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a b s t r a c t

The valence instability in lanthanide systems is described within an extended periodic Anderson
Hamiltonian (EPAM) which includes Coulomb repulsion between f- and conduction- electrons, allowing
to describe both discontinuous and continuous valence variations. We investigate the connection be-
tween valence and magnetism in this model and show that it can be applied to several lanthanide
compounds showing both magnetic and valence instabilities.
© 2016 Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Intermetallic lanthanide compounds are usually classified into
normal and anomalous rare earth systems. In normal systems, the
valence of the rare earth is well defined (usually 3þ), the magnetic
moment is determined by Hunds rules and crystal field interactions,
and RKKYexchange interactions are responsible for magnetic order.
However there are compounds in which this scheme fails; such
anomalous systems are often observed with Ce, Yb, Eu, Sm or Tm. In
this paper we are interested in compounds in which the valence
may change with pressure, magnetic field, or doping. Such valence
change is accompanied by a change of the 4f-magneticmoment, and
in many cases (Ce, Sm, Eu or Yb) one of the valence state is non-
magnetic. For example Yb may change from Yb2þ, which is non-
magnetic, to Yb3þ which is magnetic. This paper presents a model
based on an extension of the Periodic AndersonModel that includes
inter-orbital Coulomb repulsion appropriate to discuss the interplay
of magnetic and valence transitions in such compounds.
2. Model and approximations

We Study an Extended Periodic Anderson Model (EPAM) which
can be written in the following form:
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where cðyÞis and f ðyÞis respectively denote anihilation (creation) oper-
ators of conduction- and f-electrons on a lattice site i with spin
component s ¼ [,Y. The spin-dependent f-occupation operator is
defined as bnf

is≡f
y
isfis and a similar definition is held for bnc

is. The
conduction electrons are characterized by their non-interacting
density of states r0ðuÞ≡

P
kdðu� εkÞ, where k denotes the mo-

mentum. This model differs from the Periodic Anderson Model by
the Coulomb repulsion term between f and conduction electrons,
Ufc. This repulsion was introduced by Falicov and Kimball to
describe discontinuous valence transitions in a spinless model [1].
Without this interaction, valence variation may occur by varying
the f-level position Ef and the hybridation V but it is always
second order. This Coulomb repulsion Ufc is much smaller than the
fef Coulomb repulsion U, and it will be treated in mean field
approximation, while the fef repulsion, which is one order of
magnitude larger, is treated using Hubbard I approximation [2].
This approximation is appropriate to describe charge instability
since the weights of lower and upper Hubbard bands are calculated
correctly in this approximation, which is crucial to describe valence
variations.

The chemical potential m is determined such that the thermal
average of the total local occupation is homogeneous and fixed to
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Fig. 2. Intrinsic ferromagnetic regions as a function of Ufc and Ef. This figure shows the
magnetic susceptibility as a function of Ef and Ufc. In the regions coloured in grey, the
magnetic susceptibility is divergent, indicating a ferromagnetic instability (same pa-
rameters as in Fig. 1).
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Invoking these approximations for the model Hamiltonian (1) in
the limit U¼þ∞, the local density of states for conduction and f-
electrons are given by rcðuÞ ¼ r0ðuþ m� SðuÞÞ and
rf ðuÞ ¼ ½SðuÞ�2

V2 r0ðuþ m� SðuÞÞ, where the local self-energy is given
by

SðuÞ≡

�
1� nf

2

�
V2

u� Ef þ m� Ufcnc
: (2)

The parameters nf¼ ntot � nc and m have to be determined self-
consistently by solving the two equations
nf =c ¼ 2

Rþ∞
�∞ rf =cðuÞnFðuÞdu where nF is the Fermi function. Nu-

merical results presented hereafter were computed with a constant
non-interacting density of states: r0ðuÞ ¼ 1

2D for juj<D and
r0(u) ¼ 0 otherwise.

In the absence of external magnetic field, study of the para-
magnetic solution indicates a valence change as a function of
either Ufc or Ef (see Fig. 1). For small values of Ufc the valence
changes continuously as a function of Ef, while for large values of
Ufc there is a first order transition from nf¼ 1 to nf¼ 0 when Ef
increases.
3. Magnetism and valence

Intrinsic magnetism of the EPAM. In the absence of external
magnetic field, Fig. 1 shows the variation of valence as a function
of Ef and Ufc. However a magnetic instability may occur in this
paramagnetic phase. Fig. 2 shows that for low Ufc, ferromagne-
tism appears spontaneously in the intermediate valence region.
There are two distinct regions where ferromagnetism appears
spontaneously: (i) for large negative Ef and large Ufc, nf¼ 1, this
corresponds to ordering of localized f-moments through RKKY
interactions. (ii) in the intermediate valence regime, ferromag-
netic instability occurs within the f-band which is then located
near the Fermi level. In this second case, the ferromagnetic
instability is then a Stoner-like instability occurring when density
of states at the Fermi level of the f-band is large. Increasing Ef, the
system is then going from a region with nearly integer valence,
where magnetism can be induced by additional RKKY in-
teractions, to an intermediate ferromagnetic region, and finally to
a region where rare earth ions are non-magnetic due to the
valence change.
Fig. 1. Phase diagram for the paramagnetic phase at T¼ 0 K, ntot¼ 1.5, V¼ 0.1D. The
critical end point is located at Ufc¼ 0.53D, Ef¼�0.23D.
Magnetism in the presence of fef exchange interaction application
to YbCu2 Si2

The intrinsic ferromagnetic instability is enhanced by RKKY
exchange, if it is ferromagnetic, allowing to enlarge the ferromag-
netic region of the phase diagram. In particular, close to the insta-
bility regions of Fig. 2, a very small exchange is sufficient to induce
ferromagnetism. This model can be applied to YbCu2 Si2 which
exhibits a ferromagnetic instability under pressure in the inter-
mediate valence phase [3]. Fig. 3 shows the results obtained using
our model with additional intersite exchange J. Increasing pressure
the valence of Yb changes from almost 2þ (4f14) to 3þ (4f13) and
ferromagnetism appears for a valence around 2.85.
Effect of applied field

Ferromagnetic instability may also occur under applied mag-
netic field, or under internal effective magnetic field as in YbMn6
Ge6�x SnxwhereMnmoments are ordered up to room temperature,
acting as an effective ferromagnetic field on the Yb ions [6,7]. In this
system, Yb sublattice remains magnetically ordered up to 90 K (for
x¼ 4.4) which is very large for Yb system, while for the same
composition, Yb ions are in the intermediate valence state (2.9þ).
For the composition x¼ 3.8, the valence is nearly 3þ, and the Yb
moments remain ferromagnetic only up to 50 K: this can be un-
derstood in our model, where external field has a much stronger
effect in the intermediate valence regime, where the Fermi level
lies in a region of large f-density of states. On the other hand, in the
integer valence regime, f-level is well below the Fermi level, and
less influenced by external parameters.
4. Conclusions

The model proposed in this paper shows that magnetic and
valence instabilities are strongly connected since in most cases,
valence fluctuations occur between amagnetic and a non-magnetic
valence state. This is the case of Yb compounds where valence
fluctuates between 4f13 and 4f14 states, but also of Eu (or Sm)
compoundswhich fluctuate between 4f6 and 4f7 (or 4f5) since in the
4f6 configuration, orbital and spin moments compensate and the
ground state is non-magnetic. Of course Ce compounds are in the
same class of compounds (fluctuations between 4f0 and 4f1), but
usually volume effects are important in Ce systems, and the valence
transitions are accompanied by large volume effects, which were



Fig. 3. Schematic comparison between the results obtained with EPAM and experiments on YbCu2(Si/Ge)2. Red solid and blue dashed lines:numerical results obtained with
V¼ 0.1D, ntot¼ 1.2, Ufc¼ 0.4D, and intersite exchange J¼ 0.01D. Ef varies from �0.1D to �0.5D. These variations are in good agreement with experimental results either under
pressure, or on replacing Si by Ge (for experimental results: see Refs. [4] and [5]).
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not included in this model. Several Tm compounds also exhibit
valence fluctuations, but in this case both valence states (4f12 and
4f13) are magnetic: the description of such system requires to
include 4f degeneracy in the model.

In the intermediate valence region, the 4f-density of states is
large near the Fermi level, and this is the reason why a magnetic
instability can be induced very easily. The model presented in this
paper, with additional magnetic interactions if necessary, is able to
describe various situations observed in lanthanide compounds,
where valence and magnetism variations under pressure, temper-
ature, or alloying, appear to be connected.

This paper is dedicated to the memory of Pr. Peter Brommer in
appreciation of his constant efforts in the cooperation with Viet-
namese Universities and Institutes in the field of rare earth in-
termetallics magnetism.
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