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Abstract

Many networking-related settings can be modeled by Markov-modulated infinite-server sys-
tems. In such models, the customers’ arrival rates and service rates are modulated by a Marko-
vian background process; additionally, there are infinitely many servers (and consequently
the resulting model is often used as a proxy for the corresponding many-server model). The
Markov-modulated infinite-server model hardly allows any explicit analysis, apart from re-
sults in terms of systems of (ordinary or partial) differential equations for the underlying
probability generating functions, and recursions to obtain all moments. As a consequence,
recent research efforts have pursued an asymptotic analysis in various limiting regimes, no-
tably the central-limit regime (describing fluctuations around the average behavior) and the
large-deviations regime (focusing on rare events). Many of these results use the property that
the number of customers in the system obeys a Poisson distribution with a random parameter.
The objective of this paper is to develop techniques to accurately approximate tail probabilities
in the large-deviations regime. We consider the scaling in which the arrival rates are inflated
by a factor N , and we are interested in the probability that the number of customers exceeds a
given level Na. Where earlier contributions focused on so-called logarithmic asymptotics of this
exceedance probability (which are inherently imprecise), the present paper improves upon
those results in that exact asymptotics are established. These are found in two steps: first the
distribution of the random parameter of the Poisson distribution is characterized, and then
this knowledge is used to identify the exact asymptotics. The paper is concluded by a set of
numerical experiments, in which the accuracy of the asymptotic results is assessed.
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Introduction, notation, and preliminaries

Consider an infinite-server queue modulated by a finite-state irreducible continuous-time Markov
chain J : when the so-called background process J is in state i ∈ {1, . . . , d}, jobs arrive accord-
ing to a Poisson process with rate λi, while the departure rate is µi. These Markov-modulated
infinite-server queues have attracted some attention during the past decades; see e.g. the early
contributions [9, 16, 18] and later [12]. Importantly, considerably fewer results are available for
this model than for the corresponding single-server queue. This is primarily due to the fact that,
despite the system’s simple structure, the Markov-modulated infinite-server queue hardly allows
any explicit analysis: whereas the Markov-modulated single-server queue has a matrix-geometric
stationary distribution, no such result applies to its infinite-server counterpart. The results ob-
tained so far are implicit, in that they are in terms of partial differential equations characterizing
the probability generating functions related to the system’s transient behavior, and recursions for
the corresponding moments (where in each step of the recursion a system of non-homogeneous
ordinary differential equations needs to be solved).
The Markov-modulated infinite-server queue can be applied in various domains, ranging from bi-
ology to the performance analysis of particular communication networks. In the present paper the
focus lies on the latter application, where the model with an infinite number of servers typically
serves as a proxy for its counterpart with a large but finite number of servers. The Markov mod-
ulation of the arrival rates and service rates facilitates the modeling of some sort of ?burstiness?;
although the concept of Markov modulation has been around for a few decades, it still spurs a
considerable amount of research effort [13, 19]. For instance, the model can be used to describe
the fluctuations in the users’ activity level (where each user alternates between transmitting data
or being silent). Also, e.g. in a wireless setting, the modulation of the service rate can represent
channel conditions that vary over time. In the context of communication networks, a particularly
relevant feature concerns rare events. More specifically, a high activity level corresponds to con-
gestion, and therefore the system should be designed such that such high activity levels occur
relatively infrequently.

Given that, as argued above, explicit analysis is hardly possible, recent research efforts have fo-
cused on the exploration of various limiting regimes. In the first place, significant progress has
been made in terms of the derivation of (functional) central limit theorems under specific pa-
rameter scalings. When inflating the arrival rates by a factor N , and speeding up the background
process by a factorNα (for some α > 0), in e.g. [1, 4, 5] it has been proven that the (transient as well
as stationary) number of jobs present in the system is, after centering and normalizing, asymptot-
ically Normally distributed. An interesting dichotomy was identified, in that the regimes α < 1

and α > 1 lead to qualitatively different asymptotics.
Also the large-deviations regime has been explored, resulting in so-called logarithmic asymptotics
[6, 7, 8]. In these papers the arrival rates are scaled by a factor N and the background process is
either left unchanged or accelerated by a factor N1+ε, ε > 0. With M (N)(t) the number of jobs
present at time t in the resulting system, these papers determine the limit

lim
N→∞

1

N
log p

(N)
t (a) =: −I(a), with p

(N)
t (a) := P

(
M (N)(t) ≥ Na

)
, (1)

as well as the corresponding limit for M (N)(t)’s steady-state counterpart M (N). It is observed that
these asymptotics are inherently imprecise, as they essentially just entail that

p
(N)
t (a) = e−NI(a)Ψ(N),
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for some unknown subexponential function Ψ(N); we only know that Ψ(N) has the property that,
as N →∞,

1

N
log Ψ(N)→ 0. (2)

Observe that (2) still leaves a substantial amount of freedom: Ψ(N) could be for instance a con-
stant, but also any polynomial function of N , or even ‘big functions’ of the type 106 · exp(N0.99).

We conclude that logarithmic asymptotics of the type (1) typically provide valuable insight into
the system’s rare-event behavior, but that they may be too inaccurate to be used for performance
evaluation purposes. This shows that there is a clear need for more precise asymptotic results.

The main contribution of the present paper is to improve the logarithmic asymptotics (1) to so-
called exact asymptotics: we identify an explicit function ζ(·) such that, as N →∞,

p
(N)
t (a)

ζ(N)
→ 1.

As it turns out, this ζ(N) is the product of the exponential term identified above (e−NI(a)), a
polynomial term (which is typically of the form N−C , for some C > 0), and a constant. The proof
of this property consists of two steps, and relies on the property that M (N)(t) obeys a Poisson
distribution with random parameter (as was observed in e.g. [6, 9]).

◦ In the first step a system of partial differential equations is set up for the distribution of this
Poisson parameter.

◦ In the second step, this is combined with (a uniform version) of the classical result by Ba-
hadur and Rao [3, 14] on the exact tail asymptotics of sample means of i.i.d. random vari-
ables, so as to obtain the exact asymptotics of the tail probability of our interest.

Model and notation. As mentioned above, λi is the (Poissonian) arrival rate when the background
process is in state i. We let

Q = (qij)
d
i,j=1

be the (d×d) transition rate matrix of the (irreducible) background process J , with πππ denoting the
corresponding invariant probability measure (which is a d-dimensional vector πππ). The entries of
Q are non-negative, except for those on the diagonal; the row-sums are assumed to be 0, where
we define qi := −qii ≥ 0.
Concerning the departure process, two models are considered. In the first, referred to as Model I,
each job present is experiencing a departure rate µi when J is in state i; as a consequence, this
hazard rate may change during the job’s sojourn time (that is, when the background process makes
a transition). In the second, Model II, the crucial difference is that the job’s sojourn time is sampled
upon arrival: when the background process is then in state i, it has an exponential distribution
with mean 1/µi. The evident independence assumptions are imposed.

Preliminaries. In Model I and II, we have that M (N)(t) has a mixed Poisson distribution, i.e.,
a Poisson distribution with random parameter [6, 9]. More specifically, with P (b) denoting a
Poisson random variable with mean b > 0, our target probability p(N)

t (a) equals the probability
P(P (Nφt(J)) ≥ Na) in Model I and P(P (Nψt(J)) ≥ Na) in Model II, where the functionals φt(J)

and ψt(J) of the path J ≡ {J(s) : s ∈ [0, t]} are given by, respectively,

φt(J) :=

∫ t

0
λJ(s)e

−
∫ t
s µJ(r)drds and ψt(J) :=

∫ t

0
λJ(s)e

−(t−s)µJ(s)ds.
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An intuitive explanation for this property is the following. In Model II the probability of a job that
has arrived at time s is still present at time t ∈ (s,∞) is

e−(t−s)µJ(s) ,

as µJ(s) is its hazard rate during its entire lifetime. In Model I this hazard rate may change over
time, in the sense that when the background process is in state i it is µi; therefore, the probability
of a job that has arrived at time s is still present at t is

e−
∫ t
s µJ(r)dr.

In an earlier paper [6] we have developed a technique to determine for Model I numbers a(−,I)
t

and a
(+,I)
t (such that 0 ≤ a

(−,I)
t ≤ a

(+,I)
t ) being the smallest, resp. largest numbers that φt(J) can

attain. The analogous result for ψt(J) (featuring in Model II) has been presented in [7], resulting
in numbers a(−,II)

t and a(+,II)
t .

In Model II, the bounds a(−,II)
t and a(+,II)

t are explicitly given:

a
(−,II)
t =

∫ t

0

(
min

i∈{1,...,d}
λie
−(t−s)µi

)
ds, a

(+,II)
t =

∫ t

0

(
max

i∈{1,...,d}
λie
−(t−s)µi

)
ds. (3)

For Model I a specific optimization program needs to be evaluated; it is relatively straightforward,
but we leave out its specific form here.

Organization. Section 2.1 considers the situation in which the probability p(N)
t (a) does not corre-

spond to a rare event (i.e., does not vanish as N → ∞); the result is in terms of the distribution
of the Poisson parameter of M (N)(t) (of which we characterize the density in terms of a system of
partial differential equations). In Section 2.2 we study the distribution of φt(J) and ψt(J) for val-
ues close to the maximum values they can attain (i.e., a(+,I)

t and a(+,II)
t ). These results are then used

in Section 3, which covers the case in which p(N)
t (a) decays essentially exponentially as N → ∞;

along the lines described above, we determine the exact asymptotics. Section 4 contains remarks
on computational aspects, as well as a set of numerical experiments. The paper is concluded by a
discussion of the results obtained in Section 5.

Exact asymptotics in ‘non-rare range’ — distribution of the Poisson param-
eter

This section studies the behavior of the Poisson parameters φt(J) and ψt(J) in detail. In the first
subsection the obtained results are used to evaluate the asymptotics of p(N)

t (a) for N large for
the case that a is smaller than a

(+,I)
t (for Model I) or a(+,II)

t (for Model II). The second subsection
focuses on the shape of the distribution just below a

(+,I)
t (resp. a(+,II)

t ).

Exact asymptotics in non-rare range

We start by considering the situation that the event of interest is not increasingly rare as N → ∞.
For the moment we focus on Model I, where it is noted that a similar line of reasoning, mutatis
mutandis, applies to Model II. If φt(J) > a, then evidently the probability that P(P (Nφt(J)) ≥ Na)

converges to 1 as N →∞, and otherwise to 0. As a consequence,

lim
N→∞

p
(N)
t (a) = P (φt(J) ≥ a) .

As a consequence, we wish to characterize the probabilities P(φt(J) ≥ a), and P(ψt(J) ≥ a); the
main result of this section is a system of partial differential equations that enables the evaluation
of these objects. For ease we assume that there are no distinct i, j such that both λi = λj and
µi = µj ; we comment later, in Remark 1, on how to relax this assumption.
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Model I

Our objective is to characterize the quantity

pi(a, t) := P(φt(J) ≥ a, J(t) = i),

for i ∈ {1, . . . , d}, where it is assumed that J(0) = i0 ∈ {1, . . . , d}. Consider the last ∆ > 0 time
units immediately before time t, ∆ to be typically thought of as a small number. In this time
interval the background process either jumps to state i from a state j 6= i, or it was already in state
i; the third option, corresponding with two or more jumps, has probability o(∆).
If the process does not jump, then

φt(J) =

∫ t−∆

0
λJ(s)e

−
∫ t
s µJ(r)drds+

∫ t

t−∆
λiJ(s)e

−µi(t−s)ds

= e−µi∆
∫ t−∆

0
λJ(s)e

−
∫ t−∆
s µJ(r)drds+ λi∆ + o(∆)

= (1− µi∆)

∫ t−∆

0
λJ(s)e

−
∫ t−∆
s µJ(r)drds+ λi∆ + o(∆),

which is (1− µi∆)φt−∆(J) + λi∆ + o(∆). As a consequence, up to terms of order o(∆),

pi(a, t) =
∑
j 6=i

qji∆ pj(a, t) +

1−
∑
j 6=i

qij∆

 pi(a− λi ∆ + aµi ∆, t−∆).

Subtracting pi(a, t) from both sides, dividing by ∆, and letting ∆ ↓ 0 leads to the following system
of partial differential equations, for i = 1, . . . , d:

d∑
j=1

qjipj(a, t) =
∂

∂t
pi(a, t) + (λi − aµi)

∂

∂a
pi(a, t).

We thus arrive at the following result; we present it in a compact form by using self-evident
vector/matrix notation.

Proposition 1. Consider Model I. Assume a(−,I)
t ≤ a ≤ a(+,I)

t . As N →∞,

p
(N)
t (a)→ P (φt(J) ≥ a) =

d∑
i=1

pi(a, t),

where ppp(a, t) solves the system of partial differential equations

QTppp(a, t) =
∂

∂t
ppp(a, t) + (Λ− aM)

∂

∂a
ppp(a, t).

Now focus on additional conditions that are to be imposed. Recall that J(0) = i0.

• Let us start by identifying the conditions related to t = 0. Realizing that a(−,I)
0 = a

(+,I)
0 = 0,

we have that pi0(0, 0) = 1 and pi(0, 0) = 0 for i 6= i0.

• Now consider the a-related conditions. Observe that

P
(
φt(J) =

∫ t

0
λi0e

−
∫ t
s µi0drds

)
= P

(
φt(J) =

λi0
µi0

(
1− e−µi0 t

))
= e−qi0 t.

It follows that
pi

(
a

(−,I)
t , t

)
= (eQt)i0,i, pi

(
a

(+,I)
t , t

)
= 0

for all i ∈ {1, . . . , d}, but pi0(·, t) has the special feature of having an atom of size e−qi0 t at the
value

a?t :=
λi0
µi0

(
1− e−µi0 t

)
∈
[
a

(−,I)
t , a

(+,I)
t

]
.

5



Remark 1. Above we imposed the assumption that there are no distinct i, j such that both λi = λj

and µi = µj . We now sketch what to do when this property does not hold. Let us consider the
case that there is precisely one j 6= i0 such that both λi0 = λj and µi0 = µj ; further generalizations
can be performed in the same manner. It is noted that now the atom at a?t has size

e−qi0 t +

∫ t

0
qi0e

−qi0s · qi0j
qi0
· e−qj(t−s)ds = e−qi0 t +

e−qjt − e−qi0 t

qi0 − qj
qi0j .

Model II

For Model II a similar approach can be followed. We now concentrate on the object

p̄i(a, t) := P(ψt(J) ≥ a | J(0) = i),

for i ∈ {1, . . . , d}. Observe the subtle difference with the analysis of Model I: where we there
considered the distribution of φt(J) jointly with J(t) = i, we now study the distribution of ψt(J)

conditional on J(0) = i.
Consider the first ∆ > 0 time units, in which the background process either jumps, or stays in
state i (or jumps twice or more, but this corresponds to a probability that is o(∆)). If the process
does not jump in (0,∆], then, in distribution,

ψt(J) =

∫ ∆

0
λie
−(t−s)µids+

∫ t

∆
λJ(s)e

−(t−s)µJ(s)ds

d
= λie

−µit ∆ +

∫ t−∆

0
λJ(s)e

−(t−∆−s)µJ(s)ds+ o(∆),

which is λie−µit ∆ + ψt−∆(J) + o(∆). We thus find that

p̄i(a, t) =
∑
j 6=i

qij∆ p̄j(a, t) +

1−
∑
j 6=i

qij∆

 p̄i(a− λie−µit ∆, t−∆) + o(∆).

We continue in the usual way: subtracting p̄i(a, t) from both sides, dividing by ∆, and letting
∆ ↓ 0 leads to the following system of partial differential equations, for i = 1, . . . , d:

d∑
j=1

qij p̄j(a, t) =
∂

∂t
p̄i(a, t) + λie

−µit ∂

∂a
p̄i(a, t).

This leads to the following statement, again in self-evident notation.

Proposition 2. Consider Model II. Assume a(−,II)
t ≤ a ≤ a(+,II)

t . As N →∞,

p
(N)
t (a)→ P (ψt(J) ≥ a) =

d∑
i=1

p̄i(a, t),

where p̄pp(a, t) solves the system of partial differential equations

Qp̄pp(a, t) =
∂

∂t
p̄pp(a, t) + (Λ e−Mt)

∂

∂a
p̄pp(a, t).

Again additional conditions should be imposed:

• We have p̄i(0, 0) = 1 for all i ∈ {1, . . . , d}.

• In this case p̄i(a−t , t) = 0 and p̄i(a
+
t , t) = 1 for all i ∈ {1, . . . , d} and pi(a, t) has an atom of

size e−qit at
a?i,t :=

λi
µi

(
1− e−µit

)
.

It is noted that these conditions can be adapted in case there is a j such that λi0 = λj and µi0 = µj ,
in the way pointed out in Remark 1.
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Distribution of Poisson parameter close to its domain boundaries

In this section we study the behavior, for small δ, of φt(J) and ψt(J) being less than δ away from
a

(+,I)
t and a

(+,II)
t , respectively. The exposition is slightly easier for Model II, due to the fact that

for that model the maximum attainable variable is explicitly known (see (3)), but for Model I

essentially the same approach can be followed. The results obtained in this subsection are crucial
when deriving the exact asymptotics in Section 3.
Define the ‘maximizing path’

γt(s) := arg max
i∈{1,...,d}

λie
−(t−s)µi .

As was shown in [6, 7] γt(·) jumps at most d − 1 times in [0, t]; let D ≤ d − 1 be this number
of jumps. Then there are two cases: no jumps at all in [0, t], and a positive number of jumps in
[0, t] (in which case we denote by s1 up to sD the epochs of these jumps). The former case being
elementary, we focus in this section on the latter case. Without loss of generality we assume that
the states are labeled such that γt(s) visits the states 1 up to D + 1 when s increases from 0 to t.
We first evaluate the difference between the maximum value a(+,II)

t of ψt(J) (corresponding to
jumps at s1 up to sD) with the value of ψt(J) that results from jumps at times s1 + v1ε up to
sD + vDε, where the viε are small (but not necessarily positive). It is readily checked that this
difference equals, with s0 = 0, sD+1 = t, and v0 = vD+1 = 0,

D+1∑
i=1

(∫ si

si−1

λie
−µi(t−r)dr −

∫ si+viε

si−1+vi−1ε
λie
−µi(t−r)dr

)
,

which can alternatively be written as

D+1∑
i=1

λi
µi
e−µit (eµisi − eµisi−1)−

D+1∑
i=1

λi
µi
e−µit

(
eµi(si+viε) − eµi(si−1+vi−1ε)

)
,

or, further simplified,

D+1∑
i=1

λi
µi
e−µi(t−si)(1− eµiviε)−

D+1∑
i=1

λi
µi
e−µi(t−si−1)(1− eµivi−1ε), (4)

notice that, due to v0 = vD+1 = 0 the last term of the first sum can be left out, and the same holds
for the first term of the second sum. Recalling that, immediately from the definition of s1, . . . , sD,

λie
−µi(t−si) = λi+1e

−µi+1(t−si), i = 1, . . . , D,

we have that (4) equals, up to terms that are o(ε2),

D∑
i=1

(
λie
−µi(t−si) − λi+1e

−µi+1(t−si)
)
viε+

D∑
i=1

ωi (viε)
2 =

D∑
i=1

ωi (viε)
2;

here we have used the definition, for i = 1, . . . , D,

ωi :=
λi+1µi+1

2
e−µi+1(t−si) − λiµi

2
e−µi(t−si)

=
λi+1

2
(µi+1 − µi)e−µi+1(t−si) =

λi
2

(µi+1 − µi)e−µi(t−si).

It is readily verified that along γt(·) it holds that µi ≥ µj if i > j, and hence all coefficients ωi are
non-negative; this is in line with the fact that the functional ψt(J) is maximized by the path γt(·).
We thus arrive at

P
(
ψt(J) ≥ a(+,II)

t − δ
)

= π1q1e
−q1s1 q12

q1
q2e
−q2(s2−s1) · · ·

qD,D+1

qD
qD+1e

−qD+1(t−sD)V(δ) + o(V(δ)),
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where V(δ) denotes the volume of the set

S(δ) :=

{
(x1, . . . , xD) :

D∑
i=1

ωi x
2
i < δ

}
,

which is κt ·RD = κt · δD/2 for some constant κt > 0 and R :=
√
δ being the ‘scale’ of the ellipsoid.

We have thus identified a constant κ̄t > 0 such that

lim
δ↓0

P
(
ψt(J) ≥ a(+,II)

t − δ
)
δ−D/2 = κ̄t.

A similar argument provides us with the corresponding density close to a(+,II)
t ; then essentially

the integration needs to be done over ∂S(δ), which is of the order RD−1. Appealing to the chain
rule (with dR/dδ = (2

√
δ)−1), we thus find that for a constant κ̂t > 0,

lim
δ↓0

P
(
a

(+,II)
t − ψt(J) ∈ dδ

)
δ−D/2+1 = κ̂t. (5)

We note that above we tacitly imposed the regularity condition that all transition rates along the
path γt(·) are positive:

qi,i+1 > 0 for all i ∈ {1, . . . , D}. (6)

As an aside we mention that adaptation of the arguments to the case in which along γt(·) there are
(one or more) states i ∈ {1, . . . , D} corresponding with qi,i+1 = 0 is a purely technical issue, and is
relatively straightforward. Importantly, it can be checked that it affects the power of δ appearing
in (5). Example 2 illustrates how this issue can be dealt with.

Example 1. Consider Model II with d = 2. We consider the case that λ1 < λ2 and µ1 < µ2, so that
the curves λie−µi(t−s) intersect at

s1 = t− s̄, with s̄ :=
log(λ1/λ2)

µ1 − µ2
;

we assume t > s̄. Because of the choice of our parameters, we are in the situation that the maxi-
mizing path jumps once in [0, t], where

ω1 =
λ2

2
(µ2 − µ1)e−µ2(t−s1) =

λ2

2
(µ2 − µ1)

(
λ1

λ2

)−µ2/(µ1−µ2)

.

We conclude that

V(δ) =
2
√

2δ√
λ2(µ2 − µ1)

√(
λ1

λ2

)µ2/(µ1−µ2)

,

and hence

κ̄t = π1 q12q2 e
−q1t 2

√
2√

λ2(µ2 − µ1)

(
λ1

λ2

)(q1−q2+µ2/2)/(µ1−µ2)

.

Example 2. In this example we consider a situation in which regularity condition (6) does not
apply. We point out how in this case the density close to a

(+,II)
t can be evaluated. As becomes

clear, the procedure is straightforward but tedious; therefore we assume in the next section, when
evaluating the asymptotics, that the simpler situation in which (6) is in place.
We consider the same setting as in the previous example, but now with d = 3 where the transition
rates qij are such that state 2 can be reached from state 1 only via state 3: q13, q32 > 0 but q12 = 0. We
assume that for any s ∈ [0, t] the function λ3e

−µ3(t−s) nowhere majorizes λ1e
−µ1(t−s) or λ2e

−µ2(t−s).
In other words: as in the previous example the maximizing path subsequently visits states 1 and
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2 (and the resulting value of a(+,II)
t is the same), but the modulating Markov chain cannot jump

directly from state 1 to 2.
Consider the path at which there is a transition from state 1 to 3 at time s1 − v1ε, and then a
transition from state 3 to 2 at time s1 + v2ε, with viε small and positive. The difference between
a

(+,II)
t and the value of ψt(J) resulting from this path is

λ1

µ1
e−µ1(t−s1)

(
1− e−µ1v1ε

)
+
λ2

µ2
e−µ2(t−s1) (eµ2v2ε − 1)− λ3

µ3
e−µ3(t−s1)

(
eµ3v2ε − e−µ3v1ε

)
,

which behaves, for viε small, as z1v1ε + z2v2ε, with zi := λie
−µi(t−s1) − λ3e

−µ3(t−s1); recall that
zi > 0. We thus arrive at, ignoring terms that are o(V(δ)),

P
(
ψt(J) ≥ a(+,II)

t − δ
)

= π1q1e
−q1s1 q13

q1
q3e
−q3·0 q32

q3
q2e
−q2(t−s1)V(δ)

= π1q13e
−q1s1q32q2e

−q2(t−s1)V(δ),

where V(δ) denotes the volume of the set

S(δ) :=
{

(x1, x2) ∈ R2
+ : z1 x1 + z2 x2 < δ

}
,

i.e., δ2/(2z1z2). Conclude that for δ small the probability under investigation is essentially pro-
portional to δ2. This is in contrast with the order

√
δ that we found in Example 1; apparently the

likelihood of reaching values close to a(+,II)
t is considerably smaller in Example 2, as a consequence

of the additional transitions needed.

Exact asymptotics in ‘rare range’

In the previous section we have considered the situation in which p
(N)
t (a) converges to a posi-

tive constant; this case corresponds to the exceedance level a being between the minimum and
maximum value of the Poisson parameter underlying the distribution of M (N)(t). In the present
section we look at the opposite case, i.e., the case in which p(N)

t (a) vanishes as N grows large. We
present the analysis for Model I, but Model II can be dealt with fully analogously.
Below we consider the situation that a > a(+,I); the asymptotic analysis of 1−p(N)

t (a) for a < a(−,I)

follows in the same way. To this end, we first realize that we have the following representation,
due to the fact that M (N)(t) has a Poisson distribution with random mean:

p
(N)
t (a) =

∫ a
(+,I)
t

a
(−,I)
t

P(P (Nα) ≥ Na)P(φt(J) ∈ dα);

the integral is on the interval [a
(−,I)
t , a

(+,I)
t ], as this is the interval of values that φt(J) can attain.

The first step is to analyze P(P (Nα) ≥ Na), relying on standard probabilistic tools. Define, for
α ∈ [a

(−,I)
t , a

(+,I)
t ], with Λ(ϑ |α) := logE eϑP (α), the Legendre transform

I(a |α) := sup
ϑ

(ϑa− Λ(ϑ |α)) = sup
ϑ

(
ϑa− α(eϑ − 1)

)
.

As the optimizing ϑ equals ϑ(a |α) = log(a/α) > 0, we have I(a |α) = a log(a/α) + α− a. As can
be found in e.g. [10], the lattice version of the Bahadur-Rao result [3] states that, as N →∞,

P(P (Nα) ≥ Na) ·
(
eNI(a |α)

√
2πN · ξ(a |α)

)
→ 1,

where

ξ(a |α) :=
√

Λ′′(a |α)
(

1− e−ϑ(a |α)
)

=
√
a
(

1− α

a

)
.

9



Interestingly, we know that this convergence is uniform in α ∈ [a−t , a
+
t ], as an immediate conse-

quence of the results in Höglund [14]. This implies that, for all ε > 0 we have that for N large
enough

sup
α∈[a−t ,a

+
t ]

P(P (Nα) ≥ Na) ·
(
eNI(a |α)

√
2πN · ξ(a |α)

)
∈ (1− ε, 1 + ε).

In addition, we have, uniformly in N , the celebrated Chernoff bound:

P(P (Nα) ≥ Na) ≤ e−NI(a |α). (7)

When analyzing the asymptotics of p(N)
t (a) for N large and a > a

(+,I)
t , two cases need to be distin-

guished: the case that φt(J) does not have an atom in a(+,I)
t , and the case that it has. Let us start

with the former case (which is more involved than the latter case).

B Case 1 — φt(J) does not have an atom in a(+,I)
t . Fix some δ ∈ (−1,−1

2). We split p(N)
t (a) into

K
(
a

(−,I)
t , a

(+,I)
t −N δ

)
+K

(
a

(+,I)
t −N δ, a

(+,I)
t

)
, (8)

where, for u < v,

K(u, v) :=

∫ v

u
P(P (Nα) ≥ Na)P(φt(J) ∈ dα).

Let us start by analyzing the first term in (8); our goal is to show that it can be ignored (asymptot-
ically, i.e., as N →∞) relative to the second term. Observe that, because of (7),

eNI(a | a
(+,I)
t )K

(
a

(−,I)
t , a

(+,I)
t −N δ

)
≤ At eNI(a | a

(+,I)
t )

 sup
α∈[a

(−,I)
t ,a

(+,I)
t −Nδ]

e−NI(a |α)

 (9)

whereAt := a
(+,I)
t −a(−,I)

t ; in view of the shape of the asymptotic expansion that eventually comes

out, we multiplied by eNI(a | a
(+,I)
t ). Now realize that I(a |α) is convex in α, having the value 0

when α = a, and that it is decreasing in α, since a > a
(+,I)
t . It thus follows that

arg inf
α∈[a

(−,I)
t ,a

(+,I)
t −Nδ]

I(a |α) = a
(+,I)
t −N δ.

As a consequence, (9) is majorized by

At e
NI(a | a(+,I)

t ) e−NI(a |α
(+,I)
t −Nδ). (10)

We now present an upper bound on the exponent featuring in (10). It is a trivial exercise to verify
that standard estimates yield

I(a | a(+,I)
t )− I(a | a(+,I)

t −N δ) = a log
a

(+,I)
t −N δ

a
(+,I)
t

+N δ ≤

(
1− a

a
(+,I)
t

)
N δ ≤ −cN δ,

for some positive c (where it is used that a > a
(+,I)
t ). Conclude that Expression (10) is bounded

from above by At exp(−cN1−δ), and therefore we obtain, as N grows large,

N (D+1)/2 eNI(a | a
(+,I)
t )K

(
a

(−,I)
t , a

(+,I)
t −N δ

)
≤ N (D+1)/2At e

−cN1−δ → 0. (11)

Let us now concentrate on the second term in (8); as we will show, it dominates the contribution of
the first term. To this end, we first focus on an upper bound, but, as we see later on, a correspond-
ing lower bound can be derived very similarly, thus establishing the exact asymptotics of p(N)

t (a).
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Because of the (uniform version of) the Bahadur-Rao result (as was stated above), we have that
for any ε > 0,

lim sup
N→∞

N (D+1)/2eNI(a | a
(+,I)
t )K

(
a

(+,I)
t −N δ, a

(+,I)
t

)
≤ (1 + ε) · lim sup

N→∞
ND/2

∫ a
(+,I)
t

a
(+,I)
t −Nδ

GN (α)P(φt(J) ∈ dα), (12)

where, with η(a |α) := 1/(
√

2π ξ(a |α)),

GN (α) := eN I(a | a(+,I)
t )−N I(a |α) η(a |α).

We now further analyze (12). To this end, we first define

Ḡ(α) := a log

(
1− α

a
(+,I)
t

)
+ α,

and assume that the regularity condition (6) applies. By virtue of standard continuity arguments
it follows that in combination with (5), for all ε′ > 0, Expression (12) is majorized by

(1 + ε′) η(a | a(+,I)
t ) κ̂t· lim sup

N→∞
ND/2

∫ a
(+,I)
t

a
(+,I)
t −Nδ

eN I(a | a(+,I)
t )−N I(a |α)(a

(+,I)
t − α)D/2−1 dα

β := a
(+,I)
t −α
= (1 + ε′) η(a | a(+,I)

t ) κ̂t· lim sup
N→∞

ND/2

∫ Nδ

0
eNḠ(β)βD/2−1dβ.

Using elementary Taylor expansions, it is easily verified that there are numbers ` and u such that,
with

b :=

(
a

a
(+,I)
t

− 1

)
> 0,

for N sufficiently large and all β ∈ [0, N δ],

`N1+2δ − bβN ≤ N

(
a log

(
1− β

a
(+,I)
t

)
+ β

)
≤ uN1+2δ − bβN.

As a consequence, using in step (i) that δ < −1
2 and in step (ii) δ > −1,

lim sup
N→∞

ND/2

∫ Nδ

0
eNḠ(β)βD/2−1dβ ≤ lim sup

N→∞
ND/2euN

1+2δ

∫ Nδ

0
e−bβNβD/2−1dβ

(i)
= lim sup

N→∞
ND/2

∫ Nδ

0
e−bβNβD/2−1dβ

α := bβN
=

1

bD/2−1
lim sup
N→∞

∫ bNδ+1

0
e−ααD/2−1dα

(ii)
=

Γ(D/2)

bD/2
.

The corresponding lower bound can be found along the same lines: for an arbitrary ε′ > 0,

lim inf
N→∞

N (D+1)/2eNI(a | a
(+,I)
t )K

(
a

(+,I)
t −N δ, a

(+,I)
t

)
≥ (1− ε′) η(a | a(+,I)

t ) κ̂t· lim infN→∞N
D/2e`N

1+2δ

∫ Nδ

0
e−bαNαD/2−1dα,

which can be evaluated as before. By taking ε′ ↓ 0, upon combining the above upper and lower
bound, we obtain

lim
N→∞

N (D+1)/2 eNI(a | a
(+,I)
t )K

(
a

(+,I)
t −N δ, a

(+,I)
t

)
= η(a | a(+,I)

t ) κ̂t
Γ(D/2)

bD/2
. (13)
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Next we combine the asymptotics of both intervals, i.e., the one over [a
(−,I)
t , a

(+,I)
t −N δ) and the one

over [a
(+,I)
t −N δ, a

(+,I)
t ]. From (11) and (13), the main result of this section follows. The analogous

result for Model II can be derived in precisely the same way; the only difference lies in the value
of the constant κ̂t.

Theorem 1. Consider Model I. Assume a > a
(+,I)
t , and let φt(J) have no atom in a

(+,I)
t ; in addition,

assume that regularity condition (6) applies. As N →∞,

N (D+1)/2 eNI(a | a
(+,I)
t ) p

(N)
t (a)→

(
a

(+,I)
t

a− a(+,I)
t

)D/2
κ̂t Γ(D/2)

√
2π ξ(a | a(+,I)

t )
.

B Case 2 — φt(J) has an atom in a(+,I)
t . We now consider the situation that

F (a
(+,I)
t ) := P

(
φt(J) = a

(+,I)
t

)
> 0.

Because of the arguments used in the derivation of Thm. 1, we observe that the contribution to the
probability of interest due to the event φt(J) ∈ [a

(−,I)
t , a

(+,I)
t ) is of an order of at most

e−N I(a | a(+,I)
t )

N

(up to a multiplicative constant); realize that this is a consequence of the fact that the correspond-
ing path requires at least one jump. From the Bahadur-Rao result, however, it is directly seen that
the contribution due to the event φt(J) = a

(+,I)
t is larger, viz. of the order (up to a multiplicative

constant)
e−N I(a | a(+,I)

t )

√
N

.

As a consequence, the latter scenario dominates, and we obtain the following exact asymptotics;
again, an analogous result is valid for Model II.

Corollary 1. Consider Model I. Assume a > a
(+,I)
t , and let φt(J) have an atom in a(+,I)

t . As N →∞,

√
N eNI(a | a

(+,I)
t ) p

(N)
t (a)→ F (a

(+,I)
t )

√
2π ξ(a | a(+,I)

t )
.

Computational issues

The objective of this section is to present an efficient simulation method for estimating p(N)
t (a) for

the situation that a is large than (in Model I) a(+,I)
t or (in Model II) a(+,II)

t . In addition we include a
numerical experiment featuring a typical example.

Basic method, and its logarithmic efficiency. Particularly when N is large, the probability p(N)
t (a) will

be small, thus imposing constraints on the feasibility of standard Monte Carlo techniques. There
is, however, an interesting remedy. To this end, note that we can express the probability of our
interest as

p
(N)
t (a) = EP(Na,Nφt(J)) (14)

(where, as an aside, we mention that we point the procedure out for Model I, but Model II can be
dealt with fully analogously); the function

P(n, λ) :=

∞∑
k=n

e−λ
λk

k!
,
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is the tail distribution of the Poisson distribution, and is available in standard software packages.
The form (14) suggests the following simple and effective simulation approach: in run ` (with
` = 1, . . . ,M ) the path J` is sampled, the parameter φt(J`) is calculated, and the probability p(N)

t (a)

is estimated by

1

M

M∑
`=1

P(Na,Nφt(J`)).

This procedure is logarithmically efficient [2, Ch. VI]. To see this, first note that we have the obvious
deterministic upper bound

P(Na,Nφt(J)) ≤ P(Na,Na
(+,I)
t ), (15)

as a consequence of the stochastic monotonicity of the Poisson distribution in its parameter. Due
to Jensen’s inequality in combination with Thm. 1 and Corollary 1 we have the lower bound

lim inf
N→∞

1

N
logEP2(Na,Nφt(J)) ≥ 2 lim

N→∞

1

N
logEP(Na,Nφt(J)) = −2I(a | a(+,I)

t ).

Because of (15), however, this lower bound is actually achieved:

lim sup
N→∞

1

N
logEP2(Na,Nφt(J)) ≤ 2 lim

N→∞

1

N
logP(Na,Na

(+,I)
t ) = −2I(a | a(+,I)

t ).

We thus obtain logarithmic efficiency. Often simulation experiments are performed until the es-
timate has reached a certain efficiency: the ratio of the width of the confidence interval to the
estimate is smaller than some predefined number (e.g. 10%). In practical terms, in this setting
with p(N)

t (a) decaying essentially exponentially in N , logarithmic efficiency effectively means that
the number of runs that is needed grows at most subexponentially in N .

Importance-sampling based acceleration. In fact, the rare event studied in this paper is the effect
of the combination of (i) the Poisson parameter φt(J) attaining a rare value, say φ, and (ii) a
Poisson random variable with parameter Nφ attaining a rare value. Note that the above approach
adequately deals with the randomness due to effect (ii) – that is, we do not need to sample the
Poisson random variable, but we use computations instead.
The question that is left concerns the rarity which is a consequence of φt(J) attaining a rare value.
In the proofs we have seen that overflow is most likely caused by φt(J) attaining a value ‘close
to’ its maximal value a(+,I)

t , which only happens when the jump epochs are close to those of some
maximizing path (that was explicitly determined in [6] and [7] for Models I and II, respectively).
We saw that the probability of φt(J) being an amount in the order of δ away from its maximum
value a(+,I)

t , is of the order δD/2, i.e., relatively rare. Importance sampling can be used to resolve
this issue in the following way.
Choose ∆ sufficiently small such that all si pairs are at least 2∆ apart; recall that the si are the
transition epochs along the path that optimises the Poisson parameter. We let T0 = 0 and Ti, for i =

1, 2, . . . , D + 1 be the subsequent transition epochs of the background process in our simulation,
and Ui := Ti−Ti−1 the corresponding sojourn times. We write, with γ(·) being functions that map
[0, t] onto {1, . . . , d} and s̄i := si − si−1,

Z(∆) :=

γ(·)

∣∣∣∣∣∣∣
γ(s) = i ∀s ∈ [Ti−1, Ti) ∀i = 1, . . . , D + 1;

Ui ∈ (s̄i −∆, s̄i + ∆) ∀i = 1, . . . , D;

UD+1 ≥ t− sD +D∆

 .

The set Z(∆) should be interpreted as the collection of paths that are ‘close to’ the path that maxi-
mizes the random parameter of the Poisson distribution; recall that, without loss of generality, we
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had labeled the states such that along this optimizing path the states 1 up toD+1 are subsequently
visited.
The idea is now to estimate the quantities

E (P(Na,Nφt(J)) 1{J 6∈ Z(∆)}) and E (P(Na,Nφt(J)) 1{J ∈ Z(∆)})

separately, and to add the resulting estimates up. The first of these quantities is estimated under
the actual measure P, whereas for the second (which contains the rare event of φt(J) being close
to a(+,I)

t ) we use importance sampling. In more detail:

◦ The quantity E (P(Na,Nφt(J)) 1{J 6∈ Z(∆)}) is estimated by performing M1 runs:

1

M1

M1∑
`=1

P(Na,Nφt(J`)) 1{Ji 6∈ Z(∆)},

with the J` sampled under P.

◦ The quantity E (P(Na,Nφt(J)) 1{J ∈ Z(∆)}) can be estimated using an importance sam-
pling approach: an alternative measure, say Q, is used to draw samples φt(J1) up to φt(JM2),
and then the simulation output (i.e., P(Na,Nφt(J`))) is translated back in terms of the orig-
inal probability measure P by multiplying it with an appropriate likelihood ratio L` (to be
interpreted as a Radon-Nikodym derivative dP/dQ).

The measure Q is constructed as follows. The transition probabilities are changed in such a
way that with probability 1 the background process visits the states 1 up to D + 1. Along
this path, the time spent in state i is sampled from a distribution with density, for s ∈ (s̄i −
∆, s̄i + ∆),

qie
−qis

(∫ s̄i+∆

s̄i−∆
qie
−qirdr

)−1

=
qie
−qis

σi
, with σi := e−qi(s̄i−∆) − e−qi(s̄i+∆)

(where the density is defined to be 0 elsewhere), for i = 1, . . . , D. The time spent in state
D + 1 is sampled from a distribution with density, for s ≥ t− sD +D∆,

qD+1e
−qD+1s

σD+1
, with σD+1 := e−qD+1(t−sD+D∆)

(and 0 elsewhere). Observe that all paths sampled under Q are necessarily in Z(∆). The
likelihood ratio of such a path reads

L = π1

D∏
i=1

(
qi,i+1

qi

)
·

(
D+1∏
i=1

σi

)
.

Performing M2 runs, we have thus constructed the estimator, with L` the likelihood ratio
corresponding with the `-th sample,

1

M2

M2∑
`=1

P(Na,Nφt(J`))L`.

As an alternative, one could use the following estimator (in self-evident notation), based on M

runs under the original and alternative measure:

1

M

(
M∑
`=1

P
(
Na,Nφt(J

(P)
` )
)

1{J (P)
` 6∈ Z(∆)}+ P

(
Na,Nφt(J

(Q)
` )

)
L`

)
.
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Figure 1: The distribution function P(ψ1(J) ≤ a) for a ∈ [a
(−,II)
1 , a

(+,II)
1 ], dashed the curves
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Figure 2: Left panel: NeNI p(N)
1 (1) for N ∈ {20, 40, . . . , 300}; right panel: − log10 p

(N)
1 (1) for N ∈

{20, 40, . . . , 300}.

Example 3. Following up on Example 1, we consider Model II with d = 2 and the following choice
of the parameters: λ1 = µ1 = 1, λ2 = 2, µ2 = 5, q1 = q2 = 1, and t = 1. As it turns out,
s1 = 1− log 4

√
2, and

a
(+,II)
1 =

∫ 1−log 4√2

0
λ1e
−µ1(1−r)dr +

∫ 1

1−log 4√2
λ2e
−µ2(1−r)dr =

1
4
√

2
− 1

e
+

2

5

(
1−

(
1
4
√

2

)5
)
,

which equals 0.704838. We focus on the probability p
(N)
1 (a) that M (N)(t) exceeds Na, with a =

1 > a
(+,II)
1 . Likewise,

a
(−,II)
1 =

∫ 1−log 4√2

0
λ2e
−µ2(1−r)dr +

∫ 1

1−log 4√2
λ1e
−µ1(1−r)dr =

2

5

((
1
4
√

2

)5

− e−5

)
+ 1− 1

4
√

2
,

which equals 0.324588. Fig. 1 presents the distribution function of ψ1(J). Observe that there are
atoms of size π1e

−q1t = (2e)−1 ≈ 0.183940 at 1 − e−1 ≈ 0.632120, and of size π2e
−q2t = (2e)−1 ≈

0.183940 at 2
5(1− e−5) ≈ 0.397305; these atoms correspond to the scenarios that the process starts

in state 1 (state 2, respectively) and does not leave that state before t = 1. It is also seen that the
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Figure 3: − log10 p
(80)
1 (a) for a ∈ [0.8, 1.25].

shape of P(ψ1(J) ≤ a(−,II)
1 + δ) as well as P(ψ1(J) ≥ a(+,II)

1 − δ) for δ small is roughly proportional
to
√
δ, in line with results derived earlier in this paper.

By virtue of Thm. 1 we know that NeNI p(N)
1 (1) should converge to a constant as N → ∞, with

the decay rate I equal to

I(1 | a(+,II)
1 ) = − log a

(+,II)
1 + a

(+,II)
1 − 1 ≈ 0.0546252;

this convergence is confirmed by the left panel of Fig. 2. The right panel of Fig. 2 shows the
(approximately) exponential decay of p(N)

1 (1) (as a function of N ).

Example 4. In this example we take the same parameters as in Example 3, but fix N = 80. Our
objective is to find, for a given value of ε, the value of a such that p(80)

1 (a) < ε. Then Na could be
used as a (somewhat rough) approximation of the number of servers needed in the corresponding
finite-server system so as to keep the blocking probability below ε. From Fig. 3 we see that e.g. for
ε = 10−3 we need 80 · 0.92 ≈ 74 servers, and for ε = 10−4 we need 80 · 0.98 ≈ 78 servers.

Discussion and concluding remarks

In this paper we have identified the exact asymptotics of the tail distribution of the number of
jobsM (N)(t) present in a Markov-modulated infinite-server queue at some time t > 0; this finding
extends earlier obtained logarithmic asymptotics [6, 7]. In the asymptotic regime that we consider,
in which the arrival rates are inflated by a factor N , the exact asymptotics are the product of a
polynomial function (in N ) and an exponential function (in N ). The degree of the polynomial
function depends on the number of jumps the background process makes so as to maximize the
(random) Poisson parameter that describes the distribution of M (N)(t).

In our paper we have concentrated on the exact asymptotics for the model in which the transition
rate matrix Q of the background process is not scaled. A topic for future research could relate to
identifying such asymptotics for the setting in which Q is scaled by a factor Nα. For α = 1 loga-
rithmic asymptotics have been obtained in [11], where related results in a more general diffusion
setting were derived in [15] building on the framework developed in [17], but these do not seem
to lend themselves to a straightforward extension to exact asymptotics. For α > 1 the system
essentially behaves as an ordinary (non-modulated, that is) M/M/∞ queue, and it is therefore
conceivable that its exact asymptotics coincide with those of that M/M/∞ queue.
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