µ ∈ RD, A ∈ Rn×D and Y, ξ ∈ Rn, with obvious matrix-vector notation.
In formal analogy with (1.4) we obtain a sequence of estimators

µ̂(0) = 0, µ̂(m+1) = µ̂(m) + A∗
(
Y − Aµ̂(m)

)
. (1.6)

The presence of a noise term generates a classical conflict as m grows:
the iterates µ̂(0), µ̂(1), . . . , µ̂(m), . . . are ordered with decreasing bias and
increasing variance. Early stopping at some iteration m thus serves as
a regularisation method which simultaneously reduces numerical and
statistical complexity at the cost of a bias term.

There are several ways to choose m = m̂ = m̂(Y ) from the data Y
so that a prescribed performance of the resulting estimator µ̂(m̂) is (close
to) optimal among the class of estimators (µ̂(m))m. Recent results are
formulated within the oracle approach, comparing the error of µ̂(m̂) to
the minimal error among (µ̂(m))m for any signal µ individually, which
entails optimal adaptation in minimax settings, see e.g. Cavalier [9].
Typical methods use (generalized) cross validation, see e.g. Wahba [32],
unbiased risk estimation, see e.g. Cavalier et al. [10], penalized empirical
risk minimisation, see e.g. Cavalier and Golubev [11], or Lepski’s balancing
principle for inverse problems, see e.g. Mathé and Pereverzev [27]. They all
share the drawback that the estimators µ̂(m) have first to be computed for
all values of 1 ≤ m ≤ M up to some maximal iteration M prescribed prior
to data analysis, and then be compared to each other in some way. In this
paper, we investigate the possibility of a computationally optimal approach
where we compute iteratively the estimators µ̂(m) for m = 0, 1, . . . , decide
to stop at some step m̂ and then use µ̂(m̂) as an estimator. The aim is to
minimise the computational cost of the estimation procedure while keeping
up with optimal adaptation rates or oracle properties.
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Our selection rules m̂ shall only depend on the information generated by
the iterates µ̂(m) prior to m̂, formalised as stopping times. In fact, our rules
will use the easily computable residual

R2
m = ‖Y − Aµ̂(m)‖2 (1.7)

as a data fidelity criterion. In numerical analysis, this methodology falls
under the scope of discrepancy principle, see Engl et al. [15] for the de-
terministic analysis and Hansen [19] for practical issues, in particular his
discussion in Chapter 5 on modifications for statistical noise. For statistical
inverse problems Blanchard and Mathé [7], Lu and Mathé [25] introduce
regularised residuals in order to encompass the fact that R2

m becomes arbi-
trarily large as D grows, see also Remark 2.6 on corresponding lower bounds
below. Our approach will not require such further regularisations.

In the deterministic approach the noise level σ must be known in advance
in order to apply successfully a discrepancy principle, an observation going
back to Bakushinski [1] (see also Bakushinskii and Goncharskii [2]). An
advantage of the statistical approach of (1.1) and (1.5) is that the noise
level σ2 can be estimated from the data Y , see e.g. Golubev [18]. This
is transparent in the limiting model (1.2) since δ2 related to σ2 and the
number n of observations in (1.3) is identified by the continuous observation
of (Y (t), t ∈ [0, 1]) thanks to its quadratic variation.

Finally, let us point out that regularisation by early stopping is frequently
used, e.g. in L2-boosting, see Bissantz et al. [6] for its connection to inverse
problems. When to stop becomes then a fundamental question, see Yao et
al. [33], Mayr et al. [28], Prechelt [29], Raskutti and Wainwright [30] for
some references on early stopping in other problem formulations.

Mathematical setting

Our analysis for the model (1.5) will use the representation of estimators in
the singular value decomposition (SVD): let (A∗A)1/2 have eigenvalues

1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λD > 0

with a corresponding orthonormal basis of eigenvectors (v1, . . . , vD). We
obtain the diagonal SVD model in terms of µi = 〈µ, vi〉n, Yi = 〈Y,wi〉n, wi =
A∗vi
‖Avi‖n and

Yi = λiµi + δεi, i = 1, . . . , D, (1.8)

where the εi are independent standard Gaussian random variables and
δ = σ√

n
is the noise level. Our objective is to recover the signal µ = (µi)1≤i≤D
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with best possible accuracy from the data (Yi)1≤i≤D.

Note that for large D the calculation of the full SVD for A is com-
putationally heavy and, depending on the algorithm at hand, it is often
numerically unstable, see e.g. Golub and Van Loan [17]. This advocates
further in favour of an early stopping methodology. Still, we use the SVD
representation of a linear estimator µ̂(m) of the form

µ̂
(m)
i = γ

(m)
i λ−1

i Yi = γ
(m)
i µi + γ

(m)
i λ−1

i δεi, i = 1, . . . D,

and we specify linear estimation procedures by filters (γ
(m)
i )i=1,...,D,m≥0 that

satisfy γ
(m)
i ∈ [0, 1], γ

(0)
i = 0 and γ

(m)
i ↑ 1 as m→∞. Typical filters include:

spectral cutoff with γ
(m)
i = 1(i ≤ m), Landweber with γ

(m)
i = 1− (1−λ2

i )
m,

corresponding to the gradient descent algorithm described in (1.4)–(1.6)

and Tikhonov filters γ
(m)
i = λ2

i /(λ
2
i + um) for some penalisation um → 0 as

m→∞, see Example 3.6 below for details.
The squared bias-variance decomposition of the mean integrated

squared-error writes

E
[
‖µ̂(m) − µ‖2

]
= B2

m(µ) + Vm

with

B2
m(µ) =

D∑
i=1

(1− γ(m)
i )2µ2

i and Vm = δ2
D∑
i=1

(γ
(m)
i )2λ−2

i . (1.9)

In distinction with the weak norm quantities defined below, we shall call
Bm(µ) strong bias and Vm strong variance.

While our approach is non-asymptotic in spirit, asymptotics for vanishing
noise level δ → 0 often helps to reveal main features. We shall write A . B
whenever the parameter-dependent quantities A, B satisfy A ≤ CB for some
universal constant C > 0. Similarly, A ∼ B means A . B and B . A. Let us
recall that under a Sobolev-type source condition µ ∈ Hβ

d (R) of regularity
β > 0 in dimension d ≥ 1, prescribed by

∑
i≥1 i

2β/dµ2
i ≤ R2, and under

polynomial singular value decay λi ∼ i−p/d, for the spectral cutoff filter

γ
(m)
i = 1(i ≤ m) the error bound E

[
‖µ̂(m) − µ‖2

]
. R2m−2β/d + δ2m2p/d+1

holds and is of optimal order δ4β/(2β+2p+d) for m ∼ δ−2d/(2t+d), provided
the dimension D is not smaller than that choice of m (otherwise m = D
is optimal and the rate degenerates). This is also achieved by more general
spectral regularisation schemes, e.g. the Landweber and Tikhonov method,
and is in fact the minimax rate of estimation for µ ∈ Hβ

d (R) as δ → 0, see
e.g. Cavalier [9], Section 5.3 in Bissantz et al. [6] or Cohen et al. [13].
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1.2 Overview of main results

Lower bounds for frequency and residual filtrations

We study lower bounds for early stopping in the specific case of the bench-
mark spectral cutoff filter. In a first step, let

Fm = σ
(
µ̂(1), . . . , µ̂(m)

)
= σ

(
Y1, . . . , Ym

)
(1.10)

denote the sigma-field generated by the first m cutoff estimators or
equivalently by the SVD observations up to ’frequency’ m in the SVD
representation (1.8). Call F = (Fm)1≤m≤D the frequency filtration. For

cutoff estimators of the form µ̂
(τ)
i = Yi1(i ≤ τ), where τ is an F-stopping

rule, we show in Proposition 2.1 that adaptation is generally not possible.
In particular, Corollary 2.2 shows the impossibility to build in that way a
minimax adaptive estimator over Sobolev smoothness classes. This implies
also that the Lepski method cannot be applied in reverse order, starting
from low variance estimators.

If we are additionally allowed to use the information of the residual
R2
m, defined in (1.7) above, the situation changes completely. Let Gm be

the sigma-field generated by R2
0, . . . , R

2
m. Call G = (Gm)1≤m≤D the residual

filtration and note that

Gm = Fm ∨ σ(R2
m) = Fm ∨ σ

(
‖Y ‖2

)
(1.11)

is the filtration Fm enlarged by the residual at m or equivalently the resid-
ual at 0 which is ‖Y ‖2. In this enlarged information setting, Proposition
2.4 shows that oracle adaptation might be possible when the oracle cutoff
m∗ ∈ argminm=1,...,D E

[
‖µ̂(m) − µ‖2

]
is larger in order than

√
D. In terms

of minimax estimation over Sobolev balls, the result implies constraints for
the maximal Sobolev regularity for which a G-stopping rule τ can possibly
adapt, as described precisely in Corollaries 2.5 and 2.7.

Early stopping rules

We next construct G-stopping rules for general linear estimators that achieve
oracle adaptivity within the feasible range of the lower bound result. For

technical convenience, we consider continuous filters γ
(t)
i , t ∈ [0,∞), the

discrete setting γ
(m)
i ,m ∈ N0, being retrieved by allowing for a discretisation

error, which is typically small, see Remark 3.2 below. The estimators we

consider now take the form µ̂(τ) = (µ̂
(τ)
i )1≤i≤D where µ̂

(τ)
i = γ

(τ)
i λ−1

i Yi. As
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for the discrepancy principle, we search for a stopping rule τ based on the
information generated by the continuous residual

R2
t = ‖Y − Aµ̂(t)‖2 =

D∑
i=1

(1− γ(t)
i )2Y 2

i , t ≥ 0. (1.12)

The information provided by R2
t becomes transparent by considering the

weak or prediction norm ‖v‖A = ‖Av‖ and by decomposing the weak norm
error E[‖µ̂(t) − µ‖2A] = B2

t,λ(µ) + Vt,λ into a weak squared bias B2
t,λ(µ) and a

weak variance Vt,λ:

B2
t,λ(µ) = ‖E[µ̂(t)]− µ‖2A =

D∑
i=1

(
1− γ(t)

i

)2
λ2
iµ

2
i , (1.13)

Vt,λ = E
[
‖µ̂(t) − E[µ̂(t)]‖2A

]
= δ2

D∑
i=1

(
γ

(t)
i

)2
. (1.14)

Then a bias-corrected residual R2
t estimates the weak squared bias:

E
[
R2
t − δ2

D∑
i=1

(1− γ(t)
i )2

]
= B2

t,λ(µ). (1.15)

We are led to consider stopping rules of the form

τ = inf
{
t ≥ t0 : R2

t ≤ κ
}

(1.16)

for some initial smoothing step t0 ≥ 0 and a threshold value κ > 0. A
residual R2

t larger than an appropriate choice of κ indicates strong evidence
that there is relevant information about µ beyond t.

Weak and strong norm error bounds

In Proposition 3.1 the inequality

E
[
‖µ̂(τ) − µ̂(t∗)‖2A

]
≤
(

4δ2B2
t∗,λ(µ) + 2Dδ4

)1/2

is established where the deterministic stopping index

t∗ = t∗(µ) = inf
{
t ≥ t0 : Eµ[R2

t ] ≤ κ
}

is interpreted as an oracle proxy. A main task will be to compare t∗ with
the weakly and strongly balanced oracles

tw = tw(µ) = inf
{
t ≥ t0 : B2

t,λ(µ) ≤ Vt,λ
}
,
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Figure 1: Weak squared bias (dark blue), weak variance (light blue), strong
squared bias (red), strong variance (orange), residual (green, dashed) and its
expectation (yellow, almost identical) as a function of number m of Landwe-
ber iterations; on the abscissa indices τ ≈ t∗ (for gray choice of κ), t◦, tw,
ts.

ts = ts(µ) = inf
{
t ≥ t0 : B2

t (µ) ≤ Vt
}
.

By the monotonicity of the variance and bias terms in t ≥ t0 we have

B2
t,λ(µ) + Vt,λ ≥ min

(
B2
tw,λ(µ), Vtw,λ

)
= 1

2

(
B2
tw,λ(µ) + Vtw,λ

)
,

provided B2
tw,λ

(µ) = Vtw,λ. Otherwise, tw = t0 holds and Vt,λ ≥ Vtw,λ ≥
1
2(B2

tw,λ
(µ)+Vtw,λ) follows directly. Consequently, the weakly balanced oracle

attains up to a possible factor 2 the classical weak oracle risk:

E
[
‖µ̂(tw) − µ‖2A

]
≤ 2 inf

t≥t0
E
[
‖µ̂(t) − µ‖2A

]
. (1.17)

Note that based only on information about the residual, which is defined
via the image of A, it is intrinsic that we can only aim at minimising a weak
risk. Moreover, even if we knew Bt,λ(µ) for t ≤ t′ at some time t′ > 0, we
have no access to the classical weak oracle argmint E[‖µ̂(t)−µ‖2A] because we
cannot say whether after t′ the bias remains constant or drops immediately.
In consequence, our stopping rule τ will be designed to mimic the weakly
balanced oracle tw.
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Indeed, formula (1.15) above in connection with definition (1.13) shows

that Eµ[R2
t ] ≤ κ implies B2

t,λ(µ) ≤ κ− δ2
∑D

i=1(1− γ(t)
i )2. For κ = δ2D and

the continuous interpolation of the spectral cutoff filter (see the detailed
Example 3.4 below) the squared weak bias B2

t∗,λ(µ) is almost identical to
the weak variance Vt∗,λ. Furthermore, we shall show that a weak balanc-
ing behaviour for t∗ will continue to hold for general families of filters and
thresholds κ. Figure 1 visualizes for a concrete example from Section 5 below
squared bias, variance and residual as a function of the number of Landwe-
ber iterations. The algorithm stops when the residual crosses the horizontal
κ-line and yields τ , the weakly balanced oracle tw is obtained at the cross-
ing of B2

t,λ and Vt,λ. Corresponding strong quantities are also depicted, see
Section 5 for details.

The proof is based on a completely deterministic argument and readily
entails the weak oracle bound for the prediction error

E
[
‖µ̂(τ) − µ‖A

]
≤ E

[
‖µ̂(t∗) − µ‖A

]
+
√

2
(
δBt∗,λ(µ) + δ2

√
D
)1/2

. (1.18)

This analysis leads us to choose from now on the initial smoothing step
t0 = t◦ such that Vt◦,λ ∼ δ2

√
D holds: for t ≥ t◦, the remainder term in

(1.18) is dominated by the oracle risk.
In a second step, we turn estimates in weak ‖•‖A-norm into estimates in

strong ‖•‖-norm. To this end, we need some additional assumptions on the

filter functions (γ
(t)
i )1≤i≤D as well as on the operator A, i.e., on the singular

values (λi)1≤i≤D. Under the mild condition δ2
√
D . B2

t∗,λ(µ) . δ2D we
then establish in Theorem 3.10 and its Corollary 3.11 the oracle-type strong
norm inequality

E
[
‖µ̂(τ) − µ‖2

]
. E

[
‖µ̂(t∗) − µ‖2

]
. (1.19)

The proof relies on an individual weak-to-strong transfer of bias and vari-
ance estimates separately, together with an appropriate control on remaining
stochastic terms. The probabilistic parts of the proof are based on the control
of maxima of weighted independent χ2-random variables with drift and con-
vexity arguments. Let us emphasize that classical interpolation arguments
between Hilbert scales, usually applied to control the approximation error
under the discrepancy principle (e.g., Section 4.3 in Engl et al. [15]), cannot
be used for an oracle and thus non-minimax approach.

The choice of κ and oracle properties

It remains to investigate the relationship of the deterministic oracle proxy
t∗ with the balanced oracles tw, ts, which is connected to the choice of the
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threshold κ that is free in the above estimates. This is the topic of Section 4.
We argue that the choice κ = Dδ2, up to deviations of order

√
Dδ2, e.g. due

to variance estimation, yields rate-optimal results. The strategy of proof is
again a stepwise comparison argument.

First, Proposition 4.1 establishes for that choice of κ an oracle-type in-
equality for µ̂(τ) in terms of the weakly balanced risk. Then the bias and
variance transfer arguments yield an inequality in strong norm between the
risk at the oracle proxy t∗ and at the weakly balanced oracle tw. In view of
Corollary 3.11 this means that µ̂(τ) satisfies a strong oracle-type inequality
if µ̂(tw) does so. Note that the latter is independent of the stopping rule em-
ployed and this leads to the intrinsic question about the relationship between
the balanced oracles tw and ts. For spectral cutoff this question is addressed
in a very general minimax framework by Chernousova and Golubev [12] and
falls in the abstract problem framework considered recently by Lepski [24].
For spectral cutoff Theorem 4.3 here establishes indeed an oracle inequality
with a universal constant Cs > 0:

E
[
‖µ̂(τ) − µ‖2

]
≤ Cs E

[
‖µ̂(ts) − µ‖2

]
. (1.20)

Note in particular that there is no additional log-term in the bound, which
is often present for sequential algorithms.

For general spectral methods, a similar bound holds for all signals µ
with tw(µ) ≤ ts(µ). In the case tw(µ) > ts(µ), the variance part dominates
in strong norm, and we cannot hope for an oracle inequality with the strong
oracle risk on the right-hand side, as Counterexample 4.5 below shows. Still,
we obtain a bound in terms of the rescaled weak oracle risk such that, in
general,

E
[
‖µ̂(τ) − µ‖2

]
. max

(
E
[
‖µ̂(ts) − µ‖2

]
, t2w E

[
‖µ̂(tw) − µ‖2A

])
holds, cf. Theorem 4.6. For the polynomial decay of singular values λi ∼
i−1/ν , this bound becomes a more tractable interpolation-type bound in
Corollary 4.7:

E
[
‖µ̂(τ) − µ‖2

]
. max

(
E
[
‖µ̂(ts) − µ‖2

]
, δ−4/ν E

[
‖µ̂(tw) − µ‖2A

]1+2/ν
)
.

The simple Corollary 4.8 of the latter, assuming that the spectral method
has a sufficiently large qualification, states in particular that µ̂(τ) attains
the minimax-optimal rate over the Sobolev ellipsoids Hβ

d (R) for β ranging
in the adaptation interval, as predicted by the lower bound.
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The reason why a perfect oracle-type result cannot be established lies in
the fact that for very smooth signals the strong bias does not inflate as much
from the weak bias as the strong variance does from the weak variance. This
is in a sense a super-optimality property that we do not catch by our choice
of κ which is designed to provide a universally robust control on the strong
norm risk.

Section 5 studies more specifically the early stopping rule for Landweber
iterations. First, a quite general class C of signals µ is identified for which
an oracle inequality like (1.20) holds. Then some numerical results show
the scope and the limitations of adaptive early stopping, confirming and
illustrating the theoretical findings.

2 Lower bounds

The lower bounds will be derived for the benchmark setting of spectral cutoff

estimators µ̂
(m)
i = 1(i ≤ m)λ−1

i Yi, m, i = 1, . . . , D, in the SVD representa-
tion (1.8).

2.1 The frequency filtration

Let τ be an F-stopping time, where F is the frequency filtration defined in
(1.10) and let1

R(µ, τ)2 = Eµ[‖µ̂(τ) − µ‖2].

By Wald’s identity we obtain the simple formula

R(µ, τ)2 = Eµ
[ D∑
i=τ+1

µ2
i +

τ∑
i=1

λ−2
i δ2ε2

i

]
= Eµ

[
B2
τ (µ) + Vτ

]
(2.1)

with B2
m(µ) =

∑D
i=m+1 µ

2
i and Vm = δ2

∑m
i=1 λ

−2
i as follows from (1.9)

with the spectral cutoff. This implies in particular that an oracle stopping
time, i.e., an optimal F-stopping time constructed using the knowledge of
µ, coincides with the deterministic oracle argminm

(
B2
m(µ) + Vm

)
almost

surely.

2.1 Proposition. For i0 ∈ {1, . . . , D − 1} and any µ, µ̄ ∈ RD with µi = µ̄i
for all i ≤ i0 we have for any F-stopping rule τ

R(µ̄, τ)2 ≥ B2
i0(µ̄)

(
1− R(µ, τ)2

Vi0+1

)
.

1We emphasise in the notation the dependence in µ in the distribution of τ and the Yi
by adding the subscript µ when writing the expectation E = Eµ or probability P = Pµ.
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Let ms = min{m ∈ {0, . . . , D} : Vm ≥ B2
m(µ)} be a balanced oracle for µ

and suppose R(µ, τ)2 ≤ CR(µ,ms)
2 for some C ≥ 1. Then for any µ̄ ∈ RD

with µ̄i = µi for i ≤ 3Cms we obtain

R(µ̄, τ)2 ≥ 1
3B

2
b3Cmsc(µ̄).

Proof. We use the fact that (Yi)1≤i≤i0 has the same law under Pµ and Pµ̄
and so has 1(τ ≤ i0) by the stopping time property of τ . Moreover, thanks
to the monotonicity of m 7→ Vm, Markov inequality and the identity (2.1)

R(µ̄, τ)2 ≥ Eµ̄[B2
τ (µ̄)1(τ ≤ i0)]

= Eµ[B2
τ (µ̄)1(τ ≤ i0)]

≥ B2
i0(µ̄)Pµ(τ ≤ i0)

≥ B2
i0(µ̄)(1− Pµ(Vτ ≥ Vi0+1))

≥ B2
i0(µ̄)

(
1− Eµ[Vτ ]

Vi0+1

)
≥ B2

i0(µ̄)
(

1− R(µ, τ)2

Vi0+1

)
.

The second assertion follows by inserting i0 = b3Cmsc and R(µ, τ)2 ≤
2CVms together with Vms/Vi0+1 ≤ ms/(i0 + 1) since the singular values λi
are decreasing.

The last statement clarifies that the signal µ can be changed arbitrarily
to µ̄ after the index b3Cmsc, while the risk always stays larger than the
squared bias of that part. Even if we put classical restrictions on the decay of
the coefficients (µ̄i), this implies suboptimal rates for adaptation over these
classes of signals. As a specific example, consider Sobolev-type ellipsoids of
regularity β ≥ 0 in dimension d ≥ 1

Hβ
d (R) =

{
µ ∈ RD :

D∑
i=1

i2β/dµ2
i ≤ R2

}
, β ≥ 0, R > 0, (2.2)

and assume a polynomial decay of singular values λi ∼ i−p/d for some p ≥ 0.
Then the minimax-optimal rate for estimation in Hβ

d (R) in (normalised)
integrated squared error loss is R(R−1δ)2β/(2β+2p+d), see e.g. Cohen et al.
[13]. To be precise, let us remark that in our non-asymptotic formulation,

the discretisation dimension D is fixed; formally, the definitions of Hβ
d (R)

and the Euclidean loss function depend on D, and finally the eigenvalue
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sequence (λi)i≥1 could also depend on D since they depend on the approxi-
mation space VD (in the construction described in the introduction). This,
however, does not pose a problem to recover usual asymptotic minimax rates
if D = Dδ → ∞ as δ → 0, provided Dδ is at least as large as the minimax
optimal discretisation in the classical (D = ∞) sequence space model, and
the eigenvalues satisfy cAi

−p/d ≤ λi ≤ CAi
−p/d for constants cA, CA not

depending on D.

2.2 Corollary. Assume the singular values satisfy
∑m

i=1 λ
−2
i ≥ cAm

1+2p/d

with cA > 0, p ≥ 0 for all m ∈ {1, . . . , D}. If there exists µ ∈ Hβ
d (R) with

R(µ, τ) ≤ CµR(R−1δ)2β/(2β+2p+d), then for any α ∈ [0, β], R̄ ≥ 2R, there
exists µ̄ ∈ Hα

d (R̄) such that

R(µ̄, τ) ≥ cµ̄R̄(R−1δ)2α/(2β+2p+d),

provided D ≥ (2C2
µc
−1
A )1/(2p/d+1)(R−1δ)−2d/(2β+2p+d). The constant cµ̄ > 0

only depends on Cµ and cA.

Proof. For i0 = b(2C2
µc
−1
A )1/(2p/d+1)(R−1δ)−2d/(2β+2p+d)c, our assumptions

imply i0 ≤ D and

1− R(µ, τ)2

Vi0+1
≥ 1−

C2
µ

cA

((R−1δ)−2d/(2β+2p+d)

i0 + 1

)1+2p/d
≥ 1

2
.

Put µ̄i = µi for i 6= i0 + 1 and µ̄i0+1 = 1
2R̄(i0 + 1)−α/d. Then µ̄ ∈ Hα

d (R̄)

follows from µ ∈ Hβ
d (R) ⊆ Hα

d (R) and R̄ ≥ 2R. The bias bound B2
i0

(µ̄) ≥
1
4R̄

2(i0 + 1)−2α/d inserted in Proposition 2.1 yields the result.

The conclusion for impossible rate-optimal adaptation is a direct con-
sequence of Corollary 2.2: since for any α < β the rate δ2α/(2β+2p+d) is
suboptimal, no F-stopping rule can adapt over Sobolev classes with differ-
ent regularities. Note also that for α = β, if we consider the asymptotics
R̄/R → ∞, the lower bound gives a suboptimal rate in R̄ and adaptation
over Sobolev ellipsoids with different radii is impossible. Finally, the rate
R̄(R−1δ)2α/(2β+2p+d) is attained by a deterministic stopping rule that stops

at the oracle frequency for Hβ
d (R), so that the lower bound is in fact a sharp

no adaptation result.

2.2 Residual filtration

We start with a key lemma, similar in spirit to the first step in the proof
of Proposition 2.1, but valid for an arbitrary random τ . Its proof is delayed
until Appendix 6.3.
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2.3 Lemma. Let τ = τ
(
(Yi)1≤i≤D

)
∈ {0, . . . , D} be an arbitrary (mea-

surable) data-dependent index. Then for any m ∈ {1, . . . , D} the following
implication holds true:

Vm ≥ 200R(µ, τ)2 ⇒ Pµ(τ ≥ m) ≤ 0.9.

For G-stopping rules, where G is the residual filtration defined in (1.11),
we deduce the following lower bound:

2.4 Proposition. Let τ be an arbitrary G-stopping rule. Let µ ∈ RD and
i0 ∈ {1, . . . , D} such that Vi0+1 ≥ 200R(µ, τ)2. Then

R(µ̄, τ)2 ≥ 0.05B2
i0(µ̄)

holds for any µ̄ ∈ RD that satisfies

(a) µi = µ̄i for all i ≤ i0,

(b) the weak bias bound |B2
i0,λ

(µ̄)−B2
i0,λ

(µ)| ≤ 0.05
√
D−i0

2 δ2 and

(c) Bi0,λ(µ) +Bi0,λ(µ̄) ≥ 5.25δ.

Suppose that R(µ, τ)2 ≤ CµR(µ,ms)
2 holds with the balanced oracle ms =

min{m ∈ {0, . . . , D} : Vm ≥ B2
m(µ)} and some Cµ ≥ 1. Then any i0 ≥

400Cµms will satisfy the initial requirement.

Proof. First, we lower bound the risk of µ̄ by its bias on {τ ≤ i0} and then
transfer to the law of τ under Pµ, using the total variation distance on Gi0 :

R(µ̄, τ)2 ≥ Eµ̄[B2
τ (µ̄)1(τ ≤ i0)]

≥ B2
i0(µ̄)Pµ̄(τ ≤ i0)

≥ B2
i0(µ̄)

(
Pµ(τ ≤ i0)− ‖Pµ − Pµ̄‖TV (Gi0 )

)
.

By Lemma 2.3 we infer Pµ(τ ≤ i0) ≥ 0.1. Denote Wi0 = (Y1, . . . , Yi0). Since
the law of Wi0 is identical under Pµ and Pµ̄, and Wi0 is independent of
Ri0 for both measures, the total variation distance between Pµ and Pµ̄ on
Gi0 equals the total variation distance between the respective laws of the
scaled residual δ−2R2

i0
. For ϑ ∈ RD, let PϑK be the non-central χ2-law of

Xϑ =
∑K

k=1(ϑk + Zk)
2 with Zk independent and standard Gaussian. With

K = D − i0, ϑk = δ−1λi0+kµi0+k, ϑ̄k = δ−1λi0+kµ̄i0+k the total variation
distance between the respective laws of the scaled residual δ−2R2

i0
exactly

equals ‖PϑK −Pϑ̄K ‖TV . By Lemma 6.4 in the Appendix, taking account of
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‖ϑ‖ = δ−1Bi0,λ(µ) and similarly for ‖ϑ̄‖, we infer from (c) the simplified
bound

‖Pµ − Pµ̄‖TV (Gi0 ) ≤
2|B2

i0,λ
(µ̄)−B2

i0,λ
(µ)|

δ2
√
D − i0

.

Under our assumption on µ̄, this is at most 0.05, and the inequality follows.
From R(µ, τ)2 ≤ 2CµVms and Vi0+1/Vms ≥ (i0 + 1)/ms, the last statement
follows.

In comparison with the frequency filtration, the main new hypothesis is
that at i0 the weak bias of µ̄ is sufficiently close to that of µ, while the lower
bound is still expressed in terms of the strong bias. This is natural since
the bias only appears in weak form in the residuals while the risk involves
the strong bias. Condition (c) is just assumed to simplify the bound. To
obtain valuable counterexamples, µ̄ is usually chosen at maximal weak bias
distance of µ in (b), so that (c) is always satisfied in the interesting cases
where

√
D − i0 is not small.

Considering the minimax rates over Sobolev-type ellipsoids as defined
in (2.2), we obtain a similar lower bound result as Corollary 2.2 for the
frequency filtration.

2.5 Corollary. Assume the singular values satisfy cAi
−p/d ≤ λi ≤ CAi−p/d

with CA ≥ cA > 0, p/d ≥ 0 for all i ∈ {1, . . . , D}. If there exists µ ∈ Hβ
d (R)

with R(µ, τ) ≤ CµR(R−1δ)2β/(2β+2p+d), then for any α ∈ [0, β] and R̄ ≥ 2R,
there exists µ̄ ∈ Hα

d (R̄) such that

R(µ̄, τ) ≥ cµ̄R̄min
((
R̄−1δD1/4

)2α/(2α+2p)
, (R−1δ)2α/(2β+2p+d)

)
,

provided R−1δ ≤ cR,δ and D ≥ CD(R̄2δ−2)d/(2α+2p+d/2). The constants cµ̄ >
0, cR,δ ∈ (0, 1] and CD > 0 depend only on cA, CA, α, d, p.

Proof. Set µ̄i = µi for i 6= i0 and µ̄2
i0

= µ2
i0

+ 1
4R̄

2i
−2α/d
0 for some

i0 ∈ {1, . . . , D}, so that µ̄ ∈ Hα
d (R̄) and condition (a) of Proposition 2.4

is satisfied. If

(b’):
C2
A
4 R̄

2i
−2(α+p)/d
0 ≤ 0.025δ2

√
D − i0

holds, then condition (b) of Proposition 2.4 is ensured, whereas

(c’):
c2A
2 R̄

2i
−2(α+p)/d
0 ≥ 5.252δ2

implies condition (c) of Proposition 2.4. Finally, for

(d’): i0 ≥ b(200(1 + 2p/d)C2
AC

2
µ)d/(2p+d)(R2δ−2)d/(2β+2p+d)c,
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we have Vi0+1 ≥ 200R(µ, τ)2. Hence, by Proposition 2.4, (b’)-(c’)-(d’) imply

R(µ̄, τ)2 ≥ 0.05B2
i0(µ̄) ≥ 0.05

4 R̄2i
−2α/d
0 .

For i0 = bC0 max
(
(R̄2δ−2/

√
D)d/(2α+2p), (R2δ−2)d/(2β+2p+d)

)
c with some

suitably large constant C0 > 0, depending only on Cµ, CA, p, d, and for
D ≥ 2i0, conditions (b’) and (d’) are satisfied. To check condition (c’), a

sufficient condition is i0 ≤ (
c2A
56 (R̄2δ−2))d/(2α+2p). The first term in the maxi-

mum defining i0 satisfies this condition (here again using D ≥ 2i0) provided
R−1δ is smaller than a suitable constant c′R,δ depending on cA, CA, Cµ, α, d, p.
The second term in the maximum defining i0 satisfies the sufficient condition

C0(R2δ−2)d/(2β+2p+d) ≤ C0(R̄2δ−2)d/(2α+2p+d) ≤ (
c2
A

56
(R̄2δ−2))d/(2α+2p),

again as soon as R−1δ is smaller than a suitable constant c′′R,δ depending on
the same parameters as c′R,δ. Finally, putting cR,δ = min(c′R,δ, c

′′
R,δ, 1) and

unwrapping the condition D ≥ 2i0, it is easy to see (using (Rδ−1) ≥ 1) that
the inequality for D postulated in the statement of the corollary is sufficient.
This yields the result.

The form of the lower bound is transparent: as in the case of the
frequency filtration, the rate R̄(R−1δ)2α/(2β+2p+d) is attained by a de-

terministic rule that stops at the oracle frequency for Hβ
d (R), whereas

R̄
(
R̄−1δD1/4

)2α/(2α+2p)
is the size of a signal that may be hidden in the

noise of the residual (i.e., that is not detected with positive probability by
any test) such that we also stop early erroneously. Note that for the direct
problem (p = 0) the latter quantity is just δD1/4, which is exactly the crit-
ical signal strength in nonparametric testing, see Ingster and Suslina [20],
while for p > 0 it reflects the interplay between the weak bias part in the
residual and the strong bias part in the risk within the Sobolev ellipsoid.

2.6 Remark (Smoothed residuals). The analysis of statistical inverse prob-
lems often takes place in the continuous white-noise model (1.2) or the equiv-
alent Gaussian sequence model (1.8) with D =∞. Then, however, the resid-
ual ‖Aµ̂−Y ‖2 is a.s. infinite. One way out is to consider smoothed residuals
‖(A∗A)s(Aµ̂−Y )‖2 for s > 0, cf. Blanchard and Mathé [7] and Lu and Mathé
[25]. If the singular values of A satisfy λi ∼ i−p/d for some p > 0 and if
sp > d/4 holds, then (A∗A)s is a Hilbert-Schmidt operator and the smoothed
residual is finite a.s. In that case, however, a similar corollary, where µ̄ is

set equal to µ except at an index i1 ∼ (i
2ps−d/4
0 /δd)1/(2ps+p+α), yields a rate

in δ which is never optimal over Sobolev ellipsoids Hα
d (R̄), α < β.
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Corollary 2.5 implies in turn explicit constraints for the maximal Sobolev
regularity to which a G-stopping rule can possibly adapt. Here, we argue
asymptotically and let explicitly D = Dδ tend to infinity as the noise level
δ tends to zero.

2.7 Corollary. Assume λi ∼ i−p/d and let β+ > β− ≥ 0, R+, R− >

0 be such that the rate-optimal cutoff indices for H
β−
d (R−) satisfy

δ−2d/(2β−+2p+d) = o(
√
Dδ) as δ → 0. Then there is no G-stopping rule τ

such that R(µ, τ) ≤ Cδ2β/(2β+2p+d) holds for some C > 0 and for every

µ ∈ Hβ
d (R) with (β,R) ∈ {(β−, R−), (β+, R+)}.

In particular, if a G-stopping rule τ is rate-optimal over Hβ
d (R) for β ∈

[βmin, βmax], βmax > βmin ≥ 0, and some R > 0, then we necessarily must

have βmax/d ≤ lim infδ→0
log δ−2

logDδ
− p/d− 1/2.

Proof. We apply Corollary 2.5 with β = β+, α = β− and R̄ = R−, R =
min(R+, R̄/2). Because of δ−2d/(2β−+2p+d/2) ≤ δ−4d/(2β−+2p+d) = o(Dδ) the
conditions are fulfilled for sufficiently small δ > 0 and we conclude (R+, R−
are fixed)

∃µ̄ ∈ Hβ−
d (R−) : R(µ̄, τ) & min

((
δD

1/4
δ

)2β−/(2β−+2p)
, δ2β−/(2β++2p+d)

)
.

By assumption, that rate cannot be larger than δ2β−/(2β−+2p+d). This implies

(δD
1/4
δ )2β−/(2β−+2p) . δ2β−/(2β−+2p+d) ⇐⇒ D

1/2
δ . δ−2d/(2β−+2p+d),

which was excluded. The first statement is proved.

For the second assertion use from above D
1/2
δ . δ−2d/(2β−+2p+d) for

β− ∈ [βmin, βmax). Taking logarithms, this implies

∀β− ∈ [βmin, βmax) :
2β− + 2p+ d

2d
≤ lim inf

δ→0

log(δ−2)

log(Dδ)
.

Letting β− ↑ βmax, the result follows.

For statistical inverse problems with λi ∼ i−p/d we may choose the max-
imal dimension Dδ ∼ δ−2d/(2p+d) without losing in the convergence rate for
any sequence space Sobolev ellipsoid of regularity β ≥ 0, see e.g. Cohen el
al. [13]. In fact, we then have the variance

VDδ = δ2
Dδ∑
i=1

λ−2
i ∼ δ2D

(2p+d)/d
δ ∼ 1 (2.3)
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and the estimator with cutoff at the order of Dδ will not be consistent
anyway. In that case, optimal adaptation is only possible if the squared
minimax rate is within the interval [δ, 1], faster adaptive rates up to δ2 are
not feasible.

Usually, Dδ will be chosen much smaller, assuming some minimal reg-
ularity βmin. The choice Dδ ∼ δ−2d/(2βmin+2p+d) ensures that rate opti-
mality is possible for all (sequence space) Sobolev regularities β ≥ βmin,
when using either oracle (non-adaptive) rules, or adaptive rules that are
not stopping times. In contrast, any G-stopping rule can at best adapt over
the regularity interval [βmin, βmax] with βmax = 2βmin + p + d/2, keeping
the radius R of the Sobolev ball fixed. These adaptation intervals, how-
ever, are fundamentally understood only when inspecting the corresponding
rate-optimal cutoff indices δ−2d/(2βmax+2p+d) which must at least be of order√
Dδ ∼ δ−d/(2βmin+2p+d) in order to distinguish a signal in the residual from

the pure noise case.

3 Upper bounds

As announced in the overview section, we will from now on consider families
of linear estimators indexed by a continuous parameter t > 0, of the form

µ̂
(t)
i = γ

(t)
i λ−1

i Yi for i = 1, . . . , D.

Recall the basic assumptions on the filter functions: t 7→ γ
(t)
i is a nondecreas-

ing continous function with values in [0, 1], such that γ
(0)
i = 0, and γ

(t)
i ↑ 1

as t→∞.
For the definition (1.7) of the residual R2

t = ‖Y − Aµ̂(t)‖2 we introduce
the residual-based stopping rule τ = inf

{
t ≥ t0 : R2

t ≤ κ
}

from (1.16).
Since R2

t ↓ 0 holds for t ↑ ∞ and t 7→ R2
t is continuous, we have R2

τ = κ
unless R2

t0 < κ already, in which case τ = t0. Also, recall the oracle proxy
t∗ = inf

{
t ≥ t0 : Eµ[R2

t ] ≤ κ
}

, which by the same argument satisfies
Eµ[R2

t∗ ] = E0[R2
t∗ ]+B

2
t∗,λ(µ) = κ, unless already Eµ[R2

t0 ] < κ holds, implying
t∗ = t0.

3.1 Upper bounds in weak norm

3.1 Proposition. The following inequality holds in weak norm:

E
[
‖µ̂(τ) − µ̂(t∗)‖2A

]
≤
(

2Dδ4 + 4δ2B2
t∗,λ(µ)

)1/2
. (3.1)
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This implies the oracle-type inequality

E
[
‖µ̂(τ) − µ‖A

]
≤ E

[
‖µ̂(t∗) − µ‖A

]
+
(

2Dδ4 + 4δ2B2
t∗,λ(µ)

)1/4
. (3.2)

Proof. The main (completely deterministic) argument uses consecutively the
definition of the weak norm, the inequality (A−B)2 ≤ |A2−B2| for A,B ≥ 0
and the bounds R2

τ = κ ≥ E[R2
t∗ ] for τ > t∗ ≥ t0 and R2

τ ≤ κ = E[R2
t∗ ] for

t∗ > τ ≥ t0:

‖µ̂(t∗) − µ̂(τ)‖2A =
D∑
i=1

(γ
(t∗)
i − γ(τ)

i )2Y 2
i

≤
D∑
i=1

|(1− γ(t∗)
i )2 − (1− γ(τ)

i )2|Y 2
i

= (R2
t∗ −R2

τ )1(τ > t∗) + (R2
τ −R2

t∗)1(τ < t∗)

≤ (R2
t∗ − Eµ[R2

t∗ ])1(τ > t∗) + (Eµ[R2
t∗ ]−R2

t∗)1(τ < t∗)

≤ |R2
t∗ − Eµ[R2

t∗ ]|

=
∣∣∣ D∑
i=1

(1− γ(t∗)
i )2

(
δ2(ε2

i − 1) + 2λiµiδεi
)∣∣∣.

Note that the passage from the second to the third line simply follows from

the uniform monotonicity of filters, i.e., γ
(t∗)
i ≤ γ

(τ)
i for all i if t∗ ≤ τ

and γ
(t∗)
i ≥ γ

(τ)
i for all i if t∗ ≥ τ . By bounding the variance of the first

term (applying the Cauchy-Schwarz inequality) and using |1 − γ
(t)
i | ≤ 1,

Var(ε2
i ) = 2 and Cov(ε2

i , εi) = 0, this implies:

Eµ
[
‖µ̂(t∗) − µ̂(τ)‖2A

]
≤
(

2δ4
D∑
i=1

(1− γ(t∗)
i )4 + 4δ2

D∑
i=1

(1− γ(t∗)
i )4λ2

iµ
2
i

)1/2

≤
(

2Dδ4 + 4δ2B2
t∗,λ(µ)

)1/2
.

From this first inequality the second follows by the triangle inequality and
Jensen’s.

Let us point out that Proposition 3.1 continues to hold under minimal
assumptions on the noise: the variables εi need merely be uncorrelated and
match the first four Gaussian moments.

The last term in the right-hand side of (3.2) is of the order of the geo-
metric mean of Bt∗,λ and δ, and thus asymptotically negligible whenever the
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oracle proxy risk is of larger order than δ (use Jensen’s inequality to argue
E[‖µ̂(t∗) − µ‖A] ≥ Bt∗,λ). Consequently, the oracle-type inequality (3.2) is
asymptotically exact, in the sense that

E
[
‖µ̂(τ) − µ‖A

]
≤
(
1 + o(1)

)
E
[
‖µ̂(t∗) − µ‖A

]
(3.3)

as δ → 0, whenever the oracle-type risk is of larger order than D1/4δ. Our
stopping rule thus gives reliable estimators when the weak variance is at
least of order D1/2δ2, and we henceforth choose the initial smoothing step
t0 as

t◦ = inf{t ≥ 0 : Vt,λ = C◦D
1/2δ2} for some constant C◦ ≥ 1. (3.4)

Note that t◦ is well defined for C◦ < D1/2 since Vt,λ increases from 0 at
t = 0 to Dδ2 as t ↑ ∞, and that it is easily computable, since Vt,λ is
obtained as squared norm of the estimation method applied to the data δA1
with 1 = (1, . . . , 1)>. Moreover, we find back exactly the critical order from
the lower bound.

3.2 Remark (Controlling the discretisation error). For the discrete stopping
rule m̂ = inf{m ∈ N : m ≥ t0, R

2
m ≤ κ} we obtain, using (A + B)2 ≤

2(A2 + B2), (A − B)2 ≤ |A2 − B2| for A,B ≥ 0, filter monotonicity and
m̂ ≥ τ :

E
[
‖µ̂(m̂) − µ̂(τ)‖2A

]
≤ 2E

[
B2
τ,λ −B2

m̂,λ

]
+ 2δ2 E

[ D∑
i=1

(
γ

(m̂)
i − γ(τ)

i

)2
ε2
i

]
.

By m̂ − 1 < τ and the filter monotonicity we further bound the right-hand
side by

2 max
m=1,...,D

(
B2
m−1,λ −B2

m,λ + δ2 E
[
maxi≤D ε

2
i

]
‖γ(m) − γ(m−1)‖2

)
.

Note that the filter differences are usually not large; for spectral cutoff, for
instance, we have ‖γ(m)−γ(m−1)‖2 = 1 and for Landweber iteration ‖γ(m)−
γ(m−1)‖2 ≤

∑D
i=1 λ

4
i . Because of E[maxi≤D ε

2
i ] . logD, the second term is

usually of order δ2 logD and much smaller than the error term in the oracle
inequality (3.2). The bias difference term depends on the signal and does not
permit a universal bound, but observe that m̂ stops later than τ (or at τ)
and thus µ̂(m̂) incurs less bias in the risk bound than µ̂(τ).
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3.2 Upper bounds in strong norm

There is no intrinsic way to extend results in weak ‖•‖A-norm to strong
‖•‖-norm. The generic Assumption (A), introduced next, on the filter func-

tions γ
(t)
i and on the spectrum of A, will enable us to appropriately transfer

estimates in weak norm for the bias and the variance terms separately into
estimates in strong norm.

Assumption (A) on estimators and spectrum

Let us collect all required properties and discuss conditions under which
they are fulfilled.

3.3 Assumption (A). Recall that (γ
(t)
i )1≤i≤D, t≥0 denotes a filter sequence

with γ
(t)
i ∈ [0, 1], t 7→ γ

(t)
i is nondecreasing continuous, γ

(0)
i = 0 and γ

(t)
i ↑ 1

as t ↑ ∞. Consider t◦ from (3.4) and set a/0 =∞ for a ≥ 0.

A1. For all t ≥ t′ ≥ t◦, the sequence
(

1−γ(t
′)

i

1−γ(t)i

)
i=1,...,D

with values in [0,∞]

is nonincreasing in i.

A2. For all i′ ≤ i and t ≥ t◦, we have γ
(t)
i ≤ γ

(t)
i′ .

A3. For some π ≥ 1 there exists a constant CV,λ ≥ 1 so that for all t ≥ t′ ≥
t◦, we have

Vt ≤ CV,λ(Vt,λ/Vt′,λ)πVt′ .

A4. There exists cλ > 0 such that for every k = 1, . . . , D:

1

k

k∑
i=1

λ−2
i ≥ c

2
λλ
−2
k .

A5. There exists a constant C`1,`2 such that for all t ≥ t◦ we have

D∑
i=1

γ
(t)
i ≤ C`1,`2

D∑
i=1

(γ
(t)
i )2.

3.4 Example (Spectral cutoff). Suppose cAi
−p/d ≤ λi ≤ CAi−p/d for some

p ≥ 0, d ∈ N and CA ≥ cA > 0. Pick the continuous spectral cutoff filter that
coincides with 1(i ≤ t) when t is an integer by requiring Vt,λ = δ2t:

γ
(t)
i = 1(i ≤ btc) +

√
t− btc1(i = btc+ 1) for every t ≥ 0.
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For integers t ≥ t′ ≥ t◦ = C◦
√
D (C◦ ≥ 1) we have

1−γ(t
′)

i

1−γ(t)i
= 1(i>t′)

1(i>t) = ∞
when i ≤ t and equal to 1 otherwise. Thus, A1 is satisfied for integers and
follows over the real line by interpolation. A2 and A4 are straightforward.
For A3, since Vt = δ2(

∑
i≤btc λ

−2
i + (t− btc)λ−2

btc+1), we have for t > t′ and

some constant C ′p/d depending on p/d only:

Vt
Vt′
≤ c−2

A C2
AC
′
p/d

( t
t′

)1+2p/d
= CV,λ

( Vt,λ
Vt′,λ

)π
with π = 2p/d + 1 and CV,λ = c−2

A C2
AC
′
p/d, using Vt,λ = δ2t. Finally, since

γ
(t)
i = (γ

(t)
i )2 holds for i 6= btc + 1, and t◦ ≥

√
D, we have A5 with e.g.

C`1,`2 = 1 +D−1/2.

Generic conditions ensuring Assumption (A).

Most common filter functions used in inverse problems are obtained from
spectral regularisation methods of the form

γ
(t)
i = g(t, λi), (3.5)

where g(t, λ) is a regulariser function R+ × R+ → [0, 1], see for instance
Engl et al., Chapter 4 [15] (with the notation g(t, λ) = λgt−1(λ2) in terms
of their function gα ). In this situation, we give sufficient assumptions that
are easier to check and will ensure that Assumption (A) holds. A first set
of assumptions concerns the regulariser function:

3.5 Assumption (R).

R1. The function g(t, λ) is nondecreasing in t and λ, continuous in t with
g(0, λ) = 0 and limt→∞ g(t, λ) = 1 for any fixed λ > 0.

R2. For all t ≥ t′ ≥ t◦, the function λ 7→ 1−g(t′,λ)
1−g(t,λ) is nondecreasing.

R3. There exist positive constants ρ, β−, β+ such that for all t ≥ t◦ and
λ > 0, we have

β−min
(

(tλ)ρ , 1
)
≤ g(t, λ) ≤ min

(
β+ (tλ)ρ , 1

)
. (3.6)

R2 is not needed given R3 if we allow less accurate control in the con-
stants of Lemma 6.1 (see Proposition 3.8 and its proof below). Still, it is
usually satisfied. The value ρ should be distinguished from the qualification
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of a regularisation method, as introduced in Corollary 4.8 below. While the
qualification is intended to control the approximation error, the constant ρ
introduced in (3.6) guarantees instead the control of E0[R2

t ] and Vt, Vt,λ for
large D, a pure noise property independent of the signal.

3.6 Example. Let us list some commonly used filters (see e.g Engl et al.
[15]) that all can be directly seen to satisfy Assumption (R) with ρ = 2 in
R3.

(a) The Landweber filter, as developed in (1.6) of the introduction, is ob-
tained by gradient descent of step size 1 (note λ1 ≤ 1):

µ̂(m) =

m−1∑
i=0

(I − A∗A)iA∗Y = (I − (I − A∗A)m)(A∗A)−1A∗Y.

When interpolating with t =
√
m this yields g(t, λ) = 1− (1− λ2)t

2
.

(b) The Tikhonov filter g(t, λ) = (1 + (tλ)−2)−1 is obtained from the min-
imisation in µ ∈ RD

‖Y − Aµ‖2 + t−2‖µ‖2 → minµ! (3.7)

(c) The m-fold iterated Tikhonov estimator µ̂(α,m) is obtained by min-
imising iteratively in m the criterion (3.7), but with penalty α2‖µ −
µ̂(α,m−1)‖2, where µ̂(α,1) is the standard Tikhonov estimator with
t = α−1. The reparametrisation t =

√
m yields the filters gα(t, λ) =

1− (1 + α−2λ2)−t
2
.

(d) Showalter’s method or asymptotic regularisation is the general contin-
uous analogue of iterative linear regularisation schemes. Its filter is
given by g(t, λ) = 1− e−t2λ2.

A second assumption concerns the spectrum.

3.7 Assumption (S). There exist constants ν−, ν+ > 0 and L ∈ N such
that for all 1 ≤ k ≤ bD/Lc:

0 < L−1/ν− ≤ λLk
λk
≤ L−1/ν+ < 1. (3.8)

The indices ν− and ν+ are related to the so-called lower and upper
Matuszewska indices of the function F (u) = # {i : λi ≥ u} in the theory of
O-regularly varying functions, see Bingham et al. [4], Section 2.1. In classical
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definitions these indices are defined asymptotically. Since we aim at non-
asymptotic results, we require a version holding for all k; to account for
possible multiple eigenvalues at the beginning of the sequence, we allow L
to be an arbitrary integer (typically L would be larger than the multiplicity
of λ1). For connections to inverse and singular value problems in numerical
analysis see Djurcic et al. [14] or Fleige [16].

3.8 Proposition. Suppose Assumptions (S) and (R) are satisfied with ρ >
ν+ and the filter functions given by (3.5). Then there exist constants π ≥
1, CV,λ ≥ 1, cλ > 0, C`1,`2 ≥ 1, depending only on ρ, β−, β+, L, ν−, ν+, such
that Assumption (A) is satisfied.

The condition ρ > ν+ is often encountered in statistical inverse problems,
ensuring, independently of D, a control of the variances of the estimators.
The proof of Proposition 3.8 is delayed until Appendix 6.1. In Appendix 6.2
we also present the proof of the following result, which gives the strong-to-
weak variance order Vt ∼ t2Vt,λ in this framework.

3.9 Lemma. Under Assumptions (R) and (S), we have for all t ≥ t◦

Vt,λ ≤ CV t−2Vt with CV = L1+2/ν−
L−1 β−2

− .

Under Assumptions (R), (S) with ρ > 1 + ν+/2 we have for all t ≥ t◦:

Vt,λ ≥ cV t−2Vt,

with

cV := min

(
1,

(
C◦
√
D(1−L1−2ρ/ν+ )

(L−1)β+

) 1
ρ
)

(1−L1−(2ρ−2)/ν+ )β2
−

L2(ρ+1)/ν−
.

Main result in strong norm

We prove the main bound in strong norm first and provide the necessary
technical tools afterwards. The weak-to-strong transfer of error bounds re-
quires at least higher moment bounds, so that we derive immediately results
in high probability. From now on, we consider τ = inf{t ≥ t◦ : R2

t ≤ κ}
with t◦ from (3.4).

3.10 Theorem. Grant Assumptions A1, A2, A3, A4 with constants
π,CV,λ, cλ. Then for x ≥ 1 with probability at least 1 − c1e

−c2x, where
c1, c2 > 0 are constants depending on cλ only, we have the oracle-type in-
equality

‖µ̂(τ) − µ‖2 ≤ K E
[
‖µ̂(t∗) − µ‖2

]
+ 2δ2xλ−2

bxc∧D, (3.9)
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with

K := 4CV,λ

(
1 +

( (4
√
D + 12)δ2 +

√
32δBt∗,λ(µ)

1(t∗ > t◦) min
(
Vt∗,λ, B

2
t∗,λ(µ)

)
+ 1(t∗ = t◦)Vt◦,λ

x
)1/2)2π

.

Proof. We bound (γ
(τ)
i λ−1

i Yi − µi)2 ≤ 2(1− γ(τ)
i )2µ2

i + 2(γ
(τ)
i )2λ−2

i δ2ε2
i and

we use the fact that any linear function f(w1, . . . , wD) =
∑D

i=1wizi with
z1, . . . , zD ∈ R attains its maximum over 1 ≥ w1 ≥ · · · ≥ wD ≥ 0 at one of
the extremal points where wi = 1(i ≤ k), k ∈ {0, . . . , D} (cf. also the proof
of Lemma 3.14 below). Under Assumption A2 we thus obtain for ω > 0

‖µ̂(τ) − µ‖2 ≤ 2B2
τ + 2δ2

D∑
i=1

(
γ

(τ)
i

)2
λ−2
i ε2

i

≤ 2B2
τ + 2(1 + ω)Vτ + 2δ2 max

1≥w1≥···≥wD≥0

D∑
i=1

wiλ
−2
i (ε2

i − 1− ω)

= 2B2
τ + 2(1 + ω)Vτ + 2δ2 max

k=0,...,D

k∑
i=1

λ−2
i (ε2

i − 1− ω).

By Lemma 6.5 in Appendix 6.5 below, for ω = 1 the last term is bounded
by 2c−2

A x1+2/νδ2 with probability at least 1 − C1e
−C2x with C1, C2 > 0

depending only on cλ from Assumption A4.
For τ < t∗ (and so t∗ > t◦) we have Vτ ≤ Vt∗ , and the bias transfer bound

B2
τ ≤ (B2

τ,λ/B
2
t∗,λ)B2

t∗ is ensured by Lemma 3.12 below under Assumption

A1. In addition, Proposition 3.15 guarantees that the weak bias B2
τ,λ is with

high probability close to the oracle proxy analogue B2
t∗,λ under Assumption

A2. We deduce more precisely that with probability at least 1−3e−x (x ≥ 1):

B2
τ ≤

(
1 + 1(t∗ > t◦)

(4
√
D + 12)δ2 +

√
32δBt∗,λ

B2
t∗,λ

x
)
B2
t∗ .

On the other hand, for τ > t∗ we have Bτ ≤ Bt∗ , and we derive, using
Assumption A3 on the variance transfer and Proposition 3.16 below on the
deviation between Vτ,λ and Vt∗,λ, that with probability at least 1− 3e−x:

Vτ ≤ CV,λ
(

1 +
((4
√
D + 2)δ2 +

√
8δBt∗,λ

Vt∗,λ
x
)1/2)2π

Vt∗ .

Observing E
[
‖µ̂(t∗) − µ‖2

]
= B2

t∗ + Vt∗ , the result follows by taking the
maximum of the two previous bounds and simplifying the constants.

25



A direct consequence of the preceding result is a moment bound, which
has the character of an oracle inequality under mild conditions on the weak
bias at the oracle proxy t∗.

3.11 Corollary. In the setting of Theorem 3.10 assume C11(t∗ > t◦)Vt◦,λ ≤
B2
t∗,λ(µ) ≤ C2 limt→∞ Vt,λ for some C1, C2 > 0. Further assume that for

k = 1, . . . , D it holds δ2λ−2
k ≤ C3k

2/νVt◦ for some C3, ν > 0. Then for a
constant Cτ,t∗ only depending on C◦, C1, C2, C3, ν, cλ, π, CV,λ:

E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,t∗ E

[
‖µ̂(t∗) − µ‖2

]
.

Proof. Noting limt→∞ Vt,λ = Dδ2, and on the one hand Vt∗,λ ≥ Vt◦,λ ≥
C◦
√
Dδ2 ≥ C◦C−1

2 Bt∗,λ(µ)δ (the last inequality from the assumption of the
corollary), on the other hand, B2

t∗,λ(µ) ≥ C1Vt◦,λ (then further bounded
as above) in the case t∗ > t◦, it is simple to check that the factor K in
Theorem 3.10 is bounded for x ≥ 1 as K ≤ C∗xπ, where C∗ only depends on
C◦, C1, C2, CV,λ. For the remainder term in (3.9), note that by the assumed
growth condition on λ−2

k

δ2xλ−2
bxc∧D ≤ C3x

1+2/νVt◦ ≤ C3x
1+2/νVt∗ , x ≥ 1.

Due to the polynomial increase in x both for K and the remainder term,
we can now integrate the bound with respect to c1e

−c2xdx and obtain the
announced result.

Intermediate estimates from weak to strong norm

We now set out in detail the ingredients used in the proof of Theorem 3.10.

3.12 Lemma. Under Assumption A1, we have for t ≥ t′ ≥ t◦ that B2
t′,λ ≤

CB2
t,λ for some C ≥ 1 implies B2

t′ ≤ CB2
t .

Proof. The assumed decay for the filter ratios implies that there is an index

i0 ∈ {0, 1, . . . , D} such that 1 − γ
(t′)
i ≤ C(1 − γ

(t)
i ) holds for i > i0 and

1− γ(t′)
i ≥ C(1− γ(t)

i ) for i ≤ i0 (trivial cases for i0 = 0, i0 = D). Then:

B2
t′ − CB2

t =
D∑
i=1

(
(1− γ(t′)

i )2 − C(1− γ(t)
i )2

)
µ2
i

≤ λ−2
i0

i0∑
i=1

(
(1− γ(t′)

i )2 − C(1− γ(t)
i )2

)
λ2
iµ

2
i
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− λ−2
i0

D∑
i=i0+1

(
C(1− γ(t)

i )2 − (1− γ(t′)
i )2

)
λ2
iµ

2
i

≤ λ−2
i0

(B2
t′,λ − CB2

t,λ) ≤ 0,

which implies the assertion.

3.13 Lemma. For any x > 0 we have with probability at least 1− 2e−x

|R2
t∗ − E[R2

t∗ ]| ≤
(
2δ2
√
D +

√
8δBt∗,λ

)√
x+ 2δ2x.

Proof. We have R2
t∗ − E[R2

t∗ ] =
∑D

i=1(1− γ(t∗)
i )2

(
δ2(ε2

i − 1) + 2λiµiδεi
)
. By

Lemma 6.3 in the Appendix, δ2
∑D

i=1(ε2
i − 1) is with probability at least

1− e−x smaller than δ22
√
Dx+ δ22x, while the Gaussian summand is with

the same probability smaller than 2δBt∗,λ
√

2x, using (1 − γ
(t∗)
i )4 ≤ (1 −

γ
(t∗)
i )2.

3.14 Lemma. Under Assumption A2 we have for any z1, . . . , zD ∈ R

D∑
i=1

(
(1− γ(τ)

i )2 − (1− γ(t∗)
i )2

)
zi ≤ max

k=0,...,D

D∑
i=k+1

zi on {τ ≤ t∗},

D∑
i=1

(
(1− γ(t∗)

i )2 − (1− γ(τ)
i )2

)
zi ≤ max

k=0,...,D

k∑
i=1

(1− γ(t∗)
i )2zi on {τ ≥ t∗}.

Proof. For τ ≤ t∗ introduce the weight space

W≤ =
{
w ∈ RD : wi ∈ [(1− γ(t∗)

i )2, 1 + (1− γ(t∗)
i )2], wi increasing in i

}
.

Then
(
(1 − γ(τ)

i )2
)

1≤i≤D ∈ W
≤ holds on {τ ≤ t∗} by Assumption A2 for

the monotonicity in i, and because of γ
(τ)
i ∈ [0, γ

(t∗)
i ]. The set W≤ is convex

with extremal points

wk =
(
(1− γ(t∗)

i )2 + 1(i > k)
)

1≤i≤D, k = 0, 1, . . . , D.

Hence, the linear functional w 7→
∑

iwizi attains its maximum over W≤ at
some wk. This implies

D∑
i=1

(1− γ(τ)
i )2zi ≤ max

k=0,...,D

{ D∑
i=1

(1− γ(t∗)
i )2zi +

D∑
i=k+1

zi

}
on {τ ≤ t∗},
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which gives the first inequality. For the second inequality consider

W≥ =
{
w ∈ RD : wi ∈ [0, (1− γ(t∗)

i )2], wi increasing in i
}

and conclude similarly via
∑D

i=1(1−γ(τ)
i )2zi ≥ mink

∑D
i=k+1(1−γ(t∗)

i )2zi on
{τ ≥ t∗}.

Next, we treat the deviation of the weak bias part.

3.15 Proposition. Under Assumption A2, we obtain for any x ≥ 1 that,
with probability at least 1− 3e−x:

B2
τ,λ −B2

t∗,λ ≤
(

(4
√
D + 12)δ2 +

√
32δBt∗,λ

)
x.

Proof. Since t 7→ B2
t,λ is nonincreasing, only the case τ < t∗ needs to be

considered. By definition of τ , we obtain R2
τ ≤ κ while E[R2

t∗ ] = κ since

t∗ > t ≥ t0 , and thus, by γ
(τ)
i ≤ γ(t∗)

i :

B2
τ,λ −B2

t∗,λ = R2
τ −R2

t∗ −
D∑
i=1

(
(1− γ(τ)

i )2 − (1− γ(t∗)
i )2

)(
δ2ε2

i + 2λiµiδεi
)

≤ E[R2
t∗ ]−R2

t∗ −
D∑
i=1

(
(1− γ(τ)

i )2 − (1− γ(t∗)
i )2

)(
δ2ε2

i + 2λiµiδεi
)

≤ E[R2
t∗ ]−R2

t∗ + 2δ
D∑
i=1

(
(1− γ(τ)

i )2 − (1− γ(t∗)
i )2

)
(−λiµiεi).

By Lemma 3.14, for any ω > 0, the last term is bounded as

2δ
D∑
i=1

(
(1− γ(τ)

i )2 − (1− γ(t∗)
i )2

)
(−λiµiεi)

=2δ
D∑
i=1

(
(1− γ(τ)

i )2 − (1− γ(t∗)
i )2

)(
− λiµi(εi + ωδ−1λiµi)

)
+ 2ω(B2

τ,λ −B2
t∗,λ)

≤2δ max
k=0,...,D

D∑
i=k+1

(
− λiµiεi − ωδ−1λ2

iµ
2
i

)
+ 2ω(B2

τ,λ −B2
t∗,λ).

Concerning the sum within the maximum, we can identify the term −λiµiεi
with an increment of Brownian motion B over a time step λ2

iµ
2
i . Hence,
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the maximum is smaller than maxt>0(Bt − ωδ−1t) which is exponentially
distributed with parameter 2ωδ−1, see Problem 3.5.8 in Karatzas and Shreve
[22]. This term is thus smaller than xδ

2ω with probability at least 1− e−x. In
view of Lemma 3.13 we have with probability at least 1− 3e−x, x ≥ 1,

B2
τ,λ −B2

t∗,λ ≤
(

2(1 +
√
D)δ2 +

√
8δBt∗,λ +

δ2

ω

)
x+ 2ω(B2

τ,λ −B2
t∗,λ).

The choice ω = 1/4 yields the result.

Finally, for the stochastic error, we obtain a comparable deviation result.

3.16 Proposition. Under Assumption A2, we obtain for any x ≥ 1, with
probability at least 1− 3e−x:

V
1/2
τ,λ − V

1/2
t∗,λ ≤

(
δ2(4
√
D + 2) +

√
8δBt∗,λ

)1/2√
x.

Proof. Since t 7→ V
1/2
t,λ is nondecreasing, we only need to consider the case

τ > t∗. Using V
1/2
t,λ = δ‖γ(t)‖, the inverse triangle inequality, (A − B)2 ≤

A2−B2 for A ≥ B ≥ 0, R2
τ ≥ E[R2

t∗ ] for τ > t∗, and Lemma 3.14, we obtain:

δ−2
(
V

1/2
τ,λ − V

1/2
t∗,λ

)2 ≤ ‖γ(τ) − γ(t∗)‖2

≤ ‖1− γ(t∗)‖2 − ‖1− γ(τ)‖2

= δ−2(R2
t∗ −R2

τ ) +

D∑
i=1

(
(1− γ(t∗)

i )2 − (1− γ(τ)
i )2

)
(1− δ−2Y 2

i )

≤ δ−2(R2
t∗ − E[R2

t∗ ]) + max
k=0,...,D

k∑
i=1

(1− γ(t∗)
i )2(1− δ−2Y 2

i ).

Observe next that Y 2
i is stochastically larger under Pµ with µi 6= 0 than

under Pµ with µi = 0, using the unimodality and symmetry of the normal
density:

sup
µ∈RD

Pµ(Y 2
i ≤ y) = sup

µi∈R

(
Φ(−λiµiδ−1 + δ−1√y)− Φ(−λiµiδ−1 − δ−1√y)

)
≤ Φ(δ−1√y)− Φ(−δ−1√y) = P0(Y 2

i ≤ y), y > 0.

By independence of (Yi), it thus suffices to bound the deviation probability
of

δ−2(R2
t∗ − E[R2

t∗ ]) + max
k=0,1,...,D

k∑
i=1

(1− γ(t∗)
i )2(1− ε2

i ).
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Lemma 6.3 in the Appendix gives that the maximum is smaller than 2
√
Dx

with probability at least 1−e−x, and Lemma 3.13 gives the deviation bound
for the first term, so that the result follows by insertion.

4 Oracle-type property for early stopping

It remains to investigate the relationship of the deterministic oracle proxy
t∗ with the balanced oracles tw, ts, which, of course, depend on the choice of
κ > 0 that until now was completely arbitrary. We continue working with
t0 = t◦ from (3.4).

By definition we have Eµ[R2
t∗ ] ≤ κ and the weak bias at t∗ = t∗(µ)

satisfies

B2
t∗,λ(µ) ≤ κ− δ2

D∑
i=1

(1− γ(t∗)
i )2 = κ−Dδ2 − Vt∗,λ + 2δ2

D∑
i=1

γ
(t∗)
i

with equality if t∗ > t◦. At this stage we exactly need Assumption A5 and
obtain

B2
t∗,λ(µ)−

(
κ−Dδ2

)
≤ (2C`1,`2 − 1)Vt∗,λ; (4.1)

furthermore, we also have (since γ
(t)
i ∈ [0, 1]):

B2
t∗,λ(µ)−

(
κ−Dδ2

)
≥ −Vt∗,λ + 2δ2

D∑
i=1

(γ
(t∗)
i )2 = Vt∗,λ, if t∗ > t◦. (4.2)

The larger the choice of κ, the smaller t∗ and thus also Vt∗,λ. The control
of B2

t∗,λ(µ) is not clear because in (4.1) the effects in κ and Vt∗,λ work in

opposite directions. Note that for κ ≤ Dδ2, the bias part dominates the
variance at t∗, in other words t∗ ≤ tw holds. A natural choice is therefore
κ = Dδ2; for spectral cutoff, Example 3.4 and (4.1)-(4.2) imply (whenever
t∗ > t◦) that B2

t∗,λ/Vt∗,λ ∈ [1, 1 + 2D−1/2] (the marginal difference between
t∗ and tw is due to the continuous extension in t). For other regularisation
methods, other choices could be tailored; moreover, the noise variance δ2

usually needs to be estimated. For these reasons we shall allow for deviations
of the form

|κ−Dδ2| ≤ Cκ
√
Dδ2 for some Cκ > 0. (4.3)

Thanks to the control of E[‖µ̂(τ) − µ̂(t∗)‖2A] in Proposition 3.1, a weakly
balanced oracle inequality can be derived.
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4.1 Proposition. Grant (4.3) for κ and Assumption A5. Then the follow-
ing oracle inequality holds in weak norm:

E
[
‖µ̂(τ) − µ‖2A

]
≤ 2C`1,`2 E

[
‖µ̂(tw) − µ‖2A

]
+ 4
(
2C`1,`2 + Cκ

)√
Dδ2.

Proof. Consider first the case tw > t∗. Then B2
tw,λ

= Vtw,λ since tw > t◦,
and we have by monotonicity in t of Vt,λ:

E[‖µ̂(tw) − µ‖2A] = B2
tw,λ + Vtw,λ = 2Vtw,λ ≥ 2Vt∗,λ.

Moreover, from inequality (4.1) together with (4.3), we have

B2
t∗,λ ≤ (2C`1,`2 − 1)Vt∗,λ + Cκ

√
Dδ2, (4.4)

and bringing together the two last displays yields

B2
t∗,λ + Vt∗,λ ≤ C`1,`2 E[‖µ̂(tw) − µ‖2A] + Cκ

√
Dδ2.

In the case tw < t∗, since B2
tw,λ
≤ Vtw,λ always holds, by monotonicity in t

of B2
t,λ we have

E[‖µ̂(tw) − µ‖2A] = B2
tw,λ + Vtw,λ ≥ 2B2

tw,λ ≥ 2B2
t∗,λ.

Moreover, from equation (4.2) (which holds since in this case t∗ > t◦),
together with (4.3), we have

Vt∗,λ ≤ B2
t∗,λ + Cκ

√
Dδ2;

bringing together the two last displays and using C`1,`2 ≥ 1 yields again

B2
t∗,λ + Vt∗,λ ≤ C`1,`2 E[‖µ̂(tw) − µ‖2A] + Cκ

√
Dδ2,

so that this inequality holds in all cases (including t∗ = tw in which case the
inequality holds trivially since C`1,`2 ≥ 1). Applying (3.1) and (A + B)2 ≤
2A2 + 2B2, we arrive at

E
[
‖µ̂(τ) − µ‖2A

]
≤ 2E

[
‖µ̂(t∗) − µ‖2A

]
+ 2
(
2Dδ4 + 4δ2B2

t∗,λ

)1/2
≤ 2C`1,`2 E[‖µ̂(tw) − µ‖2A] + 2Cκ

√
Dδ2 + 4δ

(
1
2Dδ

2 +B2
t∗,λ

)1/2
.

Furthermore, 1
2Dδ

2 + B2
t∗,λ ≤ (2C`1,`2 − 1

2)Dδ2 + Cκ
√
Dδ2 follows directly

from (4.4) (which holds in all cases) and the trivial bound Vt∗,λ ≤ Dδ2. It
remains to simplify the bound, using C`1,`2 ≥ 1.
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In weak norm, the oracle inequality immediately implies rate-optimal
estimation by µ̂(τ) whenever the weak oracle risk inft≥0 E

[
‖µ̂(t)−µ‖2A

]
is at

least of order
√
Dδ2. The constants are not optimised, but give a reasonable

order of magnitude. For spectral cutoff, an exact asymptotic balanced oracle
inequality (i.e., with factor (1 + o(1)) in front of the balanced oracle risk)
can be derived as in (3.3).

In strong norm, the oracle property is more involved. The next result
shows, however, that this question is intrinsic: the strong risk at t∗ can be
bounded by the strong risk at the weakly balanced oracle tw, which depends
only on the underlying regularisation method and on the spectrum of A,
but not on the particular adaptation method. Hence, any empirical risk or
cross-validation technique, which is based on a data-fidelity criterion in weak
norm, will face the same error estimates.

4.2 Proposition. Grant Assumptions A1, A3 and A5 with constants
π,CV,λ, C`1,`2. Then for |κ − Dδ2| ≤ Cκ

√
Dδ2 the oracle proxy t∗ and the

weakly balanced oracle tw satisfy the strong norm bound

E
[
‖µ̂(t∗)−µ‖2

]
≤ max

(
2C`1,`2+CκC

−1
◦ −1, CV,λ(1+CκC

−1
◦ )π

)
E
[
‖µ̂(tw)−µ‖2

]
.

Proof. For t∗ < tw, we obtain by (4.1), using Vt∗,λ ≤ Vtw,λ = B2
tw,λ

(equality

due to tw > t◦) as well as C◦
√
Dδ2 ≤ Vt◦,λ ≤ Vtw,λ:

B2
t∗,λ ≤ (2C`1,`2 + CκC

−1
◦ − 1)B2

tw,λ.

By Lemma 3.12, we can transfer a weak bias inequality into a strong bias
inequality with the same constant and the result follows. In the case t∗ > tw,
we argue in a similiar manner using (4.2) (which holds since t∗ > t◦):

Vt∗,λ ≤ B2
t∗,λ + Cκ

√
Dδ2 ≤ B2

tw,λ + CκC
−1
◦ Vt◦,λ ≤ (1 + CκC

−1
◦ )Vtw,λ,

followed by the variance transfer guaranteed by Assumption A3.

Next, we turn to the control of the strong bias at the weak oracle tw.
Surprisingly, this is quite universally feasible. The following result establishes
a particularly clean bound for the spectral cutoff method.

4.3 Theorem. For the spectral cutoff method from Example 3.4 with
cAi
−p/d ≤ λi ≤ CAi−p/d we have

E
[
‖µ̂(tw) − µ‖2

]
≤ (1 + (CA/cA)2(1 + p/d)/2)E

[
‖µ̂(ts) − µ‖2

]
.
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For |κ−Dδ2| ≤ Cκ
√
Dδ2 with Cκ ∈ [0, C◦), we obtain for the early stopping

risk an oracle inequality in strong norm, with a constant Cs only depending
on CA/cA, Cκ/C◦, p/d:

E
[
‖µ̂(τ) − µ‖2

]
≤ Cs E

[
‖µ̂(ts) − µ‖2

]
.

Proof. For spectral cutoff, since γ
(t)
i = 0 for i > btc+ 1, we have B2

t /B
2
t,λ ≥

λ−2
btc+1, on the other hand since γ

(t)
i = 1 for i ≤ btc, it holds V 2

t /V
2
t,λ ≤ λ

−2
btc+1.

Hence, for tw > t◦, B
2
tw,λ

= Vtw,λ implies B2
tw ≥ Vtw , and therefore tw ≤ ts

(obviously also true when tw = t◦), whatever µ. Now, for t > tw,

B2
tw −B

2
t = (1− γ(tw)

btw+1c)
2µ2
btw+1c +

btc∑
i=btw+2c

µ2
i + (1− (1− γ(t)

bt+1c)
2)µ2
bt+1c

≤ λ−2
dte(B

2
tw,λ −B

2
t,λ)

≤ λ−2
dteVtw,λ

holds. The singular value bounds imply λ−2
dteVt,λ ≤ (CA/cA)2(1 + p/d)Vt and

thus by Vtw,λ ≤ Vt,λ, inserting t = ts,

B2
tw ≤ B

2
ts + (CA/cA)2(1 + p/d)Vts .

The first bound therefore follows from Vtw + B2
tw ≤ (1 + (CA/cA)2(1 +

p/d))Vts + B2
ts and Vts = B2

ts = 1
2 E[‖µ̂(ts) − µ‖2] for ts > t◦ (otherwise

ts = tw and the result holds trivially).
For the second part, we check that the conditions of Corollary 3.11 are

met. From (4.1) with C`1,`2 = 1 + D−1/2 we obtain B2
t∗,λ ≤ (1 + 2D−1/2 +

CκC
−1
◦ )Vt∗λ, while (4.2) implies Bt∗,λ ≥ (1−CκC−1

◦ )Vt◦,λ1(t∗ > t◦). Finally,
the condition on the spectrum ensures δ2λ−2

i ≤ δ2(CA/cA)2i−2p/dλ−2
1 ≤

(CA/ca)
2i−2p/dVt◦ (since t◦ ≥ 1). Consequently, we can apply Corollary 3.11,

yielding
E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,t∗ E

[
‖µ̂(t∗) − µ‖2

]
with Cτ,t∗ depending on Cκ/C◦, p/d, CA/cA. Hence, by Proposition 4.2 and
by the first inequality established here, the asserted oracle inequality follows.

The spectral cutoff example extends generally to cases where the weakly
balanced oracle tends to oversmooth in strong norm, as formalised next.
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4.4 Proposition. Grant Assumptions (R) and (S). For all µ with tw(µ) ≤
ts(µ) we have with the constant CV from Lemma 3.9

E
[
‖µ̂(tw) − µ‖2] ≤

(
(2β+)2/ρCV + 4

)
E
[
‖µ̂(ts) − µ‖2

]
.

Proof. By Assumption R3 we have 4(1− γ(t)
i )2 ≥ 1 if tλi ≤ c := (2β+)−1/ρ.

Consequently, for t > tw:

B2
tw − 4B2

t =

D∑
i=1

(
(1− γ(tw)

i )2 − 4(1− γ(t)
i )2

)
µ2
i

≤
∑

i:λi>ct−1

(1− γ(tw)
i )2µ2

i

≤
∑

i:λi>ct−1

(1− γ(tw)
i )2(c−1tλi)

2µ2
i

≤ c−2t2B2
tw,λ ≤ c

−2t2Vtw,λ.

From Lemma 3.9 we know Vt,λ ≤ CV t−2Vt. We insert t = ts and use Vtw,λ ≤
Vts,λ to conclude

B2
tw ≤ 4B2

ts + c−2CV Vts .

Adding Vtw ≤ Vts and simplifying the constant yield the result.

Section 5.1 below shows for the Landweber method that tw(µ) ≤ ts(µ)
or at least Vtw(µ) . Vts(µ) holds for a certain class of polynomially decaying
signals µ. For rapidly decaying signals µ, however, the inverse relationship
tw(µ) > ts(µ) may happen:

4.5 Example (Generic counterexample to tw ≤ ts). Consider the signal

µ1 = 1, µi = 0 for i ≥ 2 and assume λ1 = 1, γ
(t)
1 < 1 for all t ≥ 0.

Then we have B2
t (µ) = B2

t,λ(µ) > 0 whereas Vt ∼ t2Vt,λ holds in the setting
of Lemma 3.9. Hence, noting that tw → ∞ as δ → 0, we see that Vtw ∼
t2wVtw,λ = t2w,λB

2
tw,λ

(µ) = t2wB
2
tw(µ) is of larger order than B2

tw(µ), implying
tw/ts →∞ as δ → 0.

The weakly balanced oracle does not profit from the regularity of µ in
strong norm. Notice that this loss of efficiency is intrinsic to the stopping
problem: based only on the residual R2

t we have no possibility to detect in
which part of the spectrum the bias concentrates. Still, we are able to control
the error by an inflated weak oracle risk.
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4.6 Theorem. Suppose Assumptions (R), (S) hold with ρ > 1 + ν+
2 and

(4.3) holds for κ with Cκ ∈ [0, C◦). Then for all µ with tw(µ) ≤ ts(µ) we
have

E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,s E

[
‖µ̂(ts) − µ‖2

]
.

For all µ with tw(µ) ≥ ts(µ) we obtain

E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,wt2w E

[
‖µ̂(tw) − µ‖2A

]
.

The constants Cτ,s and Cτ,w depend only on ρ, β−, β+, L, ν−, ν+.

Proof. We want to apply Corollary 3.11 (bounding the strong risk of µ̂(τ)

by that of µ̂(t∗)) followed by Proposition 4.2 (from µ̂(t∗) to µ̂(tw)) in order to
bound E[‖µ̂(τ) − µ‖2] by

Cτ,t∗ max(2C`1,`2 + CκC
−1
◦ − 1, CV,λ(1 + CκC

−1
◦ )π)E

[
‖µ̂(tw) − µ‖2

]
.

For this, note first that Assumption (A) holds by Proposition 3.8. Fur-
thermore, Cκ ∈ [0, C◦) implies by the bounds in (4.1)-(4.2) together with
Vt∗,λ ≥ Vt◦,λ = C◦

√
Dδ2 that B2

t∗,λ ∈ [(1−CκC−1
◦ )Vt∗,λ1(t∗ > t◦), (2C`1,`2 +

CκC
−1
◦ − 1)Vt∗,λ], as required for Corollary 3.11. The second assumption for

Corollary 3.11 is ensured under (R), (S) by Lemma 6.2 in the Appendix
(inequality (6.5)).

For the case tw ≤ ts we can conclude the first inequality by the bound on
E[‖µ̂(tw)−µ‖2] in Proposition 4.4. In the other case, B2

tw ≤ Vtw ≤ c
−1
V tw

2Vtw,λ
is implied by Lemma 3.9, using ρ > 1 + ν+/2, and the second result follows.
It remains to trace back the dependencies of the constants involved.

Let us specify this main result for polynomially decaying singular values
λi. Then we can write an oracle inequality which involves the oracle risks in
weak and strong norm instead of the index tw itself.

4.7 Corollary. Grant Assumption (R), (4.3) with Cκ ∈ [0, C◦) and
cAi
−1/ν ≤ λi ≤ CAi−1/ν for CA ≥ cA > 0 and 0 < ν < 2ρ− 2. Then

E
[
‖µ̂(τ) − µ‖2

]
≤ Cτ,ws max

(
δ−4/ν E

[
‖µ̂(tw) − µ‖2A

]1+2/ν
, E
[
‖µ̂(ts) − µ‖2

])
holds with a constant Cτ,ws depending only on ρ, β−, β+, cA, CA.

Proof. From δ−2Vtw,λ =
∑D

i=1(γ
(tw)
i )2 we deduce via Assumption R3

δ−2Vtw,λ ≥ β−#{i : λi ≥ 1/tw} ≥ β−b(cAtw)νc.

Because of δ−4/ν E[‖µ̂(tw) − µ‖2A]2/ν ≥ (δ−2Vtw,λ)2/ν ≥ β
2/ν
− b(cAtw)νc2/ν the

bound follows by combining the two inequalities from Theorem 4.6.
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A further consequence is a minimax rate-optimal bound over the
Sobolev-type ellipsoids Hβ

d (R) from (2.2). At this stage we need the con-
cept of qualification of the spectral regularisation method, i.e., the filter
sequence.

4.8 Corollary. Grant Assumption (R), (4.3) with Cκ ∈ [0, C◦), cAi
−p/d ≤

λi ≤ CAi−p/d for CA ≥ cA > 0 and p/d > (2ρ− 2)−1 as well as

1− g(t, λ) ≤ Cq(tλ)−2q, t ≥ t◦, λ ∈ (0, 1],

for some qualification index q > 0. Then µ̂(τ) attains the minimax-optimal
rate over Hβ

d (R)

sup
µ∈Hβ

d (R)

E
[
‖µ̂(τ) − µ‖2

]
. R2(R−1δ)4β/(2β+2p+d),

provided 2q − 1 ≥ β/p and (R/δ)2d/(2β+2p+d) &
√
D for D →∞ as δ → 0.

Proof. A qualification q ≥ β/(2p) in combination with Assumption (R)

ensures for µ ∈ Hβ
d (R), compare also Thm. 4.3 in Engl et al. [15]:

B2
t (µ) ≤

D∑
i=1

C2
q min

(
(tλi)

−2q, 1
)2
µ2
i ≤ C2

q

D∑
i=1

(tcAi
−p/d)−2β/pµ2

i

≤ C2
q c
−2β/p
A R2t−2β/p.

Similarly, we deduce for 2q − 1 ≥ β/p:

t2B2
t,λ(µ) ≤

D∑
i=1

C2
q min

(
(tλi)

−2q+1, tλi
)2
µ2
i ≤ C2

q c
−2β/p
A R2t−2β/p.

Under Assumption R3 the weak variance satisfies Vt,λ .
δ2
∑

i min(β+(tλi)
2ρ, 1) . δ2td/p provided λi ∼ i−p/d, p > d/(2ρ). For

p > d/(2ρ− 2) we obtain in a similar manner Vt . δ2t2+d/p.
An optimal choice of t is thus of order (R/δ)2p/(2β+2p+d) and gives

inf
t≥0

max
(
E[‖µ̂(t) − µ‖2

]
, t2 E[‖µ̂(t) − µ‖2A

])
. R2(R−1δ)4β/(2β+2p+d),

with a constant independent of µ, D and δ. Now note that by assumption
for the optimal choice (R/δ)2p/(2β+2p+d) & D1/2 ∼ t◦ holds. In view of the
narrow sense oracle property (1.17) of tw and equally of ts in strong norm,
we thus conclude by applying Theorem 4.6.
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For the filters of Example 3.6 we see that Landweber and Showalter’s
method have any qualification q > 0 while standard Tikhonov regularisation
has qualification q = 1. The statement is very much in the spirit of the results
for the deterministic discrepancy principle, see e.g. Thm. 4.17 in Engl et al.
[15], when interpreting κ = δ2D as the squared noise level, cf. Hansen [19].
Note, however, that we do not require a slightly enlarged critical value and
that the necessary choice of t◦ > 0 indicates an intrinsic difference between
deterministic and statistical inverse problems.

For the setting of the corollary a conservatively large choice of the dimen-
sion would be D ∼ δ−2d/(2p+d), cf. (2.3). For that choice the corollary applies
for all β ∈ (0, p + d/2], assuming R fixed and q sufficiently large. In conse-
quence all squared minimax rates in the range [δ, 1] can be attained, but we
cannot converge faster, i.e., the potential range [δ2, δ) for high smoothness
is not covered (as predicted by the lower bound).

Theorem 4.6 can also serve to deduce bounds on the Bayes risk of µ̂(τ)

with respect to a prior Π for the signals µ. For concrete methods and general
classes of priors Π we can thus obtain Bayesian oracle inequalities similar to
Bauer and Reiß [3], but in a different setup.

5 Implementing the Landweber method

5.1 A sufficient condition for the oracle property

For the concrete example of the Landweber method, let us investigate for
which signals µ we have a true oracle inequality in the sense that in Theorem
4.6 the first inequality applies with a universal constant Cτ,s > 0. Note first
that, under Assumption (S) with L = 2 for simplicity, if we can ensure
additionally that Vtw ≤ CtVts for some Ct > 1, then Proposition 4.4 yields
the more general bound

E
[
‖µ̂(tw) − µ‖2] ≤ max

(
(2β+)2/ρCV + 4, Ct

)
E
[
‖µ̂(ts) − µ‖2

]
. (5.1)

This is just due to Btw(µ) ≤ Bts(µ) in the case tw > ts.
To establish the additional condition above, let us consider for some

cµ > 0 the class of signals µ

C :=
{
µ ∈ RD | ∀i : µ2

2i+1 + µ2
2i ≥ cµµ2

i

}
. (5.2)

From the definition of the Landweber filters in Example 3.6 we obtain

(1− γ(t)
i )2

(1− γ(t)
2i )2

=
(

1− λ2
i − λ2

2i

1− λ2
2i

)2t2

≤ exp
(
− 2(1− 2−2/ν+)t2λ2

i

)
.

37



By the decay of r 7→ re−(1−2−2/ν+ )r := Cr for r ≥ r0 := (1 − 2−2/ν+)−1, we
can thus bound for µ ∈ C∑

i:tλi≥r1/2
(1− γ(t)

i )2(tλi)
2µ2

i ≤ c−1
µ C2

r

∑
i:tλi≥r1/2

(1− γ(t)
2i )2

(
µ2

2i + µ2
2i+1

)
.

This implies t2B2
t,λ(µ) ≤ (c−1

µ C2
r + r)B2

t (µ). Using t2Vt,λ ≥ CV Vt from
Lemma 3.9 and the definition of the balanced oracles, we conclude in the
case tw > ts:

Vtw ≤ C−1
V t2Vtw,λ = C−1

V t2B2
tw,λ(µ)

≤ C−1
V (c−1

µ C2
r + r)B2

tw(µ) ≤ C−1
V

(
c−1
µ C2

r + r
)
Vts .

The value of r may be optimised or we just take r = r0 to define Ct. In
conclusion, for Landweber iterations under Assumption (S) with L = 2 the
inequality (5.1) applies to all signals µ ∈ C. In particular, a strong norm
inequality holds whenever µ2

i ∼ i−ρ for any exponent ρ ≥ 0. The class C in
combination with Counterexample 4.5 illustrates that the early stopping rule
τ has bad adaptation properties only if the signal has significantly different
strength in the lower and higher SVD coefficients.

5.2 Numerical examples

As a test bed for a numerical implementation we take the moderately ill-
posed case λi = i−1/2 with noise level δ = 0.01 and dimension D = 10 000.
After 51 Landweber iterations the weak variance attains the level

√
2Dδ2,

which is the dominating term in (3.2) and corresponds to C◦ =
√

2 in the
choice of t◦ (by abuse of notation, indices t denote numbers of iterations

here). The ratio
∑

i γ
(t)
i /

∑
i(γ

(t)
i )2, defining the constant C`1,`2 , increases

in t and is about 1.05 at t◦. In view of the relationship (4.1) we choose
κ = 0.95 for Landweber, slightly smaller than Dδ2 = 1.0. In comparison,
we also consider the spectral cutoff method where the weak variance

√
2Dδ2

is attained at the SVD coefficient (frequency) t◦ = 141 and where we use
κ = Dδ2. Nevertheless, in this simulation we compute the stopping rule
τ starting at t0 = 0 to illustrate the effects when very early stopping is
recommended.

In Figure 2 (left) we see the SVD representation of three signals: a rel-
atively smooth signal µ(1), a very rough signal µ(2) and a super-smooth
signal µ(3), the attributes coming from the interpretation via the decay of
Fourier coefficients. Note that due to the oscillations and the rapid decay,
respectively, the signals do not lie in the class C from (5.2) above unless
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Figure 2: Left: SVD representation of a smooth (blue), a rough (red) and
a super-smooth (olive) signal. Right: Corresponding number of Landweber
iterations and spectral cutoffs for τ divided by the weakly balanced oracle
numbers.

cµ > 0 is tiny. The corresponding weakly balanced oracle indices tw are
(355, 1074, 42) for Landweber and (512, 1356, 34) for spectral cutoff. So, in-
deed we stop before t◦ in the super-smooth case and expect a high variability
of τ around t∗, especially in the spectral cutoff case. The strong indices ts
are (310, 1185, 29) for Landweber, (655, 2379, 37) for spectral cutoff. This
confirms tw ≤ ts for spectral cutoff and shows that for Landweber we may
also have tw > ts.

For the rough signal µ(1) Figure 1 in the introduction displays squared
bias, variance and residuals as a function of m for one realisation and indi-
cates the stopping indices (the strong bias and variance functions are scaled
by 0.02 to fit into the picture).

Relative to our target tw, Figure 2 (right) displays box plots (a box repre-
senting the inner quartile range, whiskers the total support and a horizontal
bar the mean) for the stopping rule τ in 1000 Monte Carlo repetitions. We
see that for Landweber τ tends to stop earlier than tw, while for spectral
cutoff the ratio τ/tw varies around 1.0, as expected due to t∗ ≈ tw. As
predicted, the (relative) variability in the super-smooth case is much higher.

In Figure 3 the box plots show for the same Monte Carlo run the
relative errors E[‖µ̂(τ) − µ‖2A]/mint≥0 E[‖µ̂(t) − µ‖2A] (left) and E[‖µ̂(τ) −
µ‖2]/mint≥0 E[‖µ̂(t) − µ‖2] (right), respectively. In weak norm we observe a
loss by a about a factor 1.5 for Landweber, while for spectral cutoff the loss
is even smaller, except for the super-smooth case. Interestingly, in strong
norm Landweber performs even better which is due to the fact that the or-
acle proxy t∗ is closer to the strong than to the weak oracle indices, cf. also
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Figure 3: Boxplots of squared Monte Carlo errors for µ̂(τ) divided by oracle
errors in weak (left) and strong (right) norm.

Figure 1.
Further unreported simulations confirm these findings, in particular the

relative error due to adaptive stopping remains small (rarely larger than 2,
the maximal factor arising already with the balanced oracle choice). Only
for super-smooth signals, where we ought to stop before t◦, the variability
may become harmful.

As a practical procedure, we propose to run the iterations always until
t◦ (51 iterates in our Landweber case) and if the stopping rule τ tells us not
to continue, then a standard model selection procedure like Lepski’s can be
applied to choose among the t◦ first iterates. Since in general the lack of a
complete oracle inequality in strong norm is due to stopping later than at ts,
we could even always apply Lepski’s method to select among µ̂(0), . . . , µ̂(τ).
The performance of this two-step approach needs to be studied further, but
seems very promising.

6 Appendix

6.1 Proof of Proposition 3.8

We start with an important result for a nonincreasing sequence satisfying
(S). This is related to comparisons between a function and its power inte-
grals, also known as Karamata’s one-sided relations.

6.1 Lemma (One-sided Karamata relations). Suppose Assumption (S) is
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satisfied. Then for any p > 0 and k ≥ 1 we have∑
j≤k λ

−p
j

kλ−pk
≥ L−p/ν−(1− L−1), (6.1)

and, provided Lk ≤ D,∑Lk
j=k+1 λ

p
j

kλpk
≥ (L− 1)L−p/ν− . (6.2)

For p > ν+ and k ≥ 1 we have∑
j≥k λ

p
j

kλpk
≤ L− 1

1− L1−p/ν+
. (6.3)

Proof. For inequality (6.2), write:

Lk∑
j=k+1

λpj ≥ (L− 1)kλpLk ≥ L
−p/ν−(L− 1)kλpk.

We turn to (6.1), for which we write

∑
j≤k

λ−pj ≥
k∑

j=dk/Le

λ−pj ≥
(
k + 1−

⌈ k
L

⌉)
λ−pdk/Le

≥ (1− L−1)kL−p/ν−λ−pLdk/Le ≥ L
−p/ν−(1− L−1)kλ−pk .

Finally, for (6.3), we have λLk
λk
≤ L−1/ν+ and

∑
j≥k

λpj =
∑
`≥0

kL`+1−1∑
i=kL`

λpi ≤
∑
`≥0

kL`(L− 1)λp
kL`

≤ k(L− 1)λpk

∑
`≥0

L`(1−p/ν+) =
(L−1)kλpk

1−L1−p/ν+
.

We will need the following auxiliary result:
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6.2 Lemma. Suppose Assumptions (S) and (R) are satisfied with 2ρ > ν+,
then the constant t◦ defined via (3.4) is such that

t◦ ≥ ζ̃λ−1
1 , with ζ̃ :=

(
C◦
√
D(1− L1−2ρ/ν+)

(L− 1)β+

)1/2ρ

. (6.4)

It follows, for any k = 1, . . . , D:

δ2λ−2
k ≤ Ck

2/ν−Vt◦ , with C = β−2
− L2/ν−(1 ∧ ζ̃)−2ρ. (6.5)

Proof. Using Assumption R3 and then (6.3) gives

Vt,λ = δ2
D∑
i=1

(γ
(t)
i )2 ≤ δ2β+t

2ρ
∞∑
i=1

λ2ρ
i ≤ δ

2β+t
2ρλ2ρ

1

L− 1

1− L1−2ρ/ν+
.

By definition, Vt◦,λ = C◦D
1/2δ2 holds and (6.4) follows. We then have as a

consequence

Vt◦ ≥ δ2(γ
(t◦)
1 )2λ−2

1 ≥ β2
−min(1, ζ̃)2ρδ2λ−2

1 .

Finally, for any k = 1, . . . , D, put ` := dlog k/ logLe, then (3.8) entails

λ−2
k ≤ λ

−2
L`
≤ λ−2

1 L2`/ν− ≤ λ−2
1 (Lk)2/ν− .

Combining the two last displays yields (6.5).

Proof of Proposition 3.8. The monotonicity, continuity and limiting be-
haviour of g(t, λ) in t = 0, t → ∞ for fixed λ required from R1 ensure

the basic requirements on the filter sequence (namely t 7→ γ
(t)
i continuous,

γ
(0)
i = 0 and γ

(t)
i ↑ 1 as t → ∞ ). Since the spectral sequence (λi)i≥1 is

nonincreasing, the monotonicity in λ of g(t, λ) ensures the validity of A2.
Similarly, Assumption R2 transparently ensures A1.

We turn to checking A4. For this we use (6.1) with p = 2, yielding

∀k ≥ 1 :

∑
j≤k λ

−2
j

kλ−2
k

≥ L−2/ν−(1− L−1) =: cλ.

We now check A5 for t ≥ t◦. Denote ζ := min(ζ̃, 1), where ζ̃ is from (6.4).
Introduce j∗t := min {k ≥ 1 : λk < ζ/t} ∧ (D + 1). Property t ≥ t◦ and (6.4)

imply j∗t ≥ 2. Assumption R3 and (3.5) ensure γ
(t)
j ∈ [ζρβ−, 1] for all j < j∗t ,

so that

D∑
i=1

γ
(t)
i =

j∗t−1∑
i=1

γ
(t)
i +

D∑
i=j∗t

γ
(t)
i ≤ ζ

−ρβ−1
−

j∗t−1∑
i=1

(
γ

(t)
i

)2
+ β+t

ρ
D∑
i=j∗t

λρi . (6.6)
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To control the second term, we note that, since ρ > ν+, (6.3) yields∑
j≥k

λρj ≤ Ckλ
ρ
k, where C :=

L− 1

1− L1−p/ν+
.

We apply this relation to k = j∗t . The inequalities λj∗t < ζ/t and j∗t ≥ 2
entail

tρ
D∑
i=j∗t

λρi ≤ Cj
∗
t t
ρλρj∗t

≤ 2Cζρ(j∗t − 1) ≤ 2Cζ−ρβ−2
−

j∗t−1∑
i=1

(γ
(t)
i )2.

Plugging this into (6.6) yields A5 with C`1,`2 = ζ−ρ(β−1
− + 2Cβ+β

−2
− ).

We finally turn to A3. Without loss of generality we can assume β+ ≥ 1
in (R3). Because for all A,B > 0

1

2
(A+B)−1 ≤ min(A−1, B−1) ≤ (A+B)−1, (6.7)

it follows that condition (R3) implies for all t ≥ t◦:

β−(1+(tλ)−ρ)−1 ≤ g(t, λ) ≤ 2(1+β−1
+ (tλ)−ρ)−1 ≤ 2β+(1+(tλ)−ρ)−1. (6.8)

Denote h(t) := (1+t−ρ)−1; the above implies together with (3.5) that
γ
(t)
i

h(tλi)
∈

[β−, 2β+]. We infer that for t ≥ t′ ≥ t◦:

Vt
V ′t

=

∑D
i=1(γ

(t)
i λ−1

i )2∑D
i=1(γ

(t′)
i λ−1

i )2
≤

4β2
+

β2
−

∑D
i=1

(
λ−1
i h(tλi)

)2∑D
i=1

(
λ−1
i h(t′λi)

)2 =:
4β2

+

β2
−

H(t)

H(t′)
,

while

Vt,λ
Vt′,λ

=

∑D
i=1(γ

(t)
i )2∑D

i=1(γ
(t′)
i )2

≥
β2
−

4β2
+

∑D
i=1 h(tλi)

2∑D
i=1 h(t′λi)2

=:
β2
−

4β2
+

G(t)

G(t′)
.

Our next goal is to establish that there exists a constant π such that

H(t)/H(t′) ≤ (G(t)/G(t′))π, (6.9)

which will yield the desired bound A3 with CV,λ := (4β2
+/β

2
−)1+π. A suffi-

cient condition for (6.9) is to establish for all t ≥ t◦:

d

dt
logH(t) =

H ′(t)

H(t)
≤ πG

′(t)

G(t)
= π

d

dt
logG(t), (6.10)
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i.e., to check the inequality∑D
i=1 λ

−1
i hh′(tλi)∑D

i=1 λ
−2
i h(tλi)2

= ρt−ρ−1

∑D
i=1 λ

−ρ−2
i

(
1 + (tλi)

−ρ)−3∑D
i=1 λ

−2
i

(
1 + (tλi)

−ρ)−2

≤ πt−ρ−1

∑D
i=1 λ

−ρ
i

(
1 + (tλi)

−ρ)−3∑D
i=1

(
1 + (tλi)

−ρ)−2 = π

∑D
i=1 λihh

′(tλi)∑D
i=1 h(tλi)2

.

Using (6.7) again, it is sufficient to check the above inequality when replacing

everywhere
(
1 + (tλi)

−ρ)−1
by min(1, (tλi)

ρ), and π by π/32.
Denoting k∗t := inf

{
k ≥ 1 : λk < t−1

}
∧(D+1), we thus have to establish

the sufficient condition (for some constant π)∑
i<k∗t

λ−ρ−2
i +

∑D
i=k∗t

t3ρλ2ρ−2
i∑

i<k∗t
λ−2
i +

∑D
i=k∗t

t2ρλ2ρ−2
i

≤ π

32

∑
i<k∗t

λ−ρi +
∑D

i=k∗t
t3ρλ2ρ

i

(k∗t − 1) +
∑D

i=k∗t
t2ρλ2ρ

i

. (6.11)

Writing the left fraction as (A1 + A2)/(B1 + B2) and the right fraction
(without π/32) as (A3 +A4)/(B3 +B4), we check this relation by bounding
AiBj ≤ π

32AjBi for i = 1, 2, j = 3, 4. Without loss of generality we assume
1 < k∗t ≤ D (otherwise some products are just zero). Let us recall that (6.1)
implies (taking p := max(2, ρ) there) that

∀k ≥ 1 : kλ
−max(2,ρ)
k ≤ C

∑
j≤k

λ
−max(2,ρ)
j , (6.12)

for C := Lmax(2,ρ)/ν−/(1 − L−1). We will also need below a similar bound
with λk replaced by λk+1 on the left-hand side. For this, notice that by
Assumption (S) we have λk

λk+1
≤ λk

λLk
≤ L1/ν− , combining with (6.12) we

get:

∀k ≥ 1 : kλ
−max(2,ρ)
k+1 ≤ kLmax(2,ρ)/ν−λ

−max(2,ρ)
k ≤ C ′

∑
j≤k

λ
−max(2,ρ)
j , (6.13)

with C ′ := L2 max(2,ρ)/ν−/(1− L−1).
The first term to handle is now (using (6.12)):

A1B3 = (k∗t − 1)
∑
i<k∗t

λ−ρ−2
i ≤ (k∗t − 1)λ

−max(2,ρ)
k∗t−1

∑
i<k∗t

λ
−min(2,ρ)
i

≤ C
(∑
i<k∗t

λ−2
i

)(∑
i<k∗t

λ−ρi
)

= CB1A3.
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For the second term we clearly have A2B4 = A4B2. The third term (using
(6.13) and the definition of k∗t ) is bounded as:

B3A2 = (k∗t − 1)

D∑
i=k∗t

t3ρλ2ρ−2
i ≤ C ′tρλmax(2,ρ)

k∗t

∑
i<k∗t

λ
−max(2,ρ)
i

D∑
i=k∗t

t2ρλ2ρ−2
i

≤ C ′
∑
i<k∗t

t−(2−ρ)+λ
−max(2,ρ)
i

D∑
i=k∗t

t2ρλ2ρ−2
i

≤ C ′(
∑
i<k∗t

λ−ρi )
D∑

i=k∗t

t2ρλ2ρ−2
i = C ′A3B2.

For the fourth term we bound, using the definition of k∗t ,

A1B4 =
∑
i<k∗t

λ−2
i (tλi)

−ρ
D∑

i=k∗t

t3ρλ2ρ
i ≤

D∑
i=k∗t

t3ρλ2ρ
i (
∑
i<k∗t

λ−2
i ) = A4B1.

Hence, (6.11) is established if we choose π ≥ 32C ′.

6.2 Proof of Lemma 3.9

Let us introduce the spectral distribution function F (u) = #{i : λi ≥ u} for
u > 0. Then Assumption (S) gives

F (L1/ν−u) ≥ k ⇔ λk ≥ L1/ν−u⇒ λLk ≥ u⇔ F (u) ≥ Lk,

so that taking k = F (L1/ν−u) in the above display yields F (u) ≤ L
L−1(F (u)−

F (L1/ν−u)). Set again k∗t := inf{k ≥ 1 : λk < t−1} ∧ (D + 1) = F (1/t) + 1.
Under Assumption (R) we conclude for t ≥ t◦

δ−2Vt,λ =
D∑
i=1

(γ
(t)
i )2

≤ F (1/t) +
D∑

i=k∗t

(tλi)
−2(γ

(t)
i )2

≤ L

L− 1

∑
i:1/t≤λi<L1/ν−/t

(L−1/ν−tλi)
−2 +

D∑
i=k∗t

(tλi)
−2(γ

(t)
i )2

≤ L1+2/ν−

L− 1
t−2

D∑
i=1

λ−2
i (γ

(t)
i /β−)2
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= L1+2/ν−
L−1 β−2

− t−2δ−2Vt.

This establishes the first inequality. In the other direction, denote, as in the
proof of Prop. 3.8, j∗t := inf{i ≥ 1 : λi < ζ/t}∧(D+1), where ζ := min(ζ̃, 1)
with ζ̃ from (6.4). Under Assumption R3 we have

t−2δ−2Vt = t−2
D∑
i=1

λ−2
i (γ

(t)
i )2 ≤ ζ−2

∑
i<j∗t

(γ
(t)
i )2 + β2

+t
2ρ−2

D∑
i=j∗t

λ2ρ−2
i .

We concentrate on the second term. If D ≥ Lj∗t , we use the Karamata
relations (6.3), then (6.2), and 2ρ− 2 > ν+, to bound

D∑
i=j∗t

λ2ρ−2
i ≤

(L− 1)j∗t λ
2ρ−2
j∗t

1− L1−(2ρ−2)/ν+
≤ L2ρ/ν−

(1− L1−(2ρ−2)/ν+)
λ−2
j∗t

D∑
i=j∗t

λ2ρ
i .

If D < Lj∗t , then directly using (3.8):

D∑
i=j∗t

λ2ρ−2
i ≤ λ−2

Lj∗t

D∑
i=j∗t

λ2ρ
i ≤ L

2ρ/ν−λ−2
j∗t

D∑
i=j∗t

λ2ρ
i ,

which implies that the inequality derived in the first case still holds. Ad-
ditionally, since j∗t ≥ 2 from Lemma 6.2, we have λj∗t ≥ λL(j∗t−1) ≥
L−1/ν−λj∗t−1 ≥ L−1/ν−ζt−1, so that

t2ρ−2
D∑
i=j∗t

λ2ρ−2
i ≤ ζ−2L2(ρ+1)/ν−

(1−L1−(2ρ−2)/ν+ )

D∑
i=j∗t

(tλi)
2ρ ≤ ζ−2L2(ρ+1)/ν−

(1−L1−(2ρ−2)/ν+ )β2
−

D∑
i=j∗t

(γ
(t)
i )2.

Altogether, we obtain the second inequality:

t−2Vt ≤ ζ−2L2(ρ+1)/ν−

(1−L1−(2ρ−2)/ν+ )β2
−
Vt,λ.

6.3 Proof of Lemma 2.3

To prove this lemma we first recall a result on the concentration of weighted
chi-squared type random variables.

6.3 Lemma (Laurent and Massart, Lemma 1 in [23]). Let (Y1, . . . , YD) be
i.i.d. N (0, 1) variables. For nonnegative numbers a1, . . . , aD, write ‖a‖2`2 =∑D

i=1 a
2
i and ‖a‖∞ = max1≤i≤D ai. Set

Z = max
1≤k≤D

k∑
i=1

ai(Y
2
i − 1).
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Then the following inequalities hold for any x > 0:

P
(
Z > 2‖a‖`2

√
x+ 2‖a‖∞x) < e−x, (6.14)

P
(
Z < −2‖a‖`2

√
x
)
< e−x (6.15)

and also

P
(
Z > x) < exp

(
− 1

4

x2

‖a‖2`2 + ‖a‖∞x

)
,

P
(
Z < −x

)
< exp

(
− 1

4

x2

‖a‖2`2

)
.

Lemma 6.3 is stated in a slightly more general setting, since the orig-
inal result of Laurent and Massart [23], based itself on Lemma 8 in Birgé
and Massart [5], has no supremum in k for the definition of Z. The proof,
however, is based on the classical Chernov bound argument, which readily
carries over with a supremum: indeed, for t ≥ 0 and λ > 0,

P (Z ≥ t) = P
(

max
1≤k≤D

eλ
∑k
i=1 ai(Y

2
i −1) ≥ eλt

)
≤ e−λt E

[
eλ

∑D
i=1 ai(Y

2
i −1)

]
by Doob’s maximal inequality applied to the submartingale

(eλ
∑k
i=1 ai(Y

2
i −1))1≤k≤D.

Proof of Lemma 2.3. With Zk =
∑k

i=1 λ
−2
i ε2

i we obtain

R(µ, τ)2 ≥ δ2E
[ τ∑
i=1

λ−2
i ε2

i

]
≥ δ2E

[
1(τ ≥ k)Zk

]
.

Insert a = (λ−2
1 , . . . , λ−2

k ) and x := log(5/4) in (6.15) so that 2
√
x ≤ 0.95.

Then with probability larger than 1− e−x = 0.2, it holds that

Zk ≥ E [Zk]− ‖a‖`22
√
x ≥ 1

20

k∑
i=1

λ−2
i =: zk,

where we used E [Zk] =
∑D

i=1 ai ≥ ‖a‖`2 (observe that we could tighten
the latter inequality significantly under some additional assumptions on the
singular value decay). We now have

δ−2R(µ, τ)2 ≥ E [1(τ ≥ k)Zk]

≥ zkP ({τ ≥ k} ∩ {Zk ≥ zk})
≥ zk

(
1− P (τ < k)− P (Zk < zk)

)
≥ zk

(
0.2− P (τ < k)

)
.

We deduce from this that zk > 10δ−2R(µ, τ)2 implies P (τ ≥ k) ≤ 0.9.
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6.4 A total variation bound for non-central χ2-laws

6.4 Lemma. Let ϑ = (ϑ1, . . . , ϑK) ∈ RK and PϑK be the non-central χ2-
law of Xϑ =

∑K
k=1(ϑk + Zk)

2 with Zk independent and standard Gaussian.
Then, for ϑ, ϑ̄ ∈ RK we have

‖PϑK −Pϑ̄K‖TV ≤ e
|‖ϑ‖2 − ‖ϑ̄‖2|+

√
8/π|‖ϑ‖ − ‖ϑ̄‖|√

πK
,

For ‖ϑ‖+ ‖ϑ̄‖ ≥
√

8e
2π−
√
πe
≈ 5.248 this bound simplifies to

‖PϑK −Pϑ̄K‖TV ≤ 2
|‖ϑ‖2 − ‖ϑ̄‖2|√

K
.

Proof. Writing ϑ = (ϑk), Z = (Zk) ∈ Rk we see by orthogonal transforma-
tion that Xϑ = ‖ϑ‖2 + 2〈ϑ,Z〉+ ‖Z‖2 equals in law X ′ϑ = ‖ϑ‖2 + 2‖ϑ‖Z ′1 +
‖Z ′‖2 with Z ′1, . . . , Z

′
K ∼ N(0, 1) i.i.d. We can therefore first consider the

conditional law Qϑ
K(z) of PϑK given {Z ′1 = z}, which is nothing but the

χ2(K − 1)-distribution translated by ‖ϑ‖2 + 2‖ϑ‖z + z2.
If fp denotes the χ2(p)-density, then we have for any t > 0 that fp(x−t) >

fp(x) holds iff x ≥ xt = t
1−e−t/(p−2) . Thus, we obtain∫ ∞

0
|fp(x− t)− fp(x)| dx

= 2

∫ ∞
0

(
fp(x− t)− fp(x)

)
+
dx

=
21−p/2

Γ(p/2)

∫ ∞
xt

(
(1− t/x)p/2−1et/2 − 1

)
xp/2−1e−x/2dx

=
21−p/2

Γ(p/2)

∫ xt

xt−t
x(p−2)/2e−x/2dx

≤ 2(2−p)/2

Γ(p/2)
t(p− 2)(p−2)/2e−(p−2)/2,

knowing that x = p − 2 is the mode of fp. Stirling’s formula guarantees
Γ(x) ≥

√
2π/x(x/e)x for all x > 0 such that the last expression is always

bounded by t(πp)−1/2e. This yields

‖Qϑ
K(z)−Qϑ̄

K(z)‖TV ≤ e(πK)−1/2
∣∣‖ϑ‖2 − ‖ϑ̄‖2 + 2(‖ϑ‖ − ‖ϑ̄‖)z

∣∣.
Taking expectation with respect to Z ′1 ∼ N(0, 1) we conclude

‖PϑK −Pϑ̄K‖TV ≤ e(πK)−1/2
∣∣‖ϑ‖ − ‖ϑ̄‖∣∣E [∣∣‖ϑ‖+ ‖ϑ̄‖+ 2Z ′1

∣∣].
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Using the triangle inequality and E[|Z ′1|] =
√

2/π, the upper bound follows.

6.5 Maximal inequality for weighted χ2-variables with drift

6.5 Lemma. Work under Assumption A4. Then, for every ω > 0 and every
x > 0 we have with probability at least 1− C1e

−C2x, where C1, C2 > 0 only
depend on cλ and ω:

max
k≥1

k∑
i=1

λ−2
i (ε2

i − 1− ω) ≤ xλ−2
bxc∧D.

Proof. From Lemma 6.3 with ‖a‖p`p(k) =
∑k

i=1|ai|p for p ≥ 1 and the usual

modification for p = ∞ as well as ‖λ−2‖`p(k) ≤ ‖λ−2‖`∞(k)k
1/p for p = 1, 2

and ‖λ−2‖`1(k) ≥ c2
λkλ

−2
k = c2

λk‖λ−2‖`∞(k) by Assumption A4, we obtain
for any integer k ≥ 1

P
(

max
k=1,...,D

k∑
i=1

λ−2
i (ε2

i − 1− ω) > r
)

≤
D∑
k=1

P
( k∑
i=1

λ−2
i (ε2

i − 1− ω) > r
)

=
D∑
k=1

P
( k∑
i=1

λ−2
i (ε2

i − 1) > r + ω‖λ−2‖`1(k)

)
≤

D∑
k=1

P
( k∑
i=1

λ−2
i (ε2

i − 1) > r + ωc2
λk‖λ−2‖`∞(k)

)
≤

D∑
k=1

exp
(
− 1

4

(r + ωc2
λk‖λ−2‖`∞(k))

2

‖λ−2‖2
`2(k)

+ ‖λ−2‖`∞(k)(r + ωc2
λk‖λ−2‖`∞(k))

)
≤

D∑
k=1

exp
(
− 1

4

(r + ωc2
λk‖λ−2‖`∞(k))

2

k‖λ−2‖2`∞(k) + ‖λ−2‖`∞(k)(r + ωc2
λk‖λ−2‖`∞(k))

)
=

D∑
k=1

exp
(
− 1

4

(rλ2
k + c2

λωk)2

(1 + c2
λω)k + rλ2

k

)
≤

D∑
k=1

exp
(
−

c2
λω

4(1 + c2
λω)

(rλ2
k + c2

λωk)
)
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≤
k∗∑
k=1

exp
(
−

c2
λω

4(1 + c2
λω)

rλ2
k

)
+

D∑
k=k∗+1

exp
(
−

c2
λω

4(1 + c2
λω)

c2
λωk

)
≤ k∗ exp

(
−

c2
λωrλ

2
k∗

4(1 + c2
λω)

)
+

1

ec
4
λω

2/(4+4c2λω) − 1
exp

(
−

c4
λω

2k∗

4(1 + c2
λω)

)
for any k∗. The choice k∗ = bxc ∧ D and r = xλ−2

k∗ yields the asserted
deviation bound with suitable constants C1, C2 > 0.
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