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The method described here performs blind deconvolution of the beamforming output in the frequency domain.

To provide accurate blind deconvolution, sparsity priors are introduced with a smoothed 1 / 2 regularization term. As the mean of the noise in the power spectrum domain depends on its variance in the time domain, the proposed method includes a variance estimation step, which allows more robust blind deconvolution. Validation of the method on both simulated and real data, and of its performance, are compared with two well-known methods from the literature: the deconvolution approach for the mapping of acoustic sources, and sound density modeling.

Introduction

Blind deconvolution has a central role in the field of signal and image processing. It has many applications in communications [1], nondestructive testing [2], image processing [3, 4, 5], medical imaging processing [6], and in acoustics [7]. Moreover, in underwater acoustics, blind deconvolution methods have already been proposed to estimate simultaneously the transfer function of the environment and the unknown source signal in multipath underwater sound channels [8,9,10]. In many realistic scenarios, the blurring kernel (or the system) is imprecise or not known. Thus, the deconvolution problem becomes blind and underdetermined, and often requires additional hypotheses.

One possible additional hypothesis is the sparsity of the signal, which is an extensively studied topic in signal processing. The main idea is to find the 1 In this paper the terms "source localization" and "source mapping" are equivalent. These refer to the goal of the paper, which is to map noise sources inside a global vehicle (here a boat) during a pass-by experiment. regularization is applied to jet noise-source localization [33]. The sparse distribution of sources is also commonly used, as in [START_REF] Suzuki | L 1 generalized inverse beam-forming al-8 gorithm resolving coherent/incoherent, distributed and 9 multipole sources[END_REF]34,35,13,36,37,[START_REF] Chen | Sparse Representations for Multi-104 ple Measurement Vectors (MMV) in an Over-Complete 105 Dictionary[END_REF]. These methods were developed for fixed-source localization and have not currently been extended to moving sources.

The goal of the present paper is to propose a new blind deconvolution method that is applied to BF-MS results to improve moving-source mapping.

The strategy is to formulate the forward problem as an optimization problem, with constraints that are derived from the physical context. The proposed cost function contains several parts: (i) a data-fidelity term that accounts for the noise characteristics; (ii) the smoothed 1 / 2 ratio [18] that promotes sparsity in the moving-source locations; and (iii) the knowledge of some physical properties of the sources and the system, and of the variance noise, introduced through indicator functions.

Observation model

Beamforming for moving sources

Beamforming for moving sources compensates for the Doppler effect and back-propagates the pressures measured by the M sensor array to a calculation grid of N points, which correspond to the possible source locations. We consider the classical case of pass-by experiments, in the far-field, with sources that share the same global movement and have low

Mach numbers,

--→ M a 1. For these conditions, some assumptions can be made over short time intervals of duration T , which are referred to as snapshots [20], whereby:

1) The sources are in fixed positions;
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2) The Doppler effect is negligible at the frequen- 
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This defines the vectors:

58 Pk = (p k 1 ) , (p k 2 ) , . . . , (p k T ) ∈ R M T , Pk = ( pk 1 ) , ( pk 2 ) , . . . , ( pk T ) ∈ R M T , Řk = (ř k 1 ) , (ř k 2 ) , . . . , (ř k T ) ∈ R M T ,
where • denotes the transpose.
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We now consider the pressures measured in the 64

P k = (p k 1 ) , (p k 2 ) , . . . , (p k F ) ∈ C M F P k = (p k 1 ) , (p k 2 ) , . . . , (p k F ) ∈ C M F , R k = (r k 1 ) , (r k 2 ) , . . . , (r k F ) ∈ C M F
where for every f ∈ {1, . . The BF-MS computed for the n th calculation 2 point at the frequency ζ f ∈ F, and for the snapshot

3 k, b k f (n), is given by: b k f (n) = | w k f,n H p k f | 2 (2)
where • H is the conjugate transpose, and w k f,n is the 5 steering vector of length M between the M sensors 6 and the n th calculation point. The m th element 

7 w k f,n (m) of w k f,n is: w k f,n (m) =   M m =1 1 d k n,m 2   -1 exp(-jζ f d k n,m ) d k n,m ( 
(n) = 1 K K k=1 b k f (n). (4) 
Note that in the case considered, the receiver array is a linear array along the x-axis. Consequently, 

35 b f = A f q f + z f (5) 
where A f ∈ R N ×N (Fig. 1, middle) is the array 36 transfer function matrix that contains the beam- 

37 forming point-spread functions. The (n, n ) ∈ 38 {1, . . . , N } 2 element a f (n, n ) of A f is: 39 a f (n, n ) = 1 K K k=1 M m=1 w k f,n (m) H exp(-jζ f d k n ,m ) d k n ,m 2 (6) z f ∈ R N is the measurement noise, and q f ∈ R N is
53 b f = h f * q f + z f (7) 
where and assumptions (H1) -(H3), we have:

h f ∈ R N is
68 b f (n) = 1 K K k=1 | w k f,n H p k f | 2 + | w k f,n H r k f | 2
(8) Using Equation (8), we assume in this paper that 69 the observation noise z f can be divided into two 70 terms:

71 z f = 1 K K k=1 w k f,n 2 σ 2 1 1 N + e f ( 9 
)
where • is the 2 -norm (which is also known as

1 the Euclidean norm), 1 1 N is a vector of ones of length 2 N
, and e f ∈ R N represents the remaining unknown 3 effects, where the amplitude of these remaining ef-4 fects is much lower than that of the variance σ 2 of 5 the Gaussian noise. Note that:

6 w k f,n 2 = M m=1 1 d k n,m 2 -1
Consequently, Equation ( 7) can be expressed as the

B = b 1 , b 2 , . . . , b F ∈ R N F , H = h 1 , h 2 , . . . , h F ∈ R N F , Q = q 1 , q 2 , . . . , q F ∈ R N F , δ = 1 K K k=1 M m=1 1 d k n,m 2 -1 , E = e 1 , e 2 , . . . , e F ∈ R N F ,
and the discrete-time convolution operator be-10 tween H and Q is defined as follows:

11 H Q = (h 1 * q 1 ) , (h 2 * q 2 ) , . . . , (h F * q F ) . 

Proposed method

Find ( H, Q, σ 2 ) ∈ argmin H∈R 2N F ,Q∈R 2N F ,σ 2 ∈R+ θ(H, Q, σ 2 ) (11) where: θ(H, Q, σ 2 ) = ψ(H, Q, σ 2 ) + ρ(H, Q, σ 2 ). (12)
The first term of Equation ( 12) can be split into two new terms

20 ψ(H, Q, σ 2 ) = φ(H, Q, σ 2 ) + ϕ(Q), (13) 
where φ :

R N F × R N F × R + → R is a data fidelity 21
term that is related to the observation model. In this 22 case, we choose the least-squares objective function,

23 i.e., 24 φ(H, Q, σ 2 ) = 1 2 H Q + σ 2 δ1 1 N F -B 2 . ( 14 
)
ϕ models a regularization function that accounts for 25 the sparsity of the solution. In the present paper,

26
we propose to use a new regularization function, the 27 smoothed 1 / 2 ratio, as proposed by [18]; i.e., for

28 every Q ∈ R N F , (λ, α, β, η) ∈ ]0, +∞[ 4 : 29 ϕ(Q) = λ log 1,α (Q) + β 2,η (Q) (15) with, 30 1,α (Q) = F f =1 N n=1 q f (n) 2 + α 2 -α , 2,η (Q) = F f =1 N n=1 q f (n) 2 + η 2 .
Note that empirically, the SOOT algorithm provides 31 better results if the condition β < η 2 /α is satisfied.

32

The second term of Equation ( 12), ρ : R N F ×R N F × 33 R + → R is a regularization term that is related to 34 some a-priori constraints on the solution. In the 35 following, we assume that ρ can be split into three 36 new terms that concern the three quantities to be 37 estimated:

38 ρ(H, Q, σ 2 ) = ρ 1 (H) + ρ 2 (Q) + ρ 3 (σ 2 )
where ρ 1 , ρ 2 and ρ 3 are (not necessarily smooth) x ∈ R N :

(x , x) = ψ(x)+(x-x ) ∇ψ(x)+ 1 2 (x-x ) U (x)(x-x ),
where U (x) ∈ R N ×N is a semidefinite positive matrix. Then, U (x) satisfies the majoration condition for ψ at x if (•, x) is a quadratic majorant of the function ψ at x; i.e., for every x ∈ R N ,

ψ(x ) ≤ (x , x).
A function ψ has a µ-Lipschitzian gradient on a convex subset C ∈ R N , with µ > 0, if for every 

(x, x ) ∈ C 2 , ∇ψ(x) -∇ψ(x ) ≤ µ x -x .
ν I N F G 1 (H l,i , Q l , σ 2,l ) ν I N F , (∀j ∈ {0, . . . , J l -1}) ν I N F G 2 (H l+1 , Q l,j , σ 2,l ) ν I N F , ν G 3 (H l+1 , Q l+1 , σ 2,l ) ν.

2.

Step-sizes (γ l,i 1 ) l∈N,0≤i≤I l -1 , (γ l,j 2 ) l∈N,0≤j≤J l -1 For every l ∈ N , let I l ∈ N * , J l ∈ N * . Let (γ l,i 1 ) 0≤i≤I l -1 , (γ l,j 2 ) 0≤j≤J l -1 , and γ l 3 be positive sequences. Initialize with H 0 ∈ dom(ρ 1 ), Q 0 ∈ dom(ρ 2 ), and σ 2,0 ∈ dom(ρ 3 ).

Iterations:

For l = 0, 1, . . .

                      Q l,0 = Q l , H l,0 = H l , For i = 0, . . . , I l -1 H l,i+1 = H l,i -γ l,i 1 G 1 (H l,i , Q l , σ 2,l ) -1 ∇ 1 ψ(H l,i , Q l , σ 2,l ) H l,i+1 = prox (γ l,i 1 ) -1 G1(H l,i ,Q l ,σ 2,l ),ρ1 ( H l,i+1 ) H l+1 = H l,I l For j = 0, . . . , J l -1 Q l,j+1 = Q l,j -γ l,j 2 G 2 (H l+1 , Q l,j , σ 2,l ) -1 ∇ 2 ψ(H l+1 , Q l,j , σ 2,l ) Q l,j+1 = prox (γ l,j 2 ) -1 G2(H l+1 ,Q l,j ,σ 2,l ),ρ2 ( Q l,j+1 ) Q l+1 = Q l,J l σ 2,l = σ 2,l -γ l 3 G 3 (H l+1 , Q l+1 , σ 2,l ) -1 ∇ 3 ψ(H l+1 , Q l+1 , σ 2,l ) σ 2,l+1 = prox (γ l 3 ) -1 G3(H l+1 ,Q l+1 ,σ 2,l ),ρ3 σ 2,l Proposition 2 For every (H, Q, σ 2 ) ∈ R N F × R N F × R + , let: G 1 (H, Q, σ 2 ) = µ 1 (Q, σ 2 ) I N F , G 2 (H, Q, σ 2 ) = µ 2 (H, σ 2 ) + 9λ 8η 2 I N F + λ 1,α (Q) + β G 1,α (Q), G 3 (H, Q, σ 2 ) = µ 3 (H, Q),
where:

G 1,α (Q) = Diag (q f (n) 2 + α 2 ) -1/2 1≤f ≤F, 1≤n≤N , (16) 
and µ 1 (Q, σ 2 ), µ 2 (H, σ 2 ), and

µ 3 (H, Q) are the Lipschitz constants for ∇ 1 φ(•, Q, σ 2 ), ∇ 2 φ(H, •, σ 2 ), and ∇ 3 φ(H, Q, •), respectively. 3 Then, G 1 (H, Q, σ 2 ), G 2 (H, Q, σ 2 )), and 
G 3 (H, Q, σ 2 ) satisfy the majoration condition for ψ(•, Q, σ 2 ) at H, ψ(H, •, σ 2 ) at Q, and 
ψ(H, Q, •) at σ 2 , respectively.
To conclude, we have proposed a blind deconvolution method to apply to the BF-MS that imposes sparsity on the noise acoustic-source locations. This method is validated in the next section, and compared to the classical methods of DAMAS-MS and SDM, used in acoustics for moving-source deconvolution.

3 These Lipschitz constants are straightforward to derive since φ is a quadratic cost.

Results
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We consider synthetic and real data for the 

1 (0) X N (0) S 1 (0) S 2 (0) 5m 20m v X 1 (D) X N (D) S 1 (D) S 2 (D) • • • • • • • 21 hydrophones 10m 10m
Figure 2: Simulated configuration of a pass-by experiment. Black, source S 1 ; green, source S 2 ; red, calculation grid; blue arrow, global movement of the sources. autospectra of sources Q is sparse; moreover, it is limited in amplitude. Then, one natural choice for ρ 2 is the indicator function of the hypercube [q min , q max ] N F , where q min (resp. q max ) is the lower (resp., upper) boundary of Q. In practice, we choose q min as 0, which leads to a nonnegative constraint on the source power variables, and q max is the maximum value of B. 

l if Q l -Q l-1 ≤ √ N F × 10 -6 .

Synthetic data

The simulated configuration is presented in Fig- 

SNR (dB)

0 1 2 3 ℓ1(Q-Q) ℓ1(Q)
Figure 3: Comparison of the results for input data without noise and for three different signal-to-noise ratios (SNR) ∈ {-10, -5, 0} dB.

1 -norm (Fig. 3, bottom) between the real Q and 52 the estimated Q. It demonstrates that the method data without noise and for a SNR of -10 dB. Figure 4 and Figure 5 show the results for the DAMAS-MS, SDM, original SOOT, and NR-SOOT algorithms at frequencies of 1400 Hz and 770 Hz, respectively.

In these Figures, the green We now turn our attention to the case at the low frequency 770 Hz (Fig. 5), for which only the source S 1 exists. In this case, DAMAS-MS and SDM give unsatisfactory results, with a spatially extended source and false alarms even in the noise-free case for DAMAS-MS. The original SOOT gives satisfactory results without noise (Fig. 5a 3 ), although when the SNR decreases, the original SOOT algorithm creates false alarms (Fig. 5b 3 ), while the NR-SOOT algorithm shows excellent results in terms of position and amplitude (Fig. 5b 3 ). The NR-SOOT algorithm is robust against noise. In the following, for the sake of simplicity, and as it always provides the best results, vol. 330, no. 24, pp. 5835-5851, November 21, 2011.
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[13] N. Chu, J. Picheral, A. Mohammad-Djafari, and N.

12 Gac, "A robust super-resolution approach with sparsity 13 constraint in acoustic imaging", Applied Acoustics, vol. 
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 1 Figure 1: Modeling of the forward problem

40 cies

 40 and speeds of interest (i.e., it does not 41 exceed the frequency resolution defined for the 42 localization results).43 Under these assumptions, BF-MS can be imple-44 mented in a simple way in the frequency domain. 45 The measured acoustic pressures are temporally 46 sliced into K snapshots that are indexed by k. The 47 calculation grid of N points is defined for the snap-48 shot k using the a-priori known global trajectory of 49 the vehicle. Note that this grid moves according to 50 this trajectory.

60 frequency domain between ζ 1

 1 and ζ F Hz, which is 61 related to a vector F = [ζ 1 , . . . , ζ F ] ∈ R F . We 62 define the Fourier transforms of Pk , Pk and Řk for 63 each snapshot k, as following:

  3) where j is the square root of -1, and d k n,m is the 9 distance between the m th sensor and the n th calcu-10 lation point during the snapshot k. We then define 11 the vector b f ∈ R N with its n th element b f (n) as 12 the estimate of the BF-MS output for the n th cal-13 culation point, through averaging over all of the K 14 snapshots; i.e., b f

17 BF-

 17 MS is performed along the x dimension, and the 18 calculation grid is a one-dimension vector of length 19 N along x. For more details on these computations, 20 we refer the reader to[START_REF] Oudompheng | Passive 108 synthetic aperture array to improve noise mapping of a 109 moving ship[END_REF][START_REF] Oudompheng | Localisation et contribution de 112 sources acoustiques de navire au passage par traitement 113 d'antenne réduite[END_REF]. 21 3.2. Inverse problem formulation 22 We set the following assumptions: 23 (H1) : The sources are random variables that are 24 mutually independent and stationary; 25 (H2) : The number M of the sensors is greater than 26 the number N s of the sources (i.e., M > N s ), and these N s sources are sparsely distributed 28 on the calculation grid; 29 (H3) : The noise components are mutually independent, and independent of the sources. Using the expression of the BF-MS, and assuming 32 that the sources are located at the N points of the 33 calculation grid, it is possible to express the BF-MS 34 output at a given frequency ζ f , b f ∈ R N , by:

40 the autospectra of the possible sources located at 41 the

 4041 N calculation points (Fig. 1, right), which are 42 the unknowns to be estimated. This expression is 43 frequently used in deconvolution [20, 27, 31, 41], al-44 though it needs the knowledge of matrix A f related 45 to the environment and to the array to perform the 46 deconvolution. Nowadays, some research projects 47 are focused on uncertain cases with partially known 48 or unknown ocean environments and experimen-49 tal configurations [42]. Consequently, when A f is 50 unknown, we propose in this paper to formulate 51 the BF-MS output at the frequency ζ f as a blind 52 deconvolution problem:

12 4. 1 .

 121 Criterion to be minimized 13 The purpose of this study is to identify (H, Q, σ 2 ) 14 from B through Equation (10), which leads to an 15 inverse problem. To solve this, we propose the 16 following optimization problem:

48 U 50 ρ

 4850 Then, for every x ∈ C, a quadratic majorant of ψ at x is easily obtained taking U (x) = µ I N , where I N is the identity matrix of R N ×N . The second optimization principle is the definition of the proximity operator of a proper, lower semicontinuous, convex function, relative to the metric induced by a symmetric positive definite matrix, which is defined in [48] as follows: Definition 2 Let ρ : R N →] -∞, +∞] be a proper, 47 lower semicontinuous, and convex function, let ∈ R N ×N be a symmetric positive definite ma-49 trix, and let x ∈ R N . The proximity operator of at x relative to the metric induced by U is the 51 unique minimizer of ρ + 1 2 (• -x) U (• -x), and it 52 is denoted by prox U,ρ (x). If U is equal to I N , then 53 prox ρ := prox I N ,ρ is the proximity operator origi-54 nally defined in [50]. 55 The convergence property of the NR-SOOT al-56 gorithm can be derived from the general results 57 established in [44]: 58 Proposition 1 Let Q l l∈N , H l l∈N and 59 σ 2,l l∈N be sequences generated by Algorithm 60 1. Assume that: 61 1. There exists (ν, ν) ∈]0, +∞[ 2 such that, for all 62 l ∈ N, 63 (∀i ∈ {0, . . . , I l -1})

64 and (γ l 3 )

 3 l∈N are chosen in the interval [γ, 2 -65 γ] where γ and γ are some given positive real 66 constants. 67 3. ρ is a semi-algebraic function. 2 68Then, the sequence (H l , Q l , σ 2,l ) l∈N converges to the69 critical point ( H, Q, σ 2 ) of Equation (11). Moreover, 70 θ(H l , Q l , σ 2,l ) l∈N is a nonincreasing sequence that 71 converges to θ( H, Q, σ 2 ).72 In NR-SOOT algorithm 1, ∇ 1 , ∇ 2 , and ∇ 3 are the 73 partial gradients of ψ with respect to the variables 74 H, Q, and σ 2 . G 1 , G 2 , and G 3 are the semidefi-75 nite positive matrix used to build the majorizing 76 approximations of ψ with respect to H, Q, and σ 2 , 77 and their expressions are given by the following 78 proposition, as established in [18]: Algorithm 1 The NR-SOOT algorithm.
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  method validation. The synthetic data allow the 20 use of quantitative indicators, whereas real data 21 only provide subjective results. For both cases, 22 we perform comparative evaluation with the stan-23 dard algorithms DAMAS-MS and SDM. In prac-24 tice, the kernel blur related to the array trans-25 fer function has finite energy, and thus ρ 1 can 26 be chosen as an indicator function of set C = 27 H ∈ [h min , h max ] N F | H ≤ κ (equal to 0 if H ∈ 28 C, and +∞ otherwise), where κ > 0, and h min 29 and h max are the minimum and maximum values 30 of H, respectively. In the real data case, we choose 31 h min = 0 and h max = 1. As mentioned before, the

  Finally, the function ρ 3 related to the constraint on the noise variance is equal to the indicator function of the interval [σ 2 min , σ 2 max ], where σ 2 min = 0 and σ 2 max = 1. Note that the proximity operators can be easily explicitly expressed (see Appendix). The NR-SOOT algorithm with the penalty smoothed 1 / 2 function and the classical DAMAS-MS and SDM algorithms are applied to the BF-MS result. For every l ∈ N, the number of inner-loops are fixed as I l = 1 and J l = 100. The NR-SOOT algorithm is launched on 5000 iterations, and it can stop earlier at iteration

ure 2 .

 2 Here, we consider two sources: a random broadband source located at S 1 = (-4 m, 0 m, 0 m) (Fig. 2, black) and a sum of 3 sine functions at frequencies 1200 Hz, 1400 Hz, and 1800 Hz located at S 2 = (1 m, 0 m, 0 m) (Fig. 2, green), in the coordinate system where the origin is the center of the moving calculation grid all the time. The sources are moving jointly, and they follow a linear trajectory of length 20 m at constant speed v = 2 m/s. A linear antenna of 21 hydrophones that are equally spaced (with an inter-sensor distance of 0.5 m) records the propagated acoustic signals over D = 10 s. Zeromean white Gaussian noise is added to the recorded signals. To perform BF-MS, the moving calculation grid X n (t), ∀n ∈ {1, . . . , N } has a length of 20 m and contains N = 101 points. Concerning the initialization of the methods; Q 0 is the BF-MS output B. The initialization of the blur H 0 for the SOOT and NR-SOOT algorithms is a centered Gaussian filter, such that H 0 ∈ C. The regularization parameters of SDM, and (λ, α, β, η) ∈ ]0, +∞[ 4 (depending on the SOOT or NR-SOOT algorithms) are empirically adjusted, although it can be noted that the method is not too sensitive to their initialization.

Figure 3

 3 Figure 3 summarizes the quantitative results in terms of reconstruction error Q. The relative error is defined with the 2 -norm (Fig. 3, top) and

  lines (a 1 ,b 1 ) represent the theoretical sources to estimate (in terms of position and amplitude), the magenta lines represent the BF-MS results, which are the starting points of the DAMAS-MS, SDM, original SOOT, and NR-SOOT algorithms. In Figure 4 and Figure 5, the results obtained by DAMAS-MS are in greenishblue, those of SDM are in black (a 2 ,b 2 ), those of original SOOT are in red, and those of NR-SOOT are in blue (a 3 ,b 3 ). At the frequency of 1400 Hz (Fig. 4), for which both sources exist, for the case without noise on the recorded data (Fig. 4a) both the original SOOT and the NR-SOOT algorithms detect the source positions accurately. DAMAS-MS gives some false alarms at x = -3 m and x = 2.5 m. These false sources have small amplitudes, but they are a real problem because the number of sources is generally unknown. SDM locates two sources, but the amplitude estimation is not satisfactory and these sources are spread in the space. For the case of a SNR of -10 dB, DAMAS-MS does not succeed at all, and it shows several false alarms with significant amplitudes. With the SDM method, there is one false alarm around x = -1 m, and the amplitudes are not correct. The original SOOT algorithm gives good results, although there are two false alarms around x = -9 m and x = 9 m. In contrast, the NR-SOOT algorithm gives perfect results in terms of localization and source amplitude estimation.

  Figure 4: Comparison of the results at the frequency of 1400 Hz, without noise (a), and with SNR of -10 dB (b).

Figure 8 ,

 8 Figure 8, which are related to the autospectrum of 64

1vides the best performance compared to the three 8 other methods. 9 Figure 6 Figure 6 :8

 966 Figure6shows the computational time (in min-

39 This 40 SOOT, that is an extension of the SOOT algorithm 41 [

 394041 paper proposes a new method, known as NR-18], for moving-source localization based on blind 42 deconvolution in underwater acoustic data. As the 43 number of sources is small enough and they do 44 not spread spatially, its autospectrum has a sparse 45 representation, and it is possible to obtain more [10] S.-H. Abadi, H.-C. Song, and D.-R. Dowling, "Broad-1 band sparse-array blind deconvolution using frequency-2 difference beamforming", The Journal of the Acoustical 3 Society of America, 132(5), 3018-3029, 2012. 4 [11] A. Pereira, "Acoustic imaging in enclosed spaces", Phd 5 thesis, Laboratoire de Vibro-acoustique , INSA Lyon,

  ] A. Benichoux, E. Vincent, and R. Gribonval, " A fun-16 damental pitfall in blind deconvolution with sparse and 17 shift-invariant priors," in Proc. Int. Conf. on Acoustics,

	14
	76, pp. 197-208, Feb. 2014.
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[14

Semi-algebraicity is a property satisfied by a wide class of functions, which means that their graph is a finite union of sets defined by a finite number of polynomial inequalities.

Jul. 1996.

following nonlinear problem in the standard form: 

62 which can be easily computed.