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Optimal data collection in hybrid
energy-harvesting sensor networks

Kishor Patil', Koen De Turck?, and Dieter Fiems'

1 Ghent University, Dept. of Telecommunications and Information Processing
2 Central Supélec, Laboratoire des Signaux et Systeémes

Abstract. In hybrid energy harvesting sensor networks, there is a trade-
off between the cost of data collection by a wireless sink and the timeli-
ness of the collected data. The trade-off further depends on the energy
harvesting capability of the sensor nodes as sensors cannot transmit data
if they do not have sufficient energy. In this paper, we propose an analytic
model for assessing the value of the information that a sensor node brings
to decision making. We account for the timeliness of data by discount-
ing the value of the information at the sensor over time and adopt the
energy-chunk approach (i.e. discretise the energy level) to track energy
harvesting and expenditure over time. Finally, by numerical experiments,
we study the optimal data collection rate for the sensor node at hand.

Keywords: Age of information; Sensor networks; Energy harvesting; Markov
process.

1 Introduction

Wireless sensor networks (WSNs) are one of the key constituents of the Internet
of Things (IoT) [1, 2], and have attracted considerable research interest over the
past couple of years. Sensor networks collect and monitor spatially distributed
data like temperature, humidity, movement and noise [3, 4], extract information
from the collected data and deliver relevant information to the user. WSNs have
a variety of applications including military, environmental, home and healthcare.
Applications of WSNs are surveyed in [5], whereas [6] focuses on applications of
WSNs in the context of the IoT.

Combining sensor networks with data analytics enable fast data-to-decision
applications that act in real time on the collected data such that the value the
information brings to the decision not only depends on the quality but also on
the timeliness of the information. Therefore, analogous to Quality of Service
which measures the performance of a data communications network, the term
“Quality of Information” (Qol) has been introduced to evaluate performance of
sensor networks [7-9].

The present paper investigates the Qol in energy harvesting sensor networks
by calculating the value of information transmitted by energy-harvesting sen-
sors. Energy harvesting sensor nodes mitigate their dependence on batteries by



harvesting energy from their environment [10]. More precisely, energy harvest-
ing sensor nodes (EHSN) use ambient sources of energy like solar, wind or heat,
convert the energy into electricity which can then be used for sensing or trans-
mitting data. Most often, the amount of energy harvested is not constant over
time. Hence, energy harvesting is an additional source of uncertainty that a per-
formance evaluation should account for. The sensor nodes under consideration
operate energy neutral: all energy for sensing and transmissions is harvested, a
small on-board battery providing for temporary energy storage. Summarising,
the sensor nodes at hand can only transmit when the mobile sink is in range and
the sensor has sufficient energy for transmitting its data.

We focus on optimal data collection, adopting the hybrid WSN of Zhou et
al. [11] which consists of static sensors responsible for sensing environmental
variables, and mobile sensors called IoT mobile sinks that move to designated
sink locations where they gather data sensed by static sensors. Mobile sinks were
introduced to overcome the hot-spot effect in sensor networks [12]. Both static
and mobile sink nodes (or base terminals) collect data from sensor nodes and
sometimes act as gateways to other users by processing and sending relevant
information. If all sensor data is relayed by the sensor nodes to a (static) sink
node, nodes closer to the static sink are more heavily loaded as they need to
relay more packets to the static sink in comparison with nodes further away.
As a result, they consume more energy and may die at early stage, or will
frequently run out of energy if they can harvest energy. Mobile sinks overcome
this problem by moving the sink around. See e.g. [13] for a discussion on design
issues and challenges in existing distributed protocols for mobile sinks. Although
mobility increases the network lifetime by balanced utilisation of power [14], it
also introduces new challenges as delay in packet delivery should be sufficiently
small [15].

The remainder of this paper is organised as follows. In the next section, we
introduce a discrete-time Markov model for studying the optimal data collection
probability in energy-harvesting hybrid WSNs that are unaware of the value of
their information. Section 3 is then concerned with refining the model: while the
sensor node is still unaware of the value of the information, it is aware whether
or not there is any value. We then illustrate our approach by numerical examples
in section 4, prior to drawing conclusions in section 5.

2 Mathematical model

We consider an energy harvesting sensor node. The node is equipped with a bat-
tery for storing harvested energy chunks and on-board memory to store sensed
information.

We assume that time is discrete, i.e., time is divided into fixed length intervals
or slots, and denote the value of the sensed data and the amount of harvested
energy during slot n by S, and H,, respectively. The sequence { H,,n € N} con-
stitutes a sequence of independent and identically distributed random variables,
taking values in IN. Let h; denote the probability that k energy chunks arrive



in a slot. For further use, we always assume that the sensor node can harvest
energy, that is, we assume hy < 1. Moreover, we introduce the following notation
for the tail distribution function of H,,

1

_k:ihmzl—th.

k—
m=k m=0

For the sequence {S,,,n € IN} of the value of harvested information, no indepen-
dence assumptions are required. We only assume that the mean value does not
depend on time; let S = E[S,,] for n € IN.

The battery level at the beginning of slot n is denoted by B,. We assume
that transmitting data and sensing data requires N > 0 and M > 0 energy
chunks, respectively, and that at most Cp energy chunks can be stored in the
battery. Let T, be the indicator that there is a transmission during slot n. As
the sensor node harvests H,, chunks during slot n, we have,

Bn+1 = mm(Bn - Ml{BnZM} - NTn + Hn, CB) .

Let V,, be the value of the sensed data in the sensor node at the beginning
of the nt" slot. We assume that the value of the sensed data is additive and
discounted over time. Discounting is introduced to account for the timeliness of
data, older data being less valued than recent data. Let 0 < o < 1 denote the
discount factor. The values of the data at two consecutive slot boundaries then
relate as,

Vi1 = aVn(l - Tn) + Snl{anM} :

The recursion above implies that any data sensed during slot n cannot be trans-
mitted during slot n. In addition, any chunks of energy harvested during slot n
cannot be used to sense and/or transmit data in slot n.

It now remains to express the indicator 7T, that there is a transmission in
terms of B,,. To this end, let P, be the indicator that the data is collected
from the sensor during slot n, that is, P, is 1 if data is collected at time n. Let
p = P[P, = 1] = E[P,] be the collection probability, 0 < p < 1. We assume
that the sensor node cannot evaluate the value of its information, and therefore
transmits if sufficient energy is available. We therefore have,

T 1 forP,=1and B, > M+ N,
" 0 otherwise.

The set of recursions above now allows for determining the value of the
information collected by the mobile sink. To this end, let v = E[V,,1{B,, = k}]
be the mean value of the information at the sensor node for battery level k, and
let by, = P[B,, = k] be the probability of having battery level k. In view of the

equations for V,,, B, and T, and by conditioning on the battery level and the
availability of a transmission opportunity in the preceding slot, we find that the



mean value of the information at battery level k adheres to the following set of
equations,

M-—1 Cp Cp
v =« E Vehg—p + E Vehg—o+0r — ap § Vel —o+M
=0 =M {=M+N

M-1

+5(be — Y behk—r), (1)
£=0

for k=0,1,...,Cp — 1, whereas for k = C'g we have,

M—-1 CB CB
Vop = @ E veHc, o+ E veHey—orm — ap E veHe, o4 M
=0 =M (=M+N

M-—1
ch Z bchB g (2)
=0

To find the battery level probabilities, we again condition on the battery level
and the availability of a transmission opportunity in the preceding slot. We have
the following equations for the battery level probabilities,

M—-1 Cp Cp
by, = Z behi—¢ + Z behi—evrn +p Z be(hk—r4m+N — Re—esnr),  (3)
=0 =M I=M+N

fOI‘k:O,l,...,OB—l.
The system of equations (3) along with the normalisation condition

Cp
S obe=1,
k=0

allows for solving for the probabilities bx. We can then solve the system of equa-
tions (1) for the conditional mean values v.

Finally, we express the mean value of the sensed data per time slot that is
actually collected in terms of the v’s as follows,

_ Cs
V=p Z
k=M+N

as there are only transmissions if the battery level exceeds the threshold and
there is a transmission opportunity.

Remark 1. If Cp is small, both systems of equations (for by and vy) are easily
solved. For larger Cg, we can exploit structural properties of the systems of
equations. As hy = 0 for k < 0, we see that equation (3) expresses by, in terms of
the probabilities by for £ < k+ M+ N. This implies that the Markov chain By, is a
G/M /1-type Markov chain. Hence, solution methods for a G/M/1-type Markov
chain (e.g. [16]) can be applied to solve the system of equations of the by’s.
Analogously, we see that equation (1) expresses vy, in terms of vy, for £ < k+ M.



Remark 2. The assumption hg > 0 and equation (1) imply that lim, o vx < 00
for k < Cp and any value of «, as well as for k = Cp and a < 1. For a = 1, we
have 0 < limp_,¢ pvc, < oo. This shows that for o < 1 we have lim,_,o V=0,
whereas for o = 1 we have lim,_,( V= lim,_,0 pvc, > 0.

Remark 3. We assumed that the battery can be modelled by a queueing-like sys-
tem with “arrivals” and “departures” of chunks of energy. Such battery models
were considered several times in literature, see e.g. [17,18]. While being mod-
elled as a queueing system, one prefers that the battery/queue is full in contrast
to most other queueing systems. That is, the preferred operation differs signifi-
cantly.

3 A refinement

While it is reasonable to assume that the sensor node cannot value its data,
it is not always reasonable to assume that the sensor node is unaware of the
presence of data. We therefore now refine the model such that the sensor node
does not transmit when there is no data to transmit. To this end, we introduce
the indicator A,, which is 1 if the node has data to transmit and 0 otherwise. Of
course we have A, = 1y, 0y, but it is more convenient to track A,, separately,
see below. In addition, we assume that the sequence {S,,n € IN} constitutes
a sequence of independent and identically distributed random variables with
common mean S = E[S,,] and with non-zero probability mass so = P[S,, = 0]
when there is no data sensed. Following similar arguments as in the preceding
section, we find that the system variables V,,, A,, and B,, adhere the following
set of recursive equations,

Vn-‘,—l = onn(l — Tn) + Snl{BnZM} s
Any1 = 1is, >0 1, >my + (1= s, 501 1B, >my) An(1 = T0)
Bn+1 = ml]fl(Bn — Ml{BnZJW} — NTn + Hn, CB) y

where T, denotes the indicator that there is a transmission,
Tn =1, >msN}AnPp .

That is, there is a transmission when (i) there is sufficient energy, (ii) there is
something to send and (iii) there is a transmission opportunity.

In contrast to the preceding section, the sequence {B,,n € IN} is not a
Markov chain as the evolution of B, depends on the presence or absence of
information. Therefore we focus on the sequence {(A,, By),n € N} which is a
Markov chain. Let by = P[B, = k, A,, = 0] be the probability that there are k
chunks of energy in the battery at slot boundaries and there is no information
at the sensor node. By conditioning on the values of P,, H, and A,, we find,

M-—1 Cp Cp

b= behi—g+50 > behi—rins +p50 Y bhw—ernan,  (4)
=0 (=M (=M+N



for k=0,1,...,Cp — 1, and,

M-1 CB C'B
boy = > beHos o+ s0 Y beHoyoym +pso Y, beHey eimin -
=0 =M (=M+N

Here, by, = P[B,, =k, A, = 1] is the probability to have k chunks and information
at a slot boundary. Again, by conditioning on the values of P,, H, and A,, we
have,

N M—l/\ Cp N "
by, = Z behi—o + Z (be + be(1 — 50)) hi—py s
£=0 =M
s
+p D> be((1=s0)hk—rymen —hi—einr), (5)
(=M+N
for n = 0,1,...,Cp — 1. Complementing the set of equations above with the

normalisation condition,
Cp
> bytby=1,
n=0

allows for determining the probabilities E,L and Zn For further use, we also define
the probability b, to have n chunks of energy at the node, irrespective of whether
there is information at the node,

by = by, + by, .

We now focus on the mean value of the information at the sensor node. Let
vn = E[Vk1{B,=n}] be the mean value of information when there are n chunks of
energy available. Notice that by the definition of Aj we have that A; = 0 implies
Vi = 0. Hence, there is no need to focus on the expectation of Vj, for Ay = 0 and
Ak =1 as Un = E[Vkl{Bk:n}} = E[Vkl{Bk:n,Akzl}] and E[Vkl{Bk:n,Ak:O}] =0.
By conditioning on the presence of transmission opportunities, the availability
of data and the amount of harvested energy, we find,

M—1 Cp Cp
v = Z veathy_¢ + Z bepShi—erpi4n + Z (avg + Sbe)hg—ot
=0 (=M+N =M
Ch R
— Z (avp + Sb)phi—et 1 s
=M+N
for k=0,...,Cp — 1, while for k = C'z we have,
M—1 Cg Cp
vop = Z veaHe, o+ Z bepSHep—e4M+N + Z (avg+Sbe)Hop—04m
=0 (=M+N =M
Cp

- Z (e + Sbo)pHey—e4 01 -
(=M+N



Finally, as we collect information when there is energy and information at
the sensor at a transmission opportunity, the mean value of the information
collected at a slot boundary equals,

Cp
V:p Z Vy .

{=M+N

Remark 4. We note that the model of this section does not reduce to the model
of section 2 when the sensor always picks up information, that is, for sqg = 0.
Even for so = 0, it is still possible that there is no new value of information
during a time slot as there may be no sensing due to a lack of energy. If we
additionally assume that sensing does not take energy (M = 0), both models
do correspond. Indeed, equation (4) then implies b = 0, whereas the sets of
equations (3) and (5) are the same.

4 Optimal data collection and numerical results

We now investigate the optimal data collection policy for the sensor node at
hand. We assume that there is a cost ¢ associated to data collection such that
the average value after collection equals,

V,=—cp+V.

We first illustrate the analysis of the initial model, introduced in section 2 by
some numerical examples. We then complement these with some numerical re-
sults for the refinements which were discussed in section 3. In either case, we
particularly focus on the optimal collection probability p.

4.1 Information-agnostic transmissions

We first investigate how the battery capacity and discount factor affect the mean
value of information. To this end, we consider the initial model assuming Poisson
energy harvesting — the energy harvesting distribution is Poisson with mean A
— and energy discretisation such that M =1 and N = 4 chunks of energy are
required for sensing and transmitting, respectively.

Figures 1(a) and 1(b) depict the value of information V,, in terms of the data
collection rate p. We assume that the cost of collection is half the mean value of
information collected in a slot: ¢ = 1 and S = 2. Figure 1(a) fixes the discount
factor to a = 0.9 and shows V,, for various values of the battery capacity Cp
as indicated. In contrast, figure 1(b) fixes the battery capacity to Cg = 32 and
shows Vp for various values of the discount factor. For both figures, the mean
number of chunks of harvest energy equals A = 2.

It can be seen from both figures that the value of information V,, first increases
for increasing values of the collection probability and then decreases again. This
observation can be explained by noting that for higher values of p the chance
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Fig. 1. The mean value of the information V), versus the polling probability p for (a)
different values of the battery capacity Cp and (b) different values of the decay rate «
as indicated.

of having insufficient energy increases as more energy is consumed for transmis-
sions. For high p, it is quite likely that there is sufficient energy to transmit such
that the possible gain of frequent data collection cannot compensate the collec-
tion cost. Further, figure 1(a) shows that it is beneficial to increase the battery
size. Having a battery with more capacity facilitates compensating periods with
little energy harvesting. However, the marginal gain obtained by increasing the
battery capacity quickly disappears. Increasing the discounting factor is equally
beneficial as can be seen from figure 1(b). A higher discounting factor implies
that the value of information decays more slowly such that more information is
available during collection.

We now focus on the effects of the distribution of the harvested energy. To
this end, figures 2(a) and 2(b) depict the mean value of information versus the
collection probability p for Poisson distributed (figure 2(a)) and geometrically
distributed (figure 2(b)) energy harvesting. Different values for the mean number
A of harvested chunks in a slot are assumed as indicated. As for the preceding
figures, M = 1 and N = 4 chunks of energy are required for sensing and trans-
mitting, respectively. Moreover, the discounting factor is equal to o = 0.9, the
mean value of sensed information S = 2 is twice the collection cost ¢ = 1, and
the battery can store up to Cp = 32 chunks of energy.

Comparing figures 2(a) and 2(b) reveals that the distribution of the harvested
energy considerable affects the value of information V, as well as the optimal



T T T T
1.4 1 - 1.4 .
12 | ,,' . 1.2 | },—\\ .
S / S
c 1.0 ¢ N - c 1.0 | |
o ! S o 1 .
IS ! IS !
E 08 N X E 08 \ -
L 1 . kel 1 AN
£ H N £ H \\\
S 0.6 H k- S 0.6 H -
[ H [} ! AN
= ] = ] AN
£ 04l £ 04l N
K — =10 H — A=1.0]
] ]
0.2 N, e /\=20 | o2l N\ )\=20
............ A=3.0 SN A =30
0.0 | | | | 0.0 | | |
00 02 04 06 08 1.0 00 02 04 06 08 10

collection probability p collection probability p

(a) Poisson (b) Geometric

Fig. 2. The mean value of the information V, versus the polling probability p for a
Poisson (a) and geometric (b) energy harvesting distribution, for different values of the

mean amount of harvested energy A as indicated.

collection probability p. Increasing the harvesting capability of the sensor node
(increasing A) is initially beneficial, but the marginal gain from a further increase
quickly disappears. Indeed, if there is already sufficient energy, one cannot expect
that a further increase of the harvesting capability considerably improves the

performance of the sensor node.

Finally, we consider the effect of the collection cost on the optimal collection
probability and the associated optimal value of information. Figure 3(a) shows
the optimal collection probability p versus the collection cost ¢ for different values
of the discount factor « as depicted. Figure 3(b) depicts the value of information
corresponding to this optimal probability versus the collection cost c. Apart
from the discount factor and the collection cost, the parameters are chosen as
in figures 1(a) and 1(b): the mean value of sensed information equals S = 2,
the energy harvesting distribution is a Poisson distribution with mean 1, M =1
and N = 4 chunks of energy are required for sensing and transmissions and the
battery can store up to Cg = 32 of these chunks.

The optimal collection probability quickly decreases for increasing collection
costs. As the collection cost increases, any gain of collecting quickly drops due
to the cost of collecting. Further, if « is higher, it is more beneficial to collect
(see figure 1(b)) such that the optimal collection probability is higher as well.
In addition, the value of information V, at the optimal collection probability
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is higher for increasing values of « such that it is not only beneficial to collect
more, but the net gain of collecting more is higher as well.

4.2 Information-aware transmissions

To evaluate the use of the refined model, we now focus on how the absence of
information probability sg affects the value of information.To make its influence
clear, figures 4(a) and 4(b) depict the value of information versus the collection
probability, for high and low s( respectively, and for various values of the discount
factor « as depicted. To allow for a comparison with the model of section 2 and
the results of section 4.1, we largely adopt the parameters of the latter: the
mean value of sensed information equals S = 2 which is twice the cost ¢ = 1
of collecting. The energy harvesting distribution is a Poisson distribution with
mean 2. In addition, M =1 and N = 4 chunks of energy are required for sensing
and transmissions and the battery can store up to C'p = 32 of these chunks.

As S is fixed, a high sp not only means that most slots there is no infor-
mation, but also means that there is considerable information in the slots with
information. That is, the sensing is a bursty process. In contrast, small sy means
that many slots carry a small amount of information. It is not surprising that
these considerable differences in information arrival patterns translate into dif-
ferent collected values of information. This is indeed confirmed by comparing
figures 4(a) and 4(b). The figures show that burstiness is beneficial. This can
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and (b) so = 0.1 and different values of « as indicated.

be explained by noting that no energy is lost on sending a limited amount of
information. Indeed, for sg = 0.9 the chance that there is no information is con-
siderable, whereas the value of the information is considerable whenever there
is something to send. Further comparison reveals that the value of informa-
tion is considerably larger for bursty sensing compared to non-bursty sensing.
Moreover, the optimal collection probability is only sensitive to changes in the
discount factor for bursty sensing.

This observation is also confirmed by figures 5(a) and 5(b) which depict the
optimal collection probability and the corresponding value of information versus
the probability sg, respectively. Different values of the discount factor are as-
sumed as depicted. The same parameters are assumed as in figures 4(a) and 4(b),
with the exception of sy which now varies. We see that the optimal collection
probability and the corresponding value of information increases for increasing
so as explained before. Moreover, the difference between the optimal collection
probabilities for different « is largest for high sg. Somewhat surprising and op-
posite to the collection probabilities, the difference between the corresponding
values of information is largest for small sg.

5 Conclusions

We investigated the value of information in hybrid wireless sensor networks that
harvest their energy from their environment. For energy-neutral harvesting sen-
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sor nodes, we proposed two Markov models to assess the value of information
that can be collected by a wireless sink and study the optimal collection rate by
this wireless sink. The initial model assumed that the sensor nodes were unable
to assess the presence or value of information. A refined model then assumed
that sensor nodes were able to assess the presence of information but not the
value of information. For both models, numerical examples revealed the complex
interplay between battery dynamics and the value of information.

The methodology proposed can be extended in multiple directions. First, the
time between collecting currently being geometrically distributed, deterministic
or generally distributed intercollection times can be considered with some addi-
tional effort. In addition, as it can be expected that energy harvesting is bursty,
Markovian energy harvesting can be considered as well. In this case, it can be
expected that battery dynamics will have an even more profound impact on the
value of information.
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