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Abstract

We study the dynamics of opinion propagation in a medium-sized population with low population turnover.

Opinion spreading is modelled by a Markovian non-standard Susceptible-Infected-Recovered (SIR) epidemic

model with stochastic arrivals, departures, infections and recoveries. The system performance is evaluated by

two complementary approaches: a numerical but approximate solution approach which relies on Maclaurin-

series expansions of the stationary solution of the Markov process and a fluid limit approach. Both methods

are evaluated numerically. Moreover, convergence to the fluid limit is proved, and explicit expressions for

the fixed points of the differential equations are obtained for the case of linearly increasing infection and

arrival rates.

Keywords: Opinion propagation; Epidemic model; Maclaurin-series expansion; Fluid model; Markov

chain; Performance analysis.

1. Introduction

Given the rapid growth of companies in the internet sector that base their revenue model on advertisement

(such as Google, Facebook, etc.) [16] and the ascent of social networks in particular, the study of opinion

spreading is a trending topic, and there is a strong interest in understanding how new opinions spread

through a community. Apart from these economic considerations, the analysis of opinion spreading can

improve our comprehension of social relations among individuals, both online and offline.

This paper studies opinion propagation by drawing parallels with the spreading of diseases [4, 19]. Indeed,

opinion propagation bears some similarity to the spread of an infectious disease, and particularly to Kermack

and McKendrick’s classical compartmental SIR model for such propagation [26]. The acronym SIR stands

for susceptible (S), infectious (I) and recovered (R), and refers to the possible states that an individual

can be in, the possible transitions between these states following the order S → I → R. In particular,

the SIR model assumes that if a healthy individual encounters an infected individual, there is a chance

that the healthy individual gets infected. An infected individual then recovers from the disease after some

time, making him/her immune for the infection. This process can be directly reformulated in terms of the
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propagation of opinions on a particular topic: a susceptible or non-opinionated individual has yet to form

an opinion on the topic, whereas infected or opinionated individuals do have such an opinion. Susceptible

individuals may form an opinion when they encounter infected individuals, like an infection is carried over

to a healthy individual upon contact. Finally, individuals loose their interest in the topic after some time

and stop spreading their opinion. These individuals have recovered.

The SIR epidemic model has been predominantly applied to study disease, see e.g. [19, 20, 21, 23], but

there is some prior work in the areas of rumour and opinion propagation as well. Concerning the latter, Zhao

extends the SIR model for opinion spreading in social networks by including a hibernator state in which

individuals temporary interrupt infecting others [39]. Moreno et. al study SIR like spreading of rumours

explicitly accounting for the network structure [31]. Bettencourt et. al [5] draw parallels between epidemics

and idea diffusion by applying several epidemiological models to empirical data. Woo et. al [37] show the

plausibility to describe the mechanism of violent topic diffusion in web forums by a SIR model while Fan

et. al [17] propose an extended SIR model for opinion dynamics in which individuals can have a positive or

negative opinion about a topic. Finally, some preliminary results on series expansion techniques (cf. infra)

for stochastic SIR models for opinion propagation were presented in [12].

SIR models are not the only models for studying opinion propagation in literature. For example, the

threshold model starts from a random directed graph where each node selects a random threshold [25].

Opinion propagation then evolves deterministically: a node becomes active (gets an opinion) if the fraction

of its active neighbours exceeds its threshold. In contrast to the threshold model, the dynamics of the voter

model are stochastic: each node changes its state to the state of a random neighbour [28]. The Sznajd

model [36] assumes more complex interactions between nodes: a node and a neighbouring node are selected

at random. If the neighbouring node is undecided, it adopts the opinion with some probability. If both

have the same opinion, they try to convince the other neighbours. Finally, if they have different opinions,

nothing happens. Specifically focussing on tweet propagation, Yang et. al [38] propose a factor graph model

based on the analysis of the factors influencing the user’s retweet behaviour. Kawamoto et. al [24] model

the information diffusion as a random multiplicative process, with a particular focus on retweet behaviour.

In [22], the traditional Susceptible-Infected-Susceptible (SIS) epidemic model is studied in order to predict

retweeting trends.

In this paper, we focus on a compartmental Markovian SIR model for opinion spreading in bounded

medium-sized populations. While the total population of internet users easily qualifies as large, the size of

an online community — say, of people contributing to an online forum or of people tweeting and retweeting

some hash tag — is often not that large. Moreover, these communities hardly remain constant over time,

with individuals joining and leaving all the time. We study such communities assuming that the number

of individuals is bounded, there is a maximum number of individuals in the community. Such epidemic

processes on bounded medium-sized populations are interesting from a mathematical point of view as well.
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While our numerical results reveal that a fluid limit approach yields accurate results when individuals only

remain for a limited time (cf. figure 7), such an approach cannot be used to assess the system when individuals

remain for a long time. For small populations, this is not problematic as small population sizes translate

into small state spaces of the corresponding Markov processes such that the steady-state probability vector

is easily calculated. In contrast, when the bound (and therefore also the state space) is larger — we use the

term medium-sized populations — direct calculation of the stationary vector is computationally infeasible

and performance needs to be assessed by other means when individuals remain for a long time. This is the

subject of the present paper.

The contributions of this paper are twofold. First, we investigate the performance of opinion propagation

in a Markovian framework by an approximate solution technique for Markov processes which relies on

Maclaurin-series expansions of the steady-state probability vector. This technique was recently applied to

study kitting processes [13]; a kitting process is a type of multi-buffer queueing system in which service is

synchronised between the different buffers and temporarily blocked if one of the buffers is empty [11]. The

epidemic process under consideration generalises the Markovian SIR process in various ways. We assume

that the population size is bounded, but individuals join and leave the population over time to account for

the dynamic formation of online communities. Moreover, the assumptions on infection and recovery rates are

relaxed and individuals are allowed to move from susceptible to recovered directly as community members

not necessarily want to spread the opinion to others. Secondly, in addition to the Maclaurin-series approach,

we consider a fluid limit of the Markov process at hand and formally prove convergence. Fluid limits are a

popular mathematical technique (see e.g. [8, 9, 14, 15, 29, 33, 34] and the references therein) which (when

a good scaling is found) allow for focussing on the salient features of the stochastic process while discarding

‘second-order fluctuations’ around this main trend. In the present paper, it helps to make the link with

more standard deterministic SIR models. We like to mention that the fluid scaling under study (arrival rates

and location capacity are sent to infinity), differs significantly and therefore complements the Maclaurin-

series expansion limit (which holds for low departure rates). We thus aim to view this computationally

cumbersome Markov model from different limiting cases, and gain new insights by combining them. We also

note that the derivation of the fluid limit as performed in this paper also lends itself naturally to refinements

in the form of diffusion results, but this is considered to be outside of the scope of the current paper.

The remainder of this paper is organised as follows. Section 2 introduces the opinion spreading model

at hand as well as some particular examples, discussed further on. In section 3, the balance equations are

derived and the numerical series expansion approach is explained. Next, we find a fluid limit for the epidemic

Markov process in section 4. To illustrate both approaches, section 5 considers various numerical examples.

Finally, conclusions are drawn in section 6.
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2. Model description

We consider an opinion propagation system as depicted in Figure 1. There are at most L individuals

in the community, each individual either being recovered (r), infected (i) or susceptible (s) (this particular

ordering instead of the traditional s, i, r will prove useful for the Maclaurin analysis of section 3). Let Xk(t)

be the number of individuals of type k ∈ K = {r, i, s} at time t, and let X(t) = (Xr(t), Xi(t), Xs(t)) ∈ L =

{(xr, xi, xs) ∈ N3|xi + xr + xs ≤ L}. For any x ∈ L, xk is the number of individuals of type k ∈ K and

||x||1 = |xr|+ |xi|+ |xs| = xr +xi+xs is the L1 norm which corresponds to the total number of individuals.

We consider a Markovian opinion propagation system, the number of individuals of the different types

being the state of the Markov process. We make the following assumptions on the arrival, infection and

recovery rates of the Markov process.

• For, ||X(t)||1 < L, there is a new arrival of type k ∈ K in the interval [t, t + dt) with probability

λk(X(t))dt+ o(dt). The total arrival rate in state x ∈ L is denoted by λ(x) = λr(x) + λi(x) + λs(x).

To simplify notation, assume λ(x) = λk(x) = 0 for ||x||1 ≥ L and k ∈ K. The dependence of the

arrival rate on the population size is motivated by the observation that having many individuals in a

community can be seen as a quality signal which then results in more individuals joining the community

(cf. section 2.2 infra).

• There is a departure of an individual of type k ∈ K in the interval [t, t+dt) with probability µXk(t)dt+

o(dt). Hence, the residence time of any individual is exponentially distributed with mean 1/µ.

• A single susceptible (infected, susceptible) individual gets infected (recovers, recovers, respectively) in

the interval [t, t+ dt) with probability αsi(X(t))dt+ o(dt) (αir(X(t))dt+ o(dt), αsr(X(t))dt+ o(dt)).

To simplify further notation, we assume αsi(x) = αsr(x) = 0 for xs = 0 and αir(x) = 0 for xi = 0.

There can be no infection or recovery if there are no individuals that can get infected or that can

recover.

The Maclaurin-series expansion in section 3 further requires that for every x ∈ L, (i) the total arrival rate

λ(x) is non-zero, (ii) the infection rate αsi(x) and the refusing rate αsr(x) are non-zero for xs > 0, and (iii)

the recovery rate αir(x) is non-zero for xi > 0.

Let π(·) denote the stationary distribution of the Markov chain (which is guaranteed to exist as the state

space is finite and uni-chain), and — for further use — let X denote a generic random variable distributed
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Figure 1: Opinion propagation model.

according to π. From the above generator representation we derive the following set of balance equations:

π(x)
(
||x||1µ+ λ(x) + αsi(x) + αir(x) + αsr(x)

)
= π(xr + 1, xi, xs)µ(xr + 1) + π(xr, xi + 1, xs)µ(xi + 1) + π(xr, xi, xs + 1)µ(xs + 1)

+ π(xr − 1, xi, xs)λr(xr − 1, xi, xs) + π(xr, xi − 1, xs)λi(xr, xi − 1, xs)

+ π(xr, xi, xs − 1)λs(xr, xi, xs − 1) + π(xr, xi − 1, xs + 1)αsi(xr, xi − 1, xs + 1)

+ π(xr − 1, xi + 1, xs)αir(xr − 1, xi + 1, xs) + π(xr − 1, xi, xs + 1)αsr(xr − 1, xi, xs + 1) , (1)

for x ∈ L. Here and in the remainder, we follow the convention that π(x) = 0 if x /∈ L.

Prior to introducing the series expansions and fluid approximations, we first introduce two particular

examples of the Markov process. In section 5 where we present various numerical results, we return to these

examples.

2.1. Constant infection and arrival rates

In the most basic setting, individuals arrive according to a Poisson process with the (state-independent)

parameter λk, k ∈ K. Furthermore, if we assume that each susceptible individual has a constant probability

to get infected and to recover, i.e. αsi(x) = xsαsi and αsr(x) = xsαsr, and that each infected individual has
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a constant probability to recover, i.e. αir(x) = xiαir, then the mean number of each type in steady state

can be calculated explicitly.

Indeed, as the departure rate of each individual is equal to µ, the total number of individuals ||X||1
is distributed as the queue content of a classic M/M/L/L queue, with arrival rate λ = λr + λi + λs and

departure rate µ, for which the steady-state distribution can be found in every queueing-theory textbook,

Pr[||X||1 = n] =

1
n!

(
λ
µ

)n
∑L
m=0

1
m!

(
λ
µ

)m . (2)

Let pk denote the probability that a random departing individual is of type k ∈ K. An individual leaves

the system as a susceptible individual, provided it arrived in the system as a susceptible individual and it

leaves the system prior to infection or recovery. Hence, we have,

ps =
λs
λ

µ

αsi + µ+ αsr
,

the first factor being the probability that an arriving individual is susceptible and the second factor being

the probability that a susceptible individual leaves prior to infection or recovery. Analogously, an individual

departs as an infected individual if (i) it arrives as susceptible, gets infected and does not recover or (ii) it

arrives as infected and does not recover. Hence, we find,

pi =
λi
λ

µ

αir + µ
+
λs
λ

αsi
(αsi + αsr + µ)

µ

(αir + µ)
.

Finally, an individual leaves as recovered if it does not leave the system as a susceptible or infected individual,

hence we have,

pr = 1− pi − ps = 1− λs
λ

µ

αsi + µ+ αsr
− λi
λ

µ

αir + µ
− λs

λ

αsi
(αsi + αsr + µ)

µ

(αir + µ)
.

Note that the rate at which an individual leaves the system does not depend on the type of the individual.

Therefore pk is the probability that a random individual in the system is of type k. Moreover, individuals

change type, independent of other individuals. Hence, the distribution of the number of individuals of the

different types, conditioned on the total number of individuals in the system, is a multinomial distribution

with parameters pr, pi and ps. Combining this observation with equation (2), yields,

Pr[X = x] = Pr[||X||1 = ||x||1]
||x||1!

xr!xi!xs!
pxr
r pxi

i pxs
s =

(
λ

µ

)||x||1 pxr
r pxi

i pxs
s

xr!xi!xs!

 L∑
m=0

1

m!

(
λ

µ

)m−1 ,
and,

Pr[Xk = n] =

L∑
`=n

(
`

n

)
Pr[||X||1 = `] pnk (1− pk)`−n =

L∑
`=n

(
λ

µ

)`
pnk
n!

(1− pk)`−n

(`− n)!

 L∑
m=0

1

m!

(
λ

µ

)m−1 .
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2.2. A model for opinion spreading

The following example is more complex and does not have a simple solution. We will rely on either a

Maclaurin-series approach or on a fluid limit to estimate performance.

We propose the following infection and recovery rates. It is reasonable to assume that non-opinionated

individuals are more likely to form an opinion if there are more opinionated individuals. Therefore, we

assume that the infection rate of susceptible individuals is an affine function of the number of infected

individuals,

αsi(x) =
(
α0
si + α1

sixi

)
xs .

Moreover, the effects of other individuals on shifting to neutral (recovered) are neglected. Therefore the rate

at which non-opinionated and opinionated individuals shift to neutral are constant, which implies,

αir(x) = α0
irxi , αsr(x) = α0

srxs .

Finally, having many individuals in the community, is likely to attract new opinionated and non-opinionated

individuals. Hence, we assume that the arrival rates of the susceptible and infected individuals are affine

functions of the total number of individuals,

λi(x) = λ0i + λ1i ||x||1 , λs(x) = λ0s + λ1s||x||1 ,

whereas neutral individuals arrive at a constant rate,

λr(x) = λ0r .

Note that the assumptions above are a generalisation of Kermack and McKendrick’s SIR model. In

Kermack and McKendrick’s setting, the population is fixed (λ0i = λ1i = λ0s = λ1s = λ0r = µ = 0), the

infection rate is proportional to the number of infected individuals (α0
si = 0), and individuals do not recover

without being infected (α0
sr = 0).

3. Maclaurin-series expansions

While the system of equations (1) is easily solved when the maximum number of individuals is limited, the

state space size already explodes for relatively small L and a direct solution is computationally infeasible.

Indeed, numerical computation of the steady-state vector has an asymptotic time complexity of O(M3),

where M =
(
L+3
3

)
∼ L3/6 is the size of the state space. We introduce the numerical Maclaurin-series

approach in generic terms in the subsection below and survey related work in subsection 3.2. We then tailor

the method to the Markov chain at hand in subsection 3.3 and derive performance measures in subsection

3.4.
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3.1. Methodology

Notice that the generator matrix of the Markov chain at hand can be decomposed as follows,

Qµ = Q(0) + µQ(1) ,

with neither Q(0) nor Q(1) depending on µ. Moreover, Q(0) is still a proper generator matrix, it is the

generator matrix of the Markov process when there are no departures. As the size of the state space does

not allow for a direct calculation of π as the normalised solution of,

πQµ = 0 ,

we introduce the Maclaurin-series expansion of the steady state vector in µ,

π =

∞∑
n=0

µnπn.

In order for such an expansion to make sense, the vector π is required to be analytic in a neighbourhood of

µ = 0. For finite state spaces (in contrast to infinite ones, see e.g. [3, 18]), this is fairly easy to establish.

Finding the steady-state distribution is in this case essentially a finite-dimensional eigenproblem. If a matrix

depends analytically on a parameter, then the corresponding eigenvalues and eigenvectors are also analytic

in case of null-space perturbation [1]. Another possible path towards proving analyticity is via V -uniform

ergodicity of the unperturbed Markov process with generator Q(0) (see a.o [3]), which is equivalent to the

existence of a spectral gap (the distance between eigenvalue 0 of the generator matrix Q(0) and the eigenvalue

that is its nearest neighbour). For finite Markov chains, there is a spectral gap as long as there is only one

recurrent class for µ = 0. Hence, provided that Q(0) is a generator matrix with one recurrent class (this

condition is also denoted as ‘regular perturbation’, as opposed to ‘singular perturbation’), the expansion

makes sense and π0 is the normalised solution of the equation,

π0Q
(0) = 0 .

Every subsequent term πn can be found by identifying equal powers of µ in the equation,

∞∑
n=0

µnπn(Q(0) + µQ(1)) = 0 ,

which leads to the following equation for πn+1,

πn+1Q
(0) = −πnQ(1) .

The normalisation condition of π implies that the elements of πn sum to 0 for each n > 0. This fact and

the former equation allows for recursively solving the terms in the expansion.

As we now have to solve a linear system of equations for each term πn in the expansion, plus an

additional vector-matrix product, it appears that we have not gained very much. However, if we impose the
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extra condition that Q(0) is triangular for some ordering of the state space (either upper or lower triangular),

then the resulting linear systems of equations can be solved by backward substitutions, with considerably

reduced computational complexity. As a worst case, its computation time is O(M2). However, the number

of transitions from a state is typically much smaller than the state space, such that the computation time

typically is O(M).

3.2. Related work

Prior to applying the series expansion method to the Markov model at hand, we survey work on series

expansions of stochastic models. For an overview, we refer the reader to [6], [27] and the recent book [2].

The first work on series expansions of stochastic models seems to be by Schweitzer in 1968 [35]. Ever since,

it has been applied in many forms and flavours, and is known under various names such as perturbations,

light-traffic expansions, Taylor-series expansions and so on. This technique is in principle not confined to

the Markov framework (see e.g. [7], which utilises Palm theory), although many interesting examples indeed

fall within this framework.

There are roughly three methods to establish series expansions of stochastic models. The first makes use

of the direct derivation sketched above and forms the basis of the computational method that we propose

in this paper and will evaluate in the next subsection. The second makes use of sample-path arguments.

Consider the case that µ denotes a particular event rate. For example, for light-traffic approximations, µ

denotes the arrival rate; in the worked-out example of section 3, the parameter denotes the service rate,

and hence constitutes a ‘low-service rate’ approximation. An important result for this strand of research is

what we can call the n events rule, which states that for an nth order expansion, only sample paths with

n or fewer of such events must be considered. This can be intuited from the non-rigorous reasoning that

a sample path containing n such events has a probability of order µn. However due to the fact that the

number of sample paths is uncountable and thus the probability of every individual path is zero, making this

rigorous is non-trivial. For series expansions revolving around a Poisson process with a small rate, to which

the examples in this work essentially belong, this was made rigorous by Reiman and Simon [32]. Important

work extending this to a Palm calculus context was presented in [7].

The third approach to series expansions is via the following updating formula, which has been established

in general Markov settings, see eg. [18]:

π = π0

∞∑
k=0

[µQ(1)D]k.

where D denotes the deviation matrix of Q(0). In this case, a successful application revolves around finding

this deviation matrix D, defined as follows:

D =

∫ ∞
0

([P0(t)]ij −Π0)dt , (3)
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with P0(t) the Markov semigroup of the continuous-time Markov chain and Π0 = limt→∞ P0(t).

As the matrix D is closely related to Poisson’s equation for Markov chains, this technique is sometimes

also denoted as such [30]. Note that the matrix D pertains to the unperturbed Markov chain, so that in

this updating formula we see another justification for the n events rule. Indeed, as the events are in fact

nothing else than the transitions recorded in Q(1), transitions which do not occur in Q(0) and hence nor in

D, it follows that in the vector πn = π0(Q(1)D)n, only those states that can be reached with n events (or

less) can be non-zero. To the best of our knowledge, a rigourous identification of the sample-path method

and the updating formula has not yet been attempted.

3.3. Application

In view of the method described above, let πn(x) be the nth component of the expansion,

π(x) =

∞∑
n=0

πn(x)µn ,

for x ∈ L. Substituting the former expression in the balance equations (1), we get

∞∑
n=0

πn(x)µn
(
||x||1µ+ λ(x) + αsi(x) + αir(x) + αsr(x)

)
= 1{||x||1<L}

( ∞∑
n=0

πn(xr + 1, xi, xs)µ
n+1(xr + 1) +

∞∑
n=0

πn(xr, xi + 1, xs)µ
n+1(xi + 1)

+

∞∑
n=0

πn(xr, xi, xs + 1)µn+1(xs + 1)
)

+

∞∑
n=0

πn(xr − 1, xi, xs)λr(xr − 1, xi, xs)µ
n

+

∞∑
n=0

πn(xr, xi − 1, xs)λi(xr, xi − 1, xs)µ
n +

∞∑
n=0

πn(xr, xi, xs − 1)λs(xr, xi, xs − 1)µn

+

∞∑
n=0

πn(xr, xi − 1, xs + 1)αsi(xr, xi − 1, xs + 1)µn +

∞∑
n=0

πn(xr − 1, xi + 1, xs)αir(xr − 1, xi + 1, xs)µ
n

+

∞∑
n=0

πn(xr − 1, xi, xs + 1)αsr(xr − 1, xi, xs + 1)µn . (4)

For x ∈ L∗ = L \ {(L, 0, 0)}, comparison of the terms in µ0 on both sides of the former equation yields,

π0(x)
(
λ(x) + αsi(x) + αir(x) + αsr(x)

)
=

∞∑
n=0

π0(xr − 1, xi, xs)λr(xr − 1, xi, xs) +

∞∑
n=0

π0(xr, xi − 1, xs)λi(xr, xi − 1, xs)

+

∞∑
n=0

π0(xr, xi, xs − 1)λs(xr, xi, xs − 1) +

∞∑
n=0

π0(xr, xi − 1, xs + 1)αsi(xr, xi − 1, xs + 1)

+

∞∑
n=0

π0(xr − 1, xi + 1, xs)αir(xr − 1, xi + 1, xs) +

∞∑
n=0

π0(xr − 1, xi, xs + 1)αsr(xr − 1, xi, xs + 1) . (5)
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Evaluating this expression in lexicographical order shows,

π0(x) = 0 , (6)

for x ∈ L \ {(L, 0, 0)}. By the normalisation condition of π0 we further get π0(L, 0, 0) = 1. This result is

not unexpected. In the absence of departures, the population size reaches its boundary and no new arrivals

are possible. Moreover, every individual in the population will recover after some time, such that there are

but recovered individuals.

Comparison of the terms in µn for n > 0 in equation (4) gives,

πn(x) =
1

∆(x)

(
1{||x||1<L}

(
πn−1(xr + 1, xi, xs)(xr + 1) + πn−1(xr, xi + 1, xs)(xi + 1)

+ πn−1(xr, xi, xs + 1)(xs + 1)
)

+ πn(xr − 1, xi, xs)λr(xr − 1, xi, xs) + πn(xr, xi − 1, xs)λi(xr, xi − 1, xs)

+ πn(xr, xi, xs − 1)λs(xr, xi, xs − 1) + πn(xr, xi − 1, xs + 1)αsi(xr, xi − 1, xs + 1)

+πn(xr−1, xi+ 1, xs)αir(xr−1, xi+ 1, xs) +πn(xr−1, xi, xs+ 1)αsr(xr−1, xi, xs+ 1)−πn−1(x)||x||1
)
,

for x ∈ L \ {(L, 0, 0)} with,

∆(x) =
(
λ(x) + αsi(x) + αir(x) + αsr(x)

)
.

As detailed in [13], we can use the above equation to compute new terms very efficiently, by iterating over

the state space in lexicographic order, as on the RHS only entries of either order n− 1 or lexicographically

smaller entries of order n are present. Moreover, the assumptions on the arrival process assure that ∆(x) > 0

for all x ∈ L \ {(L, 0, 0)}. As for the 0th order term, the normalisation condition is used to find the nth

order expansion of π(L, 0, 0),

πn(L, 0, 0) = −
∑

x∈L\{(L,0,0)}

πn(x) .

3.4. Performance measures

Once the series expansion of the steady-state distribution has been obtained, the expansion of various

performance measures directly follows. Let X ∼ π, then for a performance measure J = E[f(X)], we have

J =
∑
x∈L

f(x)π(x) =
∑
x∈L

f(x)

∞∑
n=0

πn(x)µn =

∞∑
n=0

∑
x∈L

f(x)πn(x)µn =

∞∑
n=0

Jnµ
n , (7)

with

Jn =
∑
x∈L

f(x)πn(x) .

The interchange of the summations is justified by the finiteness of L and the convergence of
∑
n πn(x)µn

for all x ∈ L. As such, any term Jn in the expansion of a performance measure J can be calculated from

the corresponding vector πn of the expansion of the steady-state vector π. Performance measures of interest

include amongst others the jth order moment of the number of individuals of type k ∈ K (f(x) = xk
j).
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4. Fluid limit

In this section, we develop a fluid limit for the model described in this contribution, relying on the

monograph of Ethier and Kurtz [15], and on the survey article by Darling and Norris [10]. We study this

Markov model via its generator Q,

Qf(x) := lim
t→0

1

t

(
E[f(X(t))|X(0) = x]− f(x)

)
,

for any bounded and measurable function f : L → R. It is straightforward to deduce from the informal

description of section 2 that

Qf(x) =
∑
k∈K

λk(x)[f(x + ek)− f(x)] +
∑
k∈K

µ xk[f(x− ek)− f(x)]

+
∑

(j,k)∈K∗
αjk(x)[f(x− ej + ek)− f(x)], (8)

where er := [1, 0, 0], ei := [0, 1, 0], es := [0, 0, 1] and K∗ := {(s, i), (i, r), (s, r)}.

4.1. Convergence for the generic epidemic process

Let {Xε
r (t), Xε

i (t), Xε
s (t)} denote the continuous-time Markov process indexed by the scaling parameter

ε, which affects the system in the following way: step sizes are scaled by ε, whereas the transition rates

are scaled by ε−1. We assume that the Markov process takes values in a compact set U ⊂ R3, where

U := {x ∈ R3 : x ≥ 0, ||x||1 ≤ L}.

In particular, the generator of the scaled process is as follows,

Qεf(x) =
∑
k∈K

ε−1λ̄k(x)[f(x + εek)− f(x)] +
∑
k∈K

ε−1µxk[f(x− εek)− f(x)] (9)

+
∑

(j,k)∈K∗
ε−1ᾱjk(x)[f(x− εej + εek)− f(x)], (10)

for suitable functions λ̄k(·) and k ∈ K, ᾱjk(·), (j, k) ∈ K∗, which we require to be Lipschitz continuous

on U . The functions λ̄k(·) extend the domain of the functions λk(·) to L. Note that Lipschitz continuity

means in particular that the arrival rates λ̄k(·) must not go discontinuously to zero at the border ∂U of U ,

and therefore we smoothen these functions in a certain manner. In terms of numerical results, the exact

manner with which these are smoothened is not important, as we have found that the fluid limit gives the

best results when the system steers clear from the boundary as ε→ 0, that is

Pr[d(Xε(t), ∂U) > δ]→ 0,

where d(·, ·) denotes the Euclidean distance.
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Let us introduce the transition rates qε(x,x
′) corresponding to Qε in the obvious manner. By ‘Tayloring’,

we find that

Qεf(x)→
∑
k∈K

λ̄k(x)∂xk
f(x)−

∑
k∈K

µxk∂xk
f(x) (11)

+
∑

(j,k)∈K∗
ᾱjk(x)[−∂xj + ∂xk

]f(x) +O(ε2). (12)

Note that the limit is exact when f is a linear function, as the second order derivatives of f , which feature

in the O(ε2) term, are evidently all zero. It is well-known that a generator of this type has a deterministic

solution that can be formulated in terms of the following system of (non-linear) differential equations:

ẋs(t) = λs(x(t))− ᾱsi(x(t))− ᾱsr(x(t))− µxs(t);

ẋi(t) = λi(x(t)) + ᾱsi(x(t))− ᾱir(x(t))− µxi(t);

ẋr(t) = λr(x(t)) + ᾱir(x(t)) + ᾱsr(x(t))− µxr(t) ,

which has in general no closed-form solution but can be solved efficiently with a suitable numerical procedure

for differential equations. Let us denote this system of equations in shorthand as ẋ = b(x), for a suitably

defined vector field b(·) on U , with Lipschitz constant K.

We show an error bound for the fluid limit using Theorem 4.2 from [10]. Consider the following events:

Ω0 :=
{
||Xε(0)− x(0)|| ≤ δ

}
,

Ω1 :=

{∫ t0

0

||β(Xε(t))− b(x(t))||dt ≤ δ

}
,

Ω2 :=

{∫ t0

0

γ(Xε(t))dt ≤ A(ε)t0

}
.

where

β(x) =
∑
x′

q(x,x′)(x′ − x),

and

γ(x) =
∑
x′

q(x,x′)||x′ − x||2.

Here || · || is the Euclidean norm.

We have per Theorem 4.2 that

P

(
sup
t≤t0
||Xε(t)− x|| > κ(ε)

)
≤ 4A(ε)t0/δ

2 + P(Ωc0 ∪ Ωc1 ∪ Ωc2).

where δ = κ(ε)e−Kt0/3.
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A simple calculation shows that P(Ωc1) = 0 and also P(Ωc2) = 0 if we choose

ε−1A(ε) =
∑
k∈K

sup
x
λ̄k(x) + µL+

√
2
∑

(j,k)∈K∗
sup
x
ᾱjk(x).

If we choose κ(ε) such that κ(ε)2/ε → 0, and Xε(0) → x(0) then we have indeed convergence to the fluid

limit.

4.2. Equilibrium points for the opinion spreading model

In this section, we calculate the equilibrium points for the opinion spreading model introduced in subsec-

tion 2.2 by solving b(x) = 0. We assume all rates are positive: α0
si > 0, α1

si > 0, α0
ir > 0, α0

sr > 0, λ0s > 0,

λ1s > 0, λ0i > 0, λ1i > 0 and λ0r > 0. In view of the assumptions on the rates introduced in section 2.2, we

find the following set of equations for the equilibrium points of the opinion spreading model,

0 =
(
λ0s + λ1s||x||1

)
1{||x||1<L} −

(
α0
si + α1

sixi

)
xs − α0

srxs − µxs ; (13)

0 =
(
λ0i + λ1i ||x||1

)
1{||x||1<L} +

(
α0
si + α1

sixi

)
xs − α0

irxi − µxi ; (14)

0 = λ0r1{||x||1<L} + α0
irxi + α0

srxs − µxr . (15)

where ||x||1 = xr + xi + xs.

First assume ||x||1 = L. Then xs = 0 implies xi = xr = 0 by equations (14) and (15) and hence

||x||1 6= L. In addition xs > 0 implies xr < 0 by equation (14). We conclude that there is no non-negative

equilibrium point for ||x||1 = L.

Now assume ||x||1 < L. By subtracting (13) from (14), we can eliminate the quadratic part in αsi(x).

Then, we find solutions for xi and xr by solving this new linear equation together with equation (15). These

solutions are substituted in equation (13) such that we get the following quadratic equation in xs:

x2s +

(
λ0r

µ+ α0
sr

−
µ
(
λ0i + λ0r + λ0s

)(
µ− λ1i − λ1s

)
(µ+ α0

sr)
−
α0
si

(
µ+ α0

ir

)
(µ+ α0

sr)α
1
si

− µ+ α0
ir

α1
si

)
xs

+

(
µλ0s + λ0iλ

1
s − λ1iλ0s + λ0rλ

1
s

) (
µ+ α0

ir

)
α1
si

(
µ− λ1i − λ1s

)
(µ+ α0

sr)
= 0 .

For both solutions xs of the quadratic equation above, we find xi in terms of xs,

xi =

(
λ1iµ+ α0

siλ
1
i + α0

siλ
1
s + λ1iα

0
sr

)
xs + λ0iλ

1
s − λ1iλ0s

λ1s
(
µ+ α0

ir

)
− α1

si

(
λ1i + λ1s

)
xs

,

and xr in terms of xi and xs,

xr =
α0
irxi + α0

srxs + λ0r
µ

.
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To examine the stability of the equilibrium point, we investigate the Jacobian matrix at each of the

equilibrium points from the quadratic equation. We have

J =


dFs

dxs

dFi

dxs

dFr

dxs

dFs

dxi

dFi

dxi

dFr

dxi

dFs

dxr

dFi

dxr

dFr

dxr


where Fs, Fi and Fr are respectively equal to the right hand sides of equations (13), (14) and (15). We get

J =


λ1s − α0

si − α1
sixi − µ λ1i + α0

si + α1
sixi α0

sr

λ1s − α1
sixs λ1i + α1

sixs − α0
ir − µ α0

ir

λ1s λ1i −µ

 . (16)

Note that if all eigenvalues have a negative real part, the equilibrium point is stable, otherwise the equilibrium

point is unstable. Numerical results will be given in the next section.

5. Numerical results

To illustrate our numerical approach, we now assess the accuracy of the series expansion technique and

the fluid limit by means of several numerical examples.

5.1. Constant infection and arrival rates

First, consider the first example as described in subsection 2.1. Recall, that for this particular example,

the solution can be calculated explicitly. We here compare the accuracy of the series expansion, with

the exact result. To this end, figures 2(a) and 2(b) depict the mean number of infected and susceptible

individuals, respectively, versus the arrival rate of infected individuals λi. The maximum population size is

L = 50 and we further assume λr = λs = 1 and αir = αsi = αsr = 1. Moreover, the departure rate is set to

µ = 0.05. The exact result is compared with the approximation by an Nth order expansion in µ for N = 2,

N = 4 and N = 8. For N = 8, we observe that the approximation is accurate, apart from a slight deviation

for small λi. In contrast, for N = 2 and N = 4, the results of the series expansions are clearly not accurate

for the considered parameter settings.

To establish the regions in which the results of the series expansion are accurate enough, we propose

a simple heuristic which compares the Nth and the 2Nth order expansions. Let fN (µ) be the Nth order

expansion in µ, we then accept our Nth order approximation provided if

|f2N (µ)− fN (µ)|
f2N (µ)

< ε , (17)

or equivalently,

1− ε < fN (µ)

f2N (µ)
< 1 + ε . (18)

15



0.0 0.2 0.4 0.6 0.8 1.0

Arrival rate of infected individuals λi

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
ea

n
nu

m
be

r
of

in
fe

ct
ed

in
di

vi
du

al
s

N=2
N=4
N=8
exact

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Arrival rate of infected individuals λi

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
nu

m
be

r
of

su
sc

ep
ti
bl

e
in

di
vi

du
al

s

N=2
N=4
N=8
exact

(b)

Figure 2: Mean number of infected (a) and susceptible (b) individuals.
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Figure 3: Mean number of recovered individuals.
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Let ΩN denote the region where these inequalities hold. In Figure 3 which shows the mean number of

recovered individuals versus the departure rate µ, we divide the region where these inequalities hold and do

not hold for N = {2, 5, 10} with ε = 0.01 by means of a line. The same parameter settings as in Figures

2(a) and 2(b) are considered and the arrival rate of infected individuals is assumed to be equal to 1. As

can be observed, the regions for which the inequality of the heuristic hold go up to µ = 0.041 for N = 2,

up to µ = 0.052 for N = 5 and up to µ = 0.061 for N = 10. Comparing the results of the approximation

method with the exact result, we observe that the performance assessment is accurate in the heuristically

determined region.

5.2. Opinion spreading model

We now consider the opinion spreading model as described in section 2.2. In this case, the exact solution

cannot be calculated and we rely on simulation to assess the accuracy of our results. Figures 4(a), 4(b) and

4(c) depict respectively the mean number of recovered individuals, the mean number of infected individuals

and the mean number of susceptible individuals versus the lifetime rate µ varying from 0 to 0.6. Moreover,

the maximum population size equals L = 20 , the arrival rates λ0k where k = {r, i, s} and λ1i where i = {i, s}

are respectively equal to 3 and 0.1 and the rates at which an individual changes of type, α0
si, α

1
si, α

0
sr and

α0
ir, are equal to 3. Series expansions of various orders N are depicted as indicated (N = 1, 5, 10), as well as

simulation results. Here and in the following figures, the 99% confidence interval of the simulation results was

determined by the batch means method. The size of the confidence however does not exceed 1% of the value

and is therefore omitted on the plot. As expected, the mean number of recovered individuals decreases and

the mean number of infected and susceptible individuals increase as the departure rate increases. Moreover,

for µ = 0, the population consists only of recovered individuals as their lifetime is infinite such that all

individuals recover eventually. As the figures show, the approximation for N = 5 is already accurate for the

mean number of recovered, infected and susceptible individuals.

We also consider the fluid approximation of the opinion spreading model. In Figure 5, we depict the

stable and unstable equilibrium point of the quadratic equations given in subsection 4.2. The parameter

settings are the same as in Figure 4 apart from λ1i which varies from 0 to 1 and apart from µ which is

fixed to 0.7. By evaluating the eigenvalues of the Jacobian matrix (16) at the equilibrium points, we can

determine the stability of these solutions. The stable equilibrium points have at least one eigenvalue that

has a positive real part while the eigenvalues for the unstable equilibrium points all have a negative real

part.

The fluid limit also allows for evaluating the evolution to equilibrium. The transient behaviour predicted

by the fluid approximation is shown in Figures 6(a) and 6(b). We assume the same parameter settings

except for the maximum number of individuals L which is now equal to 50 instead of 20. The start values

are respectively xr(0) = 0, xi(0) = 50 and xs(t) = 0 and xr(0) = 0, xi(0) = 0 and xs(t) = 50 in Figures
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Figure 4: Mean number of recovered (a), infected (b), and susceptible (c) individuals.
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6(a) and 6(b). As the figures show, a large number of infected or susceptible individuals quickly lead to a

relative large number of recovered individuals.

Finally, we combine series- and fluid approximations. In Figure 7, we depict the mean number of

susceptible, infected and recovered individuals verus µ as calculated by the Maclaurin-series expansion with

N = 10 as well as the same quantities as calculated by the equilibrium points of the fluid limit. Moreover,

both approximations are compared with simulation results. The other parameters are the same as in Figure

4. This figure clearly demonstrates that both approximations are complementary: the series expansion and

the fluid limit approximate well the mean number of recovered individuals for low and high values of µ,

respectively. It can be seen that the accuracy of the series expansion deteriorates as µ increases while the

accuracy of the fluid limit deteriorates for decreasing µ. In this case, combining both approximations yields

a good approximation for the whole range of µ going from 0 to 1.4.

6. Conclusion

In this paper, we evaluate the propagation of an opinion in a size-limited population that has a low

population turnover. Furthermore, we assume that individuals can have either no opinion (S), an opinion

that they want to spread (I) or an opinion that they don’t want to transmit or no opinion as they become

neutral or lose their interest in the topic (R). Moreover, the evaluation method at hand allows for state-

dependent arrival rates of the three types as well as for state-dependent rates at which an individual changes

type.

To cope with the inherent state space explosion, we propose an approximative numerical algorithm for

the Markovian epidemic process. In particular, a numerical algorithm is applied which calculates the first

N coefficients of the Maclaurin-series expansion of the steady-state probability vector. From the numerical

results, we show that the series expansion approach gives us a good approximation for the opinion model in

a heuristically determined region. Complementary to the series expansion approach, we derive a fluid limit

of the Markov chain where the arrival rates of the three types and the population size are sent to infinity.
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