
HAL Id: hal-01426251
https://hal.science/hal-01426251

Submitted on 4 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Noise-Robust Method with Smoothed L1/L 2
Regularization for Sparse Moving-Source Mapping

Mai Quyen I Pham, Benoit I Oudompheng, Jerome I. Mars, Barbara Nicolas

To cite this version:
Mai Quyen I Pham, Benoit I Oudompheng, Jerome I. Mars, Barbara Nicolas. A Noise-Robust Method
with Smoothed L1/L 2 Regularization for Sparse Moving-Source Mapping. Signal Processing, 2016,
135 (June 2017), pp.96-106. �10.1016/j.sigpro.2016.12.022�. �hal-01426251�

https://hal.science/hal-01426251
https://hal.archives-ouvertes.fr


A Noise-Robust Method with Smoothed `1/`2 Regularization for Sparse
Moving-Source Mapping

Mai Quyen Phama,∗, Benoit Oudomphenga,b, Jérôme I. Marsa, Barbara Nicolasa,c
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Abstract

The method described here performs blind deconvolution of the beamforming output in the frequency domain.
To provide accurate blind deconvolution, sparsity priors are introduced with a smoothed `1/`2 regularization
term. As the mean of the noise in the power spectrum domain depends on its variance in the time domain,
the proposed method includes a variance estimation step, which allows more robust blind deconvolution.
Validation of the method on both simulated and real data, and of its performance, are compared with two
well-known methods from the literature: the deconvolution approach for the mapping of acoustic sources,
and sound density modeling.

Keywords: Smoothed `1/`2 regularization, Sparse representation, Proximal forward-backward, Acoustic
moving-source localization, Beamforming blind deconvolution, Robustness algorithms.

1. Introduction1

Blind deconvolution has a central role in the field2

of signal and image processing. It has many applica-3

tions in communications [1], nondestructive testing4

[2], image processing [3, 4, 5], medical imaging pro-5

cessing [6], and in acoustics [7]. Moreover, in under-6

water acoustics, blind deconvolution methods have7

already been proposed to estimate simultaneously8

the transfer function of the environment and the un-9

known source signal in multipath underwater sound10

channels [8, 9, 10]. In many realistic scenarios, the11

blurring kernel (or the system) is imprecise or not12

known. Thus, the deconvolution problem becomes13

blind and underdetermined, and often requires ad-14

ditional hypotheses.15

One possible additional hypothesis is the sparsity16

of the signal, which is an extensively studied topic17

in signal processing. The main idea is to find the18
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most compact representation of a signal that con-19

sists of only a few nonzero elements. In acoustic20

signal processing, sparsity can be introduced either21

in the system or the signal domain (input). In the22

experimental context of this paper, the goal is to per-23

form source mapping in a moving-source context1.24

The measurements are the pressures recorded on a25

horizontal line array during the pass-by experiment,26

and the signal of interest is the source locations27

inside the global vehicle. The positions of sources28

can be considered as sparsely distributed on a cal-29

culation grid. The question is then which measure30

can be used to evaluate the sparsity of a signal? In31

[11], Pereira used `22-norm as a penalty to stabilize32

inverse problem solutions, which can be achieved33

using an adapted Tikhonov regularization method.34

However this penalty is not adapted for the consid-35

ered case of sparse source positions. An `1-norm is36

popular to restore the sparsity of the solution, as37

proposed in [12, 13]. However, in [14], Benichoux et38

al. showed that the use of the `1 norm suffers from39

1In this paper the terms ”source localization” and ”source
mapping” are equivalent. These refer to the goal of the paper,
which is to map noise sources inside a global vehicle (here a
boat) during a pass-by experiment.
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scaling and shift ambiguities due to the nonlinear1

relation between the blurring kernel and the signal,2

as also discussed in [15, 16]. Felix et al. extended3

this result for the case of `p, (p < 1)-norm in [17].4

In particular, both of these articles showed that us-5

ing the `1/`2 function can overcome this difficulty.6

However, the `1/`2 function creates some difficulties7

when solving the nonconvex and nonsmooth mini-8

mization problems that prevent the use of such a9

penalty term in current restoration methods. In the10

present paper, we propose to use the smoothed `1/`211

ratio mentioned in [18] as a penalty. This penalty12

also overcomes the scaling and shift-ambiguity is-13

sues. Moreover, this ratio can be used to force the14

sparse representation of the signal in a blind de-15

convolution of moving-source mapping. Note that16

this is a different problem from classical blind de-17

convolution in underwater acoustics, as we consider18

several sources in a nonmultipath environment. The19

problem is presented in the power spectrum domain.20

where the noise variance is a parameter that has21

to be estimated jointly with the autospectra and22

the blur. This fundamental problem was not taken23

into account with the original SOOT algorithm in24

[18], while it is explicitly dealt with in our proposed25

method.26

This paper is organized as follows. Following this27

Introduction, Section 2 is devoted to a review of the28

related framework for moving-source mapping us-29

ing deconvolution. Section 3 presents the proposed30

forward model, and Section 4 describes the mini-31

mization problem, the proposed algorithm, and some32

mathematical tools that are essential to this method-33

ology. The performance of the proposed method34

is assessed in Section 5, where we detail the cho-35

sen optimization criteria and provide comparisons36

with two methods: the deconvolution approach for37

the mapping of acoustic sources (DAMAS-MS) and38

the sound density modeling (SDM) methods. The39

proposed methodology is first evaluated on realistic40

synthetic data, and then it is applied to real data41

recorded in Lake Castillon (Verdon Gorges, France).42

The conclusions and perspectives are drawn up in43

Section 6.44

2. Related work45

In this section, we briefly present the classical46

methods that have been developed for acoustic-47

source localization.48

Many methods have been developed to solve this49

problem based on array processing. The most clas-50

sical one is beamforming [19], which has been exten-51

sively used due to its robustness against noise and52

environmental mismatch. However, classical beam-53

forming cannot be used for pass-by experiments,54

where the ’vehicle’ is moving and the goal is to map55

the different acoustic noise sources in the vehicle.56

Here instead, source mapping is achieved by the ex-57

tension to beamforming for moving sources (BF-MS)58

[20].59

Nevertheless, the spatial resolution of BF-MS is60

limited, as the image of a point source is the array61

transfer function, which is comprised of a main lobe62

and secondary lobes. Consequently, many improve-63

ments have been proposed to overcome this problem,64

including a hardware strategy to reduce the side-65

lobe levels, where the resolution of the main lobes is66

through optimization of the antenna geometry. In67

particular, several optimizations of the sensor posi-68

tions of linear antennas have been proposed through69

the use of pseudo-random distributions [21, 22, 23].70

Furthermore, a numerical strategy classically uses71

the weighting coefficients, which shade the array72

aperture and thus taper the side lobes, and as a con-73

sequence, also enlarge the main lobe [24]. Another74

common approach is to use deconvolution methods.75

Recently, Sijtsma proposed an extended version of76

the deconvolution method CLEAN [25, 26] for mov-77

ing sources, which is known as CLEAN-SC (i.e.,78

CLEAN based on spatial-source coherence) [27].79

This method follows an approach similar to the80

matching pursuit method [28]. CLEAN-SC pro-81

vides satisfactory results for high signal-to-noise82

ratios (SNRs), but requires a-priori knowledge of83

the number of sources which is not always known84

in practical cases. Brooks and Humphreys devel-85

oped another approach, known as DAMAS [29], and86

its extensions [20, 30]. These algorithms use the87

iterative Gauss-Seidel method for solving the linear88

inverse problem under the nonnegative constraint89

on source powers. A particular extension was dedi-90

cated to moving sources, as DAMAS-MS [20], which91

improves moving-source mapping in the context of92

a high SNR. Another popular method that was also93

developed for moving sources is the SDM method94

of [31], which is based on a gradient-descent opti-95

mization technique. This represented the first use96

of optimization techniques with a noise prior and97

constraints on the signal. These two methods (i.e.,98

DAMAS-MS and SDM) will be used as the refer-99

ences for comparison with our proposed method.100

In the case of low SNRs, the problem is difficult101

to solve, and thus some other approaches need to102
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Figure 1: Modeling of the forward problem

be developed. In array processing, Swindlehurst1

and Kailath [32] proposed a first-order perturbation2

analysis of the multiple signal classification (MU-3

SIC) and root-MUSIC algorithms for various model4

errors. Another possibility is to include a regular-5

ization term to stabilize the solution. The Tikhonov6

regularization is applied to jet noise-source localiza-7

tion [33]. The sparse distribution of sources is also8

commonly used, as in [12, 34, 35, 13, 36, 37, 38].9

These methods were developed for fixed-source lo-10

calization and have not currently been extended to11

moving sources.12

The goal of the present paper is to propose a13

new blind deconvolution method that is applied to14

BF-MS results to improve moving-source mapping.15

The strategy is to formulate the forward prob-16

lem as an optimization problem, with constraints17

that are derived from the physical context. The18

proposed cost function contains several parts: (i) a19

data-fidelity term that accounts for the noise char-20

acteristics; (ii) the smoothed `1/`2 ratio [18] that21

promotes sparsity in the moving-source locations;22

and (iii) the knowledge of some physical properties23

of the sources and the system, and of the variance24

noise, introduced through indicator functions.25

3. Observation model26

3.1. Beamforming for moving sources27

Beamforming for moving sources compensates for28

the Doppler effect and back-propagates the pressures29

measured by the M sensor array to a calculation30

grid of N points, which correspond to the possible31

source locations. We consider the classical case of32

pass-by experiments, in the far-field, with sources33

that share the same global movement and have low34

Mach numbers, ‖
−−→
Ma‖ � 1. For these conditions,35

some assumptions can be made over short time36

intervals of duration T , which are referred to as37

snapshots [20], whereby:38

1) The sources are in fixed positions;39

2) The Doppler effect is negligible at the frequen-40

cies and speeds of interest (i.e., it does not41

exceed the frequency resolution defined for the42

localization results).43

Under these assumptions, BF-MS can be imple-44

mented in a simple way in the frequency domain.45

The measured acoustic pressures are temporally46

sliced into K snapshots that are indexed by k. The47

calculation grid of N points is defined for the snap-48

shot k using the a-priori known global trajectory of49

the vehicle. Note that this grid moves according to50

this trajectory.51

For the snapshot k, the pressures measured by52

these M sensors at time t ∈ [1, T ] are denoted as53

p̌kt ∈ RM , which can be divided into two parts:54

p̌kt = p̌
k
t + řkt (1)

in which p̌
k
t are the pressures measured by the M55

sensors at time t for the ideal case without noise,56

and řkt is an additive noise in the recording domain.57

This defines the vectors:58

P̌k =
[
(p̌k1)>, (p̌k2)>, . . . , (p̌kT )>

]> ∈ RMT ,

P̌
k

=
[
(p̌
k
1)>, (p̌

k
2)>, . . . , (p̌

k
T )>

]>
∈ RMT ,

Řk =
[
(řk1)>, (řk2)>, . . . , (řkT )>

]> ∈ RMT ,

where ·> denotes the transpose.59

We now consider the pressures measured in the60

frequency domain between ζ1 and ζF Hz, which is61

related to a vector F = [ζ1, . . . , ζF ] ∈ RF . We62

define the Fourier transforms of P̌k, P̌
k

and Řk for63

each snapshot k, as following:64

Pk =
[
(pk1)>, (pk2)>, . . . , (pkF )>

]> ∈ CMF

P
k

=
[
(pk1)>, (pk2)>, . . . , (pkF )>

]> ∈ CMF ,

Rk =
[
(rk1)>, (rk2)>, . . . , (rkF )>

]> ∈ CMF

where for every f ∈ {1, . . . , F}, pkf , pkf , and65

rkf are the vectors that contain the Fourier66

transform coefficients pkf (m), pkf (m), and rkf (m)67

of the vectors
[
p̌k1(m), p̌k2(m), . . . , p̌kT (m)

]>
,68 [

p̌
k
1(m), p̌

k
2(m), . . . , p̌

k
T (m)

]>
, and69 [

řk1(m), řk2(m), . . . , řkT (m)
]>

at the frequency70

ζf ∈ F (ζf is the f th element of vector F), for71
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every m ∈ {1, . . . , M}, respectively.1

The BF-MS computed for the nth calculation2

point at the frequency ζf ∈ F , and for the snapshot3

k, bkf (n), is given by:4

bkf (n) = |
(
wk
f,n

)H
pkf |2 (2)

where ·H is the conjugate transpose, and wk
f,n is the5

steering vector of length M between the M sensors6

and the nth calculation point. The mth element7

wkf,n(m) of wk
f,n is:8

wkf,n(m) =

 M∑
m′=1

(
1

dkn,m′

)2
−1 exp(−jζfdkn,m)

dkn,m

(3)
where j is the square root of -1, and dkn,m is the9

distance between the mth sensor and the nth calcu-10

lation point during the snapshot k. We then define11

the vector bf ∈ RN with its nth element bf (n) as12

the estimate of the BF-MS output for the nth cal-13

culation point, through averaging over all of the K14

snapshots; i.e.,15

bf (n) =
1

K

K∑
k=1

bkf (n). (4)

Note that in the case considered, the receiver array16

is a linear array along the x-axis. Consequently,17

BF-MS is performed along the x dimension, and the18

calculation grid is a one-dimension vector of length19

N along x. For more details on these computations,20

we refer the reader to [39, 40].21

3.2. Inverse problem formulation22

We set the following assumptions:23

(H1) : The sources are random variables that are24

mutually independent and stationary;25

(H2) : The number M of the sensors is greater than26

the number Ns of the sources (i.e., M > Ns),27

and these Ns sources are sparsely distributed28

on the calculation grid;29

(H3) : The noise components are mutually indepen-30

dent, and independent of the sources.31

Using the expression of the BF-MS, and assuming32

that the sources are located at the N points of the33

calculation grid, it is possible to express the BF-MS34

output at a given frequency ζf , bf ∈ RN , by:35

bf = Afqf + zf (5)

where Af ∈ RN×N (Fig. 1, middle) is the array36

transfer function matrix that contains the beam-37

forming point-spread functions. The (n, n′) ∈38

{1, . . . , N}2 element af (n, n′) of Af is:39

af (n, n′) =
1

K

K∑
k=1

∣∣∣∣∣
M∑
m=1

(
wkf,n(m)

)H exp(−jζfdkn′,m)

dkn′,m

∣∣∣∣∣
2

(6)
zf ∈ RN is the measurement noise, and qf ∈ RN is40

the autospectra of the possible sources located at41

the N calculation points (Fig. 1, right), which are42

the unknowns to be estimated. This expression is43

frequently used in deconvolution [20, 27, 31, 41], al-44

though it needs the knowledge of matrix Af related45

to the environment and to the array to perform the46

deconvolution. Nowadays, some research projects47

are focused on uncertain cases with partially known48

or unknown ocean environments and experimen-49

tal configurations [42]. Consequently, when Af is50

unknown, we propose in this paper to formulate51

the BF-MS output at the frequency ζf as a blind52

deconvolution problem:53

bf = hf ∗ qf + zf (7)

where hf ∈ RN is an unknown blur kernel, which54

needs to be estimated, as well as the autospectra55

of the sources. ∗ is a discrete-time convolution56

operator (with appropriate boundary processing).57

We now turn our attention to the term zf , which58

corresponds to the additional noise. In the literature,59

several methods have been proposed with zf as a60

Gaussian noise with zero mean (which is not adapted61

to the BF-MS signal). We propose to introduce the62

noise in the time recording domain and to model63

its transformation throught BF-MS. In acoustics,64

the noise components řkm,t in the time domain can65

commonly be considered to be Gaussian, with zero66

mean and variance σ2. From Equations (1) and (2),67

and assumptions (H1) - (H3), we have:68

bf (n) =
1

K

K∑
k=1

(
|
(
wk
f,n

)H
pkf |2 + |

(
wk
f,n

)H
rkf |2

)
(8)

Using Equation (8), we assume in this paper that69

the observation noise zf can be divided into two70

terms:71

zf =
1

K

(
K∑
k=1

‖wk
f,n‖2

)
σ211N + ef (9)

4



where ‖ · ‖ is the `2-norm (which is also known as1

the Euclidean norm), 11N is a vector of ones of length2

N , and ef ∈ RN represents the remaining unknown3

effects, where the amplitude of these remaining ef-4

fects is much lower than that of the variance σ2 of5

the Gaussian noise. Note that:6

‖wk
f,n‖2 =

(
M∑
m=1

(
1

dkn,m

)2
)−1

Consequently, Equation (7) can be expressed as the7

following nonlinear problem in the standard form:8

B = H ~ Q + σ2δ11NF + E (10)

where9

B =
[
b>1 , b>2 , . . . , b>F

]> ∈ RNF ,

H =
[
h
>
1 , h

>
2 , . . . , h

>
F

]>
∈ RNF ,

Q =
[
q>1 , q>2 , . . . , q>F

]> ∈ RNF ,

δ =
1

K

K∑
k=1

(
M∑
m=1

(
1

dkn,m

)2
)−1

,

E =
[
e>1 , e>2 , . . . , e>F

]> ∈ RNF ,

and the discrete-time convolution operator ~ be-10

tween H and Q is defined as follows:11

H~Q =
[
(h1∗q1)>, (h2∗q2)>, . . . , (hF ∗qF )>

]>
.

4. Proposed method12

4.1. Criterion to be minimized13

The purpose of this study is to identify (H,Q, σ2)14

from B through Equation (10), which leads to an15

inverse problem. To solve this, we propose the16

following optimization problem:17

Find (Ĥ, Q̂, σ̂2) ∈ argmin
H∈R2NF ,Q∈R2NF ,σ2∈R+

θ(H,Q, σ2)

(11)
where:18

θ(H,Q, σ2) = ψ(H,Q, σ2) + ρ(H,Q, σ2). (12)

The first term of Equation (12) can be split into two19

new terms20

ψ(H,Q, σ2) = φ(H,Q, σ2) + ϕ(Q), (13)

where φ : RNF × RNF × R+ → R is a data fidelity21

term that is related to the observation model. In this22

case, we choose the least-squares objective function,23

i.e.,24

φ(H,Q, σ2) =
1

2

∥∥H ~ Q + σ2δ11NF −B
∥∥2 . (14)

ϕ models a regularization function that accounts for25

the sparsity of the solution. In the present paper,26

we propose to use a new regularization function, the27

smoothed `1/`2 ratio, as proposed by [18]; i.e., for28

every Q ∈ RNF , (λ, α, β, η) ∈ ]0,+∞[
4
:29

ϕ(Q) = λ log

(
`1,α(Q) + β

`2,η(Q)

)
(15)

with,30

`1,α(Q) =

F∑
f=1

N∑
n=1

(√
qf (n)2 + α2 − α

)
,

`2,η(Q) =

√√√√ F∑
f=1

N∑
n=1

qf (n)2 + η2.

Note that empirically, the SOOT algorithm provides31

better results if the condition β < η2/α is satisfied.32

The second term of Equation (12), ρ : RNF ×RNF ×33

R+ → R is a regularization term that is related to34

some a-priori constraints on the solution. In the35

following, we assume that ρ can be split into three36

new terms that concern the three quantities to be37

estimated:38

ρ(H,Q, σ2) = ρ1(H) + ρ2(Q) + ρ3(σ2)

where ρ1, ρ2 and ρ3 are (not necessarily smooth)39

proper, lower semicontinuous, convex functions [49,40

Ch. 1], that are continuous on their domain, and41

which introduce the prior knowledge on the kernel42

blur (system), H, the source autospectra, Q, and43

the noise variance, σ2. Due to these properties, the44

problem can be addressed with the block coordi-45

nate variable metric forward-backward algorithm46

[44]. Moreover, in practice, H, Q and σ2 have dif-47

ferent properties, and this choice allows the a-priori48

information to be taken into account independently49

from the searched quantities.50

4.2. Proposed algorithm51

The objective here is to provide a numerical solu-52

tion to the optimization problem of Equation (12),53

5



which is a nonlinear blind deconvolution with three1

unknowns (H,Q, σ2). One class of popular solutions2

to solve this problem is the alternating minimiza-3

tion algorithm, which iteratively performs the three4

steps: (i) updating H given Q and σ2; (ii) updating5

Q given H and σ2; and (iii) updating σ2 given H6

and Q [43]. Furthermore, the criterion to minimize,7

which is formed as the sum of the smooth and non-8

smooth functions, can be addressed with a block9

alternating forward-backward method [44, 45]. This10

method combines explicitly the (forward) gradient11

step with respect to the smooth (not necessarily12

convex) functions and the proximal (backward) step13

with respect to the nonsmooth functions. The con-14

vergence of the algorithm can be accelerated using a15

majorize-minimize approach [46, 44, 47]. In this pa-16

per, we extend the smoothed one-over-two (SOOT)17

algorithm proposed in [18] by including a step for18

the noise variance estimation. This algorithm of19

noise-robust SOOT (NR-SOOT) is proposed, as pre-20

sented in Algorithm 1. As previously mentioned, the21

block-variable metric forward-backward algorithm22

combines two steps of the process that requires two23

optimization principles. We now recall the defini-24

tion of these: The first is related to the choice of a25

variable metric that relies upon the majorization-26

minimization properties [47]; i.e.,27

Definition 1 Let ψ : RN → R be a differentiable28

function. Let x ∈ RN . Let us define, for every29

x′ ∈ RN :30

%(x′, x) = ψ(x)+(x−x′)>∇ψ(x)+
1

2
(x−x′)>U(x)(x−x′),

where U(x) ∈ RN×N is a semidefinite positive ma-31

trix. Then, U(x) satisfies the majoration condi-32

tion for ψ at x if %(·, x) is a quadratic majorant33

of the function ψ at x; i.e., for every x′ ∈ RN ,34

ψ(x′) ≤ %(x′, x).35

A function ψ has a µ-Lipschitzian gradient on a36

convex subset C ∈ RN , with µ > 0, if for every37

(x, x′) ∈ C2, ‖∇ψ(x)−∇ψ(x′)‖ ≤ µ‖x−x′‖. Then,38

for every x ∈ C, a quadratic majorant of ψ at x is39

easily obtained taking U(x) = µ IN , where IN is the40

identity matrix of RN×N .41

The second optimization principle is the definition42

of the proximity operator of a proper, lower semi-43

continuous, convex function, relative to the metric44

induced by a symmetric positive definite matrix,45

which is defined in [48] as follows:46

Definition 2 Let ρ : RN →]−∞,+∞] be a proper,47

lower semicontinuous, and convex function, let48

U ∈ RN×N be a symmetric positive definite ma-49

trix, and let x ∈ RN . The proximity operator of50

ρ at x relative to the metric induced by U is the51

unique minimizer of ρ+ 1
2 (· − x)>U(· − x), and it52

is denoted by proxU,ρ(x). If U is equal to IN , then53

proxρ := proxIN ,ρ is the proximity operator origi-54

nally defined in [50].55

The convergence property of the NR-SOOT al-56

gorithm can be derived from the general results57

established in [44]:58

Proposition 1 Let
(
Ql
)
l∈N ,

(
Hl
)
l∈N and59 (

σ2,l
)
l∈N be sequences generated by Algorithm60

1. Assume that:61

1. There exists (ν, ν) ∈]0,+∞[2 such that, for all62

l ∈ N,63

(∀i ∈ {0, . . . , Il − 1})
ν INF �G1(Hl,i,Ql, σ2,l) � ν INF ,

(∀j ∈ {0, . . . , Jl − 1})
ν INF �G2(Hl+1,Ql,j , σ2,l) � ν INF ,

ν �G3(Hl+1,Ql+1, σ2,l) � ν.

2. Step-sizes (γl,i1 )l∈N,0≤i≤Il−1, (γl,j2 )l∈N,0≤j≤Jl−164

and (γl3)l∈N are chosen in the interval [γ, 2 −65

γ] where γ and γ are some given positive real66

constants.67

3. ρ is a semi-algebraic function.268

Then, the sequence (Hl,Ql, σ2,l)l∈N converges to the69

critical point (Ĥ, Q̂, σ̂2) of Equation (11). Moreover,70 (
θ(Hl,Ql, σ2,l)

)
l∈N is a nonincreasing sequence that71

converges to θ(Ĥ, Q̂, σ̂2).72

In NR-SOOT algorithm 1, ∇1,∇2, and∇3 are the73

partial gradients of ψ with respect to the variables74

H,Q, and σ2. G1, G2, and G3 are the semidefi-75

nite positive matrix used to build the majorizing76

approximations of ψ with respect to H, Q, and σ2,77

and their expressions are given by the following78

proposition, as established in [18]:79

2Semi-algebraicity is a property satisfied by a wide class
of functions, which means that their graph is a finite union
of sets defined by a finite number of polynomial inequalities.
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Algorithm 1 The NR-SOOT algorithm.

For every l ∈ N , let Il ∈ N∗, Jl ∈ N∗. Let (γl,i1 )0≤i≤Il−1, (γl,j2 )0≤j≤Jl−1, and γl3 be positive sequences.
Initialize with H0 ∈ dom(ρ1), Q0 ∈ dom(ρ2), and σ2,0 ∈ dom(ρ3).
Iterations:
For l = 0, 1, . . .

Ql,0 = Ql, Hl,0 = Hl,
For i = 0, . . . , Il − 1⌊

H̃l,i+1 = Hl,i − γl,i1 G1(Hl,i,Ql, σ2,l)−1∇1ψ(Hl,i,Ql, σ2,l)

Hl,i+1 = prox(γl,i1 )−1G1(Hl,i,Ql,σ2,l),ρ1
(H̃l,i+1)

Hl+1 = Hl,Il

For j = 0, . . . , Jl − 1⌊
Q̃l,j+1 = Ql,j − γl,j2 G2(Hl+1,Ql,j , σ2,l)−1∇2ψ(Hl+1,Ql,j , σ2,l)

Ql,j+1 = prox(γl,j2 )−1G2(Hl+1,Ql,j ,σ2,l),ρ2
(Q̃l,j+1)

Ql+1 = Ql,Jl

σ̃2,l = σ2,l − γl3G3(Hl+1,Ql+1, σ2,l)−1∇3ψ(Hl+1,Ql+1, σ2,l)
σ2,l+1 = prox(γl3)

−1G3(Hl+1,Ql+1,σ2,l),ρ3

(
σ̃2,l
)

Proposition 2 For every (H,Q, σ2) ∈ RNF ×1

RNF × R+, let:2

G1(H,Q, σ2) = µ1(Q, σ2) INF ,

G2(H,Q, σ2) =

(
µ2(H, σ2) +

9λ

8η2

)
INF

+
λ

`1,α(Q) + β
G`1,α(Q),

G3(H,Q, σ2) = µ3(H,Q),

where:3

G`1,α(Q) = Diag

((
(qf (n)2 + α2)−1/2

)
1≤f≤F, 1≤n≤N

)
,

(16)
and µ1(Q, σ2), µ2(H, σ2), and µ3(H,Q) are4

the Lipschitz constants for ∇1φ(·,Q, σ2),5

∇2φ(H, ·, σ2), and ∇3φ(H,Q, ·), respectively.36

Then, G1(H,Q, σ2), G2(H,Q, σ2)), and7

G3(H,Q, σ2) satisfy the majoration condition8

for ψ(·,Q, σ2) at H, ψ(H, ·, σ2) at Q, and9

ψ(H,Q, ·) at σ2, respectively.10

To conclude, we have proposed a blind deconvo-11

lution method to apply to the BF-MS that imposes12

sparsity on the noise acoustic-source locations. This13

method is validated in the next section, and com-14

pared to the classical methods of DAMAS-MS and15

SDM, used in acoustics for moving-source deconvo-16

lution.17

3These Lipschitz constants are straightforward to derive
since φ is a quadratic cost.

5. Results18

We consider synthetic and real data for the19

method validation. The synthetic data allow the20

use of quantitative indicators, whereas real data21

only provide subjective results. For both cases,22

we perform comparative evaluation with the stan-23

dard algorithms DAMAS-MS and SDM. In prac-24

tice, the kernel blur related to the array trans-25

fer function has finite energy, and thus ρ1 can26

be chosen as an indicator function of set C =27 {
H ∈ [hmin, hmax]NF | ‖H‖ ≤ κ

}
(equal to 0 if H ∈28

C, and +∞ otherwise), where κ > 0, and hmin29

and hmax are the minimum and maximum values30

of H, respectively. In the real data case, we choose31

hmin = 0 and hmax = 1. As mentioned before, the32

x

z y

X1(0) XN (0)

S1(0) S2(0)

5m

20m

v

X1(D) XN (D)

S1(D) S2(D)

• • • · · · •
21 hydrophones

10m

10m

Figure 2: Simulated configuration of a pass-by experiment.
Black, source S1; green, source S2; red, calculation grid; blue
arrow, global movement of the sources.
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autospectra of sources Q is sparse; moreover, it1

is limited in amplitude. Then, one natural choice2

for ρ2 is the indicator function of the hypercube3

[qmin, qmax]NF , where qmin (resp. qmax) is the lower4

(resp., upper) boundary of Q. In practice, we choose5

qmin as 0, which leads to a nonnegative constraint6

on the source power variables, and qmax is the max-7

imum value of B. Finally, the function ρ3 related8

to the constraint on the noise variance is equal to9

the indicator function of the interval [σ2
min, σ

2
max],10

where σ2
min = 0 and σ2

max = 1. Note that the prox-11

imity operators can be easily explicitly expressed12

(see Appendix).13

The NR-SOOT algorithm with the penalty14

smoothed `1/`2 function and the classical DAMAS-15

MS and SDM algorithms are applied to the BF-MS16

result. For every l ∈ N, the number of inner-loops17

are fixed as Il = 1 and Jl = 100. The NR-SOOT18

algorithm is launched on 5000 iterations, and it19

can stop earlier at iteration l if ‖Ql − Ql−1‖ ≤20 √
NF × 10−6.21

5.1. Synthetic data22

The simulated configuration is presented in Fig-23

ure 2. Here, we consider two sources: a random24

broadband source located at S1 = (−4m, 0m, 0m)25

(Fig. 2, black) and a sum of 3 sine functions at fre-26

quencies 1200Hz, 1400Hz, and 1800Hz located at27

S2 = (1m, 0m, 0m) (Fig. 2, green), in the coordi-28

nate system where the origin is the center of the29

moving calculation grid all the time. The sources are30

moving jointly, and they follow a linear trajectory of31

length 20m at constant speed v = 2m/s. A linear32

antenna of 21 hydrophones that are equally spaced33

(with an inter-sensor distance of 0.5m) records the34

propagated acoustic signals over D = 10 s. Zero-35

mean white Gaussian noise is added to the recorded36

signals. To perform BF-MS, the moving calculation37

grid Xn(t), ∀n ∈ {1, . . . , N} has a length of 20m38

and contains N = 101 points.39

Concerning the initialization of the methods; Q0
40

is the BF-MS output B. The initialization of the41

blur H0 for the SOOT and NR-SOOT algorithms is42

a centered Gaussian filter, such that H0 ∈ C. The43

regularization parameters of SDM, and (λ, α, β, η) ∈44

]0,+∞[4 (depending on the SOOT or NR-SOOT45

algorithms) are empirically adjusted, although it46

can be noted that the method is not too sensitive47

to their initialization.48

Figure 3 summarizes the quantitative results in49

terms of reconstruction error Q. The relative er-50

ror is defined with the `2-norm (Fig. 3, top) and51

-10 -5 0 +Inf

SNR (dB)

0

0.2

0.4

0.6

ℓ 2
(Q

−
Q̂
)

ℓ 2
(Q

)

DAMAS-MS
SDM
SOOT
NR-SOOT with smoothed ℓ1
NR-SOOT with smoothed ℓ1/ℓ2

-10 -5 0 +Inf

SNR (dB)

0

1

2

3

ℓ 1
(Q

−
Q̂
)

ℓ 1
(Q

)

Figure 3: Comparison of the results for input data without
noise and for three different signal-to-noise ratios (SNR)
∈ {−10, −5, 0} dB.

`1-norm (Fig. 3, bottom) between the real Q and52

the estimated Q̂. It demonstrates that the method53

can reconstruct accurately in terms of amplitude54

(observing `2-norm) and in terms of sparse source55

positions (observing `1-norm). From Figure 3, we56

observe that SDM performs better in terms of source57

localization sparsity than DAMAS-MS for the case58

considered (the `1-norm values of the residual error59

by SDM are always smaller than those by DAMAS-60

MS). However, the performance of SDM decreases61

significantly when the SNR decreases. The NR-62

SOOT method with `1,α as the penalty function,63

shown to compare `1,α with `1/`2 approach, gives64

satisfactory results in terms of sparsity of the source65

localization, but not in terms of amplitude recon-66

struction. This result confirms the conclusion of67

[41], which shows that `1,α should not be used in68

this case. The original SOOT provides very satis-69

fying results compared to DAMAS-MS and SDM.70

Its performances for cases of high SNR are similar71

to the proposed method NR-SOOT with smoothed72

`1/`2. Nevertheless, for the cases of low SNR, the73

NR-SOOT algorithm with smoothed `1/`2 is the74

only one that provides a satisfactory source localiza-75

tion estimation. To summarize, in all of these cases,76

the NR-SOOT algorithm with smoothed `1/`2 as77

the penalty function has the smallest error for the78

source localization estimation in terms of sparsity79

and amplitude. In the following, for the NR-SOOT80

method, we only perform it with the smoothed `1/`281

penalty function (and call it NR-SOOT).82

After this quantitative study, it is necessary to83

investigate the performance of these methods quali-84

tatively, directly on the localization maps for input85
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data without noise and for a SNR of -10 dB. Figure 41

and Figure 5 show the results for the DAMAS-MS,2

SDM, original SOOT, and NR-SOOT algorithms3

at frequencies of 1400Hz and 770Hz, respectively.4

In these Figures, the green lines (a1,b1) represent5

the theoretical sources to estimate (in terms of po-6

sition and amplitude), the magenta lines represent7

the BF-MS results, which are the starting points8

of the DAMAS-MS, SDM, original SOOT, and NR-9

SOOT algorithms. In Figure 4 and Figure 5, the10

results obtained by DAMAS-MS are in greenish-11

blue, those of SDM are in black (a2,b2), those of12

original SOOT are in red, and those of NR-SOOT13

are in blue (a3,b3).14

At the frequency of 1400Hz (Fig. 4), for which15

both sources exist, for the case without noise on16

the recorded data (Fig. 4a) both the original SOOT17

and the NR-SOOT algorithms detect the source18

positions accurately. DAMAS-MS gives some false19

alarms at x = −3m and x = 2.5m. These false20

sources have small amplitudes, but they are a real21

problem because the number of sources is gener-22

ally unknown. SDM locates two sources, but the23

amplitude estimation is not satisfactory and these24

sources are spread in the space. For the case of a25

SNR of -10 dB, DAMAS-MS does not succeed at26

all, and it shows several false alarms with significant27

amplitudes. With the SDM method, there is one28

false alarm around x = −1m, and the amplitudes29

are not correct. The original SOOT algorithm gives30

good results, although there are two false alarms31

around x = −9m and x = 9m. In contrast, the32

NR-SOOT algorithm gives perfect results in terms33

of localization and source amplitude estimation.34

We now turn our attention to the case at the35

low frequency 770Hz (Fig. 5), for which only the36

source S1 exists. In this case, DAMAS-MS and SDM37

give unsatisfactory results, with a spatially extended38

source and false alarms even in the noise-free case for39

DAMAS-MS. The original SOOT gives satisfactory40

results without noise (Fig. 5a3), although when the41

SNR decreases, the original SOOT algorithm creates42

false alarms (Fig. 5b3), while the NR-SOOT algo-43

rithm shows excellent results in terms of position and44

amplitude (Fig. 5b3). The NR-SOOT algorithm is45

robust against noise. In the following, for the sake of46

simplicity, and as it always provides the best results,47

we only consider the NR-SOOT algorithm for blind48

deconvolution of the two-dimensional illustrations.49

The two-dimensional localization maps are shown50

in Figure 7 (without noise) and Figure 8 (SNR of51

-10 dB), with each Figure showing the initial BF-MS52
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Figure 4: Comparison of the results at the frequency of
1400Hz, without noise (a), and with SNR of -10 dB (b).

and the results obtained by DAMAS-MS, SDM, orig-53

inal SOOT, and NR-SOOT. For the case without54

noise of Figure 7, all of the methods improve the55

BF-MS output, localize the two sources, and allow56

identification as one broadboand source and a sum-57

of-sine source. However, the results obtained using58

DAMAS-MS and SDM are not as good as those59

using the original SOOT or NR-SOOT algorithms,60

because the source localizations are spread over sev-61

eral x positions. Moreover, by studying the different62

zones indicated in the red ellipses in Figure 7 and63

Figure 8, which are related to the autospectrum of64

the sine source at the three frequencies of 1200Hz,65

1400Hz, and 1800Hz, some other conclusions can66

be drawn. The results obtained using the DAMAS-67

MS method are not performing well, as some noise68
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Figure 5: Comparison of the results at the frequency of
770Hz, without noise (a), and with SNR of -10 dB (b).

appears, as indicated by the red arrows in Figure 7b.1

For the case of a SNR of -10 dB (Fig. 8), DAMAS-2

MS, SDM do not identify the sources and give many3

false alarms. The original SOOT manages to es-4

timate a point source at the true source positions5

but also gives many false alarms. In contrast, the6

NR-SOOT algorithm still gives good results and pro-7

vides the best performance compared to the three8

other methods.9

Figure 6 shows the computational time (in min-10

utes) for the different methods and for different noise11

levels. The computational time corresponds to the12

time required to satisfy the stopping criterion, i.e.13

‖Ql −Ql−1‖ ≤
√
NF × 10−6, with the simulations14

performed on the same CPU. The SDM computa-15

tional cost is four-fold the SOOT and NR-SOOT16
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Figure 6: Computational times for input data without
noise and for three different signal-to-noise ratios, SNR
∈ {−10, −5, 0} dB.

computational costs. As SDM is an approach that17

is similar to the forward-backward method, these18

results confirm the performance of the proposed19

majorant. In all cases, DAMAS-MS is the fastest20

algorithm, but the computational costs for DAMAS-21

MS, SOOT and NR-SOOT are of the same order22

(from 1-2 min).23

To conclude, the NR-SOOT algorithms have bet-24

ter performances than the DAMAS-MS, SDM meth-25

ods in terms of localization, as the source S2 is26

spread over several x positions by DAMAS-MS and27

SDM, whereas the SOOT and the proposed NR-28

SOOT algorithm manage to estimate a point source29

at the true source position. Nevertheless, in term30

of robustness against noise, the NR-SOOT method31

is the only one that provides satisfactory results for32

low SNRs.33

5.2. Real data34

We finally compare the proposed NR-SOOT al-35

gorithm with the classical methods using real data.36

The experiment was conducted in January 201537

by DGA naval systems at Lake Castillon, a moun-38

tain lake in the French Alps with an average depth39

of 100m and a maximum width of 600m. This40

consisted of towing a 21-m-long scale model of a41

surface ship. The ship hull included two shakers, S142

and S2, that generated two point acoustic sources43

outside the hull: a sum of 3 sine functions at frequen-44

cies of 1200Hz, 1400Hz, and 1800Hz, located at45

x = −5.9m, and a random broadband source located46

at x = 2.3m. A linear antenna of nine hydrophones47

that were equally spaced by 0.5m recorded the prop-48

agated acoustic signals over D = 14.15 s for the49

source speed of v = 2m/s (Fig. 9). We also con-50

sider the same configuration with the source speed51

of v = 5m/s over D = 5.3 s. (Fig. 10). The coordi-52

nate system of the array was used to describe all of53
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the geometries, with the origin corresponding to the1

array center. The array was immersed at 10m in2

depth and was positioned at 2.50m from the closest3

point of approach in the y direction. The source4

trajectory was calculated using a tachymeter system5

on the idler pulley. The acquisition time considered6

for the array processing is sufficient, such that the7

ship model passed by entirely above the antenna.8

In these Figures, the zones indicated in the red el-9

lipses correspond to the estimated autospectrum of10

the sine source at the three frequencies of 1200Hz,11

1400Hz, and 1800Hz, and the red arrows show the12

remaining noise or the false alarms.13

First, we consider the results in the case of the14

source speed v = 2m/s (Fig. 9). The three meth-15

ods improve the BF-MS output and identify the16

sources. DAMAS-MS and NR-SOOT have better17

performances than SDM in terms of localization.18

However, for the result of the DAMAS-MS method,19

there are some false alarms that are indicated by20

the red arrows in Figure 9b.21

Secondly, we consider the case with the source speed22

v = 5m/s, for which the signal in the recording is23

more noisy. In this configuration, one new ‘natural’24

source appears at the wake of the ship (Fig. 9d,25

bottom left). Three methods identify three sources,26

whereby the sine source is better localized by the27

NR-SOOT algorithm than the other methods. Both28

the DAMAS-MS and SDM methods show many false29

alarms, which are indicated by the red arrows in30

Figure 10b, c. In particular, the localization of the31

‘natural’ source is only possible with the NR-SOOT32

algorithm. In conclusion, our results from this ex-33

periment remain true to our hypothesis, as well as34

our predictions. The results shown in Figure 9 and35

Figure 10 present the best results with perfect source36

location and improved robustness against noise for37

the NR-SOOT algorithm.38

6. Conclusions39

This paper proposes a new method, known as NR-40

SOOT, that is an extension of the SOOT algorithm41

[18], for moving-source localization based on blind42

deconvolution in underwater acoustic data. As the43

number of sources is small enough and they do44

not spread spatially, its autospectrum has a sparse45

representation, and it is possible to obtain more46

accurate results for blind deconvolution through a47

regularization function. The smooth approximation48

of `1/`2 shows very good performances in terms of49

localization and suppression of false alarms, and50

provides better results than DAMAS-MS and SDM,51

particularly for low SNRs.52

Appendix53

In this appendix, we give the explicit expressions54

of the proximity operators involved in the NR-SOOT55

algorithm. For every (H,Q, σ2) ∈ RNF ×RNF ×R+56

and γ ∈ ]0,+∞[, let G1, G2, and G3 be the majorant57

matrix of ψ at H, at Q, and at σ2, respectively, that58

are given by Proposition 2. Then59

1. prox(γ1)−1G1,ιC = ΠC ,60

2. prox(γ2)−1G2,ι[qmin,qmax]NF
= Π[qmin,qmax]NF ,61

3. prox(γ3)−1G3,ι[σ2
min

,σ2max]
= Π[σ2

min,σ
2
max]

,62

which can be easily computed.63
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[25] J. A. Högbom, “Aperture Synthesis with a Non-Regular55

Distribution of Interferometer Baselines”, Astron. As-56

trophys. Suppl., no. 15, pp. 417–426, 1974.57

[26] J. Tsao and B. D. Steinberg, “Reduction of sidelobe58

and speckle artifacts in microwave imaging: the CLEAN59

technique”, IEEE Trans. Signal Process, vol. 36, no. 4,60

pp. 543–556, Apr., 1988.61

[27] P. Sijtsma, “CLEAN based on spatial source coherence”,62

International Journal of Aeroacoustics, vol. 6, no. 4, pp.63

357–374, 2007.64

[28] S. G. Mallat and Z. Zhang, “ Matching Pursuits with65

Time-Frequency Dictionaries”, IEEE Trans. Signal Pro-66

cess, vol. 41, no. 12, pp. 3397–3415, December 1993.67

[29] T. F. Brooks, and W. M. Humphreys, “Deconvolution68

approach for the mapping of acoustic sources (DAMAS)69

determined from phased microphone arrays”, Sound70

and Vibration, vol. 294, pp. 856–879, 2006.71

[30] T. Yardibi, J. Li, P. Stoica, L. Cattafesta, “Sparsity72

constrained deconvolution approaches for acoustic source73

mapping”, JASA, vol. 123, no. 5, pp. 2631–2642, June74

2008.75
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(e) Blind deconvolution with NR-SOOT

Figure 7: Localization in the frequency-distance domain
obtained (in the case without noise). (a) Initial BF-MS. (b)
DAMAS-MS. (c) SDM. (d) original SOOT. (e) NR-SOOT
(the dynamic ranges shown are 15 dB).
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(e) Blind deconvolution with NR-SOOT

Figure 8: Localization in the frequency-distance domain ob-
tained (with SNR of -10 dB). (a) Initial BF-MS. (b) DAMAS-
MS. (c) SDM. (d) original SOOT. (e) NR-SOOT (the dynamic
ranges shown are 15 dB).
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(d) Blind deconvolution with NR-SOOT

Figure 9: Localization obtained in the frequency-distance
domain for the model ship with two artificial sources, traveling
at 2 m/s. (a) Initial BF-MS. (b) DAMAS-MS. (c) SDM. (d)
NR-SOOT (the dynamic ranges shown are 15 dB).
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(c) Deconvolution with SDM
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(d) Blind deconvolution with NR-SOOT

Figure 10: Localization obtained in the frequency-distance
domain for the model ship with two artificial sources, traveling
at 5 m/s. (a) Initial BF-MS. (b) DAMAS-MS. (c) SDM. (d)
NR-SOOT (the dynamic ranges shown are 15 dB).
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