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In this paper we consider an Ornstein-Uhlenbeck ( ) process (M (t)) t 0 whose parameters are determined by an external Markov process (X(t)) t 0 on a nite state space {1, . . . , d}; this process is usually referred to as Markov-modulated Ornstein-Uhlenbeck (or:

). We use stochastic integration theory to determine explicit expressions for the mean and variance of M (t). Then we establish a system of partial di erential equations ( s) for the Laplace transform of M (t) and the state X(t) of the background process, jointly for time epochs t = t 1 , . . . , t K . Then we use this to set up a recursion that yields all moments of M (t) and its stationary counterpart; we also nd an expression for the covariance between M (t) and M (t + u). We then establish a central limit theorem for M (t) for the situation that certain parameters of the underlying processes are scaled, in combination with the modulating Markov process being accelerated; interestingly, speci c scalings lead to drastically di erent limiting processes. We conclude the paper by considering the situation of a single Markov process modulating multiple processes.

Introduction

The Ornstein-Uhlenbeck ( ) process is a stationary Markov-Gauss process, with the additional feature that is eventually reverts to its long-term mean; see the seminal paper [START_REF]On the theory of Brownian motion[END_REF], as well as [START_REF]Weak convergence of Markov-modulated di usion processes with rapid switching[END_REF] for a historic account. Having originated from physics, by now the process has found widespread use in a broad range of other application domains: nance, population dynamics, climate modeling, etc. In addition, it plays an important role in queueing theory, as it can be seen as the limiting process of speci c classes of in nite-server queues under a certain scaling [START_REF]Stochastic Networks and Queues[END_REF]. The process is characterized by three parameters (which we call α, γ, and σ 2 throughout this paper), which relate to the process' mean, convergence speed towards the mean, and variance, respectively. The probabilistic properties of the process have been thoroughly studied. One of the key results is that its value at a given time t has a Normal distribution, with a mean and variance that can be expressed explicitly in terms of the parameters α, γ, and σ 2 of the underlying process; see for instance [START_REF]Weak convergence of Markov-modulated di usion processes with rapid switching[END_REF]Eqn. (2)]. In addition, various other quantities have been analyzed, such as the distribution of rst passage times or the maximum value attained in an interval of given length; see e.g. [START_REF] De Turck | Representations of the rst hitting time density of an Ornstein-Uhlenbeck process[END_REF] and references therein. The concept of regime switching (or: Markov modulation, as it is usually referred to in the operations research literature) has become increasingly important over the past decades. In regime switching, the parameters of the underlying stochastic process are determined by an external background process (or: modulating process), that is typically assumed to evolve independently of the stochastic process under consideration. Often the background process is assumed to be a Markov chain de ned on a nite state space, say {1, . . . , d}; in the context of Markov-modulated ( ) this means that when this Markov chain is in state i, the process locally behaves as a process with parameters α i , γ i , and σ 2 i .

Owing to its various attractive features, regime switching has become an increasingly popular concept.

In a broad spectrum of application domains it o ers a natural framework for modeling situations in which the stochastic process under study reacts to an autonomously evolving environment. In nance, for instance, one could identify the background process with the 'state of the economy', for instance as a two-state process (that is, alternating between a 'good' and a 'bad' state), to which e.g. asset prices react. Likewise, in wireless networks the concept can be used to model the channel conditions that vary in time, and to which users react.

In the operations research literature there is a sizable body of work on Markov-modulated queues, see e.g. the textbooks [4, Ch. XI] and [START_REF]Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach[END_REF], while Markov modulation has been intensively used in insurance and risk theory as well [START_REF]Ruin probabilities, 2nd edition[END_REF]. In the nancial economics literature, the use of regime switching dates back to at least the late 1980s [START_REF]Ordinary Di erential Equations[END_REF]; various speci c models have been considered since then, see for instance [START_REF]Regime switches in interest rates[END_REF][START_REF]An interest rate model with a Markovian mean-reverting level[END_REF][START_REF]On Markov-modulated exponential-a ne bond price formulae[END_REF].

In this paper we present a set of new results in the context of the analysis of . Here and in the sequel we let M (t) denote the position of the process at time t, whereas M denotes its stationary counterpart. In the rst place we derive explicit formulas for the mean and variance of M (t) and M , jointly with the state of the background process, relying on standard machinery from stochastic integration theory. In speci c special cases the resulting formulas simplify drastically (for instance when it is assumed that the background process starts o in equilibrium at time 0, or when the parameters γ i are assumed uniform across the states i ∈ {1, . . . , d}).

The second contribution concerns the derivation of a system of partial di erential equations for the Laplace transform of M (t); when equating the partial derivative with respect to time to 0, we obtain a system of ordinary di erential equations for the Laplace transform of M . This result is directly related to [START_REF]The stationary distributions of two classes of re ected Ornstein-Uhlenbeck processes[END_REF]Thm. 3.2], with the di erences being that there the focus is on just stationary behavior, and that the system considered there has the additional feature of re ection at a lower boundary (to avoid the process attaining negative values). We set up a recursive procedure that generates all moments of M (t); in each iteration a non-homogeneous system of di erential equations needs to be solved. This procedure complements the recursion for the moments of the steady-state quantity M , as presented in [START_REF]The stationary distributions of two classes of re ected Ornstein-Uhlenbeck processes[END_REF]Corollary 3.1] (in which each recursion step amounts to solving a system of linear equations). In addition, we also set up a system of partial di erential equations for the Laplace transform associated with the joint distribution of M (t 1 ), . . . , M (t K ), and determine the covariance Cov (M (t, t + u)). A third contribution concerns the behavior of the process under certain parameter scalings.

A rst scaling that we consider concerns speeding up the jumps of the background process by a factor N . Using the system of partial di erential equations that we derived earlier, it is shown that the limiting process, obtained by sending N → ∞, is an ordinary (that is, non-modulated) process, with parameters that are time averages of the individual α i , γ i , and σ 2 i .

A second regime that we consider scales the transition rates of the Markovian background process by N , while the α i and σ 2 i are in ated by a factor N h for some h > 0; the resulting process we call M [N,h] (t). We then center (subtract the mean, which is roughly proportional to N h ) and normalize M [N,h] (t), with the goal to establish a central limit theorem ( ). Interestingly, it depends on the value of h what the appropriate normalization is. If h < 1 the variance of M [N,h] (t) is roughly proportional to the 'scale' at which the modulated process operates, viz. N h , and as a consequence the normalization looks like N h/2 ; at an intuitive level, the timescale of the background process is so fast, that the process essentially looks like an process with time-averaged parameters. If, on the contrary, h > 1, then the variance of M [N,h] (t) grows like N 2h-1 , which is faster than N h ; as a consequence, the proper normalization looks like N h-1/2 ; in this case the variance that appears in the is directly related to the deviation matrix [START_REF]The deviation matrix of a continuous-time Markov chain[END_REF] associated with the background process. Importantly, we do not just prove Normality for a given value of t > 0, but rather weak convergence (at the process level, that is) to the solution of a speci c limiting stochastic di erential equation.

The last contribution focuses on the situation that a single Markovian background process modulates multiple processes. This, for instance, models the situation in which di erent asset prices react to the same 'external circumstances' (i.e., state of the economy), or the situation in which di erent users of a wireless network react to the same channel conditions. The probabilistic behavior of the system is captured through a system of partial di erential equations. It is also pointed out how the corresponding moments can be found.

Importantly, there is a strong similarity between the results presented in the framework of the present paper, and corresponding results for Markov-modulated in nite-server queues. In these systems the background process modulates an M/M/∞ queue, meaning that we consider an M/M/∞ queue of which the arrival rate and service rate are determined by the state of the background process [START_REF]M/M/∞ queues in semi-Markovian random environment[END_REF][START_REF]Markov Processes. Characterization and Convergence[END_REF]. For these systems, the counterparts of our results have been established: the mean and variance have been computed in e.g. [START_REF]Markov-modulated in nite-server queues with general service times[END_REF][START_REF]The M/M/∞ queue in a random environment[END_REF], (partial) di erential equations for the Laplace transform of M (t), as well as recursions for higher moments can be found in [START_REF]Analysis of Markov-modulated in nite-server queues in the central-limit regime. To appear in: Probability in the Engineering and Informational Sciences[END_REF][START_REF]Markov-modulated in nite-server queues with general service times[END_REF][START_REF]The M/M/∞ queue in a random environment[END_REF], whereas parameter scaling results are given in [START_REF]Analysis of Markov-modulated in nite-server queues in the central-limit regime. To appear in: Probability in the Engineering and Informational Sciences[END_REF][START_REF]Markov-modulated in nite-server queues with general service times[END_REF] and, for a slightly di erent model [START_REF]Time-scaling limits for Markov-modulated in nite-server queues[END_REF]. Roughly speaking, any property that can be handled explicitly for the Markov-modulated in nite-server queue can be explicitly addressed for as well, and vice versa. This paper is organized as follows. Section 2 de nes the model, and presents preliminary results. Then Section 3 deals with the system's transient behavior, in terms of a recursive scheme that yields all moments of M (t), with explicit expressions for the mean and variance. Section 4 presents a system of partial di erential equations for the Laplace transform of M (t) (which becomes a system of ordinary di erential equations in steady state). In Section 5, the parameter scalings mentioned above are applied (resulting in a process M (N ) (t)), leading to a for an appropriately centered and normalized version of M (N ) (t). The last section considers the setting of a single background process modulating multiple processes.

Model and preliminaries

We start by giving a detailed model description of the Markov-modulated Ornstein-Uhlenbeck ( ) process. We are given a probability space (Ω, F, P) on which a random variable M 0 , a standard Brownian motion (B(t)) t 0 and a continuous-time Markov process (X(t)) t 0 with nite state space are de ned. It is assumed that M 0 , X and B are independent. The process X is the so-called background process; its state space is denoted by {1, . . . , d}. The idea behind is that the background process X(•) modulates an Ornstein-Uhlenbeck process. Intuitively, this means that while X(•) is in state i ∈ {1, . . . , d}, the process (M (t)) t 0 behaves as an Ornstein-Uhlenbeck process U i (•) with parameters α i , γ i and σ i , which evolves independently of the background process X(•). In mathematical terms, this means that M (•) should obey the stochastic di erential equation

dM (t) = α X(t) -γ X(t) M (t) dt + σ X(t) dB(t). (1) 
To be more precise, we will call a stochastic process (M (t)) t 0 an process with initial condition

M (0) = M 0 if M (t) = M 0 + t 0 α X(s) -γ X(s) M (s) ds + t 0 σ X(s) dB(s).
(

) 2 
The following theorem provides basic facts about the existence, uniqueness and distribution of an process. For proofs and additional details, see Section A. As mentioned in the introduction, speci c aspects of have been studied earlier in the literature; see for instance [START_REF]The stationary distributions of two classes of re ected Ornstein-Uhlenbeck processes[END_REF].

Theorem 2.1. De ne Γ(t) := t 0 γ X(s) ds. Then the stochastic process (M (t)) t 0 given by

M (t) = M 0 e -Γ(t) + t 0 e -(Γ(t)-Γ(s)) α X(s) ds + t 0 e -(Γ(t)-Γ(s)) σ X(s) dB(s)
is the unique process with initial condition M 0 . Conditional on the process X, the random variable M (t) has a Normal distribution with random mean

µ(t) = M 0 exp(-Γ(t)) + t 0 exp(-(Γ(t) -Γ(s)))α X(s) ds (3) 
and random variance

v(t) = t 0 exp(-2(Γ(t) -Γ(s)))σ 2 X(s) ds. ( 4 
)
This result is analogous with the corresponding result for the Markov-modulated in nite-server queue in [START_REF]Markov-modulated in nite-server queues with general service times[END_REF][START_REF]M/M/∞ queues in semi-Markovian random environment[END_REF]: there it is shown that the number of jobs in the system has a Poisson distribution with random parameter.

For later use, we now recall some concepts pertaining to the theory of deviation matrices of Markov processes. For an introduction to this topic we refer to standard texts such as [START_REF]Brownian Motion and Stochastic Calculus[END_REF][START_REF]Markov Chain Models: Rarity and Exponentiality[END_REF][START_REF]Ergodic potential[END_REF]. For a compact survey, see [START_REF]The deviation matrix of a continuous-time Markov chain[END_REF]. Let the transition rates corresponding to the continuous-time Markov chain (X(t)) t 0 be given by q ij 0 for i = j and q i := -q ii := j =i q ij . These transition rates de ne the intensity matrix or generator Q. The (unique) invariant distribution corresponding to Q is denoted by (the column vector) π, i.e., it obeys πQ = 0 and 1 T π = 1, where 1 is a d-dimensional all-ones vector.

Let Π := 1π T denote the ergodic matrix. Then the fundamental matrix is given by F := (Π -Q) -1 , whereas the deviation matrix is de ned by D := F -Π. Standard identities are QF = F Q = Π -I, as well as ΠD = DΠ = 0 (here 0 is to be read as an all-zeros d × d matrix) and F 1 = 1. The (i, j)-th entry of the deviation matrix, with i, j ∈ {1, . . . , d}, can be alternatively computed as

D ij := ∞ 0 (P(X(t) = j | X(0) = i) -π j )dt, which in matrix form reads D = ∞ 0 exp(Qt) -1π T dt. (5) 
3 Transient behavior: moments

In this section we analyze the moments of M (t). First considering the mean and variance in the general situation, we then concentrate on more speci c cases in which the expressions simplify greatly.

In particular, we address the situation that all the γ i s are equal, the situation that the background process starts o in equilibrium at time 0, and the steady-state regime. The computations are immediate applications of stochastic integration theory. The section is completed by deriving an expression for the covariance between M (t) and M (t + u) (for t, u 0), and a procedure that uses Itô's formula to recursively determine all moments.

Mean and variance: general case

Let Z(t) ∈ {0, 1} d be the vector of indicator functions associated with the Markov chain (X(t)) t 0 , that is, we let Z i (t) = 1 if X(t) = i and 0 else. Let p t denote the vector of transient probabilities of the background process, i.e., (P(X(t) = 1), . . . , P(X(t) = d)) T (where we have not speci ed the distribution of the initial state X(0) yet). We subsequently nd expressions for the mean µ t := EM (t) and variance v t := Var M (t).

The mean can be computed as follows. To this end, we consider the mean of M (t) jointly with the state of the background process at time t. To this end, we de ne Y (t) := Z(t)M (t), and ν t := EY (t). It is clear that

dZ(t) = Q T Z(t) dt + dK(t), (6) 
for a d-dimensional martingale K(t). With Itô's rule we get, with Qγ :

= Q T -diag{γ}, dY (t) = M (t) Q T Z(t) dt + dK(t) + Z(t) α T Z(t) -γ T Y (t) dt + σ T Z(t)dB(t) = Qγ Y (t) + diag(α)Z(t) dt + diag{σ}Z(t)dB(t) + M (t) dK(t). (7) 
Taking expectations of both sides, we obtain the system

ν t = Qγ ν t + diag{α}p t .
This is a non-homogeneous linear system of di erential equations, that is solved by

ν t = e Qγ t ν 0 + t 0
e Qγ (t-s) diag{α}p s ds;

then µ t = 1 T ν t .
Realize that ν 0 = m 0 p 0 , as we assumed that M (0) equals m 0 .

The equations simplify drastically if the background process starts o in equilibrium at time 0; then evidently p t = π for all t ≥ 0. As a result, we nd ν t = e Qγ t ν 0 -Q-1 γ (I -e Qγ t )diag{α}π.

We now consider the steady-state regime (i.e., t → ∞). From the above expressions, it immediately follows that ν ∞ = -Q-1 γ diag{α}π, and

µ ∞ = 1 T ν ∞ = -1 T Q-1 γ diag{α}π. We further note that γ = -(Q -diag{γ})1, and hence γ T Q-1 γ = -1 T , so that γ T ν ∞ = π T α.
The variance can be found in a similar way. De ne Ȳ (t) := Z(t)M 2 (t), and w t := E Ȳ (t). Now our starting point is the relation

d(M (t) -µ t ) = α T (Z(t) -p t ) -γ T (Y (t) -ν t ) dt + σ T Z(t)dB(t), so that d(M (t) -µ t ) 2 = 2(M (t) -µ t ) α T (Z(t) -p t ) -γ T (Y (t) -ν t ) dt + 2(M (t) -µ t )σ T Z(t) dB(t) + σ T diag{Z(t)}σ dt.
Taking expectations of both sides,

v t = 2α T ν t -2µ t α T p t -2γ T w t + 2µ t γ T ν t + σ T diag{p t }σ.
Clearly, to evaluate this expression, we rst need to identify w t . To this end, we set up and equation for d Ȳ (t) as before, take expectations, so as to obtain

w t = Q2γ w t + 2 diag{α}ν t + diag{σ 2 }p t ;
here σ 2 is the vector (σ 2 1 , . . . , σ 2 d ) T . This leads to

w t = e Q2γ t w 0 + t 0 e Q2γ (t-s) 2 diag{α}ν s + diag{σ 2 }p s ds, (8) 
so that v t = 1 T w t -µ 2 t . Observe that w 0 = m 2 0 p 0 .
Again simpli cations can be made if p 0 = π (and hence p t = π for all t 0). In that case, we had already found an expression for ν s above, and as a result ( 8) can be explicitly evaluated.

For the stationary situation (t → ∞, that is) we obtain

w ∞ = -Q-1 2γ 2 diag{α}ν ∞ + diag{σ 2 }π , and v ∞ = 1 T w ∞ -µ 2 ∞ .
We consider now an even more special case:

γ i ≡ γ for all i (in addition to p t = π; we let t 0). It is directly seen that µ ∞ = π T α/γ. Note that γ T Q-1 γ = -1 T implies 1 T Q-1 δ1 = -δ -1 1 T for any δ > 0, so that v ∞ = 1 T w ∞ -µ 2 ∞ = 1 T diag{α}ν ∞ γ + π T σ 2 2γ - π T α γ 2 = - 1 T diag{α} Q-1 γ1 diag{α}π γ + π T σ 2 2γ - π T α γ 2 .
Now observe that, with Ďij (γ) := ∞ 0 p ij (v)e -γv dv for γ > 0, integration by parts yields

Q Ď(γ) = ∞ 0 QP (v)e -γv dv = ∞ 0 P (v)e -γv dv = -I + ∞ 0 γP (v)e -γv dv = -I + γ Ď(γ). As a consequence, -(Q -γI) Ď(γ) = I, so that v ∞ = π T σ 2 2γ + 1 γ α T diag{π} Ď(γ)α - π T α γ 2 , which, with D ij (γ) := ∞ 0 (p ij (v) -π j )e -γv dv = Ďij (γ) -π j /γ, eventually leads to v ∞ = π T σ 2 2γ + 1 γ α T diag{π}D(γ)α.
The next subsection further studies the case in which the γ i s are equal, i.e., γ i ≡ γ, and the background process is in steady state at time 0, i.e., and p t = π. As it turns out, under these conditions the mean and variance can also be found by an alternative elementary, insightful argumentation.

Mean and variance: special case of equal γ, starting in equilibrium

In this subsection we consider the special case γ i ≡ γ for all i, while the Markov chain X(t) starts o in equilibrium at time 0 (so that P(X(t) = i) = P(X(0) = i) = π i for all t 0). In this special case we can evaluate µ t and v t rather explicitly, particularly when in addition particular scalings are imposed.

We rst concentrate on computing the transient mean µ t . We denote by X the path (X(s), s ∈ [0, t]). Now using the representation of Thm. 2.1, and recalling the standard fact that µ t can be written as

E ( E(M (t) | X))
, it is immediately seen that µ t can be written as a convex mixture of m 0 and π T α/γ:

µ t = m 0 e -γt + e -γt t 0 e γs ds d i=1 π i α i = m 0 e -γt + π T α γ (1 -e -γt );
use that (X(t)) t 0 started o in equilibrium at time 0. This expression converges, as t → ∞, to the stationary mean π T α/γ, as expected.

The variance v t can be computed similarly, relying on the so called law of total variance, which says that

Var M (t) = E(Var(M (t) | X)) + Var(E(M (t) | X)).
Regarding the rst term, it is seen that Thm. 2.1 directly yields

E(Var(M (t) | X)) = E t 0 e -2γ(t-s) σ 2 X(s) ds = t 0 e -2γ(t-s) E σ 2 X(s) ds = d i=1 π i σ 2 i 1 -e -2γt
2γ .

Along similar lines,

Var(E(M (t) | X)) = Var t 0 e -γ(t-s) α X(s) ds = t 0 t 0 Cov e -γ(t-s) α X(s) , e -γ(t-u) α X(u) du ds = e -2γt t 0 t 0 e γ(s+u) Cov α X(s) , α X(u) du ds.
The latter integral expression can be made more explicit. Recalling that (X(t)) t 0 started o in equilibrium at time 0, it can be evaluated as

2e -2γt t 0 s 0 e γ(s+u) Cov α X(s) , α X(u) du ds = 2e -2γt t 0 s 0 e γ(s+u) d i=1 d j=1 α i α j π i (p ij (s -u) -π j )du ds = 1 γ d i=1 d j=1 α i α j t 0 e -γv -e -γ(2t-v) π i (p ij (v) -π j )dv
(where the last equation follows after changing the order of integration and some elementary calculus). We arrive at the following result.

Proposition 3.1. For t ≥ 0,

µ t = m 0 e -γt + π T α γ (1 -e -γt ),
and

v t = d i=1 π i σ 2 i 1 -e -2γt 2γ + d i=1 d j=1 α i α j t 0 e -γv -e -γ(2t-v) γ π i (p ij (v) -π j )dv.
We conclude this section by considering two speci c limiting regimes, to which we return in Section 5 where we will derive limit distributions under parameter scalings.

Specializing to the situation that t → ∞, we obtain

Var M = π T σ 2 2γ + 1 γ d i=1 d j=1 α i α j π i D ij (γ) = π T σ 2 2γ + 1 γ α T diag{π}D(γ)α,
in accordance with the expression we found before.

Scale α → N h α, σ 2 → N h σ 2 , and Q → N Q for some h ≥ 0. We obtain that Var M (t) equals

N h d i=1 π i σ 2 i 1 -e -2γt 2γ + N 2h d i=1 d j=1 α i α j t 0 e -γv -e -γ(2t-v) γ π i (p ij (vN ) -π j )dv,
which for N large behaves as

1 -e -2γt 2γ   N h d i=1 π i σ 2 i + 2N 2h-1 d i=1 d j=1 α i α j π i D ij   = 1 -e -2γt 2γ N h π T σ 2 + 2N 2h-1 α T diag{π}Dα , (9) 
where D := D(0) is the deviation matrix introduced in Section 2.

We observe an interesting dichotomy: for h < 1 the variance is essentially linear in the 'scale' of the processes N h , while for h > 1 it behaves superlinearly in N h (more speci cally, proportionally to N 2h-1 ). It is this dichotomy that also featured in earlier work on Markov-modulated in nite-server queues [START_REF]Analysis of Markov-modulated in nite-server queues in the central-limit regime. To appear in: Probability in the Engineering and Informational Sciences[END_REF].

The intuition behind the dichotomy is the following. If h < 1, then the timescale of the background process systematically exceeds that of the d underlying processes (that is, the background process is 'faster'). As a result, the system essentially behaves as an ordinary (that is, non-modulated) process with 'time average' parameters α ∞ := π T α, γ, and σ 2 ∞ := π T σ 2 . If h > 1, on the contrary, the background process jumps at a slow rate, relative to the typical timescale of the processes; as a result, the process (M (t)) t 0 moves between multiple local limits (where the individual 'variance coe cients' σ 2 i do not play a role).

Note that it follows from (9) that diag{π}D is a nonnegative de nite matrix, although singular and non-symmetric in general; more precisely, it is a consequence of the fact that ( 9) is a variance and hence nonnegative, in conjunction with the fact the we can pick σ 2 = 0. Below we state and prove the nonnegativity by independent arguments; cf. [2, Prop 3.2].

Proposition 3.2. The matrix D T diag{π} + diag{π}D is symmetric and nonnegative de nite.

Proof. First we prove the claim that the matrix Q T diag{π}+diag{π}Q is (symmetric and) nonpositive de nite. To that end we start from the semimartingale decomposition (6) for Z. By the product rule we obtain, collecting all the martingale terms in dM t ,

d(Z t Z T t ) = Q T Z t Z T t dt + Z t Z T t Q dt + d Z t + dM t .
As the predictable quadratic variation of Z is absolutely continuous and increasing, we can write d Z t = P t dt, where P t is a nonnegative de nite matrix. Next we make the observation that Z t Z T t = diag{Z t }. Hence we have by combining [START_REF]Modeling portfolio defaults using Hidden Markov Models with covariates[END_REF] and the above display

diag{Q T Z t } = Q T diag{Z t } + diag{Z t }Q + P t .
Taking expectations w.r.t. the stationary distribution of Z t and using Q T π = 0, we obtain

0 = Q T diag{π} + diag{π}Q + EP t ,
from which it follows that Q T diag{π} + diag{π}Q is (symmetric and) nonpositive de nite. This in turn implies that -D T (Q T diag{π} + diag{π}Q)D is symmetric and nonnegative de nite. Recall now that F Q = Π-I and hence DQ = Π-I.

Then D T Q T diag{π}D = -(diag{π}-ππ T )D. But π T D = 0, so D T Q T diag{π}D = -diag{π}D.
The result now follows.

Covariances

In this subsection we point out how to compute the covariance

c(t, u) := Cov (M (t), M (t + u)),
for t, u 0. To this end, we observe that by applying a time shift, we rst assume in the computations to follow that t = 0 ,and we consider c(t) := Cov(M (t), M (0)). Below we make frequently use of the additional quantities C(t) = Cov(Y (t), M (0)) and B(t) = Cov(Z(t), M (0)). Note that c(t) = 1 T C(t). Multiplying Equations ( 6) and ( 7) by M (0), we obtain upon taking expectation the following system of s:

B (t) C (t) = R B(t) C(t)
, where R :=

Q T 0 diag{α} Qγ B(t) C(t)
with initial conditions B(0) = Cov(Z(0), M (0)) and C(0) = Cov(Y (0), M (0)). In a more compact and obvious notation, we have A (t) = RA(t), and hence A(t) = exp(Rt)A(0).

Likewise we can compute

A(t, u) := Cov(Z(t + u), M (t)) Cov(Y (t + u), M (t)) = exp(Ru) Cov(Z(t), M (t)) Cov(Y (t), M (t))
. 

It

Recursive scheme for higher order moments

The objective of this section is to set up a recursive scheme to generate all transient moments, that is, the expected value of M (t) k , for any k ∈ {1, 2, . . .}, jointly with the indicator function 1{X(t) = i}.

To that end we consider the expectation of (M (t)) k Z(t). First we rewrite Equation (1) as

dM (t) = α T Z(t) -γ T Z(t)X(t) dt + σ T Z(t) dB(t). (10) 
Itô's lemma and (10) directly yield

d(M (t)) k = k(M (t)) k-1 α T Z(t) -γ T Z(t)X(t) dt + k(M (t)) k-1 σ T Z(t) dB(t) + 1 2 k(k -1)(M (t)) k-2 σ T diag{Z(t)}σ dt.
Then we apply the product rule to M (t) k Z(t), together with the just obtained equation and Equation ( 6), so as to obtain

d (M (t)) k Z(t) = k(M (t)) k-1 (diag{α}Z(t) -diag{γ}Z(t)M (t)) dt + k(M (t)) k-1 diag{σ}Z(t) dB(t) + 1 2 k(k -1)(M (t)) k-2 diag{σ 2 }Z(t) dt + (M (t)) k Q T Z(t) dt + dK(t) .
All martingale terms on the right are genuine martingales and thus have expectation zero. Putting H k (t) := EM (t) k Z(t), we get the following recursion in form:

d dt H k (t) = kdiag{α}H k-1 (t) -kdiag{γ}H k (t) + 1 2 k(k -1)diag{σ 2 }H k-2 (t) + Q T H k (t) = Qkγ H k (t) + kdiag{α}H k-1 (t) + 1 2 k(k -1)diag{σ 2 }H k-2 (t).
Stacking H 0 (t), . . . , H n (t) into a single vector Hn (t), we obtain the di erential equation

d dt Hn (t) = A n Hn (t),
with A n ∈ R (n+1)d×(n+1)d denoting a lower block triangular matrix, whose solution is

H n (t) = exp(A n t)H n (0). Eventually, h k (t) := EM (t) k is given by h k (t) = 1 T H k (t). Note that for k = 1, 2
the results of Section 3 can be recovered.

Transient behavior: partial di erential equations

The goal of this section is to characterize, for a given vector t ∈ R K (with

K ∈ N) such that 0 t 1 • • • t K
, the Laplace transform of (M (t + t 1 ), . . . , M (t + t K )) (together with the state of the background process at these time instances). More speci cally, we set up a system of s for

g i (ϑ, t) := Ee -(ϑ 1 M (t 1 +t)+•••+ϑ K M (t K +t)) 1{X(t 1 + t) = i 1 , . . . , X(t K + t) = i K };
here t 0, i ∈ {1, . . . , d} K and ϑ ∈ R K . The system of s is with respect to t and ϑ 1 up to ϑ K . We rst point out the line of reasoning for the case K = 1, and then present the for K = 2. The cases K ∈ {3, 4, . . .} can be dealt with fully analogously, but lead to notational inconveniences and are therefore left out. It is noted that the stationary version of the result below (i.e., t → ∞) for the special case K = 1 has appeared in [START_REF]The stationary distributions of two classes of re ected Ornstein-Uhlenbeck processes[END_REF] (where we remark that in [START_REF]The stationary distributions of two classes of re ected Ornstein-Uhlenbeck processes[END_REF] the additional issue of re ection at 0 has been incorporated).

Fourier-Laplace transform

For K = 1, the object of interest is g i (ϑ, t) := Ee -ϑM (t) 1{X(t) = i}, for i = 1, . . . , d; realize that, without loss of generality, we have taken t 1 = 0. For a more compact notation we stack the g i in a single vector g, so g(ϑ, t) = Ee -ϑM (t) Z(t). Replacing in this expression ϑ by -iu for u ∈ R gives the characteristic function of M (t) jointly with Z(t).

Theorem 4.1. Consider the case K = 1 and t 1 = 0. The Laplace transforms g(ϑ, t) satisfy the following system of s:

∂ ∂t g(ϑ, t) = Q T g(ϑ, t) -ϑ diag{α} - 1 2 ϑ 2 diag{σ 2 } g(ϑ, t) -ϑ diag{γ} ∂ ∂ϑ g(ϑ, t). ( 11 
)
The corresponding initial conditions are g(0, t) = p t and g(ϑ, 0) = e -ϑm 0 p 0 .

Proof. The proof mimics the procedure used in Section 3.4 to determine the moments of M (t). Letting f (ϑ, t) = e -ϑM (t) , applying Itô's formula to [START_REF]Tail asymptotics of a Markov-modulated in niteserver queue[END_REF] yields

df (ϑ, t) = -ϑf (ϑ, t) α T Z(t) -γ T Z(t)M (t) dt + σ T Z(t) dB(t) + 1 2 ϑ 2 f (ϑ, t)diag{σ 2 }Z(t)dt.
We then apply the product rule to f (ϑ, t)Z(t), using the just obtained equation in combination with Equation ( 6). This leads to

d(f (ϑ, t)Z(t)) = -ϑf (ϑ, t)((diag{α}Z(t) -diag{γ}Z(t)M (t)) dt + diag{σ}Z(t) dB(t)) + 1 2 ϑ 2 f (ϑ, t)diag{σ 2 }Z(t)dt + f (ϑ, t) Q T Z(t) dt + dK(t) .
Taking expectations, and recalling that g(ϑ, t) = Ef (ϑ, t)Z(t) and that the martingale terms have expectation zero, we obtain

∂ ∂t g(ϑ, t) = -ϑdiag{α}g(ϑ, t) + ϑdiag{γ}E(f (ϑ, t)M (t)Z(t)) + 1 2 ϑ 2 diag{σ 2 }f (ϑ, t) + Q T f (ϑ, t).
Realizing that ∂g/∂ϑ = -E(f (ϑ, t)M (t)Z(t)), we can rewrite this as [START_REF]A large-deviations analysis of Markov-modulated ini nite-server queues[END_REF].

It is remarked that the above system (11) of s coincides, for t → ∞, with the stationary result of [START_REF]The stationary distributions of two classes of re ected Ornstein-Uhlenbeck processes[END_REF] (where it is mentioned that in [START_REF]The stationary distributions of two classes of re ected Ornstein-Uhlenbeck processes[END_REF] the feature of re ection at 0 has been incorporated). In addition, it is noted that this system can be converted into a system of ordinary di erential equations, as follows. Let T be exponentially distributed with mean τ -1 , independent of all other random features involved in the model. De ne g i (ϑ) := Ee -ϑM (T ) 1{X(T ) = i}. Now multiply the featuring in Thm. 4.1 by τ e -τ t , and integrate over t ∈ [0, ∞), to obtain (use integration by parts for the left-hand side)

λ g(ϑ) -e -ϑm 0 p 0 = Q T g(ϑ) -ϑ diag{α} - 1 2 ϑ 2 diag{σ 2 } g(ϑ) -ϑ diag{γ} ∂ ∂ϑ g(ϑ).
All above results related to the case K = 1. For higher values of K the same procedure can be followed; as announced we now present the result for K = 2. Let i, k be elements of {1, . . . , d}, and ϑ ≡ (ϑ 1 , ϑ 2 ) ∈ R 2 . We obtain the following system of s:

∂ ∂t g i,k (ϑ, t) = d j=1 q ji g j,k (ϑ, t) + d =1 q k g i, (ϑ, t) -ϑ 1 α i + ϑ 2 α k - 1 2 ϑ 2 1 σ 2 i - 1 2 ϑ 2 2 σ 2 k g i,k (ϑ, t) -ϑ 1 γ i ∂ ∂ϑ 1 g i,k (ϑ, t) -ϑ 2 γ k ∂ ∂ϑ 2 g i,k (ϑ, t),
or in self-evident matrix notation, suppressing the arguments ϑ and t,

∂G ∂t = Q T G + GQ -ϑ 1 diag{α}G -ϑ 2 G diag{α} + 1 2 ϑ 2 1 diag{σ 2 }G + 1 2 ϑ 2 2 G diag{σ 2 } -ϑ 1 diag{γ} ∂G ∂ϑ 1 -ϑ 2 ∂G ∂ϑ 2 diag{γ}.
This matrix-valued system of s can be converted into its vector-valued counterpart. De ne the d 2dimensional vector ǧ(ϑ, t) := vec(G(ϑ, t)). Recall the de nitions of the Kronecker sum (denoted by '⊕') and the Kronecker product (denoted by '⊗'). Using the relations vec(ABC) = (C T ⊗ A)vec(B) and A ⊕ B = A ⊗ I + I ⊗ B, for matrices A, B, and C of appropriate dimensions, we obtain the vector-valued

∂ǧ ∂t = (Q T ⊕ Q T )ǧ -ϑ 1 (I ⊗ diag{α})ǧ -ϑ 2 (diag{α} ⊗ I)ǧ + ϑ 2 1 2 (I ⊗ diag{σ 2 })ǧ + ϑ 2 2 2 (diag{σ 2 } ⊗ I)ǧ -ϑ 1 (I ⊗ diag{γ}) ∂ǧ ∂ϑ 1 -ϑ 2 (diag{γ} ⊗ I) ∂ǧ ∂ϑ 2 ,
again suppressing the arguments ϑ and t.

It is clear how this procedure should be extended to K ∈ {3, 4, . . .}, but, as mentioned above, we do not include this because of the cumbersome notation needed.

Explicit computations for two-dimensional case

We now present more explicit expressions relating to the case that d = 2. De ne q := q 1 + q 2 . Suppose the system starts o at (M (0), X(0)) = (m 0 , 2). Throughout this example we use the notation

g i (ϑ, t, j) := E e -ϑM (t) 1{X(t) = j} | X(0) = i .
The theory of this section yields the following system of partial di erential equations:

∂ ∂t g 2 (t, ϑ, 1) + ϑγ 1 ∂ ∂ϑ g 2 (t, ϑ, 1) = -q 1 -ϑα 1 + 1 2 ϑ 2 σ 2 1 g 2 (t, ϑ, 1) + q 2 g 2 (t, ϑ, 2), ∂ ∂t g 2 (t, ϑ, 2) + ϑγ 2 ∂ ∂ϑ g 2 (t, ϑ, 2) = -q 2 -ϑα 2 + 1 2 ϑ 2 σ 2 2 g 2 (t, ϑ, 2) + q 1 g 2 (t, ϑ, 1),
with conditions (realizing that π i = q i /q) g 2 (0, ϑ, 1)

g 2 (0, ϑ, 2) = 0 e -ϑx , g 2 (t, 0, 1) g 2 (t, 0, 2) = π 1 -π 1 e -qt π 2 + π 1 e -qt ,
and ϑ ∈ R and t ∈ [0, ∞).

In the special case that q 1 = 0 (so that state 2 is transient, and state 1 is absorbing), the system of di erential equations decouples; the second of the above two partial di erential equations can be solved using the method of characteristics. Routine calculations lead to

g 2 (t, ϑ, 2) = exp -ϑm 0 e -γ 2 t -q 2 t - α 2 γ 2 (ϑ -ϑe -γ 2 t ) + σ 2 2 4γ 2 (ϑ 2 -ϑ 2 e -2γ 2 t ) .
Now the rst equation of the two partial di erential equations can be solved as well, with the distinguishing feature that now we have a non-homogeneous (rather than a homogeneous) single-dimensional partial di erential equation. It can be veri ed that it is solved by

g 2 (t, ϑ, 1) = q 2 exp - α 1 γ 1 ϑ + σ 2 1 4γ 1 ϑ 2 × t 0 g 2 (s, ϑe -γ 1 (t-s) , 2) exp α 1 γ 1 ϑe -γ 1 (t-s) - σ 2 1 4γ 1 ϑ 2 e -2γ 1 (t-s) ds.

Parameter scaling

So far we have characterized the distribution of M (t) in terms of an algorithm to determine moments, and a for the Fourier-Laplace transform. In other words, so far we have not presented any explicit results on the distribution of M (t) itself. In this section we consider asymptotic regimes in which this is possible; these regimes can be interpreted as parameter scalings. More speci cally, in this section we consider the following two scaled versions of the model.

In the rst we (linearly) speed up the background process (that is, we replace Q → N Q or, equivalently, X(t) → X(N t)). Our main result is that, as N → ∞, the essentially experiences the time-averaged parameters, i.e., α ∞ := π T α, γ ∞ := π T γ and σ 2 ∞ := π T σ 2 . As a consequence, it behaves as an process with these parameters.

The second regime considered concerns a simultaneous scaling of the background process and the processes. This is done as in Section 3.2: Q on the one hand, and α and σ 2 on the other hand are scaled at di erent rates: we replace α → N h α and σ 2 → N h σ 2 , but Q → N Q for some h 0). We obtain essentially two regimes, in line with the observations in Section 3.2.

As mentioned above, we are particularly interested in the limiting behavior in the regime that N grows large. It is shown that the process M (t), which we now denote as M [N ] (t) to stress the dependence on N , converges to the solution of a speci c

. Importantly, we establish weak convergence, i.e., in the sense of convergence at the process level; our result can be seen as the counterpart of the result for Markov-modulated in nite-server queues in [START_REF]A functional central limit theorem for a Markov-modulated in nite-server queue[END_REF].

We consider sequences of processes, indexed by N , subject to the following scaling: q ij → N q ij ; α j → N h α j ; σ j → N h/2 σ j , where h 0; note that by appropriately choosing h we enter the two regimes described above as we let N grow large (see Corollaries 5.2 and 5.3). The de nitions of M (t), Z(t) and K(t) (the latter two having been de ned in Section 3) then take the following form (where superscripts are being used to make the dependence on N explicit):

dM [N,h] (t) = d k=1 M [N,h] k (t)Z [N ] k (t)dt + N h/2 d k=1 σ k Z [N,h] k (t)dB(t), (12) 
where

M [N,h] k (t) := N h α k -γ k M [N,h] (t), and 
dK [N ] j (t) = dZ [N ] j (t) -N d i=1 Z [N ] i (t)q ij dt. ( 13 
)
It is useful to de ne the local martingales L k (t), recalling the de nition of the deviation matrix D from Section 2:

dL [N ] k (t) := N -1 d j=1 D jk dK [N ] j (t) = N -1 d j=1 D jk dZ [N ] j (t) - d i=1 d j=1 Z [N ] i (t)q ij D jk dt = N -1 d j=1 D jk dZ [N ] j (t) + Z [N ] k (t) -π k dt,
where we used in the last equality the fact that QD = Π -I (as an immediate consequence of QF = Π; see Section 2), which we can alternatively write as -d j=1 q ij D jk = 1 {i=k} -π k , for any i, k ∈ {1, . . . , d}.

Let, with the de nitions of α ∞ , γ ∞ , and σ 2 ∞ given above, the 'average path' (t) be de ned by the

d (t) = (α ∞ -γ ∞ (t))dt, such that we have (t) = 0 e -γ∞t + α ∞ γ ∞ (1 -e -γ∞t ).
Note that N -h M [N,h] (t) converges to (t) almost surely as N → ∞, which can be established by writing the de nition of M [N,h] (t) in the form of ( 16) and invoking the ergodic theorem, from which we also nd that

N -h M [N,h] k (t) → α k -γ k (t) as N → ∞.
We can now state the main theorem of this section.

Theorem 5.1. Under the scaling q ij → N q ij ; α j → N h α j ; σ j → N h/2 σ j , and assuming that N -h M [N,h] (0) converges in probability to the deterministic value 0 , we have that the scaled and centered process M [N ] (t), as de ned through

M [N,h] (t) := N -β (M [N,h] (t) -N h (t)),
converges weakly to the solution of the following :

d M (t) = -γ ∞ M (t)dt + σ 2 ∞ 1 {h 1} + V (t)1 {h 1} dB(t).
where β := max{h/2, h -1/2} and

V (t) := 2 t 0 d i=1 d j=1 π i (α i -γ i (s))D ij (α j -γ j (s))ds.
Before proving this result, we observe that the above theorem provides us with the limiting behavior in the two regimes described at the beginning of this section. In the rst corollary we simply take h = 0.

Corollary 5.2. Under the scaling q ij → N q ij ; α j → α j ; σ j → σ j , we have that M [N,0] (t) converges weakly to a process M 1 (t), which is an (ordinary, i.e., non-modulated) process with parameters

(α ∞ , γ ∞ , σ ∞ ), de ned through the dM 1 (t) = (α ∞ -γ ∞ M 1 (t))dt + σ ∞ dB(t).
The following corollary describes the situation in which both the background process and the process is scaled, but at di erent rates.

Corollary 5.3. Under the scaling q ij → N q ij ; α j → N h α j ; σ j → N h/2 σ j , we have that M [N,h] (t) converges weakly to a process M 2 (t), de ned through one of the following s: if 0 < h < 1, then

dM 2 (t) = -γ ∞ M 2 (t) dt + σ ∞ dB(t), if h = 1, then dM 2 (t) = -γ ∞ M 2 (t) dt + σ 2 ∞ + V (t)dB(t), and if h > 1, then dM 2 (t) = -γ ∞ M 2 (t) dt + V (t) dB(t).
These corollaries are trivial consequences of Thm. 5.1, and therefore we direct our attention to the proof of this main theorem itself. We remark that Corollary 5.3 con rms an observation we made in Section 3: for h < 1 the system essentially behaves as an non-modulated process, while for h > 1 the background process plays a role through its deviation matrix D.

Proof. Consider the following process:

dΦ [N,h] (t) := N h/2-β d k=1 σ k Z [N ] k (t)dB(t) + N -β d k=1 M [N,h] k (t)dL [N ] k (t). (14) 
Clearly, this is a local martingale, as linear combinations preserve the local martingale property and locally bounded, predictable processes integrated with respect to local martingales are themselves local martingales.

By plugging in the de nitions of the M [N,h] and L [N ] k , and applying the relation between M [N,h] (t) and M [N,h] (t), we obtain dΦ [N,h] (t) = dM [N,h] 

(t) -(N h α ∞ -γ ∞ M [N,h] (t))dt + N -1-β d j=1 d k=1 D jk M [N ] k (t)dZ [N ] j (t). = d M [N,h] (t) + γ ∞ M [N,h] (t)dt + N -1-β d j=1 d k=1 D jk M [N,h] k (t)dZ [N ] j (t),
We denote the last term by dH [N,h] (t), and observe that it converges to 0 as N → ∞ (to this end, recall that

N -h M [N,h] k (t) → α k -γ k (t)
as N → ∞, and observe that directly from the de nition of β it follows that h -1 -β < 0). We apply the martingale central limit theorem [START_REF]Finite Markov Chains[END_REF]Ch. 7,Thm. 1.4] to the sequence of local martingales Φ [N,h] (t). As we have that

E sup 0≤t≤T Φ [N,h] (t) -Φ [N,h] (t-) → 0
for every T > 0 as N → ∞, we must nd the predictable quadratic variation Φ [N,h] t . From ( 14),

d Φ [N,h] t = N h-2β d k=1 σ 2 k Z [N ] k (t)dt + N -2β d j=1 d k=1 M [N,h] j (t) M [N,h] k (t)d L [N ] j , L [N ] k t .
As a result, Φ [N,h] t consists of two terms, corresponding to the two terms in the previous display. The rst of these terms is, as

N → ∞, proportional to N h-2β σ 2
∞ due to the ergodic theorem. The second term requires a bit of additional work. In Lemma B.1 in Appendix B, we cover the convergence of N L

[N ] j , L

[N ] k t , and we already established the convergence of N -h M [N,h] (t). We now invoke the continuous mapping theorem on the mapping F :

F [m 1 , m 2 , ](t) := t 0 m 1 (s)m 2 (s)d (s),
which is indeed continuous for continuous functions m 1 , m 2 , . It follows that the second term is of the order N 2h-2β-1 , with the corresponding proportionality constant being equal to

t 0 d j=1 d k=1 (α j -γ j (s))(α k -γ k (s))(π j D jk + π k D kj )ds,
which we recognize as V (t). The sum of both terms therefore behaves essentially polynomially, with degree max{h -2β, 2h -2β -1} = max{h, 2h -1} -2β = 0;

the rst term contributes if h 1, and the second term if h 1. It thus follows that

Φ [N,h] t → σ 2 ∞ 1 {h 1} + V (t)1 {h 1} ,
and as such by the that Φ [N,h] converges weakly to Φ, de ned as

Φ(t) := B σ 2 ∞ 1 {h 1} + V (t)1 {h 1} = σ 2 ∞ 1 {h 1} + V (t)1 {h 1} B(t),
where B(t) is a standard Brownian motion. The last part of the proof consists of converting this limiting process of Φ [N,h] into one for M [N,h] . To this end, consider

d e γ∞t M [N,h] (t) = e γ∞t d M [N,h] (t) + γ ∞ e γ∞t M [N,h] (t)dt
= e γ∞t dΦ [N,h] (t) + e γ∞ dH [N,h] (t),

where we recall that dH [N,h] (t) vanishes as N → ∞. From this we see that if Φ [N,h] (t) converges in distribution, then so does M [N,h] (t); moreover, it is clear that its limit is the unique solution of the in the claim of the proof.

6 Multiple MMOU processes driven by the same background process

In this section, we consider a single background process X, taking as before values in {1, . . . , d}, modulating multiple processes. Suppose there are J ∈ N such processes, with parameters (α (1) , γ (1) , σ (1) ) up to (α (J) , γ (J) , σ (J) ). It is further assumed that the processes are driven by independent Brownian motions B 1 (•). . . . , B J (•). Combining the above, this leads to the J coupled s

dM j (t) = α (j) X(t) -γ (j) X(t) M j (t) dt + σ (j)
X(t) dB j (t), for j = 1, . . . , J. We call the process a Jprocess. Interestingly, this construction yields J components that have common features, as they react to the same background process, as well as component-speci c features, as a consequence of the fact that the driving Brownian motions are independent. This model is particularly useful in settings with multidimensional stochastic processes whose components are a ected by the same external factors. An example of a situation where this idea can be exploited is that of multiple asset prices reacting to the (same) state of the economy, which could be represented by a background process (for instance with two states, that is, alternating between a 'good' and a 'bad' state). In this way the dependence between the individual components can be naturally modeled. In mathematical nance, one of the key challenges is to develop models that incorporate the correlation between the individual components in a sound way. Some proposals were to simplistic, ignoring too many relevant details, while others correspond with models with overly many parameters, with its repercussions in terms of the calibration that needs to be performed. Another setting in which such a coupling may o er a natural modeling framework is that of a wireless network. Channel conditions may be modeled as alternating between various levels, and users' transmission rates may react in a similar way to these uctuations.

Many of the results derived in the previous sections, covering the case J = 1, can be generalized to the situation of Jprocesses described above. To avoid unnecessary repetition, we restrict ourselves to a few of these extensions. In particular, we present (i) the counterpart of Thm. 2.1, stating that M (t) is, conditionally on the path of the background process, multivariate Normally distributed; (ii) some explicit calculations for the means and (co-)variances for certain special cases; (iii) the generalization of the of Thm. 4.1, (iv) explicit expressions for the steady-state (mixed) moments. Procedures for transient moments, and scaling results (such as a J-dimensional

) are not included in this paper, but can be developed as in the single-dimensional case.

Conditional Normality

First we condition on the path (X(s), s ∈ [0, t]). It is evident that, under this conditioning, the individual components of M (t) are independent. The following result describes this setting in greater detail. Proposition 6.1. De ne Γ (j) (t) := t 0 γ (j) X(s) ds, for j = 1, . . . , J. Then the J-dimensional stochastic process (M (t)) t 0 given by

M (j) (t) = M (j) 0 e -Γ (j) (t) + t 0 e -(Γ (j) (t)-Γ (j) (s)) α (j) X(s) ds + t 0 e -(Γ (j) (t)-Γ (j) (s)) σ (j) X(s) dB(s)
is the unique Jprocess with initial condition M 0 . Conditional on the process X, the random vector M (t) has a multivariate Normal distribution with, for j = 1, . . . , J, random mean

µ (j) (t) = M (j) 0 exp -Γ (j) (t) + t 0 exp -(Γ (j) (t) -Γ (j) (s)) α (j) X(s) ds and random covariance v (j,k) (t) = 0 if j = k and v (j,j) (t) = t 0 exp -2(Γ (j) (t) -Γ (j) (s)) σ (j) X(s) 2 ds.

Mean and (co-)variance

The mean and (co-)variance of M (t) for Jcan be computed relying on stochastic integration theory, with a procedure similar to the one relied on in Section 3; we do not include the resulting expressions. We consider in greater detail the special case that γ (j) i ≡ γ (j) for all i ∈ {1, . . . , d} (as in Section 3), because in this situation expressions simplify greatly. The means and variances can be found as in Prop. 2.1; we now point out how to compute the covariance v (j,k) t := Cov(M (j) (t), M (k) (t)) (with j = k), relying on the law of total covariance. We write, in self-evident notation,

v (j,k) t = E(Cov(M (j) (t), M (k) (t) | X)) + Cov(E(M (j) (t) | X), E(M (k) (t) | X)).
The rst term obviously cancels (cf. Prop. 6.1), while the second reads

1 γ (j) + γ (k) d i 1 =1 d i 2 =1 α (j) i 1 α (k) i 2 t 0 e -γ (k) v -e -(γ (j) +γ (k) )t+γ (j) v π i 1 (p i 1 i 2 (v) -π i 2 )dv d i 1 =1 d i 2 =1 α (k) i 1 α (j) i 2 t 0 e -γ (j) v -e -(γ (k) +γ (j) )t+γ (k) v π i 1 (p i 1 i 2 (v) -π i 2 )dv .
We consider two limiting regimes.

For t → ∞, it is readily checked that there is convergence to

1 γ (j) + γ (k) (α (j) ) T diag{π}D(γ (k) )α (k) + (α (k) ) T diag{π}D(γ (j) )α (j) .
Apply, as before, the scaling α → N h α, σ 2 → N h σ 2 , and Q → N Q for some h > 0. We obtain that the covariance, for N large, behaves as

1 -e -(γ (j) +γ (k) )t γ (j) + γ (k) 2N 2h-1 (α (j) ) T diag{π}Dα (k) .
Example 6.2. We now provide explicit results for t → ∞ for the case d = 2, J = 2. It can be veri ed that, with q 1 := q 12 , q 2 := q 21 and q := q 1 + q 2 , D(γ (j) ) = 1 q(q + γ (j) )

q 2 -q 2 -q 1 q 1 .
It is a matter of elementary calculus to show that the steady-state covariance is

Cov(M 1 , M 2 ) = 1 γ (1) + γ (2) q 1 q 2 q 2 2q + γ (1) + γ (2) (q + γ (1) )(q + γ (2) ) (α (2) 
1 -α

2 )(α

1 -α

2 )

whereas, for j = 1, 2,

Var M j = q 1 (σ (j) 2 ) 2 + q 2 (σ (j) 1 ) 2 2γ (j) q + 1 γ (j) q 1 q 2 q 2 (q + γ (j) ) α (j) 1 -α (j) 2 2 
.

These expressions enable us to compute the correlation coe cient between M 1 and M 2 . For the special case that σ (1) = σ (2) = 0, we obtain, modulo its sign,

γ (1) γ (2) (q + γ (1) )(q + γ (2) ) 2q + γ (1) + γ (2)
γ (1) + γ (2) , which can be veri ed to be smaller than 1.

Transient behavior: partial di erential equations

In order to uniquely characterize the joint distribution of M (t), we now set up a system of partial di erential equations for the objects

g i (ϑ, t) := E e J j=1 ϑ j M (j) (t) 1{X(t) = i} ,
with i ∈ {1, . . . , d}. Relying on the machinery used when establishing the system of s featuring in Thm. 4.1, we obtain that ∂g(ϑ, t)/∂t equals

Q T g(ϑ, t) - J j=1 ϑ j diag{α (j) } - 1 2 ϑ 2 j diag{(σ (j) ) 2 } g(ϑ, t) - J j=1 ϑ j diag{γ (j) } ∂ ∂ϑ j g(ϑ, t).
6.4 Recursive scheme for higher order moments

The above system of s can be used to determine all (transient and stationary) moments related to J-

. We restrict ourselves to the stationary moments here. De ne h k = (h 1,k , . . . , h d,k ) T , where

h i,k := E (-1) J j=1 k j (M (1) ) k 1 • • • (M (J) ) k J 1{X = i} .
Observe that h 0 = π. With techniques similar to those applied earlier, e j ∈ R J denoting the j-th unit vector, we obtain the recursion

h k =   Q T - J j=1 k j diag{γ (j) }   -1 ×   J j=1 k j diag{α (j) }h k-e j - 1 2 J j=1 k j (k j -1) diag{(σ (j) ) 2 }h k-2e j   .
This procedure allows us to compute all mixed moments, thus facilitating the calculation of covariances as well. In the situation of J = 2, for instance, we nd that

EM (1) M (2) = 1 Q T -diag{γ (1) } -diag{γ (2) } -1
diag{α (1) }h 0,1 + diag{α (2) }h 1,0 , where h 0,1 and h 1,0 follow from the analysis presented in Section 5.

Remark 6.3. The model proposed in this section describes a J-dimensional stochastic process with dependent components. In many situations, the dimension d can be chosen relatively small (see for instance [START_REF]Modeling portfolio defaults using Hidden Markov Models with covariates[END_REF][START_REF]An in nite-server queue in uenced by a semi-Markovian environment[END_REF]), whereas J tends to be large (e.g., in the context of asset prices). Importantly, the

1 2 J(J + 1) = O(J 2
) entries of the covariance matrix of M (t) (or its stationary counterpart M ) are endogenously determined by the model, and need not be estimated from data. Instead, this approach requires the calibration of just the d(d -1) entries of the Q-matrix, as well as the 3dJ parameters of the underlying processes, totaling O(J) parameters. We conclude that, as a consequence, this framework o ers substantial potential advantages.

Discussion and concluding remarks

This paper has presented a set of results on , ranging from procedures to compute moments and a for the Fourier-Laplace transform, to weak convergence results under speci c scalings and a multivariate extension in which multiple s are modulated by the same background process. Although a relatively large number of aspects is covered, there are many issues that still need to be studied. One such area concerns the large-deviations behavior under speci c scalings, so as to obtain the counterparts of the results obtained in e.g. [START_REF]Rare-event analysis of Markov-modulated in nite-server queues: a Poisson limit[END_REF][START_REF]Tail asymptotics of a Markov-modulated in niteserver queue[END_REF][START_REF]A large-deviations analysis of Markov-modulated ini nite-server queues[END_REF] for the Markov-modulated in nite-server queue. It is further remarked that in this paper we looked at an regime-switching version of the process, but of course we could have considered various other processes. One option is the Markov-modulated version of the so-called Cox-Ingersoll-Ross ( ) process: dM (t) = α X(t) -γ X(t) M (t) dt + σ X(t) M (t) dB(t).

Some results we have established for

have their immediate counterpart, while for others there are crucial di erences. It is relatively straightforward to adapt the procedure used in Section 4.1, to set up a system of s for the Fourier-Laplace transforms (essentially based on Itô's rule). Interestingly, the recursions to generate all moments are now one-step (rather than two-step) recursions. A further objective would be to see to what extent the results of our paper generalize to more general classes of di usions; see e.g. [START_REF]A new approach to the economic analysis of nonstationary time series and the business cycle[END_REF].

We will show that this holds for . To this end, suppose we have two processes M (1) and M (2) , i.e., M (i) (t) = M 0 + t 0 α X(s) -γ X(s) M (i) (s) ds + t 0 σ X(s) dB(s), i ∈ {1, 2}.

Then V (t) := M (1) (t) -M (2) (t) satis es

V (t) = - t 0 γ X(s) V (s) ds
with initial condition V (0) = 0, on a measurable set Ω that has probability 1. If V (t) = 0 for all t ≥ 0 for every ω ∈ Ω , then M (1) and M (2) are indistinguishable. This is indeed the case, as a direct consequence of [19, Th. I.5.1] and [START_REF]A hidden Markov model of default interaction[END_REF]Th. I.5.3]. Consequently, every process admits a representation as in Equation ( 16).

For xed t ≥ 0 we would like to know the distribution of M (t). Let, for a given Γ(t), µ(t) and v(t) be given by ( 3) and (4), respectively. Observe that we may write M (t) = µ(t) + t 0 exp(-(Γ(t) -Γ(s)))σ X(s) dB(s).

Using the independence assumptions and standard properties of integrals with respect to Brownian motion, it is easily veri ed that E e iθM (t) F X ∞ = E exp iθ µ(t) + t 0 e -(Γ(t)-Γ(s)) σ X(s) dB(s) F X ∞ = e iθµ(t) E exp iθ t 0 e -(Γ(t)-Γ(s)) σ X(s) dB(s) F X ∞ = e iθµ(t) exp -1 2 θ 2 t 0 e -2(Γ(t)-Γ(s)) σ 2 X(s) ds = e iθµ(t)-1 2 θ 2 v(t) , which implies the Normality claim in Thm. 2.1.

B Some convergence results for nite Markov chains

In this appendix, we establish a technical result needed in Section 5. Proof. By the product rule, we have

N -1 d Z [N ] i (t)Z [N ] j (t) = N -1 Z [N ]
i (t)dZ i , Z

[N ] j t

.

Making use of the fact that Z [N ] i (t)Z

[N ] j (t) = Z [N ] i (t)1 {i=j} and of formula [START_REF]The deviation matrix of a continuous-time Markov chain[END_REF], we obtain after rearranging that

N -1 Z [N ]
i (t)dK 

i (t) = -N -1 d Z [N ] i , Z [N ] j t -Z [N ]
i (t)q ij dt -Z

[N ] j (t)q ji dt + N -1 dZ [N ] i (t)1 {i=j} .

Note that the two terms on the left-hand side are local martingales, and as the di erence between the optional and the predictable quadratic variation is a local martingale, we can apply the martingale central limit theorem to the local martingale

-N -1 d Z [N ]
i , Z

[N ] j t -Z

[N ] i (t)q ij dt -Z

[N ] j (t)q ji dt + N -1 dZ [N ] i (t)1 {i=j} , and thus we establish that, as N → ∞, for i = j

N -1 Z [N ]
i , Z

[N ] j t

→ -(π i q ij + π j q ji )t;

it is readily veri ed that this claim also applies when i = j. Then observe that d L i , Z

[N ] j t .

From QD = Π -I it follows that -d j=1 q ij D j = 1 {i= } -π and -d i=1 q ji D ik = 1 {j=k} -π k , and consequently we have that 

Lemma B. 1 .t

 1 As N → ∞, we have N L → (π l D k + π D k )t.

j

  (t) + N -1 Z [N ] j (t)dZ

i

  (t) + N -1 d Z [N ]

D

  ik D j (π i q ij + π j q ji ) = π D k + π k D k ,which implies the stated.
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A Existence and basic properties of MMOU

In this appendix we provide background and formal underpinnings of results presented in Section 2. Throughout we work with a given probability space (Ω, F, P) on which a random variable M 0 , a standard Brownian motion B, and a continuous-time Markov process X with nite state space are de ned. It is assumed that M 0 , X and B are independent. Denote the natural ltrations of X and B by (F X t ) t 0 and (F B t ) t 0 , respectively. As before, the state space of X is {1, . . . , d} for some d ∈ N, and we let α i ∈ R, γ i > 0 and σ i ∈ R for i ∈ {1, . . . , d}. We start by the de nition of , cf. Equation [START_REF]A functional central limit theorem for a Markov-modulated in nite-server queue[END_REF].

for all t ≥ 0.

To show existence of an process, we rst need a ltration (H t ) t 0 that satis es the usual conditions and with respect to which X is adapted and B is a Brownian motion. De ne the multivariate process Y by Y t = (M 0 , X t , B t ). Its natural ltration is given by

Using the independence assumptions, it is easily veri ed that Y is a Markov process with respect to F Y t and that B is a Brownian motion with respect to this ltration. In addition, Y is a Feller process. This is an immediate result of the independence assumptions and the fact that M 0 (viewed as a stochastic process), X and B are Feller processes. Now de ne the augmented ltration (H t ) t 0 via H t = σ F Y t , N , where N consists of all F ⊂ Ω such that there exists G ∈ F Y ∞ with F ⊂ G and P(G) = 0. Since Y has càdlàg paths, it follows from [29, Prop. III.2.10] that (H t ) t 0 satis es the usual conditions. Relative to this ltration, the process B is a Brownian motion [23, Th. 2.7.9] and Y is a Feller process [23, p. 92].

We now verify in detail the validity of Thm. 2.1. To construct an process, de ne the stochastic process

which is clearly adapted to (H t ) t 0 . The continuous stochastic process

is well de ned and adapted to (H t ) t 0 , too. Using similar techniques as in the construction of ordinary (cf. [31, Ch. V.5]), one veri es that M (t) satis es Equation [START_REF]An interest rate model with a Markovian mean-reverting level[END_REF], so the stochastic process M , as given by [START_REF]On Markov-modulated exponential-a ne bond price formulae[END_REF], is an process.

Now we would like to know whether a process that satis es the stochastic di erential equation ( 15) is unique. Of course, uniqueness up to indistinguishability is the strongest form of uniqueness we can get.