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This paper develops a localization method to estimate the depth of a target in the context of active

sonar, at long ranges. The target depth is tactical information for both strategy and classification

purposes. The Cramer–Rao lower bounds for the target position as range and depth are derived for

a bilinear profile. The influence of sonar parameters on the standard deviations of the target range

and depth are studied. A localization method based on ray back-propagation with a probabilistic

approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean

sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally

validated on data in an experimental tank. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4962495]

[SED] Pages: 1771–1782

I. INTRODUCTION

In active sonar, the objectives are to detect, localize, and

classify an underwater target. In the context of deep water,

and particularly for a summer Mediterranean sound-speed

profile, this paper focuses first on a new target-localization

method that estimates the bearings, distance, and depth. The

depth is estimated using vertical bearings and arrival-time

estimation of a multipath environment. The target depth can

then be used as a good feature for target classification or dis-

crimination. This paper focuses secondly on new Cramer–Rao

lower bounds (CRBs) of the target position, to quantify target-

depth errors. The CRBs are derived for a bilinear sound-speed

profile (SSP) that can be an approximation for most real SSPs.

In the context of active sonar, horizontal bearings and

distance are often used to localize targets. The depth may

also be used as the key tactical information for strategy

purposes, or as a good feature for target classification or dis-

crimination. If an array has a vertical extent, then the eleva-

tion can be estimated and used as information to localize the

target in terms of its depth and range. Two-dimensional (2-D)

arrays as flank arrays, cylindrical arrays, and hull-mounted

arrays use their vertical extent to estimate elevation angles.

Even linear towed arrays can give some information about

the elevation using the different conical bearings measured

when multipath propagation arises.

Source localization can be seen as an inverse problem

that can be solved with different model-based processing,

such as matched-field processing, back-propagation and

time-reversal techniques, and correlation processing.1

Matched-field processing techniques have often been used in

the literature. These methods estimate the source position by

matching the acoustic fields measured at an array of sensors

with a replica field synthesized by a full-field acoustic

model. An overview of the first methods was provided by

Baggeroer.2 Matched-field methods are good source-location

techniques when the environment parameters are known.

However, acoustic ocean parameters vary with time and

location, and matched-field processing is very sensitive to

these parameters. Therefore, many studies have been devel-

oped to increase the robustness for the acoustic ocean param-

eter uncertainties. For example, the application of Bayesian

inference to source localization problems was introduced by

Richardson and Nolte:3 the uncertainties of the source and

the environment parameters were used to infer the a posteriori
probability of the source location. Dosso and Wilmut investi-

gated different Bayesian approaches, using the source and

environment parameter uncertainties on both simulated4 and

real5 data. The acoustic focalisation6 and ray back-propaga-

tion7–9 concepts are possible alternatives to matched-field

processing, which has a huge computational load due to the

large number of unknown parameters, including sound-speed

profile parameters, array location, and bottom depth.

Concepts and methods relative to back-propagation in

ocean acoustic inversion were well defined and discussed by

Meyer and Hermand.1 The use of ray back-propagation to

determine source location was first introduced by Collins

and Kuperman,6 and then by Voltz and Lu.7 The time-

domain ray back-propagation method7 exploits both the tem-

poral and spatial characteristics of the multipath arrival struc-

ture at a receiving sensor array. The angles and relative

arrival times are estimated and used to back-propagate the

rays in a ray-trace program, to converge spatially on the

source location. Then a new ray travel-time inversion scheme

was developed by Lu to simultaneously estimate the source

location, the array tilt, and the environmental parameters.8

The robustness of this approach has been tested througha)Electronic mail: alexis.mours@gipsa-lab.grenoble-inp.fr
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different parameter errors.9 This method gives efficient

results on simulated and real data. However, all of these

approaches are realized in a passive sonar context to localize

the source.

In contrast to the passive sonar context, which needs an

opportunity signal from the source, active sonar allows the

detection and localization of a submerged target, that is

silent or has a higher range. Moreover, active sonar has the

advantage that it provides access to an estimate of the target

distance instantaneously. In the literature of source/target

localization, the passive sonar context is particularly seen,

while there have been few studies that have talked about the

active sonar context. An approach using depth dependence

of relative delays and elevation angle spreads was investi-

gated by Hickman and Krolik.10 Their method was applied

with a horizontal array in shallow water, and it provided

good results, although it needed several pings to converge to

a good estimation of the target depth. Hjelmervik estimated

the depth of a pipeline that was 4 km away using mid-

frequency active sonar data,11 although several pings were

necessary to provide a depth probability density function.

Management of combined rays, which are the rays that have

a different path between the sonar and the target and

between the target and the array, has also not been studied.

This paper is organized as follows: Sec. II describes the

target localization problem and presents the CRBs for a

bilinear SSP. The influence of some sonar parameters is also

studied for the CRBs. Section III presents a new target-depth

estimation method that is based on ray back-propagation

with a probabilistic approach, and combined path manage-

ment. Section IV discusses the results of two Monte-Carlo

simulations. Section V presents the results of the target-

depth estimation on the experimental data recorded in a

reduced-scale water tank. The conclusions follow in Sec. VI.

II. CRAMER–RAO LOWER BOUNDS FOR BILINEAR
SOUND-SPEED PROFILES

This section presents the target localization problem, and

investigates the new CRBs of the target position, especially

for the target depth, in a bilinear SSP. The bilinear SSP was

chosen because most real SSPs can be approximated by bilin-

ear SSPs. Part of these CRBs have already been proposed by

Blanc-Benon and Jauffret in a target motion analysis con-

text;12 they derived the CRBs of a target position as the range,

depth, azimuth, and target speed vector of a moving target

using horizontal bearings and multipath time-delay estima-

tions. In the present paper, the CRBs of a target position are

derived for a single sonar ping using the vertical bearings and

arrival-time estimations.

A. Problem statement

Consider a sonar composed of an acoustic source and a

receiver that are co-located at ðR ¼ 0; Z ¼ z0Þ, and a target

that is positioned at ðR ¼ r; Z ¼ zÞ in a water column. Figure

1 illustrates the context of an active sonar and a submerged

target. The bilinear SSP is described by three pairs of two

inputs (i.e., the sound speed, and the depth): ½c1 z1�; ½c2 z2�,
and ½c3 z3�. Z¼ z1 represents the horizontal surface, and

Z¼ z3 represents the bottom surface. c2 is the minimum

value of the SSP at the depth Z¼ z2. The Z axis is taken as

positive downwards from the surface. The sonar and the tar-

get are linked by eigenrays that represent acoustic paths

taken by the sound wave to go from a point A to a point B. u
is the elevation angle between the ray and the horizontal axis

at the sonar position, and U is the elevation angle between

the ray and the horizontal axis at the target position. The ray

angles are defined as positive clockwise from the horizontal.

We assume that one sonar ping was emitted from a

sonar, reflected by a target, and then finally recorded by an

array. We consider that the target is in the azimuth plan of

the sonar and that the measurements are defined in the sonar

reference frame. After the signal-processing steps (i.e.,

beamforming, matched filter, normalization), there are N
detected wavefronts. A wavefront can be characterized by

three measurements: the elevation u, the wave travel time s,

and the Doppler compression coefficient g. In active sonar,

path combinations can occur, as acoustic waves can travel in

another path after their reflection on the target. To simplify

the problem for the CRBs, we assume that the one-way

return travel time T (i.e., time delay from target to array) is

estimated from the measurement of the two-way travel time

s (i.e., time delay sonar to target, and then to array) for L
detections. L corresponds to the number of different eleva-

tion in the detection of a single ping, and is often equal to 2

or 3 in this paper. So only the one-way return travel time T
will be used in the derivation of the CRBs. The target is

defined by the vector of random variables X ¼ ½r; z�t. The

sonar model is defined by the vector

M ¼ ½ut Tt gt�t; (1)

where u ¼ ½u1;…;uL�t are the elevation angles, T ¼ ½T1;
…; TL�t are the one-way return travel times, g ¼ ½g1;…; gL�t
are the Doppler compression coefficients, Lð�NÞ is the num-

ber of detections used, and t is the transpose operator. The

measurements are defined as follows:

MðmÞ ¼ M þ d; (2)

where d is the noise vector and can be decomposed as

follows:

d ¼ ½dut dTt dgt�t; (3)

FIG. 1. Geometric conventions for the bilinear sound-speed profile, for

sonar and target position, and for eigenrays. Example with two eigenrays.
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where du ¼ ½du1;…; duL�t; dT ¼ ½dT1;…; dTL�t, and dg
¼ ½dg1;…; dgL�t are vectors of independent zero-mean

Gaussian noise with known standard deviations ru; rT, and

rg, respectively. The full covariance matrix is defined as

follows:

R ¼ diagðr2
u1
;…; r2

uL
; r2

T1
;…; r2

TL
; r2

g1
;…; r2

gL
Þ: (4)

The independence assumption between the Doppler

coefficient and delay measurements is true only for certain

waveforms: pulse train frequency modulation and binary

phase shift keying. This is not true for the Linear Frequency

Modulation (LFM) which has a delay-Doppler coupling.

This approximation for the LFM waveform may impact the

Cramer–Rao bounds results when the Doppler coefficient

and the delay are used together, that means only in the study

of the influence of the target speed vector on the CRBs.

B. The Cramer–Rao bounds derivation

The CRBs give information on the uncertainties of the

estimates with regards to the input parameters. For an unbi-

ased estimator X̂, the CRBs are defined as the inverse of the

Fisher information matrix, which is denoted as F(X):

varðX̂ � XÞ ¼ FðXÞ�1: (5)

With a Gaussian noise model, the Fisher information matrix

verifies as13,14

F ¼ @M Xð Þ
@X

� �t

R�1 @M Xð Þ
@X

� �
; (6)

where M(X) is the noiseless measurement vector, and J
¼ @MðXÞ=@X is the Jacobian matrix. Here the Jacobian J is

a 3L� 2 matrix, where L is the number of detections used

for the same target.

J ¼

@u

@r

@u

@z

@T

@r

@T

@z

@g

@r

@g

@z

2
66666664

3
77777775
: (7)

The two partial derivatives, @u=@r and @u=@z, repre-

sent the inverse of the ray angular divergences for the range

and depth, and these are computed using a ray-propagation

simulator we developed. This simulator can directly provide

these ray angular divergences for a target position. For SSPs

with multiple constant gradients, the ray propagation from

the source to the target position was realized by computation

of successive ray arches.15 The next two partial derivatives,

@T=@r and @T=@z, are derived analytically from the equa-

tions system that connects the one-way travel time (i.e.,

sonar target, target array) to the target parameters in the

bilinear SSP case, which was introduced by Baer and

Jacobson,16 and is given as

r ¼ Gðu; zÞ; (8)

T ¼ Hðu; zÞ; (9)

where functions G and H are as expressed in Appendix A, r
is the horizontal range, T is the one-way return travel time, u
is the elevation angle at the sonar, and z is the target depth.

The elevation angle u is implicitly defined by Eqs. (8) and

(9). Recalling the expressions of G in Eq. (A1) and H in Eq.

(A2), Blanc-Benon derived analytically the partial deriva-

tives of the one-way travel time to the target parameters

using the theorem of implicit function12 as

@T

@r
¼ @H

@u

�
@G

@u
; (10)

@T

@z
¼ � @H

@u
@G

@z

�
@G

@u
þ @H

@z
: (11)

The four derivatives, @H=@u; @H=@z; @G=@u, and @G=@z,

are derived analytically and are expressed in Appendix B.

The last partial derivatives of Eq. (7), @g=@r and @g=@z,

are new and concern the small variations of the Doppler

compression coefficient with respect to target position. In

the active sonar and multipath environment, the Doppler

compression coefficient g can be written as follows:17,18

g � 1� Vi

c zð Þ
� Vr

c zð Þ
; (12)

where c(z) is the sound speed at the target depth z, and Vi

(respectively, Vr) is the target radial speed of the incident

eigenray (respectively, the reflected eigenray). The target

radial speeds of the incident and reflected rays are projec-

tions of the target speed vector on the incident and reflected

eigenrays, as shown in Fig. 2, and they can be expressed as

follows:

Vi ¼ ~Vt :~ui ¼ jj~Vt jj cosðUt � UiÞ; (13)

Vr ¼ ~Vt :~ur ¼ jj~Vt jj cosðUt � UrÞ; (14)

where ~Vt is the target-speed vector, Ut is the angle between

the target-speed vector and the horizontal axis, Ui and Ur are

FIG. 2. Projection of the target-speed vector on an eigenray. Vi and Vr are

the projection of the target-speed vector on incident and reflected eigenray.

Vproj
��!

and U are the speed vector viewed by an eigenray and the elevation

angle of the eigenray at the target, respectively.
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the incident and reflected eigenray angles, respectively, ~ui

and ~ur are the unity vectors of the incident and reflected

eigenray, respectively, and g is the Doppler compression

coefficient. To simplify the CRB analysis, the reflected and

incident rays are assumed to be the same: U ¼ Ui ¼ U. This

hypothesis is strong, but it allows an easier notation and

analysis. The partial derivative of g relative to r is expressed

as follows:

@g
@r
¼ @U
@r

2kVt
!k

c zð Þ
sin Ut � Uð Þ: (15)

By deriving the Snell-Descartes law relative to r, we obtain

cos u
c z0ð Þ

¼ cos U
c zð Þ

;

� @u
@r

sin u
c z0ð Þ

¼ � @U
@r

sin U
c zð Þ

: (16)

Finally Eq. (15) becomes

@g
@r
¼ @u
@r

2jj~Vt jj sin u
c z0ð Þsin U

sin Ut � Uð Þ: (17)

The partial derivative @g=@z can be derived using Eq. (A3),

and can be expressed as follows:

@g
@z
¼ 2jj~Vt jj

@u
@z

sin u sin Ut � Uð Þ
c z0ð Þsin U

"

þ Bg1 � Dg2ð Þ cos Ut � Uð Þ
c2 zð Þ

�
: (18)

The Doppler compression coefficient and these two partial

derivatives vary according to two unknown parameters: the

magnitude, and the angle of the target-speed vector. If these

target-speed-vector parameters are known and the ray direc-

tions are orthogonal to the target movement, the Doppler

derivative inclusion would probably decrease the variance of

the target-position estimate. The Fisher information matrix

and CRBs are finally computed for a given target position,

and can be expressed as follows:13

CRB ¼ varðX̂ � XÞ ¼ r2
r covðr; zÞ

covðz; rÞ r2
z

� �
; (19)

where rz and rr are the target-depth and target-range stan-

dard deviation bounds, respectively.

Figure 3 illustrates the geometric interpretation of the

CRBs for two rays. Case 0 shows a reference frame of two

ellipses with the semi-minor axis and semi-major axis repre-

sented by rT and f ðruÞ, respectively, where f is the propaga-

tion function. Indeed, the 2-D Gaussian distribution in time

and elevation angle is warped by the propagation channel, to

give an ellipse in the range-depth plane. The product of the

ellipses produces the uncertainty area shown in gray in Fig. 3.

This area is characterized by the width 2rr and the height

2rz. Case 1 indicates that a modification of the angle between

the two ellipses changes the uncertainty area and thus the

target-depth standard deviation bound rz. The angular diver-

sity between the elevation angle measurements should be

maximum, because an angular diversity at the receiver is

likely to result in an angular diversity at the target, and there-

fore an improved target-depth standard deviation bound. Case

2 and case 3 show examples of the influence of the parameter

standard deviations rT and ru, respectively. Case 2 reveals in

this configuration that the expansion of ru has no influence

on rz and rr, and case 3 reveals that the expansion of rT

increases rz and rr.

C. Parameter influence on the standard deviation
bounds

The influence of the target position, frequency band,

elevation-angle standard deviation, and target-speed vector

on the target-depth and target-range standard deviation

bounds are studied here. If the target sonar position and

sonar parameters are fixed, and the SSP is known, the stan-

dard deviation bounds for the target position can be com-

puted. We propose a realistic active sonar scenario with the

following parameters:

(1) The bilinear SSP that corresponds to a summer

Mediterranean SSP:

ðc1; z1Þ ¼ ð0 m; 1531 m=sÞ
ðc2; z2Þ ¼ ð100 m; 1507 m=sÞ
ðc3; z3Þ ¼ ð2500 m; 1546 m=sÞ:

(2) The sonar depth as z0 ¼ 200 m.

(3) The sonar code used is a LFM signal with a time dura-

tion Te¼ 2 s, a frequency band B¼ 500 Hz, and a center

frequency f0 ¼ 5 kHz. These parameters give a time and

speed resolution at �3 dB as follows:18

2s�3dB ¼ 2T�3dB ¼ 2� 0:44

B
¼ 1:8 ms; (20)

2V�3dB ¼ 2� c

2
� 0:44

Tef0

¼ 0:066 m=s: (21)

(4) The height of the array is H¼ 1 m. The elevation angle

resolution at �3 dB in the broadside of the array is15

2u�3dB ¼
50c

f0H
¼ 15 deg: (22)

The target is assumed to be in the broadside of the array

in order to simplify the analysis. The elevation angle res-

olution is usually dependent of the array and the target

azimuth. Given a specific array, this could be included in

the analysis.

(5) The target at r¼ 18 km and z¼ 400 m has a speed of

V ¼ 0 m=s:

For a point-like target, the standard deviations of T, V,

and u can be expressed for large SNRs as follows:15

rTi
¼ T�3dBffiffiffiffiffiffiffiffiffiffiffi

SNRi

p ; (23)
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rVi
¼ V�3dBffiffiffiffiffiffiffiffiffiffiffi

SNRi

p ; (24)

rui
¼ u�3dBffiffiffiffiffiffiffiffiffiffiffi

SNRi

p for i ¼ 1;…; L; (25)

where SNRi is the SNR of the detection i at the array output

in the linear scale. For a false alarm probability of 10�4 and a

detection probability of 90%, a detection will be true if the

SNR is above approximately 15 dB.19 In the present paper,

the SNR will be set to 15 dB for all true detections, and the

time delay, speed, and elevation standard deviations are there-

fore 230 ls (35 cm), 1.1 mm/s, and 1.93 deg, respectively.

Figure 4 shows the standard deviation bound of the tar-

get depth as a function of the target range and depth accord-

ing to Eq. (5) for two rays. The results indicate that the

target-depth standard deviation bound decreases generally

with the range. The sound propagation function in the water

column is complex due to the bilinear form of the SSP. In

certain areas, this propagation function gives lower or higher

angular deviations for rays, and consequently a complex

map of the target-depth standard deviation bound. It should

be noted that areas around caustics, where the ray divergence

tends to zero, give a satisfying target-depth standard devia-

tion bound. The area from 20 to 40 km in range, and from 0

to 300 m in depth, shows a high depth uncertainty and it will

be difficult to have a good target-position estimate there.

These results can vary for different environments and

geometric parameters [i.e., SSP, sonar depth, number of

detections used (L)].

The frequency band and the height of the array are

parameters that can be controlled, and so their influence is

studied here. The conclusions reached next are only valuable

for the target position stated previously, but the methodology

remains valid for any case. Figure 5 shows the plots of the

target-depth and target-range standard deviation bounds, rz

and rr, respectively, as a function of the frequency band, B,

and the number of detections used, L. It is clear that the num-

ber of rays used for the localization is a significant parameter

to improve the standard deviations bounds. Low values of

standard deviations bounds are not realistic, because errors

FIG. 3. Geometric interpretation of the

CRBs with an example for two rays.

Case 0: reference frame for two ellip-

ses. Case 1: Influence of the angle h
between the two arcs of the circle.

Case 2: Influence of the expansion of

ru, and therefore f ðruÞ, with f as the

propagation function. Case 3: Influence

of the expansion of rT.

FIG. 4. Map of the target-depth standard deviation bound, rz. The color map

represents the level of the standard deviation bound in meters. The example

shown is for two rays.
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due to ambient noise can become preponderant. Figure 6

shows plots of the target-depth and target-range standard

deviation bounds, rr and rz, respectively, as a function of

the elevation-angle standard deviation, ru. The results indi-

cate that the target-depth standard deviation bound increases

as the elevation-angle standard deviation increases (equiva-

lent to a smaller array or lower SNR) for two rays. The

improvements in the target-depth and target-range standard

deviation bounds are still present as the number of rays

increases. The convergence of the curves for two and three

rays toward the asymptote is rapidly reached and can be

explained by case 2 of Fig. 3. The intersection angle between

the ellipses and the time standard deviation (equivalent to

the band) are the predominant variables against the elevation

standard deviation to modify the uncertainty area.

Figure 7 shows the polar plots of the target-depth and

target-range standard deviation bounds, rr and rz, respec-

tively, as a function of the angle of the target-speed vector,

Ut, for three different target speeds: 0, 10, and 20 m/s. This

reveals that rr and rz decrease when the target speed is

greater than zero and when the angle of the target-speed

vector approaches 690 deg, which is orthogonal to the rays.

This improvement in the standard deviation bounds becomes

less important if the number of rays used rises. The use of

the Doppler compression coefficient and the CRB results are

valid assuming that the target-speed vector is known, which

is not necessarily the case. The CRB results for the Doppler

suggest that the Doppler compression coefficient can provide

information on the target location if we know the target-

speed vector. We assume in the next part of the paper that

the target-speed vector is unknown, so that the Doppler com-

pression coefficients were not used.

This CRB study gives quantitative values for the standard

deviation bounds and exposes the influence of the frequency

band, the height of the array, the target location, and the

target-speed vector on these bounds.

III. TARGET LOCALIZATION

Section II suggested that estimation of the target depth

is possible with low uncertainty for many target locations.

This section presents a localization method that is similar to

the one proposed by Hjelmervik.11 This is based on ray

back-propagation with a probabilistic approach, where ele-

vations and time delays of detections are used as input varia-

bles. Measurement uncertainties due to finite arrays, emitted

waveforms, and ambient noise, are included in the localiza-

tion method. This estimator was also compared with the pre-

vious CRB results.

A. Semi-active localization

Our target localization algorithm is based on rays and

back-propagation of the uncertainties. The principle is to

propagate the measurement uncertainties of all of the detec-

tions from the array position to the target in a propagation

simulator, and to compute a target-position probability density

function. The first hypotheses of the problem are stated here.

(1) The target is assumed to be a single highlight spot (point

target) model.

(2) The position of the moving target is the same for each

acoustic path.

(3) The one-way return travel times of the L detections used

are estimated.

(4) The sound-speed profile at the array is known.

The first hypothesis considers a point-target model to

assure that the eigenrays between the sonar and the target are

similar to those between the target and the array. If the target

moves during the wave propagation, the target position will

be different for each acoustic propagation path. The second

hypothesis therefore simplifies the problem of a moving tar-

get by considering it as a fixed target with Doppler. The con-

sequences are the same as those for the first hypothesis. The

third hypothesis implies that there are at least L detections

used with an elevation difference greater than ru. Starting

from the assumption that there is no information on the tar-

get and that the Doppler adds very limited information to the

classic sonar parameters, Doppler compression coefficients

are not used in our localization algorithm.

FIG. 5. (a) Plot of the target-range standard deviation bound rr in logarith-

mic scale as a function of the frequency band B for two and three rays. (b)

Plot of the target-depth standard deviation bound rz as a function of the fre-

quency band B for two and three rays.

FIG. 6. (a) Plot of the target-range standard deviation bound rr as a function

of the elevation-angle standard deviation ru for two and three rays. (b) Plot

of the target-depth standard deviation bound rz as a function of the

elevation-angle standard deviation ru for two and three rays.
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The probabilistic approach of the method is detailed

here. The a posteriori probability density function (PDF) of

the target position, pðXjMmÞ, is the conditional PDF that the

target is located at X given the measurement vector Mm.

Using the Bayes’ rule, the a posteriori probability can be

expressed as follows:

p XjM mð Þ
	 


¼ p M mð ÞjX
	 


p Xð Þ
p M mð Þð Þ ; (26)

where p(X) and pðMðmÞÞ are the PDFs of the target position

and the measurements. In geo-acoustic inversion, the denom-

inator pðMðmÞÞ, which is independent of X, is a constant.

Replacing the denominator with a constant in the preceding

equation gives

pðXjMðmÞÞ / pðMðmÞjXÞpðXÞ: (27)

For a given SSP, a target position X can also be defined by

the properties of eigenrays: ½ueðXÞ; TeðXÞ�. So the condi-

tional PDF, pðMðmÞjXÞ, can be re-written with the eigenray

properties as follows:

pðMðmÞjXÞ ¼ p½uðmÞ; TðmÞjueðXÞ; TeðXÞ�; (28)

where ueðXÞ; TeðXÞ are the angle and delay vectors of the

eigenrays for the target position X. The number of eigenrays

E depends on the target position X. Assuming that variables

ue
j ; T

e
j ;u

ðmÞ
i ; T

ðmÞ
i for 1 � i � L and 1 � j � EðXÞ are all

independent of each other, Eq. (28) becomes

pðMðmÞjXÞ ¼
YL;EðXÞ
i;j

p½uðmÞi jue
j ðXÞ�p½T

ðmÞ
i jTe

j ðXÞ�: (29)

Considering that measurement errors follow a normal

distribution:

ue � uðmÞ � N ð0; ruÞ; (30)

Te � TðmÞ � N ð0; rTÞ; (31)

where ue and Te correspond to the eigenray properties

between the sonar and the true target position, respectively.

Finally the a posteriori PDF can be expressed as follows:

p XjM mð Þ
	 


/p Xð Þ
YL;E Xð Þ

i;j

1

2prurT

�exp �
½u mð Þ

i �ue
j Xð Þ�2

2r2
u

�
½T mð Þ

i �Te
j Xð Þ�2

2r2
T

 !
:

(32)

The target-position a priori PDF, p(X), is taken uniform in

range and depth. The estimated target position is the maxi-
mum a posteriori of this a posteriori PDF. This maximiza-

tion can be viewed as a minimization of the least squares on

the elevations and delays. This a posteriori PDF can be

interpreted as the product of L 2-D distributions or ellipses

in the range-depth plane, in the same manner as detailed

above for Fig. 3. To compute these PDFs, the one-way return

travel times have to be estimated first.

B. One-way return travel-time estimation

The localization algorithm needs the one-way return

travel times of the L detections. In this paragraph, we explain

how to choose these L detections among N detections, in

order to compute T. Figure 8(a) illustrates four eigenrays for

the sonar scenario described in Sec. II C, and Fig. 8(b) shows

the ray elevations at the receiver for several detections as

a function of the two-way travel time for two-way ray propa-

gation. In this example, four eigenrays are considered

between the sonar and the target: one down-refracted ray,

one top-refracted ray, and two bottom-reflected rays. In Fig.

8(b), N detections with sufficient SNR are represented by

the points characterized by the elevation at the receiver, the

two-way travel time, and the color that indicates the type of

the one-way ray. To estimate the one-way return travel time

of a point, the two-way path type has to be known. A two-

way path is defined as “simple” if the acoustic wave took the

same path going backward and forward, and in the opposite

sense, a two-way path is defined as “combined” if the acous-

tic wave took different paths going backward and forward.

So the one-way return travel time T of a point is not neces-

sarily half of the two-way travel time s. These simple or

combined paths are indicated as either SP or CP for each

FIG. 7. Case L¼ 2. (a) Target-range

standard deviation bound rr, and (b)

target-depth standard deviation bound

rz, as a function of the angle of the

target-speed vector Ut for three differ-

ent speeds of jj~Vt jj ¼ [0 10 20] m/s.
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detection to understand the path structure. As a first step, we

assume that the detection with the shortest delay, s1, came

from a simple path. So the one-way return travel time of this

first detection, T1, can be computed as follows:

T1 ¼ s1=2: (33)

Second, we assume that all of the detections that arrive first

for each elevation angle at the receiver come from combined

paths (except for the detection with the shortest delay). These

come necessarily from the one-way path of the ray with the

shortest one-way travel time. So the one-way return travel

times of each of these detections can be computed as follows:

Ti ¼ si � T1; for i ¼ 2; L: (34)

The variance of T1 is r2
s1

. Noting that Ti is obtained using a

difference of independent and identically distributed random

variables estimates, the variance of Ti is r2
s1
þ r2

si
. This can

be included in the estimator.

C. Implementation

The acoustic propagation simulator used was Bellhop,

which is based on ray theory.20,21 This simulator allows the

computation of the properties of eigenrays between an emit-

ter and a receiver, given a SSP. For reasons of computation

time, the eigenray properties are already computed on a large

grid of target positions and on a given SSP. First, the target

search grid has to be determined. In active sonar, the range

search grid is easier to obtain, because the emission time is

known. We assume that the target is between rmin and rmax:

rmin ¼ 0:9
~cT1

2
; (35)

rmax ¼ 1:1
~cT1

2
; (36)

where ~c ¼ 1500 m=s is the mean sound speed. For the target-

depth search grid, we assume that the target-depth PDF is uni-

form between 0 and 1000 m. Second, the a posteriori PDF is

computed for one measurement pair (um
i ; Tm

i ) at a time on the

defined search grid. For each position of the grid, an eigenray

sort is carried out on the elevation angles and travel times. To

increase the probability to have an intersection between the

uncertainty ellipses, two scale factors, k1 and k2, are introduced,

to expand the uncertainty margins.22 The uncertainties of the

measurements can be re-written as follows:

r0T ¼ k1 � rT ; (37)

r0u ¼ k2 � ru: (38)

These scale factors are determined empirically and are often

close to four to cover 99% of probabilities. Finally, the a
posteriori PDF is the product of each PDF computed for

each measurement pair (um
i ; Tm

i ). The target position is then

estimated by taking the maximum a posteriori of this PDF:

i.e., the estimator that maximizes the PDF and minimizes the

least squares. The existence of a solution is not guaranteed if

there is no intersection between the ellipses. Compared to a

local optimization method like gradient descend, the search

grid method guarantees an absolute maximum in case of sev-

eral local maxima.

IV. SIMULATION

In this section, the localization algorithm is tested

through two Monte-Carlo simulations. For these Monte-

Carlo simulations, three detections (i.e., top and down-

refracted rays, and bottom-reflected ray) and 100 runs were

used. The parameters of the active sonar scenario are the

same as those used in Sec. II C. The first detection is carried

out to estimate the bias and the variance of the estimator

with respect to the CRBs. The elevation and time-delay

measurements are random variables that follow a normal dis-

tribution around the true values of the elevations and time

delays. The measurements given to the localization algo-

rithm can be expressed as follows:

um
i ¼ ue

i þ �ui
; (39)

sm
i ¼ se

i þ �si
for i ¼ 1; 3; (40)

where ue
i and se

i are the elevations and time delays for the

true target position. Figure 9 shows the results for the first

simulation. Figure 9(a) shows the a posteriori PDF for one

draw. Figure 9(b) shows the two dimensional histogram of

the Monte-Carlo simulation, where the dashed line repre-

sents the confidence ellipse at 95% of the CRBs. This simu-

lation gives an expectation of the estimated target position of

399.8 m in depth and 18-km range. This is slightly biased,

but it appears to be caused by the finite size of the pixel or

by the small number of Monte-Carlo runs. The estimated

standard deviations are 1.92 m for the depth and 0.27 m for

the range, which are small compared to the water-column

height and close to the CRB standard deviations

(rr¼ 0.35 m, rz¼ 2 m). The estimated target positions are

FIG. 8. (a) Example of four eigenrays between a sonar at 200 m in depth

and a target at 400 m in depth and 18-km range. (b) Elevation angles at the

receiver as a function of the two-way travel time for the two-way ray propa-

gation of the top panel. SP, simple path; CP, combined path. Example: CP1

is composed of a top-refracted ray and a down-refracted ray; SP2 is com-

posed of two top-refracted rays.
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almost in the 95% confidence ellipse, so this semi-active

localization is quite efficient. The errors on the elevation

angles and time-delay measurements are not preponderant

compared to the errors of the environment variables. Errors

in the sound-speed profile, sonar depth, bottom depth, and

receiver tilt angle (environment inputs, generally) will prob-

ably cause larger bias and variance for the output variables.

The robustness of the localization algorithm against SSP

errors is then tested through the second Monte-Carlo simula-

tion, by adding random SSPs to the previous simulation.

First, the true elevations and time delays are perturbed by

random SSPs, and second, the localization algorithm uses a

bilinear approximation of the mean of the random SPPs. The

measurements given to the localization algorithm can be

expressed as follows:

um
i ¼ ~ue

i þ �ui
; (41)

sm
i ¼ ~se

i þ �si
for i ¼ 1; 3; (42)

where ue
i and se

i are the true elevations and time delays,

respectively, for a SSP that changes at every realization. The

random SSP is generated by using empirical orthogonal

functions (EOFs),23,24 These EOFs are extracted from an

eigen decomposition of the covariance matrix from a data-

base, which is a temporal historic of real SSPs for the

months of July and August. The first six EOFs are shown in

Figs. 10(a) and 10(b), and are used for the SSP generator,

because 99% of the database can be represented by these six

EOFs. The random part is performed by randomizing the

EOF coefficients (i.e., eigenvalues) following a normal dis-

tribution. Figure 10(c) shows the mean SSP, the mean SSP

with standard deviation, and the approximated SSP (bilinear)

used for the localization algorithm. Figure 11 shows the

results for the second simulation. Figure 11(a) shows the

FIG. 9. (a) A posteriori PDF for one

draw. (b) (Dashed line) 95% confidence

ellipse of the CRBs: (rr¼ 0.35 m, rz

¼ 2 m). Two-dimensional histogram of

the estimated target position, ẑt , of the

Monte-Carlo simulation (n¼ 100 draws).

Statistical results: E[ẑt]¼ 399.8 m, rẑt

¼ 1.92 m; E[r̂t ]¼ 18 km, rr̂t
¼ 0.27 m.

Configuration: r¼ 18 km, z¼ 400 m,

B¼ 500 Hz, SNR¼ 15 dB, k1¼ k2¼ 4,

three detections used.

FIG. 10. (a), (b) The first six empirical

orthogonal functions computed from

the database (EOF 1-6). (c) The mean

SSP with its standard deviation com-

puted from the database, and the bilin-

ear SSP approximation used by the

localization algorithm: (c1; z1)¼ (0 m;

1531 m/s); (c2; z2)¼ (100 m; 1507 m/s);

(c3; z3)¼ (2500 m; 1546 m/s).
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a posteriori PDF for one draw. Figure 11(b) shows the two

dimensional histogram of the Monte-Carlo simulation. The

simulation gives an expectation of the estimated target posi-

tion of 405 m in depth and 18.005-km range, which is low-

biased but remains very acceptable. The estimated standard

deviations are 95 m for the depth and 10 m for the range,

which are not as good as the previous simulation, but are suf-

ficient to approximately localize a target at depth regarding

the water column height. However, the same simulation

using two detections (i.e., top and down-refracted rays) pro-

vides a more biased expectation of the estimated target posi-

tion and larger estimated standard deviations. This can be

explained in terms of the top-refracted path, which is modi-

fied by the random SSPs, and therefore adds important bias

and variance. The use of the third detection, which is a

bottom-reflected ray, allows the localization algorithm to

focus on the good target position, and therefore to give

satisfying variance. The addition of a random SSP to the

simulation shows that the target-position estimation and

the associated standard deviation remain acceptable if the

bottom-reflected ray is used. To go further, it would be inter-

esting to simulate measurements that take into account ran-

dom bottom depth, array depth, or array tilt. If the errors are

important, the localization algorithm should include a priori
the most important random parameter in the process.

V. EXPERIMENTAL DATA

This section proposes to validate our localization

algorithm using experimental data from a real tank. An

active sonar scenario in a shallow-water environment was

reproduced in the experimental water tank of the ISTerre

laboratory.25 The dimensions of the water tank were 1.9 m

� 0.9 m� 0.6 m. A scaling factor of 200:1 was used to model

a 5-kHz active source in a deep ocean with a 0.7-m-diameter

spherical target at a speed of 0.1 m/s. At a real scale, the

metallic target would be immersed at 5.4 m depth, and the

first hydrophone of the vertical uniform linear array would be

at a depth of 4.8 m. The uniform linear array would be 112 m

away from the target when the waveform is emitted. At the

laboratory scale, the uniform linear array was composed of

64 half-wavelength-spaced transducers that had a 1-MHz

carrier frequency and a 1-MHz bandwidth at �6 dB, with a

sampling frequency of Fe¼ 20 MHz. The target was a 3.5-mm

spherical lead that was hung from a motorized arm. High

waves of a few millimeters were generated on the surface

layer to add random perturbation to the propagation. The

experimental setup is illustrated in Fig. 12. The motorized

arm was used to set the target accurately in position and to

move it horizontally. The target was 230 mm away from the

transducer array at time t¼ 0. The target was then shifted to

the left at 550 mm at a constant horizontal velocity of 0.1 m/

s, as shown on Fig. 13. The emission of the waveform was

realized with the transducer located in the middle of the uni-

form linear array, to create a spherical wave that propagated

at all elevation angles with a small azimuth beam width.

The waveform was a binary phase-shift keying signal with a

bandwidth of 600 kHz and a time duration of 500 ls. In this

example, the elevation angle and the time resolution are

u�3dB¼ 0.8 deg and s�3dB¼ 0.7 ls, respectively, the SSP

was constant, and the number of rays detected was only two

(i.e., direct and surface-reflected rays). Figure 13 shows the

a posteriori PDF for one draw. The dashed lines represent

the uncertainty ellipses for the direct and surface-reflected

rays. The two ellipses are not well focused, and only their bor-

ders intersect. The true target depth was zt¼ 37 mm 6 2 mm

(at the real scale: zt¼ 5.4 m 6 0.4 m) and the localization

method provides an expectation of the estimated target depth

of E[ẑt]¼ 31.3 mm 6 1.5 mm (at the real scale: E[ẑt]¼ 6.3 m

6 0.3 m) over 10 realizations. The statistics of the target-

depth estimation could be biased by the array tilt, the surface-

reflected ray, which suffers from the surface perturbations,

and the low number of realizations. The target-depth estima-

tor is biased of 1 m at the real scale, so this validate our locali-

zation method with these experimental tank data.

FIG. 11. (a) A posteriori PDF for one

draw. (b) Two-dimensional histogram

of the estimated target position, ẑt , of

the Monte-Carlo simulation. The pixel

intensity corresponds to the bin num-

ber. Statistical results: E[ẑt ]¼ 405 m,

rẑt
¼ 95 m; E[r̂t ]¼ 18.005 km, rr̂t

¼ 10 m. Configuration: r¼ 18 km, z
¼ 400 m, B¼ 500 Hz, SNR¼ 15 dB,

k1¼ k2¼ 4, three detections used.

FIG. 12. Setup of the experimental water-filled tank. The experiment was

composed of a vertical uniform linear array (ULA) with 64 transducers, and

a moving spherical target. A waveform was emitted by the 33rd transducer

when the target had reached the constant speed of V¼ 0.1 m/s.
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VI. CONCLUSIONS

Research in the target localization domain with an active

sonar remains a poorly discussed topic. This paper focuses on

estimation of the depth of a target using elevations and time-

delay measurements in active sonar and deep water, and espe-

cially for a summer Mediterranean SSP. A new target-

localization approach in active sonar and new CRBs for target

localization for depth and range are proposed here.

These new CRBs were proposed for a bilinear SSP in a

vertical plane in order to estimate the variance of the target-

depth estimate. We have shown that an increase in the num-

ber of acoustic paths used decreases the uncertainty of the

target position. The CRB results suggest that target-depth

estimation is possible with low uncertainty compared to the

water-column height for this active sonar scenario. The

semi-active localization based on ray back-propagation and

a probabilistic approach was tested for Monte-Carlo simula-

tions and for water-tank experimental data. This method is

also discussed in terms of ray identification and how the

combined acoustic paths were managed. In others words,

rays that have a different path from sonar to target and from

target to array are taken into account. The simulation results

suggest that the estimator is near the CRBs and that target-

depth estimation is possible with low uncertainty compared

to the water-column height for a target at 400 m in depth and

18-km range. However, some environmental parameters can

increase the bias and the variance of the target-depth estima-

tor, such as random bottom depth, array depth, or array tilt.

The results from the experimental data with surface noise

reveal good estimation of the target depth and validate the

localization algorithm for a constant SSP.
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APPENDIX A: EIGENRAYS IN A BILINEAR
SOUND-SPEED PROFILE

We detail here the analytic expression of the functions G

and H, which were introduced by Baer and Jacobson16 and re-

written later more compactly by Jauffret and Blanc-Benon.12

This function system describes the coordinates of any type of

ray in a bilinear SSP, and these are correct assuming that

c1 > c3 > c2, otherwise the bottom and the surface have to be

exchanged, and the z axis has to be positive downwards

G u; zð Þ ¼
c0

2 cos u
1

g1

�1� að Þsin uþ 1þ bð Þsin U
��

� 2� 2P� cþ dð Þsin u1� �
1

g2

1� að Þsin u
�

þ b� 1ð Þsin U� 4lP sin u3�

þ 1

g1

� 1

g2

� �
4P� 2þ rð Þsin u2


; (A1)

H u; zð Þ ¼
1

g1

ln W uð Þ� 1það Þ=2W Uð Þ 1þbð Þ=2
h

�W u1ð Þ�� 2P�cþdð Þ
i
� 1

g2

ln W uð Þ 1�að Þ=2
h

�W Uð Þ b�1ð Þ=2
W u3ð Þ�2lP

i
þ 1

g1

� 1

g2

� �
ln W u2ð Þ2P�1þr=2
h i

; (A2)

where g1 and g2 are the algebraic gradients of celerity in the

surface layer and the deep layer, respectively, and P is the

number of bottom reflections or refractions. The minor

parameters can be expressed as follows:

g1 ¼
c1 � c2

z2

; g2 ¼ �
c3 � c2

z3 � z2

;

cðzÞ ¼ c2 þ ðBg1 � Dg2Þðz� z2Þ;

sin U ¼ d
c

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0

c
� 1þ sin2u

r
;

sin ui ¼
ci

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0

c2
i

� 1þ sin2u

s
;

W uð Þ ¼ tan u=2þ p=4ð Þ;

a ¼
þ1 if z < z2

�1 if z > z2;

(

b ¼
þ1 if z0 < z2

�1 if z0 > z2;

(

c ¼ sign uð Þ; d ¼ sign Uð Þ;
r ¼ jaþ cj þ jb� dj � cþ d;

l ¼ � ¼ 0 if SOFAR rays;

l ¼ 1; � ¼ 0 if RBR rays;

l ¼ 0; � ¼ 1 if RSR rays;

l ¼ � ¼ 1 if SRBR rays; (A3)

where c(z) (respectively, c0) is the sound speed at the target

depth z (respectively, the sonar depth z0). The other parameters

control the type of eigenray, such as SOFAR, refracted/bot-

tom-reflected, refracted/surface-reflected and surface-

reflected/bottom-reflected. The equations of a, b (exchange

signs < and >) and sin li; sin l0 used by Blanc-Benon12

were typing errors, and these are corrected here through

reading of the original paper.16

FIG. 13. Real data. A posteriori PDF for one draw. Estimated target posi-

tion: ẑt ¼ 31.3 mm (true target position: zt¼ 37 mm 6 2 mm). The dashed

lines represent the uncertainty ellipses for the direct and surface-reflected

rays. k1¼ k2¼ 4.

J. Acoust. Soc. Am. 140 (3), September 2016 Mours et al. 1781

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  152.77.24.10 On: Mon, 17 Oct 2016 14:35:44



APPENDIX B: PARTIAL DERIVATIVES OF G AND H

The partial derivatives of G and H can be expressed as follows:

@G

@z
¼ � c cos u

c0 sin U
C

g1

� E

g2

� �
Bg1 � Dg2ð Þ; (B1)

@G

@u
¼ c0 sin u

2 cos2u
1

g1

2B

sin u
þ 2C

sin U
� 2A

sin u1

� �
� 1

g2

2D

sin u
þ 2E

sin U
� 4lP

sin u3

� �
þ 1

g1

� 1

g2

� �
1

sin u2

� �" #
; (B2)

@H

@z
¼ � C

g1

� E

g2

� �
Bg1 � Dg2ð Þ c cos2u W2 Uð Þ þ 1

	 

2c2

0W Uð Þj cos Uj sin U
; (B3)

@H

@u
¼ 1

g1

Ac2
1 sin 2u W2 u1ð Þ þ 1

h i
4c2

0W u1ð Þjcos u1j sin u1

þ
Cc2d2 sin 2u W2 uð Þ þ 1

h i
4c2

0W Uð Þjcos Uj sin U
þ

B W2 uð Þ þ 1
h i

2W uð Þ

8<
:

9=
;

� 1

g2

�
c2

3Pl sin 2u W2 u3ð Þ þ 1
h i

4c2
0W u3ð Þjcos u3j sin u3

þEc2d2 sin 2u W2 Uð Þ þ 1
� �

4c2
0W Uð Þjcos Uj sin U

þ
D W2 uð Þ þ 1
h i

2W uð Þ

8<
:

9=
;

þ 1

g1

� 1

g2

� � c2
2 2Pþ r=2� 1ð Þsin 2u W2 u2ð Þ þ 1

h i
4c2

0W u2ð Þjcos u2j sin u2

; (B4)

where A, B, C, and D are intermediate variables, and can be

expressed as follows:

A ¼ � 2Pþ d� cð Þ; B ¼ �a� 1

2
; C ¼ bþ 1

2
;

D ¼ 1� a
2

; E ¼ b� 1

2
: (B5)
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