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SCALING LIMITS FOR THE UNIFORM INFINITE QUADRANGULATION

JEAN-FRANÇOIS LE GALL, LAURENT MÉNARD

Abstract. The uniform infinite planar quadrangulation is an infinite random graph embedded in the plane,
which is the local limit of uniformly distributed finite quadrangulations with a fixed number of faces. We study
asymptotic properties of this random graph. In particular, we investigate scaling limits of the profile of distances
from the distinguished point called the root, and we get asymptotics for the volume of large balls. As a key
technical tool, we first describe the scaling limit of the contour functions of the uniform infinite well-labeled tree,
in terms of a pair of eternal conditioned Brownian snakes. Scaling limits for the uniform infinite quadrangulation
can then be derived thanks to an extended version of Schaeffer’s bĳection between well-labeled trees and rooted
quadrangulations.

1. Introduction

The main purpose of the present work is to study asymptotic properties of the infinite random graph called
the uniform infinite quadrangulation. Recall that planar maps are proper embeddings of finite connected graphs
in the two-dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere. It is
convenient to deal with rooted maps, meaning that there is a distinguished oriented edge, whose origin is called
the root vertex. Given a planar map, its faces are the regions delimited by the edges Important special cases of
planar maps are triangulations, respectively quadrangulations, where each face of the map is adjacent to three
edges, resp. to four edges.

Combinatorial properties of planar maps have been studied extensively since the work of Tutte [21], which
was motivated by the famous four color theorem. Planar maps have also been considered in the theoretical
physics literature because of their connections with matrix integrals (see [5]). More recently, they have been
used in physics as models of random surfaces, especially in the setting of the theory of two-dimensional quantum
gravity (see in particular the book by Ambjørn, Durhuus and Jonsson [2]).

In a pioneering paper, Angel and Schramm [4] defined an infinite random triangulation of the plane, whose
law is uniform in the sense that it is the local limit of uniformly distributed triangulations with a fixed number
of faces, when this number tends to infinity. Various properties of the uniform infinite triangulation, including
the study of percolation on this infinite random graph, were derived by Angel [3] (see also Krikun [11]). Some
intriguing questions, such as the recurrence of random walk on the uniform infinite triangulation, still remain
open.

Although quadrangulations may seem to be more complicated objects than triangulations, some of their
properties can be studied more easily because they are bipartite graphs, and especially thanks to the existence of
a simple bĳection between the set of all (rooted) quadrangulations with a fixed number of faces and the set of all
well-labeled trees with the same number of edges. See [7] for a thorough discussion of this correspondence, which
we call Schaeffer’s bĳection. Motivated by this bĳection, Chassaing and Durhuus [6] constructed the so-called
uniform infinite well-labeled tree, and then used an extended version of Schaeffer’s bĳection to get an infinite
random quadrangulation from this infinite random tree. A little later, Krikun [10] constructed the uniform
infinite quadrangulation as the local limit of uniform finite quadrangulations as their size goes to infinity, in the
spirit of the work of Angel and Schramm for triangulations. It was proved in [17] that both these constructions
lead to the same infinite random graph, which is the object of interest in the present work.

Before describing our main results, let us recall the definition of the uniform infinite well-labeled tree. A
(finite) well-labeled tree is a rooted ordered tree whose vertices are assigned positive integer labels, in such a way
that the root has label one, and the labels of two neighboring vertices can differ by at most one in absolute
value. Chassaing and Durhuus [6] showed that the uniform probability distribution on the set of all well-labeled
trees with n edges converges as n→∞ towards a probability measure µ supported on infinite well-labeled trees,
which is called the law of the uniform infinite well-labeled tree. It was also proved in [6] that an infinite tree
distributed according to µ has a.s. a unique spine, that is a unique infinite injective path starting from the root.
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Thanks to the latter property, the uniform infinite well-labeled tree can be coded by two pairs of contour
functions (C(L), V (L)) and (C(R), V (R)) corresponding respectively to the left side and the right side of the spine.
Roughly speaking (see subsect. 2.1.1 for more precise definitions), if we imagine a particle that explores the left
side of the spine by traversing the tree from the left to the right, then for every integer k, C(L)

k is the height
in the tree of the vertex visited by the particle at time k, and V (L)

k is the label of the same vertex. The pair
(C(R), V (R)) is defined analogously for the right side of the spine. We obtain asymptotics for the uniform infinite
well-labeled tree in the form of the following convergence in distribution (Theorem 5):(( 1

n
C(L)(n2t),

√
3
2n

V (L)(n2t)
)
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,
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3
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t
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ζ
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t

)
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)
.(1)

Here ζ(L) and Ŵ (L) represent respectively the lifetime process and the endpoint process of a path-valued process
W (L) called the eternal conditioned Brownian snake. Roughly speaking, the eternal conditioned Brownian snake
should be interpreted as a one-dimensional Brownian snake started from 0 (see [12]) and conditioned not to hit
the negative half-line. This process was introduced in [16], where it was shown to be the limit in distribution
of a Brownian snake driven by a Brownian excursion and conditioned to stay positive, when the height of the
excursion tends to infinity (see Theorem 4.3 in [16]). Similarly the pair (ζ(R), Ŵ (R)) is obtained from another
eternal conditioned Brownian snake W (R). Note however that the processes W (L) and W (R) are not independent:
The dependence between W (L) and W (R) comes from the labels on the spine, which are (of course) the same
when exploring the left side and the right side of the tree.

We can combine the convergence (1) with the extended version of Schaeffer’s bĳection in order to derive
asymptotics for distances in the uniform infinite quadrangulation in terms of the eternal conditioned Brownian
snake. Here we use a key property of Schaeffer’s bĳection, which remains valid in the infinite setting: If a
quadrangulation is asociated with a well-labeled tree in this bĳection, vertices of the quadrangulation (except the
root vertex) exactly correspond to vertices of the tree, and the graph distance in the quadrangulation between a
vertex v and the root vertex coincides with the label of v on the tree. If V (q) stands for the set of vertices of
the uniform infinite quadrangulation q and if dgr(∂, v) denotes the graph distance between vertex v and the root
vertex ∂, we let the profile of distances be the σ-finite measure on Z+ defined by

λq(k) = #{v ∈ V (q) : dgr(∂, v) = k},

for every k ∈ Z+. For every integer n ≥ 1, we also define a rescaled profile λ(n)
q by

λ(n)
q (A) = n−2λ

(√2n
3
A
)
,

for every Borel subset A of R+. Then Theorem 6 shows that the sequence λ(n)
q converges in distribution towards

the random measure I defined by

〈I, g〉 = 1
2

∫ ∞
0

ds
(
g
(
Ŵ (L)
s

)
+ g

(
Ŵ (R)
s

))
for every continuous function g with compact support on R+. As a consequence, if Bn(q) denotes the ball of
radius n centered at ∂ in V (q), we also get the convergence in distribution of n−4#Bn(q) as n→∞.

Although the present work concentrates on the profile of distances, we expect that the convergence (1) will
have applications to other problems concerning the uniform infinite quadrangulation and random walk on this
graph (similarly as in the case of the uniform infinite triangulation, the recurrence of this random walk is still
an open question). Indeed, thanks to the explicit construction of edges of the map from the associated tree in
Schaeffer’s bĳection, scaling limits for the uniform infinite well-labeled tree should lead to useful information
about the geometry of the uniform infinite quadrangulation. We hope to address these questions in some future
work.

To conclude this introduction, let us mention that a different approach to asymptotics for large planar
maps has been developed in several recent papers, which do not deal with local limits but instead study the
convergence of rescaled random planar maps viewed as random compact metric spaces, in the sense of the
Gromov-Hausdorff distance. In particular, the recent papers [15, 18] have proved independently that uniformly
distributed quadrangulations with n faces, equipped with the graph distance rescaled by the factor n−1/4 and
viewed as random metric spaces, converge in distribution in the sense of the Gromov-Hausdorff distance towards
the so-called Brownian map (the results of [15] apply to more general planar maps such as triangulations). The
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Brownian map is a quotient space of Aldous’ continuum random tree [1] for an equivalence relation defined in
terms of Brownian labels assigned to the vertices of the tree. Although we do not pursue this matter here, we
note that the limiting process appearing in the convergence (1) should play a role in the study of the Brownian
map, and should indeed be related to the geometry of the Brownian map near a typical point. We also observe
that the convergence (1) is an infinite tree version of a result of [14], which gives the scaling limit of the contour
functions of well-labeled trees with a (large) fixed number of edges.

The paper is organized as follows. Section 2 contains preliminaries about trees, finite or infinite quadrangula-
tions, and the extended version of Schaeffer’s bĳection. We also discuss the uniform infinite well-labeled tree and
quadrangulation as defined in [6, 10] and recall some basic facts about the Brownian snake. Section 3 contains
the most technical part of this work, which is the proof of the convergence (1). Our applications to scaling limits
for the uniform infinite quadrangulation are discussed in Section 4.

Notation. If I is an interval of the real line, and E is a metric space, the notation C(I, E) stands for the space
of all continuous functions from I into E. This space is equipped with the topology of uniform convergence on
compact sets. If E is a Polish space, D(E) stands for the space of all càdlàg functions from [0,∞[ into E, which
is equipped with the usual Skorokhod topology.

2. Preliminaries

2.1. Trees and quadrangulations.

2.1.1. Spatial trees. In order to give precise definitions of the objects of interest in this work, it will be convenient
to use the standard formalism for plane trees. Let

U =
∞⋃
n=0

Nn

where N = {1, 2, . . .} and N0 = {∅} by convention. An element u of U is thus a finite sequence u = (u1, . . . , un)
of positive integers, and n = gen(u) is called the generation of u. If u, v ∈ U , uv denotes the concatenation of u
and v. If v is of the form uj with j ∈ N, we say that u is the parent of v or that v is a child of u. We use the
notation v ≺ v′ for the (strict) lexicographical order on U .

A plane tree τ is a (finite or infinite) subset of U such that
(1) ∅ ∈ τ (∅ is called the root of τ),
(2) if v ∈ τ and v 6= ∅, the parent of v belongs to τ
(3) for every u ∈ U there exists an integer ku(τ) ≥ 0 such that, for every j ∈ N, uj ∈ τ if and only if

j ≤ ku(τ).
The edges of τ are the pairs (u, v), where u, v ∈ τ and u is the parent of v. The integer |τ | denotes the number
of edges of τ and is called the size of τ . The height H(τ) of τ is defined by H(τ) = sup{gen(u) : u ∈ τ}. A spine
of τ is an infinite linear subtree of τ starting from its root (of course a spine can only exist if τ is infinite). We
denote by T the set of all plane trees.

A labeled tree (or spatial tree) is a pair θ = (τ, (`(u))u∈τ ) that consists of a plane tree τ and a collection of
integer labels assigned to the vertices of τ , such that if (u, v) is an edge of τ , then |`(u)− `(v)| ≤ 1.

A labeled tree (τ, (`(u))u∈τ ) such that `(∅) = 1 and `(u) ≥ 1 for every u ∈ τ is called a well-labeled tree. We
denote the space of all well-labeled trees by T. The notation T, respectively T∞, resp. Tn, will stand for the
set of all well-labeled trees that have finitely many edges, resp. infinitely many edges, resp. n edges.

If θ = (τ, (`(u))u∈τ ) is a labeled tree, |θ| = |τ | is the size of θ and H(θ) = H(τ) is the height of θ. A spine of
θ is a spine of τ .

A finite labeled tree θ = (τ, `) can be coded by a pair (Cθ, Vθ), where Cθ = (Cθ(t))0≤t≤2|θ| is the contour
function of τ and Vθ = (Vθ(t))0≤t≤2|θ| is the spatial contour function of θ (see Fig. 1). To define these contour
functions, let us consider a particle which follows the contour of the tree from the left to the right, in the
following sense. The particle starts from the root and traverses the tree along its edges at speed one. When
leaving a vertex, the particle moves towards the first non visited child of this vertex if there is such a child, or
returns to the parent of this vertex. Since all edges will be crossed twice, the total time needed to explore the
tree is 2|θ|. For every t ∈ [0, 2|θ|], Cθ(t) denotes the distance from the root of the position of the particle at
time t. In addition if t ∈ [0, 2|θ|] is an integer, Vθ(t) denotes the label of the vertex that is visited at time t. We
then complete the definition of Vθ by interpolating linearly between successive integers. Fig. 1 explains the
construction of the contour functions better than a formal definition.
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A finite labeled tree is uniquely determined by its pair of contour functions. It will sometimes be convenient
to define the functions Cθ and Vθ for every t ≥ 0, by setting Cθ(t) = 0 and Vθ(t) = Vθ(0) for every t ≥ 2|θ|.

2 1
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Figure 1. A labeled tree θ and its pair of contour functions (Cθ, Vθ).

If θ and θ′ are two labeled trees, we define

d(θ, θ′) = (1 + sup {h : trh(θ) = trh(θ′)})
−1

where, for every integer h ≥ 0, trh(θ) is the labeled tree consisting of all vertices of θ up to generation h, with
the same labels. One easily checks that d is a distance on the space of all labeled trees.

If θ ∈ T, for every k ∈ N, we let Nk(θ) denote the number of vertices of θ that have label k. We then define
S as the set of all trees in T that have at most one spine, and whose labels take each integer value only finitely
many times:

S = T ∪ {θ ∈ T∞ : ∀l ≥ 1, Nl(θ) <∞ and θ has a unique spine} .
A tree θ ∈ S can be coded by two pairs of contour functions, (C(L)

θ , V
(L)
θ ) : R+ → R+ × R+ and (C(R)

θ , V
(R)
θ ) :

R+ → R+ × R+, each pair coding one side of the spine. Note that to define the pair (C(L)
θ , V

(L)
θ ), we follow the

contour of the tree from the left to the right as before, but in order to define (C(R)
θ , V

(R)
θ ) we follow the contour

from the right to the left. The definition of these contour functions should be clear from Fig. 2. Note that the
functions C(L)

θ , V (L)
θ , C(R)

θ and V (R)
θ tend to infinity at infinity.

2.1.2. Planar maps and quadrangulations. A planar map is a proper embedding of a finite connected graph in
the two-dimensional sphere S2. Loops and multiple edges are a priori allowed. The faces of the map are the
connected components of the complement of the union of edges. A planar map is rooted if it has a distinguished
oriented edge called the root edge, whose origin is called the root vertex. In what follows, planar maps are
always rooted, even if this is not explicitly specified. Two rooted planar maps are said to be equivalent if the
second one is the image of the first one under an orientation-preserving homeomorphism of the sphere, which
also preserves the root edges. Two equivalent planar maps will always be identified.

The vertex set of a planar map will be equipped with the graph distance dgr: if v and v′ are two vertices,
dgr(v, v′) is the minimal number of edges on a path from v to v′.

A planar map is a quadrangulation if all its faces have degree 4, that is 4 adjacent edges (one should count
edge sides, so that if an edge lies entirely inside a face it is counted twice).

Let us introduce infinite quadrangulations using Krikun’s approach in [10]. For every integer n ≥ 1, we denote
the set of all rooted quadrangulations with n faces by Qn, and we set

Q =
⋃
n≥1

Qn.

For every q, q′ ∈ Q, we define

D (q, q′) = (1 + sup {r : Mr(q) = Mr(q′)})
−1
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Figure 2. An infinite well-labeled tree θ and its contour functions (C(L)
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θ ), (C(R)

θ , V
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where, for r ≥ 1, Mr(q) is the rooted planar map obtained by keeping only those edges of q that are adjacent to
a face having at least one vertex at distance strictly smaller than r from the root. By convention, sup ∅ = 0.
Note that Mr(q) is not a quadrangulation in general (it should be viewed as a quadrangulation with a boundary)
but is still a planar map. Then (Q, D) is a metric space. Denote by (Q, D) the completion of this space. We
call (rooted) infinite quadrangulations the elements of Q that are not finite quadrangulations and we denote the
set of all such quadrangulations by Q∞.

Note that one can extend the function q ∈ Q 7→Mr(q) to a continuous function on Q. Suppose that q ∈ Q∞.
When r varies, the planar maps Mr(q) are consistent in the sense that if r < r′ the planar map Mr(q) is naturally
interpreted as the union of the faces of Mr′(q) that have a vertex at distance strictly smaller than r from the
root. Thanks to this observation, we can make sense of the vertex set of q and of the graph distance on this
vertex set.

The vertex set of a (finite or infinite) quadrangulation q will always be denoted by V (q), and the root vertex
of q will be denoted by ∂.

2.2. Schaeffer’s correspondence. The relations between quadrangulations and labeled trees come from the
following key result [8, 20]. There exists a bĳection Φn, called Schaeffer’s bĳection, from Tn onto Qn that enjoys
the following property: if θ = (τ, (`(v))v∈τ ) ∈ Tn, then, for every integer k ≥ 1 one has

|{a ∈ V (Φn(θ)) : dgr(∂, a) = k}| = |{v ∈ τ : `(v) = k}| .

Schaeffer’s bĳection has been extended to the infinite setting in [6]: There exists a one-to-one mapping Φ
from S into Q such that, for every θ = (τ, (`(v))v∈τ ) ∈ S , for every integer k ≥ 1 one has

|{a ∈ V (Φ(θ)) : dgr(∂, a) = k}| = |{v ∈ τ : `(v) = k}| .

Note however that Φ is not a bĳection. There are infinite quadrangulations (in Krikun’s sense) that cannot be
written in the form Φ(θ).

Let us describe the mapping Φ (see [6], Section 6.2. for details). Fix a tree θ = (τ, `) ∈ S and assume that
τ is infinite (the case when τ is finite is similar and easier to describe). Consider an embedding of τ in the
sphere S2, such that every sequence p = (pn)n∈N of points of S2 belonging to distinct edges of τ , has a unique
accumulation point 4 ∈ S2. Recall that a corner of τ is a sector between two consecutive edges around a vertex.
The label of the corner is the label of the corresponding vertex.

We first add a vertex ∂ in the complement of τ ∪ {4}. Then, for every vertex v of τ and every corner c of v,
an edge is added according to the following rules:

• If `(v) = 1, we draw an edge between the corner c and ∂ (see Fig. 3, left).
• If c is on the right side of the spine, if `(v) ≥ 2, and if there exists a corner with label `(v)− 1 that is
visited after c in the contour of the right side of the spine, we draw an edge between c and the first such
corner (see Fig. 3, left).
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Figure 3. Construction of a few edges in Schaeffer’s correspondence.

• If c is on the right side of the spine, if `(v) ≥ 2, and if there is no corner with label `(v) − 1 that is
visited after c in the contour of the right side of the spine, we draw an edge between c and the corner on
the left side of the spine with label `(v)− 1 that is the last one to be visited during the contour of the
left side of the spine (see Fig. 3, middle).

• If c is on the left side of the spine and if `(v) ≥ 2, we draw an edge between c and the corner with label
`(v)− 1 that is the last one to be visited before c during the contour of the left side of the spine (see Fig.
3, right).

The construction can be made in such a way that edges do not intersect. The resulting (infinite) embedded
planar graph whose vertices are the vertices of τ and the extra vertex ∂, and whose edges are obtained by the
preceding prescriptions, is rooted at the oriented edge between ∂ and the first corner of ∅. This embedded
random graph Φ(θ) can be interpreted as an infinite quadrangulation in Krikun’s sense. Moreover, for each
vertex v of τ , the distance dgr(∂, v) between the root vertex ∂ and v in the map Φ(θ) coincides with the label
`(v).

2.3. The uniform infinite quadrangulation. In this section, we collect the known results about the uniform
infinite quadrangulation and the uniform infinite well-labeled tree.

Theorem 1 ([10]). For every n ≥ 1 let νn be the uniform probability measure on Qn. The sequence (νn)n∈N
converges to a probability measure ν, in the sense of weak convergence of probability measures on (Q, D).
Moreover, ν is supported on the set of infinite quadrangulations. A random quadrangulation distributed according
to ν will be called a uniform infinite quadrangulation.

This probability measure is connected with the law of the uniform infinite well-labeled tree, which appears in
the next theorem. Recall that d stands for the distance on the space of labeled trees.

Theorem 2 ([6]). For every n ≥ 1, let µn be the uniform probability measure on the set of all well-labeled trees
with n edges. The sequence (µn)n∈N converges weakly to a probability measure µ in the sense of weak convergence
of probability measures on (T, d). Moreover, µ is supported on the set S ⊂ T∞. A random tree distributed
according to µ will be called a uniform infinite well-labeled tree.

It was proved in previous work [17] that ν is the image of µ under the mapping Φ (the extended Schaeffer’s
correspondence) described in subsect. 2.2. This is stated in the next theorem.

Theorem 3 ([17]). For every Borel subset A of Q one has
ν(A) = µ

(
Φ−1(A)

)
.

Informally, we may say that the uniform infinite quadrangulation is coded by the uniform infinite well-labeled
tree.

For our purposes, we do not really need the preceding results. We will mainly use the description of the
probability measure µ in Theorem 4 below, and the fact that the uniform infinite quadrangulation is obtained
from a tree distributed according to µ via Schaeffer’s correspondence.
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In order to give a precise description of the measure µ, we need a few more definitions. Let θ = (τ, (`(v))v∈τ )
be an infinite tree in S and let n ≥ 0. If vn is the (unique) vertex at generation n in the spine of θ, we denote
the label of vn by Xn(θ) = `(vn). The (labeled) trees attached to vn respectively on the left side and on the
right side of the spine are denoted by Ln(θ) and Rn(θ). More precisely, Ln(θ) = (τLn , (`Ln(v))v∈τLn ), where
τLn = {v ∈ U : vnv ∈ τ and vnv ≺ vn+1}, and `Ln(v) = `(vnv) for every v ∈ τLn , and a similar definition holds
for Rn(θ).

For every integer l ∈ Z we denote by ρl the law of the Galton-Watson tree with geometric offspring distribution
with parameter 1/2 (see e.g. [13]), labeled according to the following rules. The root has label l and every
other vertex has a label chosen uniformly in {m− 1,m,m+ 1} where m is the label of its parent, these choices
being made independently for every vertex. Then, ρl is a probability measure on the space of all labeled trees.
Moreover, for every labeled tree θ with n edges and root label l, ρl(θ) = 1

212−|θ|. Since the cardinality of the set
of all plane trees with n edges is the Catalan number of order n, we easily get

ρl (|θ| = n) = ρ0 (|θ| = n) = n−3/2

2
√
π

+ O
(
n−5/2

)
(2)

ρl (|θ| ≥ n) = ρ0 (|θ| ≥ n) = O
(
n−1/2

)
(3)

as n goes to infinity.
Denote by V∗ = V∗(θ) the minimal label in θ. Suppose now that l ≥ 1. Proposition 2.4 of [6] shows that

(4) ρl(V∗ > 0) = l(l + 3)
(l + 1)(l + 2)

.

We define another probability measure ρ̂l on labeled trees by setting

ρ̂l = ρl(· | V∗ > 0).

We will very often use the bound ρ̂l ≤ 2ρl, which holds for every l ≥ 1 from the explicit formula for ρl(V∗ > 0).

Theorem 4 ([6]). Let Θ be a random labeled tree distributed according to µ. Write Xn = Xn(Θ) for every
n ≥ 0.

(1) The process X = (Xn)n≥0 is a Markov chain with transition kernel Π such that Π(0, 1) = 1 and the
other nonzero values of Π(l, k) are given by

Π(l, l − 1) = (wl)2

12dl
dl−1 for l ≥ 2,

Π(l, l) = (wl)2

12
for l ≥ 1,

Π(l, l + 1) = (wl)2

12dl
dl+1 for l ≥ 1,

where

wl = 2 l(l + 3)
(l + 1)(l + 2)

,

dl = 3wl
560

(5l4 + 30l3 + 59l2 + 42l + 4).

(2) Conditionally given (Xn)n≥0 = (xn)n≥0, the sequence (Ln)n≥0 of subtrees of Θ attached to the left
side of the spine and the sequence (Rn)n≥0 of subtrees attached to the right side of the spine form two
independent sequences of independent labeled trees distributed respectively according to the measures ρ̂xn ,
n ≥ 0.

We will also use the following proposition, which is proved in [17]. We keep the notation (Xn)n≥0 for the
labels on the spine of the tree Θ.

Proposition 1 ([17]). The sequence of processes
(√

3
2nXbntc

)
t≥0

converges in distribution in the Skorokhod
sense to a nine-dimensional Bessel process started at 0.

We refer to Chapter XI of [19] for extensive information about Bessel processes.
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2.4. The Brownian snake. In this section we collect some facts about the Brownian snake that we will use
later. We refer to [12] for a more complete presentation of the Brownian snake.

The Brownian snake is a Markov process taking values in the space W of all finite real paths. An element of
W is simply a continuous mapping w : [0, ζ]→ R, where ζ = ζ(w) ≥ 0 depends on w and is called the lifetime of
w. The endpoint (or tip) of w will be denoted by ŵ = w(ζ). The range of w is denoted by w[0, ζ(w)]. If x ∈ R,
we denote the subset of paths with initial point x by Wx. The trivial path in Wx such that ζ(w) = 0 is identified
with the point x. The set W is a Polish space for the distance

dW(w,w′) = |ζ(w) − ζ(w′)|+ sup
t≥0
|w(t ∧ ζ(w))− w′(t ∧ ζ(w′))|.

The canonical space Ω = C(R+,W) is equipped with the topology of uniform convergence on every compact
subset of R+. The canonical process on Ω is denoted by Ws(ω) = ω(s) for ω ∈ Ω and we write ζs = ζ(Ws) for
the lifetime of Ws.

Let w ∈ W. The law of the (one-dimensional) Brownian snake started from w is the probability Pw on Ω
which can be characterized as follows. First, the process (ζs)s≥0 is under Pw a reflected Brownian motion in
[0,∞[ started from ζ(w). Secondly, the conditional distribution of (Ws)s≥0 knowing (ζs)s≥0, which is denoted by
Qζw, is characterized by the following properties:

(1) W0 = w, Qζw a.s.
(2) The process (Ws)s≥0 is time-inhomogeneous Markov under Qζw. Moreover, if 0 ≤ s ≤ s′,

• Ws′(t) = Ws(t) for every t ≤ m(s, s′) = inf [s,s′] ζr, Θζ
w a.s.

• (Ws′(m(s′, s) + t)−Ws′(m(s, s′)))0≤t≤ζs′−m(s,s′) is independent of Ws and distributed under Qζw
as a Brownian motion started at 0.

Informally, the value Ws of the Brownian snake at time s is a random path with a random lifetime ζs evolving
like a reflected Brownian motion in [0,∞[. When ζs decreases, the path is erased from its tip, and when ζs
increases, the path is extended by adding “little pieces” of Brownian paths at its tip.

We denote the Itô measure of positive excursions by n(de) (see e.g. Chapter XII of [19]). This is a σ-finite
measure on the space C(R+,R+). We write

σ(e) = inf{s > 0 : e(s) = 0}

for the duration of an excursion e. For s > 0, n(s) denotes the conditioned probability measure n(· |σ = s). Our
normalization of the Itô measure is fixed by the relation

(5) n =
∫ ∞

0

ds
2
√

2πs3
n(s).

If x ∈ R, the excursion measure Nx of the Brownian snake started at x is defined by

Nx =
∫
C(R+,R+)

n(de)Qex.

With a slight abuse of notation we will also write σ(ω) = inf{s > 0 : ζs(ω) = 0} for ω ∈ Ω. We can then consider
the conditioned measures

N(s)
x = Nx(· |σ = s) =

∫
C(R+,R+)

n(s)(de)Qex.

The range R = R(ω) is defined by R = {Ŵs : s ≥ 0}, and we write minR for the minimum of R. We have,
for every x > 0,

(6) Nx (minR ≤ 0) = 3
2x2 .

See e.g. Section VI.1 of [12] for a proof .

2.5. Convergence towards the Brownian snake. In this section, we recall a standard result of convergence
towards the Brownian snake. Let F = (θ1, θ2, . . .) be a sequence of independent labeled trees distributed
according to the probability measure ρ0. We denote by CF = (CF (t))t≥0 the contour function of the forest F ,
which is obtained by concatenating the contour functions of the trees θ1, θ2, . . .. Similarly, V F = (V F (t))t≥0 is
obtained by concatenating the spatial contour functions of the trees θ1, θ2, . . .. Note that this concatenation
creates no problem because the labels of the roots of θ1, θ2, . . . are all equal to 0.

In the next statement, (Wt)t≥0 is the Brownian snake under the probability measure P0 and (ζt)t≥0 is the
associated lifetime process.
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Proposition 2. The sequence of processes( 1
n
CF (n2t),

√
3
2n

V F (n2t)
)
t≥0

converge in distribution to the process (ζt, Ŵt)t≥0 in the sense of weak convergence of the laws on the space
C(R+,R2).

The convergence of contour functions in the proposition follows from the more general Theorem 1.17 of [13]
(in our particular case, it is just a straightforward application of Donsker’s theorem). The joint convergence
with the spatial contour process can then be obtained as an easy application of the techniques in [9].

Theorem 5 below provides an analogue of Proposition 2 when the forest of independent trees F is replaced by
the forest of subtrees branching from the left (or right) side of the spine of the uniform infinite well-labeled tree.
This replacement makes the proof much more involved, essentially because of the positivity constraint on labels.

3. Scaling limit of the uniform infinite well-labeled tree

3.1. The eternal conditioned Brownian snake. We start by introducing the eternal conditioned Brownian
snake, which will appear in our limit theorem for the uniform infinite well-labeled tree. Let Z = (Zt)t≥0 be a
nine-dimensional Bessel process started at 0. Conditionally given Z, let

P =
∑
i∈I

δ(ri,ωi)

be a Poisson point process on R+ × Ω with intensity

(7) 2 1{minR(ω)>−Zt} dtN0(dω)

where we recall that R(ω) denotes the range of the snake. We then construct our conditioned snake W∞ as a
measurable function G(Z,P) of the pair (Z,P). Let us describe this function G. To simplify notation, we put

σi = σ(ωi), ζis = ζs(ωi), W i
s = Ws(ωi)

for every i ∈ I and s ≥ 0. For every u ≥ 0, we set

τu =
∑
i∈I

1{ri≤u}σi.

Then, if s ≥ 0, there is a unique u such that τu− ≤ s ≤ τu, and:
• Either there is a (unique) i ∈ I such that u = ri and we set

ζ∞s = u+ ζis−τu− ,

W∞s (t) =

{
Zt if t ≤ u,
Zu +W i

s−τu−(t− u) if u < t ≤ ζ∞s .

• Or there is no such i, then τs− = u = τs and we set

ζ∞s = u,

W∞s (t) = Zt, t ≤ u.

These prescriptions define a continuous process W∞ = G(Z,P) with values in W. As usual the head of W∞ at
time s is Ŵ∞s = W∞s (ζ∞s ). We say that W∞ is an eternal conditioned Brownian snake.

The preceding construction can be reinterpreted by saying that the pair (ζ∞s , Ŵ∞s )s≥0 is obtained by
concatenating (in the appropriate order given by the values of ri) the functions(

ri + ζis, Zri + Ŵ i
s

)
0≤s≤σi

.

In particular, it is easy to verify that, a.s. for every u ≥ 0,

τu = sup{s ≥ 0 : ζ∞s ≤ u}.

This simple observation will be useful later.
If K > 0 is fixed, an application of (6) gives for every u > 0,

P
[

inf
s≥τu

Ŵ∞s > K
]

= E
[
exp−3

∫ ∞
u

(
Zs −K)−2 − (Zs)−2

)
ds
]
,
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with the convention that the integral in the exponential is infinite if Zs ≤ K for some s ≥ u. The right-hand
side of the previous display tends to 1 as u→∞, and it follows that

(8) lim
s→∞

Ŵ∞s = +∞ , a.s.

Suppose that conditionally given Z, P̃ is another Poisson measure with the same intensity as P, and that P
and P̃ are independent conditionally given Z. Then let W∞ = G(Z,P) as before and also set W̃∞ = G(Z, P̃).
We say that (W∞, W̃∞) is a pair of correlated eternal conditioned Brownian snakes (driven by the Bessel process
Z).

3.2. Convergence of the rescaled uniform infinite well-labeled tree. Throughout this subsection, we
consider a uniform infinite well-labeled tree Θ, and we use the notation introduced in Theorem 4: In particular
Xn, n ∈ Z+ are the labels along the spine of Θ, and Ln and Rn, n ∈ Z+, are the subtrees attached respectively
to the left side and to the right side of the spine. Recall that the left side (resp. right side) of the spine can
be coded by the contour functions (C(L), V (L)) (resp. (C(R), V (R))). The main result of this section gives the
joint convergence of these suitably rescaled random functions towards a pair of correlated eternal conditioned
Brownian snakes.

Theorem 5. Let (W (L),W (R)) be a pair of correlated eternal conditioned Brownian snakes. We have the joint
convergence in distribution:(( 1

n
C(L)(n2s),

√
3
2n
V (L)(n2s)

)
s≥0

,
( 1
n
C(R)(n2s),

√
3
2n
V (R)(n2s)

)
s≥0

)
(d)−→
n→∞

((
ζ(L)
s , Ŵ (L)

s

)
s≥0

,
(
ζ(R)
s , Ŵ (R)

s

)
s≥0

)
.(9)

where ζ(L)
s = ζ(W (L)

s ), resp. ζ
(R)
s = ζ(W (R)

s ), for every s ≥ 0. The convergence in distribution (9) holds in the
sense of weak convergence of laws of processes in the space C(R+,R2)2.

Before proving Theorem 5, we will establish a few preliminary results. For every finite labeled tree θ and
every t ≥ 0, we set (

C
(n)
θ (t), V (n)

θ (t)
)

=
( 1
n
Cθ(n2t),

√
3
2n
Vθ(n2t)

)
,

where (Cθ, Vθ) is the pair of contour functions of θ. In addition, we also write

R(V (n)
θ ) = {V (n)

θ (t) : t ≥ 0}.
We use the notation ρl(f) (or ρ̂l(f)) for the integral of a function f defined on T with respect to ρl (or to ρ̂l),
whenever this integral makes sense.

Proposition 3. Let ϕ be a bounded continuous function from C(R+,R)2 × R+ into R+. Assume that there
exists η > 0 such that ϕ(f, g, s) = 0 if s ≤ η. Fix z > 0 and let (xn)n∈N be a sequence of positive integers such
that

√
3
2n xn → z as n goes to ∞. We have the following convergence:

n ρ̂xn

(
ϕ
(
C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))
−→
n→∞

2 Nz
(
ϕ(ζ, Ŵ , σ)1{minR>0}

)
.

Proof. Recall the notation

wl = 2 l(l + 3)
(l + 1)(l + 2)

= 2 ρl(V∗ > 0),

for every integer l ≥ 1. Fix K > η. Then, for every integer n ≥ 1,

nρ̂xn

(
ϕ
(
C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))
= 2nw−1

xn ρxn

(
1{minR(V (n)

θ
)>0} ϕ

(
C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))
= 2nw−1

xn

bKn2c∑
k=bηn2/2c

ρxn(|θ| = k)ρxn
(

1{minR(V (n)
θ

)>0} ϕ
(
C

(n)
θ , V

(n)
θ ,

2|θ|
n2

) ∣∣∣ |θ| = k
)

+ 2nw−1
xn ρxn(|θ| > Kn2)ρxn

(
1{minR(V (n)

θ
)>0} ϕ

(
C

(n)
θ , V

(n)
θ ,

2|θ|
n2

) ∣∣∣ |θ| > Kn2
)
.(10)
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The first term in the right-hand side of (10) can be written as

(11) 2n3w−1
xn

∫ bKn2c+1
n2

bηn2/2c
n2

ds ρxn(|θ| = bsn2c)ρxn
(

1{minR(V (n)
θ

)>0} ϕ
(
C

(n)
θ , V

(n)
θ ,

2bsn2c
n2

) ∣∣∣ |θ| = bsn2c
)
.

In order to investigate the behavior of the quantity (11) as n→∞, we use a result about the convergence of
discrete snakes. Fix y > 0 and let (yk)k∈N be a sequence of positive integers such that (9/8k)1/4yk → y as n
goes to ∞. Let (Wt)t∈[0,1] be distributed according to N(1)

y (see subsect. 2.4). Then (et)t∈[0,1] := (ζ(Wt))t∈[0,1]
is a normalized Brownian excursion. Theorem 4 of [7] (see also Theorem 2 of [9]) implies that the law of the pair(Cθ(2kt)√

2k
,

(
9
8

)1/4
Vθ(2kt)
k1/4

)
t∈[0,1]

under ρyk (· ||θ| = k) converges as k goes to infinity to the law of (et,Ŵt)t∈[0,1] in the sense of weak convergence
of probability measures on C([0, 1],R2). If s > 0 is fixed, we can apply the previous convergence to integers k of
the form k = bsn2c, noting that (9/8bsn2c)1/4xn converges to (2s)−1/4z under our assumptions, and we get

ρxn

(
1{minR(V (n)

θ
)>0} ϕ

(
C

(n)
θ , V

(n)
θ ,

2bsn2c
n2

) ∣∣∣ |θ| = bsn2c
)

−→
n→∞

N(1)
(2s)−1/4z

(
1{minR>0} ϕ

(√
2sζ(./2s), (2s)1/4Ŵ(./2s), 2s

))
.

To justify the latter convergence, we also use the property

N(1)
(2s)−1/4z

(
inf
t∈R+

Ŵt = 0
)

= 0,

which follows from the fact that the law of the infimum of a Brownian snake driven by a normalized Brownian
excursion e has no atoms: see the beginning of the proof of Lemma 7.1 in [14].

A scaling argument then gives

N(1)
(2s)−1/4z

(
1{minR>0} ϕ

(√
2sζ(./2s), (2s)1/4Ŵ(./2s), 2s

))
= N(2s)

z

(
1{minR>0} ϕ

(
ζ, Ŵ , 2s

))
and thus we have proved, for every fixed s > 0,

(12) ρxn

(
1{minR(V (n)

θ
)>0} ϕ

(
C

(n)
θ , V

(n)
θ ,

2bsn2c
n2

) ∣∣∣ |θ| = bsn2c
)
−→
n→∞

N(2s)
z

(
1{minR>0} ϕ

(
ζ, Ŵ , 2s

))
.

From the explicit formula for wl, we have wl ≥ 4/3 for every l > 0. Using also (2), we see that the following
bound holds for all sufficiently large n: for every s ∈ [η,K],

(13) 2n3w−1
xn ρxn(|θ| = bsn2c) ρxn

(
1{minR(V (n)

θ
)>0} ϕ

(
C

(n)
θ , V

(n)
θ ,

2|θ|
n2

) ∣∣∣ |θ| = bsn2c
)
≤ 3

2
√
πη3
‖ϕ‖∞,

where ‖ϕ‖∞ is the supremum of |ϕ|.
We can use (2), (12), (13) (to justify dominated convergence) and the fact that wxn → 2 as n→∞ to see

that the quantity (11) converges as n→∞ to∫ K

η

ds
2
√
πs3

N(2s)
z

(
1{minR>0} ϕ

(
ζ, Ŵ , 2s

))
=
∫ K

0

ds
2
√
πs3

N(2s)
z

(
1{minR>0} ϕ

(
ζ, Ŵ , 2s

))
.

Since this holds for every K > η, we get by using (5) that

lim inf
n→∞

n ρ̂xn

(
ϕ
(
C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))
≥ 2 Nz

(
1{minR>0} ϕ

(
ζ, Ŵ , σ

))
.

Similar arguments, using also the estimate (3), lead to

lim sup
n→∞

n ρ̂xn

(
ϕ
(
C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))
≤
∫ K

η

ds
2
√
πs3

N(2s)
z

(
1{minR>0} ϕ

(
ζ, Ŵ , 2s

))
+ C√

K
‖ϕ‖∞.

with a constant C that does not depend on K. By letting K →∞, we get

lim sup
n→∞

n ρ̂xn

(
ϕ
(
C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))
≤ 2 Nz

(
1{minR>0} ϕ

(
ζ, Ŵ , σ

))
which completes the proof. �
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We now state a technical lemma, which will play an important role in the proof of Theorem 5. We need to
introduce some notation. For every integer n ≥ 1 and every h > 0, we set

τ (L,n,h) = bnhc
n2 +

bnhc∑
i=0

2n−2|Li|.

This is the time needed in the rescaled contour of the left side of the spine to explore the trees Li, 0 ≤ i ≤ bnhc.
Furthermore, for every integer k ≥ 0, we write Jk for the unique index i such that the vertex visited at time k in
the contour of the left side of the spine belongs to Li.
Lemma 1. Let h > 0. For every κ > 0, we can find δ > 0 sufficiently small so that, for all large integers n,

P

[
sup

0≤u<v≤τ(L,n,h), v−u<δ

1
n

∣∣Jbn2uc − Jbn2vc
∣∣ > κ

]
< κ.

Remark. If we use linear interpolation to define Ju for every real u ≥ 0, Lemma 1 just says that the functions
u −→ n−1Jn2(u∧τ(L,n,h)) are uniformly equi-continuous in probability.
Proof. To simplify notation, we write pn(κ, δ) for the probability that is bounded in the lemma. Suppose that
there exist u and v with 0 ≤ u < v ≤ τ (L,n,h) and v − u < δ, such that |Jbn2uc − Jbn2vc| > nκ. Notice that all
vertices belonging to the subtrees Li for indices i such that Jbn2uc < i < Jbn2vc are visited by the contour of the
left side of the spine between times bn2uc and bn2vc. Hence

2
∑

Jbn2uc<i<Jbn2vc

|Li| ≤ bn2vc − bn2uc ≤ n2δ + 1.

Since |Jbn2uc − Jbn2vc| > nκ, we can find an integer j of the form j = lbnκ/2c, with 1 ≤ l ≤ nh/bnκ/2c, such
that the inequalities Jbn2uc < i < Jbn2vc hold for i = j + 1, j + 2, . . . , j + bnκ/2c.

It follows from the preceding considerations that

pn(κ, δ) ≤ P

 ⋃
1≤l≤nh/bnκ/2c

2
bnκ/2c∑
i=1

|Llbnκ/2c+i| ≤ n2δ + 1




≤ P

 ⋃
1≤l≤nh/bnκ/2c

bnκ/2c⋂
i=1

{
2|Llbnκ/2c+i| ≤ n2δ + 1

} .
From Proposition 1 and the fact that a nine-dimensional Bessel process does not return to 0, we can fix η > 0

and A > 0 such that
P
[
η
√
n ≤ Xi ≤ A

√
n, ∀i ∈ {bnκ/2c, . . . , bnhc+ bnκ/2c}

]
> 1− κ/2.

It follows that

pn(κ, δ) ≤
κ

2
+

∑
1≤l≤nh/bnκ/2c

P

bnκ/2c⋂
i=1

{
2|Llbnκ/2c+i| ≤ n2δ + 1, η

√
n ≤ Xlbnκ/2c+i ≤ A

√
n
}

≤ κ

2
+ nh

bnκ/2c

(
sup

η
√
n≤x≤A

√
n

ρ̂x
(
2|θ| ≤ n2δ + 1

))bnκ/2c
using the conditional distribution of the trees Li given the labels on the spine (Theorem 4). We can find a large
constant K > 0 such that, for every sufficiently large n,

κ

2
+ nh

bnκ/2c

(
1− K

n

)bnκ/2c
< κ.

To complete the proof of the lemma, we just have to observe that we can choose δ > 0 sufficiently small so that,
for all n large,

inf
η
√
n≤x≤A

√
n
ρ̂x
(
2|θ| > n2δ + 1

)
≥ K

n
.

This is indeed a consequence of Proposition 3, together with the fact that, for every η > 0,
lim
δ↓0

Nη (σ > δ,minR > 0) = Nη (minR > 0) = +∞.

�
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We denote the rescaled contour functions of the labeled trees Li (resp. Ri) by C(n)
Li

and V (n)
Li

(resp. C(n)
Ri

and
V

(n)
Ri

), in agreement with the notation introduced after Theorem 5. To simplify notation we also put

X
(n)
t =

√
3
2n
Xbntc, t ≥ 0.

Proposition 4. Fix ε > 0 and h0 > 0. Let φ : D(R+) → R and ψ(L), ψ(R) : R+ × C(R+,R)2 × R+ → R+ be
continuous functions. Assume that φ is bounded, and that ψ(L) and ψ(R) are Lipschitz with respect to the first
variable and such that ψ(L)(h, f, g, s) = 0 and ψ(R)(h, f, g, s) = 0 if h ≥ h0 or s ≤ ε. Then

E

[
φ
(
X(n)

)
exp

(
−
∞∑
i=0

ψ(L)
(
i

n
, C

(n)
Li
, V

(n)
Li

,
2|Li|
n2

))
exp

(
−
∞∑
i=0

ψ(R)
(
i

n
, C

(n)
Ri
, V

(n)
Ri

,
2|Ri|
n2

))]

−→
n→∞

E

[
φ (Z) exp

(
−2
∫ ∞

0
dhNZh

(
1{minR>0}

(
1− exp−ψ(L)

(
h, ζ, Ŵ , σ

))))

× exp
(
−2
∫ ∞

0
dhNZh

(
1{minR>0}

(
1− exp−ψ(R)

(
h, ζ, Ŵ , σ

))))]
,

where Z is a nine-dimensional Bessel process started from 0.

Remark. We can interpret the limit in the theorem in terms of Poisson point processes. Conditionally given Z,
let (P(L),P(R)) be a pair of independent Poisson point processes on R+ × Ω with intensity given by (7). Then,
the exponential formula for Poisson point processes implies that the limit appearing in the proposition is equal to

E

[
φ (Z) exp

(
−
∫
ψ(L)

(
h, ζ.(ω), Zh + Ŵ.(ω), σ(ω)

)
P(L)(dh,dω)

)

× exp
(
−
∫
ψ(R)

(
h, ζ.(ω), Zh + Ŵ.(ω), σ(ω)

)
P(R)(dh,dω)

)]
.

Proof. We have

E

[
φ
(
X(n)

)
exp

(
−
∞∑
i=0

ψ(L)
(
i

n
, C

(n)
Li
, V

(n)
Li

,
2|Li|
n2

))
exp

(
−
∞∑
i=0

ψ(R)
(
i

n
, C

(n)
Ri
, V

(n)
Ri

,
2|Ri|
n2

))]

= E

[
φ
(
X(n)

) ∞∏
i=0

E

[
exp−ψ(L)

(
i

n
, C

(n)
Li
, V

(n)
Li

,
2|Li|
n2

) ∣∣∣∣Xi

]

×
∞∏
i=0

E

[
exp−ψ(R)

(
i

n
, C

(n)
Li
, V

(n)
Li

,
2|Ri|
n2

) ∣∣∣∣Xi

]]
(14)

using the independence of the subtrees Li and Ri given the labels on the spine (Theorem 4).
Let us study the contribution of the left side of the spine in (14). By Theorem 4 again,

∞∏
i=0
E

[
exp−ψ(L)

(
i

n
, C

(n)
Li
, V

(n)
Li

,
2|Li|
n2

) ∣∣∣∣Xi

]

=
∞∏
i=0

ρ̂Xi

(
exp−ψ(L)

(
i

n
, C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))

= exp
∞∑
i=0

log ρ̂Xi
(

exp−ψ(L)
(
i

n
, C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))
= expn

∫ ∞
0

dt log
(

1− ρ̂Xbntc
(

1− exp−ψ(L)
(
bntc
n

,C
(n)
θ , V

(n)
θ ,

2|θ|
n2

)))
.(15)

By Proposition 1 and the Skorokhod representation theorem we can find, for every n ≥ 1, a process
(
X̃n
k

)
k≥0

having the same distribution as (Xk)k≥0, and a nine-dimensional Bessel process Z started from 0, such that

almost surely, for every a > 0,
(√

3
2nX̃

n
bntc

)
0≤t≤a

converges uniformly to (Zt)0≤t≤a as n goes to infinity. Using
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the Lipschitz property of ψ(L) in the first variable, together with the fact that ψ(L)(h, f, g, s) = 0 if s ≤ ε, we
have, for some constant K,∣∣∣n ρ̂

X̃nbntc

(
1− exp−ψ(L)

(bntc
n

,C
(n)
θ , V

(n)
θ ,

2|θ|
n2

))
− n ρ̂

X̃nbntc

(
1− exp−ψ(L)

(
t, C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))∣∣∣
≤ K ρ̂

X̃nbntc
(|θ| ≥ bεn2c/2) ≤ 2K ρ0(|θ| ≥ bεn2c/2),(16)

which tends to 0 as n→∞. We then deduce from Proposition 3 that, for every fixed t > 0,

n ρ̂
X̃nbntc

(
1− exp−ψ(L)

(
t, C

(n)
θ , V

(n)
θ ,

2|θ|
n2

))
−→
n→∞

2NZt
(

1{minR>0}

(
1− exp−ψ(L)

(
t, ζ, Ŵ , σ

)))
, a.s.(17)

From our assumptions on ψ(L), we have for every t > 0 and n ≥ 0:

nρ̂
X̃nbntc

(
1− exp−ψ(L)

(
bntc
n

,C
(n)
θ , V

(n)
θ ,

2|θ|
n2

))
= nρ̂

X̃nbntc

(
1{t≤h0+1}1{|θ|≥bεn2c/2}

(
1− exp−ψ(L)

(
bntc
n

,C
(n)
θ , V

(n)
θ ,

2|θ|
n2

)))
≤ 1{t≤h0+1} nρ̂X̃nbntc

(
|θ| ≥ bεn2c/2

)
.

It then follows from (3) and the bound ρ̂l ≤ 2ρl that there exists a constant K ′ > 0, which does not depend on t,
such that for every t > 0 and every n ≥ 1 one has:

nρ̂
X̃nbntc

(
1− exp−ψ(L)

(
bntc
n

,C
(n)
θ , V

(n)
θ ,

2|θ|
n2

))
≤ K ′1{t≤h0+1}.

Thus, we can use (16), (17) and dominated convergence to see that the right-hand side of (15), with X replaced
by X̃n, converges a.s. to

exp−2
∫ ∞

0
dtNZt

(
1{minR>0}

(
1− exp−ψ(L)

(
t, ζ, Ŵ , σ

)))
as n→∞. A similar analysis applies to the contribution of the right side of the spine in (14). Using the fact
that X̃n has the same distribution as X (so that the right-hand side of (14) coincides with a similar expectation
involving X̃n) we conclude that

E

[
φ
(
X(n)

)
exp

(
−
∞∑
i=0

ψ(L)
(
i

n
, C

(n)
Li
, V

(n)
Li

,
2|Li|
n2

))
exp

(
−
∞∑
i=0

ψ(R)
(
i

n
, C

(n)
Ri
, V

(n)
Ri

,
2|Ri|
n2

))]

−→
n→∞

E

[
φ(Z) exp−2

∫ ∞
0

dtNZt
(

1{minR>0}

(
1− exp−ψ(L)

(
t, ζ, Ŵ , σ

)))
× exp−2

∫ ∞
0

dtNZt
(

1{minR>0}

(
1− exp−ψ(R)

(
t, ζ, Ŵ , σ

)))]
.

This completes the proof. �

Fix h0 > 0 and ε > 0. Let P(L,n,h0,ε) be the finite point measure on [0, h0]× C(R+,R)2 × R+ defined by

P(L,n,h0,ε) =
∑
i≥0

1{ in≤h0}1{σ(C(n)
Li

)≥ε}δ in ⊗ δ(C(n)
Li

,V
(n)
Li

) ⊗ δ 2|Li|
n2

.

We denote by P(R,n,h0,ε) the point measure defined similarly for the right side of the spine. The random variables
P(L,n,h0,ε) and P(R,n,h0,ε) take values in the space

E :=Mf

(
R+ × C(R+,R)2 × R+

)
of all finite measures on R+ × C(R+,R)2 × R+, which is a Polish space.

Let Z be a nine-dimensional Bessel process started at 0. As in the preceding proof we consider two point
processes P(L) and P(R) on R+ ×Ω, which conditionally given Z are independent and Poisson with intensity
given by (7). Then we define a random element P(L,∞,h0,ε) of E by∫

P(L,∞,h0,ε)(dhdfdgds)F (h, f, g, s) =
∫
P(L)(dhdω)F (h, ζ(ω), Zh + Ŵ (ω), σ(ω))1{h≤h0,σ(ω)≥ε}.
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We similarly define P(R,∞,h0,ε) from the point process P(R).

Corollary 1. For every fixed ε > 0 and h0 > 0,(
X(n),P(L,n,h0,ε),P(R,n,h0,ε)

)
−→
n→∞

(
Z,P(L,∞,h0,ε),P(R,∞,h0,ε)

)
,

in the sense of convergence in distribution for random variables with values in D(R+)× E × E.

Proof. Let us first show that the sequence of the laws of P(L,n,h0,ε) is tight. We will verify that, for every α > 0,
there is a real number Mα ≥ 0 and a compact subset Kα of [0, h0]×C(R+,R)2×R+ such that, for every integer
n ≥ 1, with probability at least 1−α, the measure P(L,n,h0,ε) has total mass bounded by Mα and is supported on
Kα. Since the set of all finite measures supported on Kα with total mass bounded by Mα is compact, Prohorov’s
theorem will imply the desired tightness.

Since for every x ≥ 1,

ρ̂x(σ(C(n)
θ ) ≥ ε) ≤ 2ρx(σ(C(n)

θ ) ≥ ε) = 2ρ0(2|θ| ≥ εn2) = O(n−1)

a first moment calculation shows that we can find a constant Mα such that, for every n ≥ 1,

P
[∣∣∣P(L,n,h0,ε)

∣∣∣ ≥Mα

]
<
α

2
.

A similar argument gives the existence of a constant Hα large enough so that, for every n,

P
[
P(L,n,h0,ε)([0, h0]× C(R+,R)2×]Hα,∞[) > 0

]
<
α

4
.

We will thus take the compact set Kα of the form

Kα = [0, h0]×Kα × [0, Hα].

where Kα will be a suitable compact subset of C(R+,R)2. To construct Kα, we rely on the convergence results
for discrete snakes. We first note that, thanks to the convergence in distribution of the rescaled processes(√

3
2nXbntc

)
t≥0

, we can find a constant Aα such that, for every n ≥ 1,

P

[
sup

0≤i≤bh0nc
Xi ≥ Aα

√
n

]
< α/8.

Theorem 4 of [7], or Theorem 2 of [9], implies that the collection of the distributions of the processes (C(n)
θ , V

(n)
θ )

under the probability measures ρx
(
· | εn2 ≤ |θ| ≤ Hαn

2), for n ≥ 1 and x varying in [0, Aα
√
n], is tight (of

course the choice of x here just amounts to a translation of the labels). In particular, we can find compact
subsets K of C(R+,R)2 for which

ρx

(
(C(n)

θ , V
(n)
θ ) /∈ K | εn2 ≤ |θ| ≤ Hαn

2
)

is arbitrarily small, uniformly in x ∈ [0, Aα
√
n] and n ≥ 1. Using once again the bound ρ̂l ≤ 2ρl and the estimate

(3), we can thus find a compact subset Kα of C(R+,R)2 such that

(bnh0c+ 1)× ρ̂x
({

(C(n)
θ , V

(n)
θ ) /∈ Kα

}
∩
{
εn2 ≤ |θ| ≤ Hαn

2}) ≤ α/8,
for every x ∈ [0, Aα

√
n] and n ≥ 1. From this last bound and a first moment calculation, we get

P
[{

sup
0≤i≤bh0nc

Xi ≤ Aα
√
n
}
∩
{
P(L,n,h0,ε)([0, h0]×Kcα × [0, Hα]) > 0

}]
≤ α/8.

We take Kα = [0, h0]×Kα × [0, Hα] as already mentioned, and by putting together the previous estimates, we
arrive at

P
[{∣∣∣P(L,n,h0,ε)

∣∣∣ ≤Mα

}
∩
{
P(L,n,h0,ε)(Kc

α) = 0
}]
≥ 1− α.

This completes the proof of tightness.
The same arguments also give the tightness of the sequence of the laws of P(R,n,h0,ε). Therefore, we know

that the sequence of the laws of
(
X(n),P(L,n,h0,ε),P(R,n,h0,ε)

)
is tight.

Proposition 4, and the remark following the statement of this proposition, now show that

E
[
Ψ
(
X(n),P(L,n,h0,ε),P(R,n,h0,ε)

)]
−→
n→∞

E
[
Ψ
(
Z,P(∞,h0,ε)

L ,P(∞,h0,ε)
R

)]
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for all functions Ψ of the type

Ψ(u,m1,m2) = φ(u) exp
(
−
∫
ψ(L) dm1 −

∫
ψ(R) dm2

)
,

with φ, ψ(L) and ψ(R) as in Proposition 4. Once we know that the sequence of the laws of
(
X(n),P(L,n,h0,ε),P(R,n,h0,ε)

)
is tight, this suffices to get the statement of Corollary 1. �

Proof of Theorem 5. Throughout the proof, h0 > 0 is fixed. We consider as previously a triplet (Z,P(L),P(R))
such that Z is a nine-dimensional Bessel process started at 0, and conditionally given Z, (P(L),P(R)) is a pair of
independent Poisson point processes on R+ × Ω with intensity given by (7). We assume that the process W (L),
resp. W (R) is then determined from the pair (Z,P(L)), resp. (Z,P(R)), in the way explained in subsect. 3.1. In
agreement with this subsection, we also use the notation

τ (L)
u = sup

{
s ≥ 0 : ζ(L)

s ≤ u
}

for every u ≥ 0.
Let us fix ε > 0. For every n > 0, let C(L,n,h0,ε) denote the concatenation of the functions

(
i
n + C

(n)
Li

(t)
)

0≤t<2n−2|Li|
,

for all integers i such that 2n−2|Li| > ε and i ≤ nh0. The random function C(L,n,h0,ε) is defined and càdlàg on
the time interval [0, τ (L,n,h0,ε)[, where

(18) τ (L,n,h0,ε) =
∑
i≤nh0

1{2n−2|Li|>ε}2n
−2|Li|.

We extend the function t→ C(L,n,h0,ε) to [0,∞[ by setting C(L,n,h0,ε)(t) = bnh0c
n for every t ∈ [τ (L,n,h0,ε),∞[.

We denote the rescaled contour function of the left side of the spine of the uniform infinite well-labeled tree,
up to and including its subtree Lbnh0c at generation bnh0c, by C(L,n,h0). The function t→ C(L,n,h0)(t) is defined
and continuous over [0, τ (L,n,h0)], where as previously

(19) τ (L,n,h0) = bnh0c
n2 +

∑
i≤nh0

2n−2|Li|.

Again, we extend C(L,n,h0) to [0,∞[ by setting C(L,n,h0)(t) = bnh0c
n if t ≥ τ (L,n,h0). Note that we have also

τ (L,n,h0) = sup
{
t ≥ 0 : 1

n
C(L)(n2t) ≤ bnh0c

n

}
and that C(L,n,h0)(t) = 1

nC
(L)(n2(t∧ τ (L,n,h0))) for every t ≥ 0. The difference between C(L,n,h0) and C(L,n,h0,ε)

comes from the time spent on the spine by the contour of θ and the contribution of small trees. See Fig. 4 for
an illustration of the processes C(L,n,h0) and C(L,n,h0,ε).

Similarly, we denote by V (L,n,h0,ε) the concatenation of the functions
(
V

(n)
Li

(t)
)

0≤t<2n−2|Li|
for all integers i

such that 2n−2|Li| > ε and i ≤ nh0, and we extend this function to [0,∞[ by setting V (L,n,h0,ε)(t) = X
(n)
bnh0c/n

for t ≥ τ (L,n,h0,ε). We define the process V (L,n,h0) analogously to C(L,n,h0), replacing the contour function by
the spatial contour function.

We define in the same way the processes C(R,n,h0,ε), V (R,n,h0,ε), C(R,n,h0) and V (R,n,h0) for the right side of
the spine.

Finally, let P(L,∞,h0,ε) and P(R,∞,h0,ε) be the point measures on R+×C(R+,R)2×R+ defined from P(L) and
P(R) in the way explained before Corollary 1. We define four processes C(L,∞,h0,ε), V (L,∞,h0,ε), C(R,∞,h0,ε) and
V (R,∞,h0,ε) by imitating the preceding construction but using the point measures P(L,∞,h0,ε) and P(R,∞,h0,ε)

instead of P(L,n,h0,ε) and P(R,n,h0,ε). More explicitly, if (r1, (f1, g1), s1), (r2, (f2, g2), s2), etc. are the atoms of
P(L,∞,h0,ε) listed in such a way that r1 < r2 < · · · , the process C(L,∞,h0,ε) is obtained by concatenating the
functions (r1 + f1(t))0≤t<s1 , (r2 + f2(t))0≤t<s2 , etc., and the process V (L,∞,h0,ε) is obtained by concatenating
the functions (g1(t))0≤t<s1 , (g2(t))0≤t<s2 , etc. The random functions C(L,∞,h0,ε) and V (L,∞,h0,ε) are a priori
only defined on a finite interval [0, τ (L,ε)

h0
[, but we extend them to [0,∞[ by setting(

C
(L,∞,h0,ε)
t , V

(L,∞,h0,ε)
t

)
= (h0, Zh0)

for every t ≥ τ (L,ε)
h0

.
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C(L,n,h0,ε)

t

t

C(L,n,h0)

2
n

2
n

bnh0c
n

bnh0c
n

bnh0c−3
n

bnh0c−3
n

Lbnh0c

Lbnh0cLbnh0c−3

Lbnh0c−3

L0 L2

≤ ε ≤ ε ≤ ε

L2L0

τ (L,n,h0,ε)

τ (L,n,h0)

Figure 4. The processes C(L,n,h0) and C(L,n,h0,ε).

Using Corollary 1 and the Skorokhod representation theorem, we may find, for every n ≥ 1, a triplet(
X̃(n), P̃(L,n,h0,ε), P̃(R,n,h0,ε)

)
having the same law as the triplet

(
X(n),P(L,n,h0,ε),P(R,n,h0,ε)

)
and such that

(20)
(
X̃(n), P̃(L,n,h0,ε), P̃(R,n,h0,ε)

)
−→
n→∞

(
Z,P(L,∞,h0,ε),P(R,∞,h0,ε)

)
almost surely. We can order the atoms of the point measures considered in (20) according to their first
component. From the convergence (20), we deduce that almost surely for n large enough the measures P̃(L,n,h0,ε)

and P(L,∞,h0,ε) have the same number of atoms, and the i-th atom of P̃(L,n,h0,ε) converges as n → ∞ to the
i-th atom of P(L,∞,h0,ε). The same property holds for the right side of the spine.

With the point measure P̃(L,n,h0,ε) , we can associate random functions C̃(L,n,h0,ε), Ṽ (L,n,h0,ε) defined in the
same way as C(L,n,h0,ε), V (L,n,h0,ε) were defined from P(L,n,h0,ε). Similarly, with the point measure P̃(R,n,h0,ε)

we associate the random functions C̃(R,n,h0,ε), Ṽ (R,n,h0,ε). From the almost sure convergence of the atoms of
P̃(L,n,h0,ε), resp. P̃(R,n,h0,ε), towards the corresponding atoms of P(L,∞,h0,ε), resp. P(R,∞,h0,ε), it is then an
easy exercise, using the definition of the Skorokhod topology, to check that we have almost surely

(21)
(
C̃(L,n,h0,ε), Ṽ (L,n,h0,ε)

)
−→
n→∞

(
C(L,∞,h0,ε), V (L,∞,h0,ε)

)
and similarly

(22)
(
C̃(R,n,h0,ε), Ṽ (R,n,h0,ε)

)
−→
n→∞

(
C(R,∞,h0,ε), V (R,∞,h0,ε)

)
in the sense of the Skorokhod topology on D(R2).

Let dSk be a metric inducing the Skorokhod topology on D(R2). We may assume that dSk((f1, g1), (f2, g2)) ≤
‖f1 − f2‖∞ + ‖g1 − g2‖∞, where ‖f‖∞ = sup{|f(t)| : t ≥ 0} ≤ ∞.

Then let F be a bounded Lipschitz function on D(R2)× D(R2). From (21) and (22), we have

E
[
F
((
C(L,n,h0,ε), V (L,n,h0,ε)

)
,
(
C(R,n,h0,ε), V (R,n,h0,ε)

))]
= E

[
F
((
C̃(L,n,h0,ε), Ṽ (L,n,h0,ε)

)
,
(
C̃(R,n,h0,ε), Ṽ (R,n,h0,ε)

))]
−→
n→∞

E
[
F
((
C(L,∞,h0,ε), V (L,∞,h0,ε)

)
,
(
C(R,∞,h0,ε), V (R,∞,h0,ε)

))]
.(23)
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Our goal is to prove that

E
[
F
((
C(L,n,h0), V (L,n,h0)

)
,
(
C(R,n,h0), V (R,n,h0)

))]
−→
n→∞

E
[
F
((
C(L,∞,h0), V (L,∞,h0)

)
,
(
C(R,∞,h0), V (R,∞,h0)

))]
(24)

where (C(L,∞,h0)(t), V (L,∞,h0)(t)) = (ζ(L)
t∧τ(L)

h0

, Ŵ
(L)
t∧τ(L)

h0

), and the processes (C(R,∞,h0)(t), V (R,∞,h0)(t)) are defined

in a similar manner. As we will explain later, the statement of Theorem 5 easily follows from the convergence
(24).

In order to derive (24) from (23), we use the next lemma.

Lemma 2. (i) For every η > 0, we have, for all ε > 0 small enough,

lim sup
n→∞

P

[
sup
t≥0

∣∣∣C(L,n,h0,ε)(t)− C(L,n,h0)(t)
∣∣∣ > η

]
< η

and
lim sup
n→∞

P

[
sup
t≥0

∣∣∣V (L,n,h0,ε)(t)− V (L,n,h0)(t)
∣∣∣ > η

]
< η.

(ii) We have for every η > 0,

lim
ε→0

P

[
sup
t≥0

∣∣∣C(L,∞,h0,ε)(t)− C(L,∞,h0)(t)
∣∣∣ > η

]
= 0

and
lim
ε→0

P

[
sup
t≥0

∣∣∣V (L,∞,h0,ε)(t)− V (L,∞,h0)(t)
∣∣∣ > η

]
= 0.

Let us postpone the proof of Lemma 2 and complete the proof of Theorem 5. Fix δ > 0. From part (ii) of the
lemma (and the obvious analogue of this lemma for processes attached to the right side of the spine), and our
assumptions on F , we can choose ε0 > 0 such that, for every ε ∈]0, ε0[,

E
[∣∣∣F ((C(L,∞,h0), V (L,∞,h0)

)
,
(
C(R,∞,h0), V (R,∞,h0)

))
− F

((
C(L,∞,h0,ε), V (L,∞,h0,ε)

)
,
(
C(R,∞,h0,ε), V (R,∞,h0,ε)

))∣∣∣] ≤ δ .
From part (i) of the lemma, and choosing ε even smaller if necessary, we have also

lim sup
n→∞

E
[∣∣∣F ((C(L,n,h0), V (L,n,h0)

)
,
(
C(R,n,h0), V (R,n,h0)

))
− F

((
C(L,n,h0,ε), V (L,n,h0,ε)

)
,
(
C(R,n,h0,ε), V (R,n,h0,ε)

))∣∣∣] ≤ δ .
Hence, using also (23),

lim sup
n→∞

E
[∣∣∣F ((C(L,n,h0), V (L,n,h0)

)
,
(
C(R,n,h0), V (R,n,h0)

))
− F

((
C(L,∞,h0), V (L,∞,h0)

)
,
(
C(R,∞,h0), V (R,∞,h0)

))∣∣∣] ≤ 2δ .

Since δ was arbitrary, this completes the proof of (24). We have thus obtained((
C(L,n,h0), V (L,n,h0)

)
,
(
C(R,n,h0), V (R,n,h0)

))
(d)−→
n→∞

((
C(L,∞,h0), V (L,∞,h0)

)
,
(
C(R,∞,h0), V (R,∞,h0)

))
.(25)

However, the pair (C(L,n,h0), V (L,n,h0)) coincides with the process ( 1
nC

(L)(n2·),
√

3
2nV

(L)(n2·)) stopped at time

τ (L,n,h0), and the pair (C(L,∞,h0), V (L,∞,h0)) coincides with the process (ζ(L), Ŵ (L)) stopped at time τ (L)
h0

. Simple
arguments (using the fact that (25) holds for every h0 > 0) show that τ (L,n,h0) must converge in distribution to
τ

(L)
h0

, and that this convergence holds jointly with (25).
Analogous properties hold for the pairs (C(R,n,h0), V (R,n,h0)) and (C(R,∞,h0), V (R,∞,h0)), and for the random

times τ (R,n,h0) and τ (R)
h0

defined in an obvious manner for the right side of the spine. Since τ (L)
h0

and τ (R)
h0

both
increase to ∞ as h0 ↑ ∞, the statement of Theorem 5 follows from the convergence (25). �



SCALING LIMITS FOR THE UNIFORM INFINITE QUADRANGULATION 19

Proof of Lemma 2. We start by proving (ii). Write the atoms of P(L) in the form

P(L) =
∑
i∈I

δ(ri,ωi)

and notice that, for every u ≥ 0,
τ (L)
u =

∑
i∈I

1{ri≤u} σ(ωi).

The construction of W (L) from the point measure P(L) (cf subsect. 3.1) shows that the pair (ζ(L), Ŵ (L)) is
obtained by concatenating (in the appropriate order given by the values of ri) the functions(

ri + ζ·(ωi), Zri + Ŵ·(ωi)
)
.

On the other hand, the definition of the point measure P(L,∞,h0,ε), and the construction of the pair (C(L,∞,h0,ε), V (L,∞,h0,ε))
from this point measure, show that the pair (C(L,∞,h0,ε), V (L,∞,h0,ε)) is obtained by concatenating the same
functions, but only for those indices i such that ri ≤ h0 and σ(ωi) ≥ ε. In other words, if we define for every
t ≥ 0,

A
(L,h0,ε)
t =

∫ t

0
ds
∑
i∈I

1{ri≤h0,σ(ωi)≥ε} 1{τ(L)
ri−

<s<τ
(L)
ri
}

and
γ

(L,h0,ε)
t = inf

{
s ≥ 0 : A(L,h0,ε)

s > t
}
∧ τ (L)

h0
,

we have

(26)
(
C(L,∞,h0,ε)(t), V (L,∞,h0,ε)(t)

)
=
(
ζ
(L)
γ

(L,h0,ε)
t

, Ŵ
(L)
γ

(L,h0,ε)
t

)
,

for every t ≥ 0. It is however immediate that

A
(L,h0,ε)
t −→

ε→0
t ∧ τ (L)

h0

and the convergence is uniform in t by a monotonicity argument. It follows that

γ
(L,h0,ε)
t −→

ε→0
t ∧ τ (L)

h0

again uniformly in t. Part (ii) of the lemma now follows from (26).
Let us turn to the proof of (i), which is more delicate. The general idea again is that the process C(L,n,h0,ε)

can be written as a time change of C(L,n,h0) (this should be obvious from Fig. 4), and that this time change
is close to the identity when ε is small. We start by estimating the difference τ (L,n,h0) − τ (L,n,h0,ε). Let us fix
δ > 0. If n is large enough so that h0/n < δ/2, we have, using (18) and (19),

P
[
τ (L,n,h0) − τ (L,n,h0,ε) ≥ δ

]
= P

[bnh0c
n2 +

∑
i≤nh0

1{2n−2|Li|≤ε}2n
−2|Li| ≥ δ

]
≤ 2
δ
E
[ ∑
i≤nh0

1{2n−2|Li|≤ε}2n
−2|Li|

]
= 2
δ
E
[ ∑
i≤nh0

ρ̂Xi
(
1{2n−2|θ|≤ε}2n−2|θ|

) ]
≤ 4(bnh0c+ 1)

δ
ρ0
(
1{2n−2|θ|≤ε}2n−2|θ|

)
≤ K(h0, δ) ε1/2(27)

where the last bound is an easy consequence of (2), with a constant K(h0, δ) that depends only on h0 and δ.
We now compare C(L,n,h0,ε) and C(L,n,h0). Note that we can write C(L,n,h0,ε)(t) = C(L,n,h0)(At), where the

time change At is such that 0 ≤ At− t ≤ τ (L,n,h0)− τ (L,n,h0,ε) (a brief look at Fig. 4 should convince the reader).
It follows that

(28) sup
t≥0

∣∣∣C(L,n,h0,ε)(t)− C(L,n,h0)(t)
∣∣∣ ≤ sup

|t1−t2|≤τ(L,n,h0)−τ(L,n,h0,ε)

∣∣∣C(L,n,h0) (t1)− C(L,n,h0) (t2)
∣∣∣ .
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Recall that the function C(L,n,h0) is constant on [τ (L,n,h0),∞[ by construction. In order to bound the left-hand
side of (28), we fix t1 ≤ t2 ≤ τ (L,n,h0) such that t2 − t1 ≤ τ (L,n,h0) − τ (L,n,h0,ε). If there exists 0 ≤ i ≤ nh0 such
that

τ (L,n,(i−1)/n) + n−2 ≤ t1 ≤ t2 < τ (L,n,i/n) + n−2,

(with the convention τ (L,n,−1/n) = −n−2) then this means that the times t1 and t2 correspond, in the time scale
of the rescaled contour process, to the exploration of the same tree Li, or perhaps of the edge of the spine above
the root of Li. In that case we can clearly bound

(29)
∣∣∣C(L,n,h0)(t1)− C(L,n,h0)(t2)

∣∣∣ ≤ sup
|u−v|≤τ(L,n,h0)−τ(L,n,h0,ε)

∣∣∣C(n)
Li

(u)− C(n)
Li

(v)
∣∣∣+ 1

n
.

On the other hand, if there exists no such i, then we can find 0 ≤ i < j ≤ nh0 such that

τ (L,n,(i−1)/n) + n−2 ≤ t1 < τ (L,n,i/n) + n−2 ≤ τ (L,n,(j−1)/n) + n−2 ≤ t2 < τ (L,n,j/n) + n−2

and we have:∣∣∣C(L,n,h0)(t1)− C(L,n,h0)(t2)
∣∣∣

≤
∣∣∣C(n)
Lj

(
t2 − τ (L,n,(j−1)/n) − n−2

)
− C(n)

Li

(
t1 − τ (L,n,(i−1)/n) − n−2)

)∣∣∣+ j − i+ 1
n

,

where we recall the convention that C(n)
Li

(s) = 0 for s ≥ 2|Li|/n2. Now note that i = Jbn2t1c and j = Jbn2t2c,
with the notation introduced before Lemma 1. We obtain∣∣∣C(L,n,h0)(t1)− C(L,n,h0)(t2)

∣∣∣
≤
Jbn2t2c − Jbn2t1c + 1

n
+ max

{
C

(n)
Li

(
t1 − τ (L,n,(i−1)/n) + n−2

)
, C

(n)
Lj

(
t2 − τ (L,n,(j−1)/n) + n−2

)}
(30)

Put γn,ε = τ (L,n,h0) − τ (L,n,h0,ε) to simplify notation. From (28) and the bounds (29) and (30), we get

sup
t≥0

∣∣∣C(L,n,h0,ε)(t)− C(L,n,h0)(t)
∣∣∣

≤ sup
u,v≤τ(L,n,h0),|v−u|≤γn,ε

|Jbn2vc − Jbn2uc|+ 1
n

+ sup
0≤k≤bnh0c

sup
|v−u|≤γn,ε

∣∣∣C(n)
Lk

(v)− C(n)
Lk

(u)
∣∣∣ .(31)

We write β1(n, ε) and β2(n, ε) for the two terms in the sum of the right-hand side of (31). We will use Lemma 1
to handle β1(n, ε), but we need a different argument for β2(n, ε). Recall our notation H(θ) for the height of a
labeled tree θ. Then, for every δ > 0 and κ > 0,

P

[
sup

0≤k≤bnh0c
sup
|u−v|≤δ

∣∣∣C(n)
Lk

(u)− C(n)
Lk

(v)
∣∣∣ > κ

]

≤
bnh0c∑
k=0

P

[
sup
|u−v|≤δ

|CLk(n2u)− CLk(n2v)| > nκ

]

=
bnh0c∑
k=0

E

[
ρ̂Xk

(
sup
|u−v|≤δ

|Cθ(n2u)− Cθ(n2v)| > nκ

)]

≤ 2(bnh0c+ 1) ρ0

(
sup
|u−v|≤δ

|Cθ(n2u)− Cθ(n2v)| > nκ

)

= 2(bnh0c+ 1) ρ0(H(θ) > nκ)× ρ0

(
sup
|u−v|≤δ

|C(n)
θ (u)− C(n)

θ (v)| > κ
∣∣∣H(θ) > nκ

)
.(32)

By standard results about Galton-Watson trees,

(33) sup
n≥1

nρ0(H(θ) ≥ n) <∞

and so the quantities 2(bnh0c+ 1) ρ0(H(θ) > nκ) are bounded above by a constant K(h0, κ) depending only on
h0 and κ. On the other hand, from Corollary 1.13 in [13] (or as an easy consequence of Proposition 2), the law
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of (C(n)
θ (t))0≤t≤2n−2|θ| under the conditional probability measure ρ0(· | H(θ) > nκ) converges as n→∞ to the

law of a Brownian excursion with height greater than κ. Consequently,

lim sup
n→∞

ρ0

(
sup
|u−v|≤δ

|C(n)
θ (u)− C(n)

θ (v)| > κ
∣∣∣H(θ) > nκ

)

≤ n
(

sup
|u−v|≤δ

|e(u)− e(v)| ≥ κ
∣∣∣ sup
t≥0

e(t) ≥ κ

)
,

where n stands for the Itô excursion measure as in subsect. 2.4. For any fixed κ, the right-hand side can be
made arbitrarily small by choosing δ small enough.

To complete the argument, fix η > 0. By the preceding considerations, we can choose δ > 0 small enough so
that

(34) lim sup
n→∞

P

[
sup

0≤k≤bnh0c
sup
|u−v|≤δ

∣∣∣C(n)
Lk

(u)− C(n)
Lk

(v)
∣∣∣ > η

2

]
<
η

3
.

and, using Lemma 1,

(35) lim sup
n→∞

P

[
sup

u,v≤τ(L,n,h0) , |v−u|≤δ

|Jbn2vc − Jbn2uc|+ 1
n

>
η

2

]
<
η

3
.

From (31), we get

P

[
sup
t≥0

∣∣∣C(L,n,h0,ε)(t)− C(L,n,h0)(t)
∣∣∣ > η

]
≤ P [γn,ε ≥ δ] + P

[
γn,ε < δ , β1(n, ε) >

η

2

]
+ P

[
γn,ε < δ , β2(n, ε) >

η

2

]
.

The quantities P [γn,ε < δ , β1(n, ε) > η
2 ] and P [γn,ε < δ , β2(n, ε) > η

2 ] are smaller than η
3 when n is large

(independently of the choice of ε), by (34) and (35). Finally, (27) allows us to choose ε > 0 sufficiently small so
that P [γn,ε ≥ δ] < η

3 for every n ≥ 1. This completes the proof of the first assertion in (i).
The second assertion in (i) is proved in a similar way, and we only point at the differences. The same

arguments we used to obtain the bound (31) give

sup
t≥0

∣∣∣V (L,n,h0,ε)(t)− V (L,n,h0)(t)
∣∣∣

≤ sup
u,v≤τ(L,n,h0),|v−u|≤γn,ε

√
3
2n

(
|XJbn2vc

−XJbn2uc
|+ 1

)
+ sup

0≤k≤bnh0c
sup

|v−u|≤γn,ε

∣∣∣V (n)
Lk

(v)− V (n)
Lk

(u)
∣∣∣ .(36)

If η > 0 is fixed, we can again use Lemma 1, together with Proposition 1, to see that we can choose δ > 0 small
enough so that

(37) lim sup
n→∞

P

[
sup

u,v≤τ(L,n,h0),|v−u|≤δ

√
3
2n

(
|XJbn2vc

−XJbn2uc
|+ 1

)
>
η

2

]
<
η

3
.

Then, in order to estimate the second term of the right-hand side of (36), we replace the bound (32) by

P

[
sup

0≤k≤bnh0c
sup
|u−v|≤δ

∣∣∣V (n)
Lk

(u)− V (n)
Lk

(v)
∣∣∣ > κ

]

≤ 2(bnh0c+ 1) ρ0(V ∗∗(θ) >
κ

2
√
n)× ρ0

(
sup
|u−v|≤δ

|V (n)
θ (u)− V (n)

θ (v)| > κ
∣∣∣V ∗∗(θ) > κ

2
√
n

)
,(38)

where V ∗∗(θ) denotes the maximal absolute value of a label in θ. The analogue of (33) is

(39) sup
n≥1

nρ0(V ∗∗(θ) ≥
√
n) <∞.

This bound can be derived from the much more precise estimate given in Proposition 4 of [7] (together with
(2)). Then, Proposition 2 implies that the law of (V (n)

θ (t))0≤t≤2n−2|θ| under the conditional probability measure
ρ0(· | V ∗∗(θ) > κ

2
√
n) converges as n → ∞ to the law of (Ŵs)0≤t≤σ under N0(· | W ∗∗ > (3/8)1/2κ), where
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W ∗∗ = max{|Ŵs| : s ≥ 0} (the precise justification of this convergence uses arguments very similar to the proof
of Corollary 1.13 in [13]). Consequently,

lim sup
n→∞

ρ0

(
sup
|u−v|≤δ

|V (n)
θ (u)− V (n)

θ (v)| > κ
∣∣∣V ∗∗(θ) > κ

2
√
n

)

≤ N0

(
sup
|u−v|≤δ

|Ŵ (u)− Ŵ (v)| ≥ κ
∣∣∣W ∗∗ > (3/8)1/2κ

)
,

and, for any fixed κ > 0, the left-hand side can be made arbitrarily small by choosing δ small. The remaining
part of the proof is exactly similar to the proof of the first assertion in (i). This completes the proof of Lemma
2. �

4. Distances in the uniform infinite quadrangulation

The main result of this section provides a scaling limit for the profile of distances in the uniform infinite
quadrangulation. In order to derive this result from Theorem 5, we need a preliminary lemma. We use the same
notation as in Theorem 5.

Lemma 3. Let A > 0. We have

lim
K→∞

(
sup
n≥1

P
[

inf
t≥K

V (L)(n2t) < A
√
n
])

= 0.

Proof. We first note that for every fixed n ≥ 1, the probability considered in the lemma tends to 0 as K →∞
because V (L)(k) tends to ∞ as k → ∞. The problem is thus to get uniformity in n, and for this purpose we
may restrict our attention to values of n that are larger than some fixed constant.

Next we observe that it is enough to prove that

lim
h→∞

(
sup
n≥1

P
[

inf
t≥τ(L,n,h)

V (L)(n2t) < A
√
n
])

= 0.

Indeed, since we know that τ (L,n,h) converges in distribution towards τ (L)
h as n→∞, with τ (L)

h <∞ a.s., we can
for every fixed value of h > 0 choose K sufficiently large so that P [τ (L,n,h) > K] is arbitrarily small, uniformly
in n. Thus the probability in the lemma will be bounded above by the probability appearing in the last display,
up to a (uniform in n) small error.

The event {
inf

t≥τ(L,n,h)
V (L)(n2t) < A

√
n
}

may occur only if one of the trees Li, i ≥ bnhc has a vertex with label smaller than A
√
n. Hence the probability

of the complement of this event is bounded below by

E
[ ∞∏
i=bnhc

ρ̂Xi(V∗ ≥ A
√
n)
]

where we recall our notation V∗ for the minimal label in a labeled tree θ. The preceding quantity can also be
written in the form

(40) E
[
exp

∞∑
i=bnhc

log(1− ρ̂Xi(V∗ < A
√
n))
]

Let us fix ε ∈]0, 1/4[, and set B = 64A/ε2. Consider the event

Γh,n = {Xi > B
√
n , for every i ≥ bnhc}.

As a consequence of Proposition 1 and Lemma 2 in [17], we can choose h > 0 large enough so that, for every
sufficiently large n, P [Γh,n] > 1− ε. We will prove that, for this value of h, and for every sufficiently large n, the
quantity in (40) is bounded below by 1− 3ε. This will complete the proof of the lemma.

To get a lower bound on the quantity (40), we recall from Section 2 that, for every l ≥ 1,

ρl(V∗ > 0) = l(l + 3)
(l + 1)(l + 2)

= 1− 2
(l + 1)(l + 2)

.
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Since ρl(V∗ ≥ 0) = ρl(V∗ > −1) = ρl+1(V∗ > 0), it follows that, for every l ≥ 1,

ρl(V∗ = 0) = 4
(l + 1)(l + 2)(l + 3)

≤ 4
l3
.

Note that ρl(V∗ = l′) = ρl−l′(V∗ = 0) if l > l′ ≥ 0. If Xi > B
√
n, we have thus

ρ̂Xi(V∗ < A
√
n) ≤ 2 ρXi(0 < V∗ < A

√
n) ≤ 8bA

√
nc

(Xi −A
√
n)3
≤ 16bA

√
nc

X3
i

.

Hence, on the event Γh,n, for n sufficiently large, we have∣∣∣ ∞∑
i=bnhc

log(1− ρ̂Xi(V∗ < A
√
n))
∣∣∣ ≤ 2

∞∑
i=bnhc

16A
√
n

X3
i

.

For every integer j ≥ 1, set ∆j = #{i ≥ 0 : Xi = j}. By Proposition 5.1 in [6], we have E[∆j ] ≤ j, for all
sufficiently large j. Hence, if n is sufficiently large,

E
[
1Γh,n

∞∑
i=bnhc

32A
√
n

X3
i

]
≤ E

[ ∞∑
i=0

32A
√
n

X3
i

1{Xi>B√n}
]

= 32A
√
n E

[ ∞∑
j=bB

√
nc+1

1
j3

∆j

]

≤ 32A
√
n

∞∑
j=bB

√
nc+1

1
j2

≤ 64A/B
≤ ε2,

by our choice of B. Using the Markov inequality, we now get

P
[
Γh,n ∩

{∣∣∣ ∞∑
i=bnhc

log(1− ρ̂Xi(V∗ < A
√
n))
∣∣∣ > ε

}]
≤ ε.

Recalling that P [Γn,h] > 1− ε, we thus see that the quantity inside the expectation in (40) is bounded below
by exp(−ε) ≥ 1− ε, except possibly on an event of probability at most 2ε. It follows that the quantity (40) is
bounded below by 1− 3ε, which was the desired result. �

Recall that the profile λq of a quadrangulation q is the integer-valued measure on Z+ defined by
λq(k) = |{a ∈ V (q) : dgr(∂, a) = k}|

for every k ∈ Z+. If q ∈ Q and n ≥ 1 is an integer, we define the rescaled profile λ(n)
q as the σ-finite measure on

R+ such that

λ(n)
q (A) = 1

n2λq

(√
2n
3
A

)
for any Borel subset A of R+. Also recall that Bn(q) denotes the ball of radius n centered at ∂ in V (q)

Theorem 6. Let q be a uniform infinite quadrangulation. The sequence (λ(n)
q )n≥1 converges in distribution to

the random measure I on R+, which is defined, for every continuous function g with compact support, by

〈I, g〉 = 1
2

∫ ∞
0

ds
(
g
(
Ŵ (L)
s

)
+ g

(
Ŵ (R)
s

))
where

(
W (L),W (R)) is a pair of correlated eternal conditioned Brownian snakes.

In particular we have:
1
n4 #Bn(q) (d)−→

n→∞

9
4
I([0, 1]).

Remark. Both λ(n)
q and I are random variables with values in the space of Radon measures on R+, which is a

Polish space for the topology of vague convergence. The convergence in distribution of the sequence (λ(n)
q )n≥1

thus refers to this topology.
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Proof. We may assume that q is the image under the extended Schaeffer correspondence of a uniform infinite
well-labeled tree Θ, and we use the same notation (Xi, Li, Ri)i≥0 as in subsect. 3.2. For every i ≥ 0, we write
the labeled trees Li and Ri as Li = (τLi , `Li) and Ri = (τRi , `Ri). We also keep the notation (C(L), V (L)), resp.
(C(R), V (R)), for the pair of contour functions coding the part of Θ to the left of the spine, resp. to the right of
the spine.

Fix a continuous function g with compact support on R+. From the properties of the Schaeffer correspondence,
we have then

(41) 〈λq, g〉 = g(0) +
∞∑
i=0

g(Xi) +
∞∑
i=0

 ∑
v∈Li\{∅}

g(`Li(v)) +
∑

v∈Ri\{∅}

g(`Ri(v))

 .

We can rewrite the right-hand side of (41) in terms of the contour functions of Θ. To this end, set for every
t ≥ 0, [t]C(L) = btc+ 1 if C(L)(btc+ 1) > C(L)(btc), and [t]C(L) = btc otherwise. Define [t]C(R) in a similar way.
Then, from the construction of the contour functions, it is easy to verify that we have also

(42) 〈λq, g〉 = g(0) + g(1) + 1
2

∫ ∞
0

dt g(V (L)([t]C(L))) + 1
2

∫ ∞
0

dt g(V (R)([t]C(R))).

Consequently,

〈λ(n)
q , g〉 =

g(0) + g(
√

3
2n )

n2 + 1
2

∫ ∞
0

dt g
(√ 3

2n
V (L)([n2t]C(L))

)
+ 1

2

∫ ∞
0

dt g
(√ 3

2n
V (R)([n2t]C(R))

)
.

Since |V (L)([s]C(L))− V (L)(s)| ≤ 1, for every s ≥ 0, and g is compactly supported hence uniformly continuous, a
simple argument, using also Lemma 3, shows that∫ ∞

0
dt g

(√ 3
2n
V (L)([n2t]C(L))

)
−
∫ ∞

0
dt g

(√ 3
2n
V (L)(n2t)

) (P )−→
n→∞

0,

where the notation (P )−→ indicates convergence in probability. Thus we have obtained

(43) 〈λ(n)
q , g〉 − 1

2

(∫ ∞
0

dt g
(√ 3

2n
V (L)(n2t)

)
+
∫ ∞

0
dt g

(√ 3
2n
V (R)(n2t)

) (P )−→
n→∞

0.

By Lemma 3,

(44) P
[ ∫ ∞

0
dt g

(√ 3
2n
V (L)(n2t)

)
=
∫ K

0
dt g

(√ 3
2n
V (L)(n2t)

)]
−→
K→∞

1,

uniformly in n ≥ 1, and a similar result holds for the integrals involving V (R). Moreover, by (8),

(45) P
[
〈I, g〉 = 1

2

∫ K

0
ds
(
g
(
Ŵ (L)
s

)
+ g

(
Ŵ (R)
s

)) ]
−→
K→∞

1.

Theorem 5 implies that, for every K ≥ 0,∫ K

0
dt
(
g
(√ 3

2n
V (L)(n2t)

)
+ g
(√ 3

2n
V (R)(n2t)

)) (d)−→
n→∞

∫ K

0
ds
(
g
(
Ŵ (L)
s

)
+ g

(
Ŵ (R)
s

))
.

From this convergence, (43), (44) and (45), we get that 〈λ(n)
q , g〉 converges in distribution to 〈I, g〉, which

completes the proof of the first assertion.

Note that I([0, r]) (d)= r4I([0, 1]) for every r > 0, by a simple scaling argument. Since

1
n4 #Bn(q) = λ(n2)

q ([0, (3/2)1/2]),

the second assertion of the theorem will follow if we can verify that λ(n)
q ([0, r]) converges in distribution to

I([0, r]) for every r > 0. This is a straightforward consequence of the first assertion and the fact that I({r}) = 0
a.s. The latter fact is easy from a first-moment calculation. �

The known connections between the Brownian snake and partial differential equations (see Chapters V and
VI of the monograph [12]) make it possible to derive some information about the distribution of the random
measure I in Theorem 6. Here we content ourselves with a first-moment calculation.
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Proposition 5. For every nonnegative measurable function g on R+,

E[〈I, g〉] = 128
21

∫ ∞
0

dr r3 g(r).

In particular, for every r > 0,
E[I([0, r])] = 32

21
r4.

Proof. From the definition of I and the construction of the eternal conditioned Brownian snake, we get

E[〈I, g〉] = 4E
[∫ ∞

0
dtNZt

(
1{minR>0}

∫ σ

0
ds g(Ŵs)

)]
.

For every z > 0, set

ϕg(z) = Nz
(

1{minR>0}

∫ σ

0
ds g(Ŵs)

)
.

Let (ξt)t≥0 denote a linear Brownian motion that starts from z under the probability measure Pz. Then, by the
case p = 1 of Theorem 2.2 in [16], we have

ϕg(z) =
∫ ∞

0
daEz

[
g(ξa) exp

(
−4
∫ a

0
dsNξs (minR ≤ 0)

)]
=
∫ ∞

0
daEz

[
g(ξa) exp

(
−6
∫ a

0

ds
ξ2s

)]
=
∫ ∞

0
da z4Ez

[
Z−4
a g(Za)

]
,(46)

where the nine-dimensional Bessel process Z starts from z under the probability measure Pz. In the second
equality we used (6), and in the third one we applied the absolute continuity properties of laws of Bessel processes
(see e.g. Proposition 2.6 in [16]).

Since the nine-dimensional Bessel process has the same distribution as the Euclidean norm of a nine-dimensional
Brownian motion, we can use the explicit form of the Green function of the latter process to evaluate the integral
(46). After straightforward calculations, we arrive at the formula of the proposition. �
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