
HAL Id: hal-01426085
https://hal.science/hal-01426085

Submitted on 4 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Volumes in the Uniform Infinite Planar Triangulation:
from skeletons to generating functions

Laurent Ménard

To cite this version:
Laurent Ménard. Volumes in the Uniform Infinite Planar Triangulation: from skeletons to
generating functions. Combinatorics, Probability and Computing, 2018, 27 (6), pp.946-973.
�10.1017/S0963548318000093�. �hal-01426085�

https://hal.science/hal-01426085
https://hal.archives-ouvertes.fr


Volumes in the Uniform Infinite Planar Triangulation:
from skeletons to generating functions

LAURENT MÉNARD∗

Modal’X, Université Paris Ouest and LiX, École Polytechnique

Abstract

We develop a method to compute the generating function of the number of vertices inside
certain regions of the Uniform Infinite Planar Triangulation (UIPT). The computations are
mostly combinatorial in flavor and the main tool is the decomposition of the UIPT into layers,
called the skeleton decomposition, introduced by Krikun [20]. In particular, we get explicit
formulas for the generating functions of the number of vertices inside hulls (or completed
metric balls) centered around the root, and the number of vertices inside geodesic slices of
these hulls. We also recover known results about the scaling limit of the volume of hulls
previously obtained by Curien and Le Gall by studying the peeling process of the UIPT in
[17].

1 Introduction and main results

The probabilistic study of large random planar maps takes its roots in theoretical physics, where
planar maps are considered as approximations of universal two dimensional random geometries
in Liouville quantum gravity theory (see for instance the book [4]). In the past decade, a lot of
work has been devoted to make rigorous sense of this idea with the construction and study of
the so-called Brownian map. The surveys [22, 26] will give the interested reader a nice overview
of the field as well as an up to date list of references.

Since they are instrumental in every proof of convergence to the Brownian map, the most
successful tools to study random planar maps are undoubtedly the various bijections between
certain classes of maps and decorated trees. The search for such bijections was initiated by Cori
and Vauquelin [14] and perfected by Schaeffer [29]. Since then, a lot of bijections in the same
spirit have been discovered, (see in particular the one by Bouttier, Di Francesco and Guitter [11]).
These bijections are particularly well suited to study metric properties of large random maps
(see the seminal work of Chassaing and Schaeffer [13]), and they have lead to the remarkable
proofs of convergence in the Gromov-Hausdorff topology of wide families of random maps to
the Brownian map by Le Gall [23] and Miermont [25] independently, paving the way to other
results of convergence [1, 2, 10].

Another very powerful tool to study random maps is the so called peeling process – informally
a Markovian exploration procedure – introduced by Watabiki [30] and used immediately by
Watabiki and Ambjørn to derive heuristics for the Hausdorff dimension of random maps in
[3]. Probabilists started to show interest in this procedure a bit later, starting by Angel [5], who
formalized it in the setting of the Uniform Infinite Planar Triangulation (UIPT). Since then, this
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process has received growing attention and proved valuable to study not only the geometry of
random maps [5, 9, 12, 17], but also random walks [8], percolation [5, 6, 24, 28], and even, to
some extent, conformal aspects [15].

In this work we will use another tool, introduced by Krikun [20], to study the UIPT, called
the skeleton decomposition. Before we present this tool, let us recall that a planar map is a
proper embedding of a connected multi-graph in the two dimensional sphere, considered up to
orientation preserving homeomorphisms. The maps we consider will always be rooted (they
have a distinguished oriented edge), and we will focus on rooted triangulations of type I in the
terminology of Angel and Schramm [7], meaning that loops and multiple edges are allowed
and that every face of the map is a triangle. The UIPT is the infinite random lattice defined as
the local limit of uniformly distributed rooted planar triangulations with n faces as n→ ∞ (see
Angel and Schramm [7]). We will denote the UIPT by T∞ and, if M is a (finite) planar map, we
will denote its number of vertices by |M|.

For every integer r ≥ 1, the ball Br(T∞) is the submap of T∞ composed of all its faces having
at least one vertex at distance stricly less that r from the origin of the root edge. Since the UIPT
is almost surely one ended, of all the connected component of T∞ \ Br(T∞), only one is infinite
and the hull B•r (T∞) is the complement in T∞ of this unique infinite connected component (see
Figure 1 for an illustration). The layers of the UIPT are the sets B•r (T∞) \ B•r−1(T∞) for r ≥ 1. The
skeleton decomposition of the UIPT roughly states that the geometry of the layers of the UIPT is
in one-to-one correspondance with a critical branching process and a collection of independent
Boltzmann (or free) triangulations with a boundary (see Figure 2). We will give a detailed
presentation of this decomposition in Section 2.

∞

r

T∞ Br(T∞) B•r (T∞)

∂B•r (T∞)

Figure 1: Illustration of the ball of radius r in the UIPT and the corresponding hull.

This decomposition was used by Krikun in [20] to study the length of the boundary of the
hulls B•r (T∞) of the UIPT and in [21] for similar considerations on the Uniform Infinite Planar
Quadrangulation. Since then, this decomposition has not received much attention with the
notable exception of the recent work by Curien and Le Gall [16], where it is used to study local
modifications of the graph distance in the UIPT.

We will use the skeleton decomposition of the UIPT to get exact expressions for the generating
functions of the number of vertices inside certain regions of hulls, starting with the hulls
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themselves.

Theorem 1. For any s ∈ [0, 1] and any nonnegative integer r one has

E
[
s|B
•
r (T∞)|

]
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3 (1−t)
t

)
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t

))
(
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t

))
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where t is the unique solution in [0, 1] of the equation s2 = t2(3− 2t).

An easy consequence of this Theorem is the scaling limit

lim
R→∞

E
[
e−λ|B•bxRc(T∞)|/R4]

already obtained in [17] via the peeling process. Indeed, put s = e−λ/R4
and r = bxRc for some

λ, x > 0 and some integer R. Then
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√

2λ/3
R2 + o(R−2)
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(√
3− 2t

t

)
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√

3− 2t
t
− 1 ∼ (6λ)1/4

R

giving

lim
R→∞

E
[
e−λ|B•bxRc(T∞)|/R4]

= 33/2 cosh
(
(6λ)1/4x

)(
cosh2 ((6λ)1/4x) + 2

)3/2

in accordance with [17, 18] for type I triangulations.

We also get an explicit expression for the generating function of the volume of hulls condi-
tionally on their perimeter (see Proposition 2 for a precise statement). This allows to recover the
following scaling limit, already appearing in [18], Theorem 1.4, as the Laplace transform of the
volume of hulls of the Brownian plane conditionally on the perimeter.

Corollary 1. Fix x, ` > 0, then, for any λ > 0, one has

lim
R→∞

E
[
e−λ|B•bxRc(T∞)|/R4

∣∣∣|∂B•bxRc(T∞)| = b`R2c
]

= x3 (6λ)3/4
cosh

(
(6λ)1/4 x

)
sinh3

(
(6λ)1/4 x

) exp
(
−`
(
(6λ)1/4

(
coth2

(
(6λ)1/4x

)
− 2

3

)
− 1

x2

))
.

Our approach also allows us to compute the exact generating function of the difference of
volume between hulls of the UIPT (see Proposition 2), and then recover one of the main results
of [17], namely the scaling limit of the volumes of Hulls to a stochastic process. This convergence
holds jointly with the scaling limit of the perimeter of the hulls and we need to introduce some
notation taken from [17] to state it.
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Let (Xt)t≥0 be the Feller Markov process with values in R+ whose semigroup is characterized
by

E
[
e−λXt

∣∣∣X0 = x
]
= exp

(
−x
(

λ−1/2 + t/2
)−2

)
for every x, t ≥ 0 and λ > 0. The process X is a continuous time branching process with
branching mechanism given by u 7→ u3/2. As explain in [18], one can construct a stochastic
process (Lt)t≥0 with càdlàg paths such that the time-reversed process (L(−t)−)t≤0 is distributed
as X "started from +∞ at time −∞" and conditioned to hit 0 at time 0. We also let (ξi)i≥1 be a
sequence of independent real valued random variables with density

1√
2πx5

e−
1

2x 1{x>0}

and assume that this sequence is independent of the process L. Finally we set

Mt = ∑
si≤t

ξi (∆Lsi)
2 ,

where (si)i≥1 is a measurable enumeration of the jumps of L. We recover the following result,
first proved in [17] by studying the peeling process of the UIPT:

Theorem 2 ([17], scaling limit of the hull process). We have the following convergence in distribution
in the sense of Skorokhod:(

R−2|∂B•bxRc(T∞)|, R−4|B•bxRc(T∞)|
)

x≥0

(d)−−−→
R→∞

(
32 · Lx, 4 · 33 ·Mx

)
x≥0 .

As for Theorem 1, our proof is based on the skeleton decomposition of random triangulations
and explicit computations of generating functions. The convergence of perimeters towards the
process L was already established by Krikun [20] using this decomposition and we prove the
joint convergence of the second component.

Finally, we study the volume of geodesic slices of the UIPT, defined by analogy with geodesic
slices of the Brownian map (see Miller and Sheffield [27]). Fix r > 0, and orient ∂B•r (T∞)
in such a way that the root edge of T∞ lies on its right hand side. Now pick two vertices
v, v′ ∈ ∂B•r (T∞), the geodesic slice S(r, v, v′) is the submap of B•r (T∞) bounded by the two
leftmost geodesics (see Section 5 for a precise definition) started respectively at v and v′ to the
root, and by the oriented arc from v to v′ along ∂B•r (T∞) (See Figure 4 for an illustration). Notice
that B•r (T∞) = S(r, v, v′) ∪ S(r, v′, v). We will also denote by v ∧ v′ the vertex where the two
leftmost geodesics started at v and v′ coalesce.

For technical reasons, it will be easier to study the volume of geodesic slices minus the
number of vertices on one of the two geodesics bounding it (for S(r, v, v′), we are talking about
excluding a number of vertices between 2 and r + 1). It is still possible to study the full volume
of slices, but the formulas we provide will be much simpler and the number of vertices excluded
is insignificant for large r anyway.

Theorem 3. Fix n, r, q and q1, . . . , qn some non negative integers such that q1 + · · ·+ qn = q. Condi-
tionally on the event {|∂B•r (T∞)| = q}, let v1 be a vertex of ∂B•r (T∞) chosen uniformly at random and
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let v2, . . . , vn be placed in that order on the oriented cycle ∂B•r (T∞) such that the oriented arc from vj to
vj+1 along ∂B•r (T∞) has length qj for every j (we set vn+1 = v1). Then, for s1, . . . , sn ∈ [0, 1], one has

E

[
n

∏
j=1

s
|S(r,vj,vj+1)|−d(vj,vj∧vj+1)−1
j

∣∣∣∣∣|∂B•r (T∞)| = q

]

=

 n

∏
j=1

tj

ϕ
{r}
tj

(0)

ϕ{r}(0)

qj
× n

∑
k=1

qk

q
1
tk

ϕ
{r}′
tk

(0)

ϕ{r}′(0)
ϕ{r}(0)

ϕ
{r}
tk

(0)

where, for every j ∈ {1, . . . , n}, tj is the unique solution in [0, 1] of the equation s2
j = t2

j (3− 2tj) and

the functions ϕ
{r}
t and ϕ{r} are computed explicitly in Lemma 3.

Equivalently, Theorem 3 states that, for each k, the root vertex of T∞ belongs to the slice
S(r, vk, vk+1) with probability qk/q and that its volume has generating functiontk

ϕ
{r}
tk

(0)

ϕ{r}(0)

qk−1

·
ϕ
{r}′
tk

(0)

ϕ{r}′(0)
,

and that conditionally on this event, the volumes of the other slices are independent and have
generating functions given by tj

ϕ
{r}
tj

(0)

ϕ{r}(0)

qj

for every j 6= k. It is also worth noticing that the generating function of the volume of the
slice containing the root vertex is exactly the same as the hull of T∞ conditionally on the event
{|∂B•r (T∞)| = qk}, suggesting that this slice has the same law as a hull once the two geodesic
boundaries are glued.

Since geodesic slices do not form a growing family as the radius of the hulls grows, it is
less natural to look for a scaling limit of their volume as a stochastic processes as in Theorem 2.
However, it is still quite straightforward to derive asymptotics from Theorem 3 and obtain

Corollary 2. Fix n > 0 an integer and `, x > 0 some real numbers. Fix also `1, . . . , `n some non
negative reals such that `1 + · · · + `n = `. For every integer R > 0, conditionally on the event
{|∂B•bxRc(T∞)| = b`R2c}, let v1 be a vertex of ∂B•bxRc(T∞) chosen uniformly at random and let
v2, . . . , vn be placed in that order on the oriented cycle ∂B•bxRc(T∞) such that the oriented arc from vj to
vj+1 along ∂B•bxRc(T∞) has length ∼ `jR2 as R→ ∞. Then, for λ1, . . . , λn > 0, one has

lim
R→∞

E

[
n

∏
j=1

e−λj|S(r,vj,vj+1)|/R4

∣∣∣∣∣|∂B•bxRc(T∞)| = b`R2c
]

=

(
n

∑
i=1

`i

`
x3(6λi)

3/4 cosh
(
(6λi)

1/4x
)

sinh3 ((6λi)1/4x)

)

× exp

(
−

n

∑
i=1

`i

(
(6λ)1/4

(
coth2

(
(6λ)1/4x

)
− 2

3

)
− 1

x2

))
.
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As for Corolloray 1, this can be interpreted in terms of the Brownian plane: each slice has
probability `i/` to contain the root, in which case its volume has the same law as the volume of
the hull of the Brownian plane condionally on the perimeter being `i. In addition, conditionally
on this event, the volume of the other slices are independent and their Laplace transform is
given by

exp
(
−`j

(
(6λ)1/4

(
coth2

(
(6λ)1/4x

)
− 2

3

)
− 1

x2

))
for every j 6= i.

The paper is organized as follows. In Section 2 we recall some results about the generating
functions of triangulations counted by boundary length and inner vertices and we describe
the decomposition of the UIPT into layers. In Section 3 we present our method and use it to
prove Theorem 1 and Corollary 1. Section 4 studies the difference of volume between hulls
and contains the proof of Theorem 2. Finally, Section 5 studies geodesic slices and contains the
proofs of Theorem 3 and Corollary 2.

Acknowledgments. The author would like to thank Julien Bureaux for pointing out the link
with hyperbolic functions in Lemma 3, yielding a simpler proof and a much nicer formula. The
author acknowledges support form the ANR grant "GRaphes et Arbres ALéatoires" (ANR-14-
CE25-0014) and from CNRS.

2 Preliminaries

2.1 Generating Series

As already mentioned in the introduction, the triangulations we consider in this work are type
I triangulations in the terminology of Angel and Schramm [7] – loops and multiple edges are
allowed – and will always be rooted even when not mentioned explicitely. More precisely, we
deal with triangulations with simple boundary, that is rooted planar maps (the root of a map is
a distinguished oriented edge and the root vertex of a rooted map is the origin of its root edge)
such that every face is a triangle except for the face incident to the right hand side of the root
edge which can be any simple polygon. If the length of the boundary face is p, we will speak of
triangulations of the p-gon.

One of the advantages of dealing with type I triangulations for our purpose is that trian-
gulations of the sphere can be thought of as triangulations of the 1-gon as already mentioned
in [16]. To see that, split the root edge of any triangulation into a double edge and then add a
loop inside the region bounded by the new double edge and re-root the triangulation at this
loop oriented clockwise (so that the interior of the loop lies on its right hand side). Note that
this construction also works if the root is itself a loop. This tranformation is a bijection between
triangulations of the sphere and triangulations of the 1-gon.

The enumeration of triangulations of the p−gon is now well known and can be found for
example in [16, 20]. Let Tn,p be the set of triangulations of the p−gon with n inner vertices (i.e.
vertices that do not belong to the boundary face) and define the bivariate generating series

T(x, y) = ∑
p≥1

∑
n≥0

∣∣Tn,p
∣∣ xnyp−1. (1)
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Tutte’s equation reads, for y > 0,

T(x, y) = y + x · T(x, y)− T(x, 0)
y

+ T(x, y)2. (2)

This equation can be solved using the quadratic method and the solution is explicit in terms of
the unique solution of the equation

x2 = h(x)2(1− 8h(x)) (3)

such that h(0) = 0. This function h seen a Taylor series has non negative coefficients and its
radius of convergence is

ρ :=
1

12
√

3
. (4)

In addition, it is finite at its radius of convergence and

α := h(ρ) =
1
12

. (5)

The solution of equation (2) is then well defined on [0, ρ]× [0, α] and given by

T(x, 0) =
6h2 + x− h

2x
(6)

for x ∈ [0, ρ] and

T(x, y) =
y− x

2y
+

√
(y− x)2 − 4y3 + 4xyT(x, 0)

2y

=
y− x

2y
+

√
x2 + y2 − 4y3 + 12yh2 − 2yh

2y
(7)

for (x, y) ∈ [0, ρ]× [0, α]. These expressions are compatible when taking the limit x → 0 and/or
y→ 0. Notice also that T(ρ, α) is finite:

T(ρ, α) =
3−
√

3
6

.

The formulas (6) and (7) allow to compute explicitely the number of triangulations of the
p-gon with a given number of inner vertices. However we will not need the exact formulas,
only the following asymptotic expression:∣∣Tn,p

∣∣ ∼
n→∞

C(p)ρ−nn−5/2

for every p ≥ 1 with

C(p) =
3p−2 p(2p)!
4
√

2π(p!)2
.

In the following we will always denote by Tp(x) = [yp−1]T(x, y) the generating series of
triangulations with boundary length p counted by inner vertices.
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2.2 Skeleton decomposition of finite triangulations

We present here the skeleton decomposition of triangulations as first defined by Krikun [20] for
type II triangulations and later by Curien and Le Gall [16] for type I triangulations. First, we
need to define balls and hulls for finite triangulations.

Let T be a triangulation of the sphere seen as a triangulation of the 1-gon. For every integer
r > 0, the ball Br(T) of radius r centered at the root vertex of T is the planar map obtained by
taking the union of the faces of T that have at least one vertex at distance less than or equal to
r− 1 from the root vertex of T. Now let v be a distinguished vertex of T and fix r > 0 such that
the distance between v and the root vertex of T is strictly larger than r. In that case, the vertex v
belongs to the complement of the ball Br(T) and we define the r−hull B•r (T, v) of the pointed
map (T, v) as the union of Br(T) and all the connected components of the complement in T of
Br(T) except the one that contains v.

Define the boundary ∂B•r (T, v) of B•r (T, v) as the set of vertices of B•r (T, v) having at least
one neighbour in the complement of B•r (T, v), with the edges joining any pair of such vertices.
An important observation is that ∂B•r (T, v) is a simple cycle of T and that its vertices are all
at distance exactly r from the root vertex of T. The planar map B•r (T, v) is therefore almost a
triangulation with a simple boundary, the difference being that it is rooted at the orginal root
edge of T instead of an edge of the boundary face. It is a special case of a triangulation of the
cylinder defined in [16]:

Definition. Let r ≥ 1 be an integer. A triangulation of the cylinder of height r is a rooted planar
map such that all faces are triangles except for two distinguished faces verifying:

1. The boundaries of the two distiguished faces form two disjoint simple cycles.

2. The boundary of one of the two distinguished faces contains the root edge, and this face
is on the right hand side of the root edge. We call this face the root face and the other
distiguished face the exterior face.

3. Every vertex of the exterior face is at graph distance exactly r from the boundary of the
root face, and edges of the boundary of the exterior face also belong to a triangle whose
third vertex is at distance r− 1 from the root face.

For every intergers r, p, q ≥ 1, a triangulation of the (r, p, q)-cylinder is a triangulation of the
cylinder of height r such that its root face has degree p and its exterior face has degree q.

With that terminology, the planar maps ∆ such that ∆ = B•r (T, v) for some integer r and
some pointed triangulation of the sphere (T, v) are the triangulations of the (r, 1, q)−cylinder
for some integer q ≥ 1. Triangulations of the cylinder will also allow us to describe the geometry
of triangulations between hulls. More precisely, if (T, v) is a pointed triangulation of the sphere
and r2 > r1 > 0 are two integers such that v is at distance strictly larger than r2 from the root
vertex of T, we define the layer between heights r1 and r2 of (T, v) by

L•r1,r2
(T, v) =

(
B•r2

(T, v) \ B•r1
(T, v)

)
∪ ∂B•r1

(T, v).

The planar maps ∆ such that ∆ = L•r1,r2
(T, v) for some integers r2 > r1 > 0 and some pointed

triangulation of the sphere (T, v) are the triangulations of the (r, p, q)−cylinder for some integers
p, q ≥ 1 (we will see in a moment how to canonically root the layers of a triangulation).
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Fix r, p, q > 0 and ∆ a triangulation of the (r, p, q)−cylinder. The skeleton decomposition of ∆
consists of an ordered forest of q rooted plane trees with maximal height r and a collection of
triangulations with a boundary indexed by the vertices of the forest of height stricly less than r.

Borrowing from Krikun [20] and Curien and Le Gall [16], we define the growing sequence of
hulls of ∆ as follows: for 1 ≤ j ≤ r− 1, the ball Bj(∆) is the union of all faces of ∆ having a vertex
at distance stricly smaller than j from the root face, and the hull B•j (∆) consists of Bj(∆) and all
the connected components of its complement in ∆ except the one containing the exterior face.
By convention B•r (∆) = ∆. For every j, the hull B•j (∆) is a triangulation of the (j, p, q′)-cylindler
for some non negative integer q′, and we denote its exterior boundary by ∂j∆. By convention
∂0∆ is the boundary of the root face of ∆. In addition, every cycle ∂j∆ is oriented so that B•j (∆)
is always on the right hand side of ∂j∆.

Now letN (∆) be the collection of all edges of ∆ that belong to one of the cycles ∂i∆ for some
0 ≤ i ≤ r. This set is a discrete version of the metric net of the Brownian map introduced by
Miller and Sheffield [27]. In order to define a genealogy on N (∆), notice that, for 1 ≤ i ≤ r,
every edge of ∂i∆ belongs to exactly one face of ∆ whose third vertex belongs to ∂i−1∆ (it is
the face on its right hand side). Such faces are usually called down triangles of height i. Now,
for any 1 ≤ i ≤ r, we say that an edge e ∈ ∂i∆ is the parent of an edge e′ ∈ ∂i−1∆ if the first
vertex belonging to a down triangle of height i encountered when turning around the oriented
cycle ∂i−1∆ and starting at the end vertex of the oriented edge e′ belongs to the down triangle
associated to e. See Figure 2 for an illustration.

These relations define a forest F of q rooted trees, its vertices being in one-to-one correspon-
dence with the edges of N (∆), that inherit from the planar structure of ∆, making them planar
rooted trees. In addition we can order canonicaly the trees, starting from the one containing the
root edge of ∆ and following the orientation of ∂r∆. Notice also that every tree of the forest has
height smaller than or equal to r and that the whole forest has exactly p vertices at height r.

τ1 τ2 τ3 τ4τq

v

Mv

Figure 2: Skeleton decomposition of a triangulation of the cylinder. The distinguished
vertex corresponding to the root edge of the triangulation is the red one on the bottom
left. Left: construction of the forest. Right: triangulation with a boundary filling a slot.

To completely describe ∆, in addition to the forest F that gives the full structure ofN (∆) and
the associated down triangles, we need to specify the structure of the submaps of ∆ lying in the
interstices, or slots, bounded by its down triangles. More precisely, to each edge e ∈ ∂i∆ where
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1 ≤ i ≤ r, we associate a slot bounded by its children and the two edges joining the starting
vertex of e to ∂i−1∆ (if e has no child, these two edges may or may not be glued into a single
edge). This slot is rooted at its unique boundary edge belonging to the down triangle associated
to e, the orientation chosen so that the interior of the slot is on the left hand side of the root. See
Figure 2 for an illustration. With these conventions, the slot associated to an edge e is filled with
a well defined triangulation of the (ce + 2)-gon, where ce is the number of children of e in the
forest F. The triangulation of the (r, p, q)-cylinder ∆ is then fully characterized by the forest F
and the collection of triangulations with a boundary associated to the vertices of F of height
stricly less than r.

To summerize, let us say that a pointed forest is (r, p, q)-admissible if

1. It is composed of an ordered sequence of q rooted plane trees of height lesser than or equal
to r.

2. It has exaclty p vertices at height r,

3. the distinguished vertex has height r and belongs to the first tree.

We denote by F (r, p, q) the set of all (r, p, q)-admissible forests, and for any F ∈ F (r, p, q) we
denote by F? for the set of vertices of F at height stricly smaller than r.

The skeleton decomposition presented above is a bijection between triangulations of the
(r, p, q)-cylinders and pairs consisting of a (r, p, q)-admissible forest F and a collection (Mv)v∈F? ,
where, for each v ∈ F? and denoting by cv the number of children of v in F, Mv is a triangulation
of the (cv + 2)-gon. We say that the forest associated to a triangulation of a cylinder ∆ is its
skeleton and denote it by Skel(∆).

As metioned earlier, this decomposition allows to canonically root the layers of a triangula-
tion by rooting each layer at the ancestor of the root edge of the triangulation in its skeleton.

2.3 The UIPT and its skeleton decomposition

Thanks to the spatial Markov property (see [7], Theorem 5.1), the skeleton decomposition is
particularly well suited to study the UIPT. Indeed, for any intergers r, q ≥ 1 and any (r, 1, q)-
admissible forest F, this property states that conditionally on the event {Skel(B•r (T∞)) = F}, the
triangulations filling the slots associated to the down triangles constitute a family of independent
Boltzmann triangulations

(
T(cv+2)

)
v∈F?

where, for any integer p ≥ 1, the law of the Boltzmann
triangulation of the p−gon is given by

P
(

T(p) = T
)
=

ρn

Tp(ρ)

for any triangulation of the p−gon T with n inner vertices.
From this, a lot of information on the skeleton decomposition of the UIPT can be dug, such

as the following Lemma that will be instrumental for our purpose.

Lemma 1 ([16, 20]). Fix r, p, q > 0 and let ∆ be a triangulation of the (r, p, q)-cylinder. The skeleton of
∆ is a (r, p, q)−admissible forest F ∈ F (r, p, q). For each v ∈ F?, we denote the triangulation filling the
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slot associated to v by Mv and the number of its inner vertices by nv. Then, for any r′ ≥ 0,

P
(

L•r′,r′+r(T∞) = ∆
∣∣|∂B•r′(T∞)| = p

)
=

αqC(q)
αpC(p) ∏

v∈F?

αc(v)−1ρnv+1,

=
αqC(q)
αpC(p) ∏

v∈F?

θ(cv) ∏
v∈F?

ρnv

Tcv+2(ρ)
,

where θ is the critical offspring distribution whose generating function ϕ is given by

ϕ(u) =
∞

∑
i=0

θ(i)ui =
ρ

α2u
(T(ρ, αu)− T(ρ, 0)) = 1−

(
1 +

1√
1− u

)−2

, u ∈ [0, 1].

Lemma 1 is not hard to establish (see [16, 20] for the proof), and its main interest is that
it allows do do exact computations by interpreting the product over vertices of the forest as
the probability of some events for a branching process associated to ϕ. As we will do similar
computations in various situations, let us give an example taken from [20] for the sake of clarity,
and because it will be needed later. Say we want to compute P (|∂B•r (T∞)| = q) for some q > 0.
Since ∂B•0(T∞) is the root edge of T∞, which we recall is a loop, it has length 1 and the formula
of Lemma 1 directly gives:

P (|∂B•r (T∞)| = q) =
αqC(q)
αC(1) ∑

F∈F (r,1,q)
∏

v∈F?

θ(cv) =
αqC(q)
αC(1)

1
q ∑

F∈F ′(r,1,q)
∏

v∈F?

θ(cv),

where F ′(r, 1, q) is the set of all ordered forests of rooted plane trees with height lesser than or
equal to r, the whole forest having a single vertex at height r. Thus F ′(r, 1, q) is just the set of
forests in F (r, 1, q) up to a circular permutation, explaining the factor 1/q. But now the quantity

∑
F∈F ′(r,1,q)

∏
v∈F?

θ(cv)

is exactly the probability that a Galton-Waton branching process with offspring distribution
given by ϕ started with q particles has a single particle at generation r. Therefore, we have

P (|∂B•r (T∞)| = q) =
αqC(q)
αC(1)

1
q
[u](ϕ{r}(u))q

where ϕ{r}(u) = ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
r times

(u) and [u] f (u) is the coeffiscient in u of the Taylor series at 0 of the

function f . The iterates ϕ{r} can be computed explicitely (see Lemma 3 with t = 1), giving the
following exact formula that will be used later in the paper

P (|∂B•r (T∞)| = q) =
αqC(q)
αC(1)

(
1− 1

(r + 1)2

)q−1 1
(r + 1)3 . (8)

3 Hull volume

3.1 A branching process

In this section, we will focus on the generating function of the number of vertices in the hulls of
the UIPT. To that aim, we start with the following result:

11



Lemma 2. For any integer r > 0, s ∈ [0, 1] and t ∈ [0, 1], one has

E
[
s|B
•
r (T∞)|

]
= s ∑

q≥1

(αt)qC(q)
αtC(1) ∑

F∈F (r,1,q)
∏

v∈F?

ρs · (αt)c(v)−1 · Tc(v)+2(ρs).

Remark. This Lemma and Proposition 1 are in fact a consequences of Proposition 2, but we still
provide independent proofs because they provide a nice framework to introduce the functions
ϕt in (9) that are central to this work.

Proof of Lemma 2. Fix r, q > 0 and ∆ a triangulation of the (r, 1, q)-cylinder having F ∈ F (r, 1, q)
as skeleton. Recall that for every v ∈ F? we denote by cv the number of children of v in F and by
nv the number of inner vertices of the triangulation of the (cv + 2)-gon filling the slot associated
to v. With these notations we have

|∆| − 1 = ∑
v∈F?

(nv + 1),

the −1 taking into account that the right hand side of the previous equality does not count the
unique vertex of height r in F. Lemma 1 then gives

s|∆|P (B•R(T∞) = ∆) = s
αqC(q)
αC(1) ∏

v∈F?

αc(v)−1(sρ)nv+1

and summing over every triangulation of the (r, 1, q)-cylinder having F as skeleton we obtain

∑
∆: Skel(∆)=F

s|∆|P (B•r (T∞) = ∆) = s
αqC(q)
αC(1) ∏

v∈F?

αc(v)−1 ∑
nv≥0
|Tnv,cv+2| · (sρ)nv+1

= s
αqC(q)
αC(1) ∏

v∈F?

ρs · αc(v)−1 · Tc(v)+2(ρs).

Since for any t ∈ [0, 1] and any forest F ∈ F (r, 1, q) one has

∏
v∈F?

tc(v)−1 = t1−q,

we can write

∑
∆: Skel(∆)=F

s|∆|P (B•R(T∞) = ∆) = s
(αt)qC(q)

αtC(1) ∏
v∈F?

ρs · (αt)c(v)−1 · Tc(v)+2(ρs)

and the result follows by summing over q ≥ 1 and over every (r, 1, q)-admissible forest.

As was done for Lemma 1, we want to interpret the numbers
(
ρs · (αt)i−1 · Ti+2(ρs)

)
i≥0

appearing in Lemma 2 as an offspring probability distribution. For (s, t) ∈ [0, 1]2, the generating
function of these numbers is defined, for every u ∈ [0, 1], by

Φs,t(u) = ∑
i≥0

ρs · (αt)i−1 · Ti+2(ρs)ui =
ρs

(αt)2u
(T(ρs, αtu)− T(ρs, 0)) .
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The functions Φs,t are clearly non negative and increasing, thus we just have to pick (s, t) such
that Φs,t(1) = 1. Using formulas (6) and (7), simple computations yield

Φs,t(1) =
6t · α−1h(ρs)− 3t · α−2h2(ρs)− 2s2 + 2s

√
s2 + 3t2 − t3 + 3t · α−2h2(ρs)− 6t · α−1h(ρs)
t3 .

To solve this equation, we first notice that, from equation (3) satisfied by h, we have

s2 = α−2h2(ρs)
(

3− 2α−1h(ρs)
)

.

This suggests to consider t(s) ∈ [0, 1] such that

h(ρs) = αt(s),

or equivalently with equation (3),

s = t(s)2 (3− 2t(s)) .

This parametrization yields

Φs,t(s)(1) =
6t2 − 3t3 − 2s2 + 2s

√
s2 − 3t2 + 2t3

t3 = 1.

From now on, we will only consider pairs (s, t) ∈ [0, 1]2 such that s = t
√

3− 2t. For such
pairs we define, for every u ∈ [0, 1],

ϕt(u) := Φs,t(s)(u)

=
6ut2 − 3ut3 − 2s2 + 2s

√
s2 + 3t2u2 − t3u3 + 3t3u− 6t2u

t3u2

which is the generating function of a probability distribution. Simple computations give the
following alternative expression:

ϕt(u) = 1−
(

1√
1− u

√
3− 2t

t
+

√
1 +

3
1− u

(
1− t

t

))−2

. (9)

This expression is not unlike the expression of ϕ given in Lemma 1, and ϕ1 = ϕ which is no
surprise.

The next result gives an expression of the generating function of the volume of hulls of the
UIPT in terms of iterates of the functions ϕt. We will see in its proof that it takes advantage of
the branching process associated to ϕt.

Proposition 1. Fix r > 0 and a pair (s, t) ∈ [0, 1]2 such that s = t
√

3− 2t, then

E
[
s|B
•
r (T∞)|

]
= s

(
1− tϕ

{r}
t (0)

)−3/2
ϕ
{r}′
t (0)

where ϕ
{r}
t (u) = ϕt ◦ · · · ◦ ϕt︸ ︷︷ ︸

r times

(u).
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Proof. First, we interpret the sum over forests in F (r, 1, q) appearing in the statement of Lemma
1 as the probability of an event for a branching process with offspring distribution given by ϕt.
To do that we first write

∑
F∈F (r,1,q)

∏
v∈F?

ρs · (αt)c(v)−1 · Tc(v)+2(ρs) = ∑
F∈F (r,1,q)

∏
v∈F?

[ucv ]ϕt(u)

=
1
q ∑

F∈F ′(r,1,q)
∏

v∈F?

[ucv ]ϕt(u) (10)

where F ′(r, 1, q) is the set of all ordered forests of q rooted plane trees of height lesser than or
equal to r and having exactly one vertex at height r. The forests in F ′(r, 1, q) are obtained from
the forests in F (r, 1, q) by a circular permutation of the order of their trees, so that the vertex at
height r does not necessarily belong to the first tree, explaning the factor 1

q . But now, the right

hand side of (10) without this factor 1
q is exactly the probability that a Galton-Watson branching

process with offspring distribution given by ϕt started with q particles has exaclty one particle

at generation r. This probability is [u]
(

ϕ
{r}
t (u)

)q
and thus

E
[
s|B
•
r (T∞)|

]
= s ∑

q≥1

(αt)qC(q)
αtC(1)

1
q
[u]
(

ϕ
{r}
t (u)

)q
,

= s [u]
1

6αt ∑
q≥1

(
2q
q

)(
3αtϕ

{r}
t (u)

)q
,

= s [u]

(
1− 4 · 3αtϕ

{r}
t (u)

)−1/2
− 1

6αt
,

= s [u]
2
t

((
1− tϕ

{r}
t (u)

)−1/2
− 1
)

,

= s
(

1− tϕ
{r}
t (0)

)−3/2
[u]ϕ{r}t (u),

giving the result.

3.2 Explicit computations and proof of Theorem 1

Before proving Theorem 1, let us first compute explicitely the iterates ϕ
{r}
t appearing in Proposi-

tion 1:

Lemma 3. Fix t ∈ [0, 1[ and r ∈N, then, for every u ∈ [0, 1],

ϕ
{r}
t (u) = 1− 3

1− t

t
(

sinh
(

sinh−1
(√

3(1−t)
t(1−u)

)
+ r cosh−1

(√
3−2t

t

)))2

and
ϕ
{r}
1 (u) = 1− 1(

1√
1−u

+ r
)2 .
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Proof. Fix t, u ∈ [0, 1] and, for every n ∈N, denote

vn =
1√

1− ϕ
{n}
t (u)

.

From the expression of ϕt given in equation (9) we deduce that the sequence (vn)n≥0 satisfies{
v0 = 1√

1−u

vn+1 = avn +
√

1 + (a2 − 1)v2
n

(11)

with

a =

√
3− 2t

t
≥ 1.

If a = 1, the sequence (vn) has arithmetic progression and the result is trivial. Therefore we
suppose t < 1, and thus a > 1. Define wn > 0 such that

sinh(wn) =
√

a2 − 1 vn;

then the recursion relation (11) satisfied by (vn)n≥0 becomes

sinh(wn+1) = a sinh(wn) +
√

a2 − 1 cosh(wn)

= sinh
(

wn + cosh−1(a)
)

.

This shows that the sequence (wn) has arithmetic progression and we have, for every n ≥ 0,

wn = sinh−1
(√

a2 − 1 v0

)
+ n cosh−1(a)

and the result follows easily.

Remark. The sequence (vn) defined by (11) satisfies the following second order linear recursion

vn+1 = 2avn − vn−1

that can be derived directly from (11) by noticing that

v2
n+1 − 2avnvn+1 + v2

n = 1

yielding

0 = v2
n+1 − 2avn(vn+1 − vn−1)− v2

n−1 = (vn+1 − vn−1)(vn+1 − 2avn + vn−1).

This gives an alternate derivation of vn where hyperbolic functions do not appear directly.

Proof of Theorem 1. Theorem 1 is now a direct consequence of Proposition 1 and Lemma 3. Indeed
we have from Lemma 3

ϕ
{r}
t (0) = 1− 3

1− t

t
(

sinh
(

sinh−1
(√

3 1−t
t

)
+ r cosh−1

(√
3−2t

t

)))2
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and

[u]ϕ{r}t (u) =
(

3
1− t

t

)3/2 (3− 2t
t

)−1/2
(

sinh

(
sinh−1

(√
3

1− t
t

)
+ r cosh−1

(√
3− 2t

t

)))−3

× cosh

(
sinh−1

(√
3

1− t
t

)
+ r cosh−1

(√
3− 2t

t

))
.

The result then follows from Proposition 1.

The proof of Corollary 1 relies on Proposition 2 proved in the next Section but we give it
here since it is more in the spirit of this section.

Proof of Corollary 1. Proposition 2 gives with r′ = 0 and p = 1:

E
[
s|B
•
r (T∞)|

∣∣∣|∂B•r (T∞)| = q
]
= stq−1

(
ϕ
{r}
t (0)

)q−1
ϕ
{r}′
t (0)(

ϕ
{r}
1 (0)

)q−1
ϕ
{r}′
1 (0)

.

Putting s = e−λ/R4
, r = bxRc and q = b`R2c we have the following asymptotics:

tq = 1−
√

2λ/3
R2 +O

(
1

R4

)
,

ϕ
bxRc
t (0) = 1−

√
6λ

R2

(
sinh

(
(6λ)1/4x

))−2
+O

(
1

R4

)
,

ϕ
bxRc
1 (0) = 1− 1

(bxRc)2 ,

ϕ
bxRc′
t (0) ∼

(√
6λ

R2

)3/2
cosh

(
(6λ)1/4x

)
(sinh ((6λ)1/4x))3 ,

ϕ
bxRc′
1 (0) ∼ 1

(xR)3 ,

and the result follows easily.

4 Hull volume process

In order to prove Theorem 2, we first compute the generating function of the volume of layers
of the UIPT:

Proposition 2. Let r, r′, p, q be nonegative integers and (s, t) ∈ [0, 1] such that s = t
√

3− 2t, then

E
[
s|L
•
r′ ,r′+r(T∞)|

∣∣∣|∂B•r′+r(T∞)| = q, |∂B•r′(T∞)| = p
]
= sptq−p

[up]
(

ϕ
{r}
t (u)

)q

[up]
(

ϕ
{r}
1 (u)

)q .
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Proof. The proof of this Proposition is very much in the spirit of the proofs of Lemma 2 and
Proposition 1. Indeed, let ∆ be a triangulation of the (r, p, q)−cylinder having F ∈ F (r, p, q) as
skeleton. We have

|∆| − p = ∑
v∈F?

(nv + 1),

giving, with Lemma 1 and summing over every triangulation having F as skeleton,

∑
∆: Skel(∆)=F

s|∆|P
(

L•r′,r′+r(T∞) = ∆
∣∣|∂B•r′(T∞)| = p

)
= sp αqC(q)

αpC(p) ∏
v∈F?

αc(v)−1 ∑
nv≥0
|Tnv,cv+2|(sρ)nv+1

= sp αqC(q)
αpC(p) ∏

v∈F?

ρs · αc(v)−1 · Tc(v)+2(ρs)

= sp (αt)qC(q)
(αt)pC(p) ∏

v∈F?

[ucv ]ϕt(u).

Summing over every (r, p, q)-admissible forest then gives

E

[
s|L
•
r′ ,r′+r(T∞)|1{|∂B•r′+r(T∞)|=q

}∣∣∣∣|∂B•r′(T∞)| = p
]
= sp (αt)qC(q)

(αt)pC(p) ∑
F∈F (r,p,q)

∏
v∈F?

[ucv ]ϕt(u).

Now, if F ′(r, p, q) denotes the set of all (r, p, q)-admissible forests up to a cyclic permutation of
the order of the trees, each tree in F (r, p, q) corresponds to exactly q trees of F ′(r, p, q), therefore

E

[
s|L
•
r′ ,r′+r(T∞)|1{|∂B•r′+r(T∞)|=q

}∣∣∣∣|∂B•r′(T∞)| = p
]
= sp (αt)qC(q)

(αt)pC(p)
1
q ∑

F∈F ′(r,p,q)
∏

v∈F?

[ucv ]ϕt(u).

The trees in F ′(r, p, q) have a distinguished vertex at height r, and if F ′′(r, p, q) denotes the set
of all rooted forests of height lesser than or equal to r, with q trees, and having a total number
p of vertices at height r, each forest of F ′′(r, p, q) corresponds to exactly p forests in F ′(r, p, q),
thus

E

[
s|L
•
r′ ,r′+r(T∞)|1{|∂B•r′+r(T∞)|=q

}∣∣∣∣|∂B•r′(T∞)| = p
]
= sp (αt)qC(q)

(αt)pC(p)
p
q ∑

F∈F ′′(r,p,q)
∏

v∈F?

[ucv ]ϕt(u).

But now the sum
∑

F∈F ′′(r,p,q)
∏

v∈F?

[ucv ]ϕt(u)

is the probability that a Galton-Watson process with offspring distribution given by ϕt started
with q particles has p particles at generation r. This yields

E

[
s|L
•
r′ ,r′+r(T∞)|1{|∂B•r′+r(T∞)|=q

}∣∣∣∣|∂B•r′(T∞)| = p
]
= sp (αt)qC(q)

(αt)pC(p)
p
q
[up]

(
ϕ
{r}
t (u)

)q
.

Using the same reasoning, we can easily get

P
({
|∂B•r′+r(T∞)| = q

}∣∣|∂B•r′(T∞)| = p
)
=

αqC(q)
αpC(p)

p
q
[up]

(
ϕ
{r}
1 (u)

)q

and the result follows.
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As we will see in the proof of Theorem 2, the jumps of the process of hull perimeters will
induce jumps for the process of hull volumes. This motivates the following technical result,
which is a consequence of Proposition 2, and will be used in the proof of Therem 2.

Corollary 3. Fix an integer r > 0 and ` > δ > 0. Let (pn, qn)n≥0 be non negative integers such that
n−2 pn → ` and n−2qn → `− δ as n→ ∞. Then, conditionally on the events{

|∂B•r+1(T∞)| = qn
}
∩
{
|∂B•r (T∞)| = pn

}
,

the following convergence in distribution holds

n−4|B•r+1(T∞) \ B•r (T∞)|
(d)−−−→

n→∞

4
3

δ2 · ξ

where ξ is a random variable with density 1√
2πx5 e−

1
2x 1{x>0}.

Proof. Proposition 2 gives, for any (s, t) ∈ [0, 1]2 with s = t
√

3− 2t,

E
[
s|B
•
r+1(T∞)\B•r (T∞)|

∣∣∣|∂B•r+1(T∞)| = qn, |∂B•r (T∞)| = pn

]
= tqn−pn

[upn ]
(

ϕ
{r}
t (u)

)qn

[upn ]
(

ϕ
{r}
1 (u)

)qn
.

We can study the asymptotic behavior of the quantity [upn ] (ϕt(u))
qn with standart analytic

techniques:

[upn ] (ϕt(u))
qn =

1
2iπ

∮
γ

ϕt(z)qn

zpn+1 dz

where γ is a small enough contour enclosing the origin. The function ϕt being analytic in
C \ [1,+∞[, it is possible to deform the contour γ into a Henkel-type contour γn without
changing the value of the integral (the modulus of the integrand decreases exponentially fast for
|z| large). For n ≥ 1, we can take γn to be the reunion on the semi infinite line −i/n + [1,+∞[,
oriented from right to left, the semi circle 1 + 1

n ei]π/2,3π/2[ oriented clockwise, and the semi
infinite line +i/n + [1,+∞[ oriented from left to right (see Figure 3 for an illustration). The
change of variable z→ 1 + z/pn then gives

[upn ] (ϕt(u))
qn =

1
2iπ

∮
γpn

ϕt(z)qn

zpn+1 dz =
1

2iπpn

∮
H

ϕt(1 + z/pn)qn

(1 + z/pn)pn+1 dz

whereH is the Henkel contour, that is the reunion of the semi infinite line−i + [0,+∞[, oriented
from right to left, the semi circle ei]π/2,3π/2[ oriented clockwise, and the semi infinite line i +
[0,+∞[ oriented from left to right (see Figure 3 for an illustration).

1

1/n

1/n

1/n γn

0

1

1

1 H

Figure 3: The contours H and γn.

18



From equation (9) we have for z ∈ C \ [1,+∞[:

ϕt(z) = 1− t
3− 2t

(1− z)

(
1 +

√
1− z

t
3− 2t

)−2

.

If sn = e−λ/n4
, then tn = 1−

√
2λ/3
n2 +O(n−4), thus for z ∈ H:

ϕtn(1 + z/pn) = 1 +
z
pn

(
1−
√

6λ

n2 +O(n−4)

)
·
1 +

√
− z

pn
+

√
6λ

n2 +O(n−4)

−2

,

= 1 +
z
pn

+
2z
(
`
√

6λ− z
)1/2

p3/2
n

+O(p−2
n ).

Then we have, for z ∈ H,

ϕtn(1 + z/pn)
qn = ez(1−δ/`)

(
1 + 2(1− δ/`)z

(
`
√

6λ− z
)1/2

p−1/2
n +O(p−1

n )

)
,

giving

ϕtn(1 + z/pn)qn

(1 + z/pn)pn+1 = e−zδ/`
(

1 + 2(1− δ/`)z
(
`
√

6λ− z
)1/2

p−1/2
n +O(p−1

n )

)
.

Since for any α ∈ R
1

2iπ

∮
H
(−z)αe−zdz =

1
Γ(−α)

,

we get, at least on a formal level,

[upn ] (ϕt(u))
qn =

2(1− δ/`)
2iπp3/2

n

∮
H

e−zδ/`z(`
√

6λ− z)1/2dz +O(pn
−2),

=
2(1− δ/`)
2iπp3/2

n δ/`
e−δ
√

6λ

(
`

δ

)3/2 ∮
H

e−z
(

δ
√

6λ + z
)
(−z)1/2 dz +O(p−2

n ),

=
2(1− δ/`)

p3/2
n

(
`

δ

)5/2

e−δ
√

6λ

(
δ
√

6λ

Γ(−1/2)
+

−1
Γ(−3/2)

)
+O(p−2

n ),

=
2(1− δ/`)

p3/2
n

(
`

δ

)5/2

e−δ
√

6λ

(
−δ
√

6λ
3
2 Γ(−3/2)

+
−1

Γ(−3/2)

)
+O(p−2

n ). (12)

The justification of the formal argument used to derive (12) is quite standart in analytic combi-
natorics. For example it is identical to the one done in the proof of Theorem VI.1 of [19].

This asymptotic expansion yields

[upn ] (ϕtn(u))
qn

[upn ] (ϕ1(u))
qn
−−−→
n→∞

e−δ
√

6λ

(
2
3

δ
√

6λ + 1
)

,

and

E

[
exp

(
− λ

n4 |B
•
r+1(T∞) \ B•r (T∞)|

)∣∣∣∣|∂B•r+1(T∞)| = qn, |∂B•r (T∞)| = pn

]
= tqn−pn

n
[upn ] (ϕtn(u))

qn

[upn ] (ϕ1(u))
qn
−−−→
n→∞

e−
2
3 δ
√

6λ

(
2
3

δ
√

6λ + 1
)

,

19



finally giving the result since the Laplace transform of ξ is given by

E
[
e−λξ

]
= (1 +

√
2λ)e−2λ

for every λ > 0.

We are now ready to prove Theorem 2.

Proof of Theorem 2. With the help of Corollary 3, the proof of this result is similar to the proof of
Theorem 1 in [17]. First, we can restrict the time interval to [0, 1] and verify that(

R−2|∂B•bxRc(T∞)|, R−4|B•bxRc(T∞)|
)

x∈[0,1]

(d)−−−→
R→∞

(
32 · Lx, 4 · 33 ·Mx

)
x∈[0,1] .

The convergence of the first component(
R−2|∂B•bxRc(T∞)|

)
x∈[0,1]

(d)−−−→
R→∞

(
32 · Lx

)
x∈[0,1] . (13)

is already proved in [20] via the skeleton decomposition and in [17] via the peeling process.
Therefore, we will study the second component given the first one.

For every r ≥ 1 we can write

Vr := |B•r (T∞)| = 1 +
r

∑
i=1

Ui

where, for every i ≥ 1,
Ui = |B•i (T∞) \ B•i−1(T∞)|.

Fix ε > 0 and R > 0, Corollary 3 suggests to introduce, for r ∈ {1, . . . , R},

V>ε
r =

r

∑
i=1

Ui1{Pi<Pi−1−εR2}, V≤ε
r =

r

∑
i=1

Ui1{Pi≥Pi−1−εR2},

where Pi = |∂B•i (T∞)| for every i ≥ 1.

Let us first show that R−4V≤ε
R is small uniformly in R when ε is small. We will proceed

with a first moment argument, and a first step is to give a bound on the expectation of Ui
conditionnaly on the event {Pi−1 = p}, for i ≥ 1. Fix p, q ≥ 1 and let F be a (1, p, q)-admissible
forest. Recall that the spatial Markov property of the UIPT states that, conditionnaly on the
event {Skel(L•i−1,i(T∞)) = F}, the layer L•i−1,i(T∞) is composed of its down triangles and a

collection of indenpendent Boltzmann triangulations
(

T(cv+2)
)

v∈F?
. There exists a universal

constant C > 0 such that, for any integer p ≥ 1, one has

E
[
|T(p)|

]
≤ C p2

(see for example [17], Proposition 8) and therefore

E
[
Ui
∣∣Skel(L•i−1,i(T∞)) = F

]
≤ C ∑

v∈F?

(cv + 2)2 = C ∑
v∈F?

c2
v + 4C q + 2 C p.
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Using Lemma 1, we get, for every i ≥ 2 and p ≥ 1,

E
[
Ui 1{Pi=q}

∣∣∣Pi−1 = p
]
= ∑

F∈F (1,p,q)
E
[
Ui
∣∣Skel(L•i−1,i(T∞)) = F

]
· αqC(q)

αpC(p) ∏
v∈F?

[ucv ]ϕ

≤ αqC(q)
αpC(p)

p
q

(
(4C q + 2 C p) [up]ϕq + C ∑

n1+···nq=p

q

∑
i=1

n2
i

q

∏
i=1

[uni ]ϕ

)
.

The sum on the right hand side of the last equation is exactly

E
[
(N2

1 + · · ·+ N2
q )1{N1+···+Nq=p}

]
= qE

[
N2

1 1{N1+···+Nq=p}
]

,

where N1, . . . , Nq are independent random variables distributed according to ϕ. We have

E
[

N2
1 1{N1+···+Nq=p}

]
= [up−2]

(
ϕ′′ϕq−1

)
+

p
q
[up]ϕq

for every p ≥ 2, yiedling

E
[
Ui 1{Pi=q}

∣∣∣Pi−1 = p
]
≤ αqC(q)

αpC(p)
p
q

(
(4C q + 3 C p) [up]ϕq + C · q[up−2]

(
ϕ′′ϕq−1

))
. (14)

Using

∑
q≥1

1
q

αqC(q)uq = C′ ·
(
(1− u)−1/2 − 1

)
for some C′ > 0 we get

E [Ui|Pi−1 = p] ≤ p
αpC(p)

(
C1[up]

(
ϕ

(1− ϕ)3/2

)
+ C2 · p[up] (1− ϕ)−1/2 + C3[up−2]

(
ϕ′′

(1− ϕ)3/2

))
for every p ≥ 1, where C1, C2, C3 > 0 are fixed. Using the fact that 1 − ϕ ∼ 1 − u and
ϕ′′ ∼ 3

2 (1− u)−1/2 as u→ 1, it is easy to see that

E [Ui|Pi−1 = p] ≤ p
αpC(p)

C4 p (15)

for some constant C4 > 0. Therefore, if p ≤ 2εR2 and ε is small enough, using the fact that
p

αpC(p) = O(p1/2), we have

E [Ui|Pi−1 = p] ≤ C5 p3/2 ≤ C′5 R3 ε (16)

where C5, C′5 > 0 are some fixed constants.
If, on the other hand K > 1, equations (15) and (8) give

E
[
Ui 1{Pi−1≥K R2}

]
≤ C6 ∑

p≥K R2

p2
(

1− 1
i2

)p−1 1
i3 ,

≤ C′6 i ∑
p≥K R2

p2

i4 e−p/i2
.
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The function u 7→ u2e−u being decreasing for u > 2, the last inequality transforms to

E
[
Ui 1{Pi−1≥K R2}

]
≤ C′6 i

∫
u≥K R2

u2

i4 e−u/i2
du,

≤ C′6 i3
∫

u≥ K R2

i2

u2e−u du.

Since we only consider i ∈ {1, . . . , R}, we have

E
[
Ui 1{Pi−1≥K R2}

]
≤ C′6 i3

∫
u≥K

u2e−u du.

≤ C7 R3 K2e−K ≤ C′7 R3 ε (17)

for K = ε−1 and ε small enough.

Finally, if p = b`R2c for some ` ∈ [2ε, K], we have using (14):

E
[
Ui 1{Pi≥p−εR2}

∣∣∣Pi−1 = p
]

≤ C1 p1/2[up]
ϕp+1−bεR2c

(1− ϕ)3/2 + C2 p3/2[up]
ϕp−bεR2c

(1− ϕ)1/2 + C3 p1/2[up−2]
ϕp−bεR2cϕ′′

(1− ϕ)3/2 (18)

where we also used the fact that

1
p

αpC(p) ∼p→∞
C

p1/2 .

The same methods of singularity analysis than the ones used in the proof of Corollary 2 give, as
R→ ∞, [

ub`R2c
] ϕb`R2c+1−bεR2c

(1− ϕ)3/2 ∼ 1
2iπ`R2

∮
H

e−z ε
`

( −z
`R2

)−3/2

dz =
R ε1/2

Γ(3/2)
,

[
ub`R2c

] ϕb`R2c−bεR2c

(1− ϕ)1/2 ∼
1

2iπ`R2

∮
H

e−z ε
`

( −z
`R2

)−1/2

dz =
1

Γ(1/2) R ε1/2 ,

[
ub`R2c−2

] ϕb`R2c−bεR2cϕ′′

(1− ϕ)3/2 ∼ 3
4iπ`R2

∮
H

e−z ε
`

( −z
`R2

)−2

dz =
3 R2 ε

2Γ(2)
.

These last three asymptotic behaviors and (18) finally give, for any p ∈ [2εR2, K R2],

E
[
Ui 1{Pi≥p−εR2}

∣∣∣Pi−1 = p
]
≤ C′1 ε1/2 K1/2 R2 + C′2 ε−1/2K3/2 R2 + C′3 ε K1/2 R3. (19)

Combining (16), (17) and (19) give, for every R,

R−4E
[
V≤ε

R

]
≤ C ε1/2,

and thus, for every δ > 0, we have

sup
R≥1

P

(
sup

x∈[0,1]

∣∣∣R−4VbxRc − R−4V≤ε
bxRc

∣∣∣ > δ

)
−−→
ε→0

0. (20)
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We now turn to V>ε
r and use the reasoning of the proof of Theorem 1 of [17] (we give the

full reasoning for the sake of completness). Denote by x1, x2, . . . the jump times of L before time
1. For every r ≥ 1, let `(r)1 , . . . , `(r)r be the integers i ∈ {1, . . . , r} listed in increasing order of the
quantities Pi − Pi−1 (and the usual order of N for indices such that Pi − Pi−1 is equal to a given
value). It follows from the convergence (13) that, for every integer K ≥ 1,(

R−1`
(R)
1 , . . . , R−1`

(R)
K , R−2

(
P
`
(R)
1
− P

`
(R)
1 −1

)
, . . . , R−2

(
P
`
(R)
K
− P

`
(R)
K −1

))
(d)−−−→

R→∞

(
x1, . . . , xK, 32 · ∆Lx1 , . . . , 32 · ∆LxK

)
, (21)

and this convergence holds jointly with the convergence (13). In addition, using Corollary 3, we
also get  U

`
(R)
1(

P
`
(R)
1
− P

`
(R)
1 −1

)2 , · · · ,
U

`
(R)
K(

P
`
(R)
K
− P

`
(R)
K −1

)2

 (d)−−−→
R→∞

(
4 · 33 · ξ1, . . . , 4 · 33 · ξK

)
, (22)

jointly with the convergences (13) and (21), where the random variables ξi are independent
copies of the random variable ξ of Corollary 3, and independent of the process L.

Chosing K sufficiently large such that the probability of |∆LxK | < ε/(2 · 32) is close to 1, we
can combine (21) and (22) to obtain the joint convergence(

R−2PbRxc, R−4V>ε
bRxc

)
x∈[0,1]

(d)−−−→
R→∞

(
32 · Lx, 4 · 33 ·Mε

x
)

x∈[0,1] ,

where the process (Mε
x)x∈[0,1] is defined by

Mε
x = ∑

i≥1
1{xi≤x, |∆Lxi |>ε/(2·32)}ξi (∆Lxi)

2 .

It is easy to verify that, for every δ > 0,

P

(
sup

x∈[0,1]
|Mx −Mε

x| > δ

)
−−→
ε→0

0

and the final result follows from (20).

5 Geodesic slices

5.1 Leftmost geodesics, slices and skeletons

Fix r > 0 and v ∈ ∂B•r (T∞). There are several geodesic paths from v to the root vertex and we
will distinguish a canonical one, called the leftmost geodesic. Informally, it is constructed from
the following local rule: at each step, take the leftmost available neighbour that takes you closer
to the root. More precisely, the vertex v ∈ ∂B•r (T∞) is connected to several vertices of ∂B•r−1(T∞)
and we can enumerate them in clockwise order, starting from the first one after the edge of
∂B•r (T∞) whose initial vertex is v. The first step of the leftmost geodesic from v to the root vertex
is the last edge appearing in this enumeration and the path is constructed by induction. Notice

23



that the first step of the leftmost geodesic is an edge of the down triangle associated to the edge
of ∂B•r (T∞) on the left hand side of v (see Figure 4 for an illustration).

Now pick v, v′ ∈ ∂B•r (T∞), the two leftmost geodesics started respectively at v and v′ will
coalesce at a vertex denoted by v ∧ v′. The geodesic slice S(r, v, v′) is the submap of B•r (T∞)
bounded by these two paths and the part of ∂B•r (T∞) going from v to v′ (recall that ∂B•r (T∞)
is oriented so that B•r (T∞) lies on its right hand side). As a consequence of the definition of
leftmost geodesics, the slice S(r, v, v′) is completely described by the trees of the skeleton of
B•r (T∞) whose root lies, following the orientation of ∂B•r (T∞), between v and v′. Indeed, it is
composed of the down triangles and the slots associated to the vertices of these trees. Figure 4
contains an illustration of this fact.

v v′

v ∧ v′

Figure 4: In red, two leftmost geodesic paths to the root started respectively at v and
v′, up to their coalescence point v ∧ v′. The geodesic slice S(r, v, v′) is is the part of
the map lying inside the two red paths and below the path joining v and v′.

5.2 Volume of slices

Proof of Theorem 3. Since, for any v, v′ ∈ ∂B•r (T∞), the slice S(r, v, v′) corresponds to the trees of
Skel (B•r (T∞)) whose root lie between v and v′, we need to identify these trees. Indeed, the first
tree of Skel (B•r (T∞)) plays a special role (it is the only one of height r) and the geometry of the
slice is not the same whether this tree is rooted between v and v′ or not. Equivalently, this means
that the slice containing the root vertex of T∞ will play a special role.

We denote by F = (τ1, . . . , τq) the skeleton of B•r (T∞). Recall that it is an ordered forest,
and more precisely a (r, 1, q)-admissible forest. The vertex v1 is the vertex on the left-hand side
of the root of τi for some i between 1 and q, and the part of the skeleton describing the slice
S(r, vj, vj+1) is the ordered forest

Fi,j = (τi+q1+···+qj−1 , . . . , τi+q1+···+qj−1),
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where τq+k = τk for every k ∈ {1, . . . , q} (we also always set vn+1 = v1). The vertex v1 being
chosen uniformly, this happens with probability 1

q for every i ∈ {1, . . . q}.
Now, fix ∆ a triangulation of the (r, 1, q)−cylinder with skeleton F = (τ1, . . . , τq). For

v, v′ ∈ ∂∆, we denote by ∆(v, v′) the geodesic slice define by the arc from v to v′ and the two
leftmost geodesic started respectively ar v and v′. If v1 chosen uniformly and then (v2, . . . , vn) are
such that the length of the arc for vj to vj+1 along ∂∆ has length qj, then, for any s1, . . . , sn ∈ [0, 1]

E

[
n

∏
j=1

s
|∆(vj,vj+1)|−d(vj,vj∧vj+1)−1
j

]
=

1
q

q

∑
i=1

n

∏
j=1

∏
v∈F?

i,j

snv+1
j ,

where the expectation takes into account only the randomness of v1 (the map ∆ is deterministic
here). This is where it is easier to consider |∆(vj, vj+1)| − d(vj, vj ∧ vj+1)− 1 instead of simply
|∆(vj, vj+1)|. Indeed, in the previous formula, the terms snv+1 count the number of inner
vertices in blocs as well as the top vertex of each block. This means that every vertex of the
leftmost geodesic on the right hand side of the slice is not counted explaining the deduction of
d(vj, vj ∧ vj+1) + 1 vertices in to size of the slice. In order to count this vertices we would have
to keep track of the the height of each slice (namely d(vj, vj ∧ vj+1)). This is not much harder to
do, but it leads to a much more complicated formula and does not have a lot of benefits.

Lemma 1 gives

E

[
n

∏
j=1

s
|S(r,vj,vj+1)|−d(vj,vj∧vj+1)−1
j 1{B•r (T∞)=∆}

]

=
αqC(q)
αC(1)

1
q

q

∑
i=1

n

∏
j=1

∏
v∈F?

i,j

αc(v)−1(ρsj)
nv+1,

=
αqC(q)
αC(1)

1
q

q

∑
i=1

n

∏
j=1

t
qj−1{τ1∈Fi,j}
j ∏

v∈F?
i,j

(
αtj
)cv−1

(ρsj)
nv+1.

Summing over every triangulation ∆ having F as skeleton then gives

E

[
n

∏
j=1

s
|S(r,vj,vj+1)|−d(vj,vj∧vj+1)−1
j 1{Skel(B•r (T∞))=F}

]
=

αqC(q)
αC(1)

1
q

q

∑
i=1

n

∏
j=1

t
qj−1{τ1∈Fi,j}
j ∏

v∈F?
i,j

[ucv ]ϕtj(u).

Finally summing over every admissible forest yields

E

[
n

∏
j=1

s
|S(r,vj,vj+1)|−d(vj,vj∧vj+1)−1
j 1{|∂B•r (T∞)|=q}

]

=
αqC(q)
αC(1)

1
q ∑

F∈F (r,1,q)

q

∑
i=1

n

∏
j=1

t
qj−1{τ1∈Fi,j}
j ∏

v∈F?
i,j

[ucv ]ϕtj(u),

=
αqC(q)
αC(1)

1
q ∑

F∈F ′(r,1,q)

n

∏
j=1

t
qj−1{h(F1,j)=r}
j ∏

v∈F?
1,j

[ucv ]ϕtj(u),

where h(·) denotes the maximal height of a forest. If, for k ≥ 1, we denote by F r
k the set of all
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ordered forests of k trees with maximal height stricly less than r, we get

E

[
n

∏
j=1

s
|S(r,vj,vj+1)|−d(vj,vj∧vj+1)−1
j 1{|∂B•r (T∞)|=q}

]

=
αqC(q)
αC(1)

1
q

n

∑
k=1

tqk−1
k ∑

F1,k∈F ′(r,1,qk)
∏

v∈F?
1,k

[ucv ]ϕtk(u)

×∏
j 6=k

t
qj
j ∑

F1,j∈F r
qj

∏
v∈F1,j

[ucv ]ϕtj(u)

 ,

=
αqC(q)
αC(1)

1
q

(
n

∏
j=1

(
tj ϕ
{r}
tj

(0)
)qj

)
×

n

∑
k=1

1
tk

[u]
(

ϕ
{r}
tk

(u)
)qk(

ϕ
{r}
tk

(0)
)qk

,

=
αqC(q)
αC(1)

1
q

(
n

∏
j=1

(
tj ϕ
{r}
tj

(0)
)qj

)
×

n

∑
k=1

qk

tk

ϕ
{r}′
tk

(0)

ϕ
{r}
tk

(0)
.

Finally we have

E

[
n

∏
j=1

s
|S(r,vj,vj+1)|−d(vj,vj∧vj+1)−1
j

∣∣∣∣∣|∂B•r (T∞)| = q

]

=

 n

∏
j=1

tj

ϕ
{r}
tj

(0)

ϕ{r}(0)

qj
× n

∑
k=1

qk

q
1
tk

ϕ
{r}′
tk

(0)

ϕ{r}′(0)
ϕ{r}(0)

ϕ
{r}
tk

(0)

giving the result.

Proof of Corollary 2. This is a direct consequence of Theorem 3 using the same asymptotics as in
the proof of Corollary 1.
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