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An enhanced goal-oriented mesh adaptation method is presented based on aerodynamic functional total 
derivatives with respect to mesh nodes in a Reynolds-Averaged Navier-Stokes (RANS) finite-volume mono-
block and non-matching multi-block-structured grid framework. This method falls under the category of 
methods involving the adjoint vector of the function of interest. The contribution of a Spalart–Allmaras 
turbulence model is taken into account through its linearization. Meshes are adapted accordingly to the pro-
posed indicator. Applications to 2D RANS flow about a RAE2822 airfoil in transonic, and detached subsonic 
conditions are presented for the drag coefficient estimation. The asset of the proposed method is patent. The 
obtained 2D anisotropic mono-block mesh well captures flow features as well as global aerodynamic func-
tionals. Interestingly, the constraints imposed by structured grids may be relaxed by the use of non-matching 
multi-block approach that limits the outward propagation of local mesh refinement through all of the com-
putational domain. The proposed method also leads to accurate results for these multi-block meshes but at a 
fraction of the cost. Finally, the method is also successfully applied to a more complex geometry, namely, a 
mono-block mesh in a 3D RANS transonic flow about an M6 wing. 

KEY WORDS: mesh; adaptation; adjoint; RANS; airfoil; wing

1. INTRODUCTION

The extensive use of computational fluid dynamics (CFD) models and resources in the aeronautical
community has required the need of accurate predictions. The verification and validation process is
then of primary importance. The validation approach of a CFD code with respect to (w.r.t.) exper-
imental data must take into account the estimation of the discretization error [1], modeling error,
and the impact of parameters uncertainty [2, 3]. This study is focused on the discretization error
and more precisely on the accuracy of the output functionals. Often, only some quantities of interest
(QoI), for example, forces and moments, rather than the overall flow-field, are scrutinized in aerody-
namic simulations. In this framework, the development of goal-oriented mesh adaptation techniques
has seen a rapid growth since the mid 1990s. Most of the time, these methods involve the adjoint
vector of the QoI.

Successful theory of a posteriori error and goal-oriented mesh adaptation has been developed
in the finite-element framework. Important contributions have been given by Johnson et al. [4–6],
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France.
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Giles et al. [7], Prudhomme et al. [8], Larson and Barth [9], Machiels et al. [10], Hartman et al.

[11–13], and Alauzet et al. [14]. Concerning finite volume, the major reference is the Venditti and
Darmofal method [15–17]. A list of main applications involving the latter method can be found
in [18].

The present paper presents an enhanced goal-oriented mesh adaptation method based on aerody-
namic functional total derivatives w.r.t. mesh nodal coordinates in a finite-volume-structured grid
framework for RANS flow. The method principles have been already introduced by Peter et al. [18]
and Nguyen-Dinh et al. [19] with applications to Euler flows. In contrast to the Venditti and Darmo-
fal method that requires two levels of meshes, the proposed method is based on a scalar indicator
for one mesh level only. The use of only one mesh level is quite rare in literature; nevertheless, it
is possible to notice the contribution of Dwight [20, 21] where only one mesh level is needed but
limited to the classical Jameson et al. numerical scheme [22].

Using the proposed method, this paper’s objectives are twofold: to properly adapt the mesh tak-
ing into account the precious information coming from the complete linearization of the complete
Navier–Stokes equations and to show the flexibility of the approach in engineering applications
where non-traditional mesh configurations may be used. In this context, adaptations are carried out
on standard mono-block-structured grid (2D and 3D RANS flows) as well as on non-matching‡

multi-block-structured mesh (2D RANS flows). The latter kind of adaptations are uncommon in
literature, while their use seems quite natural for complex geometry configuration in the presence
of structured mesh. A structured grid may be disadvantageous w.r.t. an unstructured one in terms
of the number of nodes (a local refinement spreads through the entire computational domain) and
in terms of mesh design flexibility (a structured mesh with well defined quadrilateral elements is
hardly compatible with complex configurations). Nevertheless, from a numerical point view, they
turn out to be algorithmically efficient because of their simple addressing approach based on reg-
ular connectivity, that is, through only two (or three) indices for 2D case (or 3D case). The use of
non-matching multi-block meshes alleviates the constraints given by structured mesh. An example
of this is shown.

The paper is organized as follows. Section 2 recalls the proposed method and defines the refine-
ment indicator. Section 3 describes the numerical setup used as well as the method verification and
the used meshes, while in Section 4, applications to 2D RANS flow about a RAE2822 airfoil in
transonic and detached subsonic conditions for the drag coefficient estimation are presented. 3D
RANS transonic flow application is shown in Section 5. Conclusions and perspectives are given in
Section 6.

2. PROJECTED TOTAL DERIVATIVE OF THE FUNCTIONAL OUTPUT WITH RESPECT TO
MESH NODAL COORDINATES

In this section, the proposed method based on the projected total derivative of the functional output
w.r.t. mesh nodes is detailed. The derivation follows the papers of Peter et al. [18] and Nguyen-Dinh
et al. [19]. The refinement indicator is presented as well.

2.1. The discrete adjoint method for gradients computation

Given an aerodynamic object where the geometry is subject to Nl shape parameters ˛l , l 2 Œ1; Nl �,
it is denoted by Jm, m 2 Œ1; NJ � and the NJ objective/constraints functions that need to be dif-
ferentiated in a gradient-based optimization framework. Concerning the numerical scheme, the
discretization of the Navier–Stokes equations leads to a nonlinear equations system defined by the
following:

R.W ; X/ D 0; (1)

‡In literature, the term non-conforming is also used to refer to non-conventional mesh types. In this paper, the term
non-matching is preferred in order to strengthen the point on the type of non-conforming mesh used.
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where R represents the discrete residual vector on each cell, W is the steady flow solution, and X

defines the mesh coordinates. In order to compute first-order derivatives, it is assumed that

1. X is C 1 regular, function of ˛l ;
2. R is C 1 regular w.r.t. its two vector arguments; and
3. detŒ@R=@W �.W ; X/ ¤ 0 where R.W ; X/ D 0.

In this framework, the implicit function theorem ensures that W .˛l/ is a C 1 regular function of
˛l . The objective/constraints functions read as follows:

Jm.˛l/ D Jm.W .˛l/; X.˛l//: (2)

In the discrete adjoint method scheme, in order to compute the derivative of the function Jm.˛l/

w.r.t. ˛l , a Lagrangian functional is introduced:

Lm.W ; X ; ƒm/ D Jm.W ; X/ C ƒ
T
mR.W ; X/; (3)

where ƒm is the Lagrange multiplier (or adjoint vector) for the objective function Jm. Given the
aforementioned hypothesis, it is possible to define the aerodynamic function Jm as a function of the
mesh only, that is, Jm.X.˛l// D Jm.W .X.˛l//; X.˛l//.

The Lagrange multiplier is then the solution of dLm=dW D 0:

ƒ
T
m

@R

@W
D �

@Jm

@W
: (4)

The right-hand side of (4) is computed through analytical differentiation, while the Jacobian
matrix in the left-hand side is built at steady solution. The derivative of objective functions is then
given by the following:

dJm

d˛l

D
dLm

d˛l

D
@Jm

@X

dX

d˛l

C ƒ
T
m

@R

@X

dX

d˛l

D

�
@Jm

@X
C ƒ

T
m

@R

@X

�
dX

d˛l

: (5)

Between the previous parenthesis, it is possible to identify the following:

dJm

dX
D

@Jm

@X
C ƒ

T
m

@R

@X
; (6)

where the first term (@Jm=@X ) represents the direct dependency of Jm to the mesh nodes location
and the second term (ƒT

m.@R=@X )) corresponds to the flow field modification on the support of Jm

because of a change of mesh nodes location.
In order to avoid the storage of the mesh sensitivity w.r.t. design variables, Nielsen and Park [23]

used the implicit, D.X ; S / D 0, or explicit, X D X.S /, dependence between X and S , where the
latter is the surface mesh. In the first case, the equations read as follows:

ƒ
T
m

@R

@W
D �

@Jm

@W
; (7)

�
T @D

@X
D

�
@Jm

@X
C ƒ

T
m

@R

@X

�

D
dJm

dX
; (8)

dJm

d˛l

D

�

�
T @D

@S

�
dS

d˛l

; (9)

while for an explicit dependence, the following equations replace Equation (5):

ƒ
T
m

@R

@W
D �

@Jm

@W
; (10)
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dJm

d˛l

D

�
dJm

dX

dX

dS

�
dS

d˛l

: (11)

Therefore, the dJm=dX terms are the standard outputs of a modular memory-efficient adjoint
solver where the complex parametrization (i.e., dX=d˛l ) is not addressed anymore. The proposed
goal-oriented method is based on this quantity.

2.2. Derivation of the Spalart–Allmaras turbulence model

In this paper, the Spalart–Allmaras (SA) turbulence model [24] is considered. Namely, the sixth
steady RANS equation already coupled with SA reads as follows:

I

@V

�

� Q�U
T �

1

�
.� C � Q�/r Q�T

�

� ndS �

Z

V

SdV D 0; (12)

where � is the density, U D .u; v; w/T the velocity vector,§ and Q� the kinematic turbulent viscosity
that is defined by the turbulence model, in this case SA. V is the cell volume, and the unit normal
vector to @V is denoted by n. S is the source term composed of a production P , destruction D,
and cross-diffusion C terms. As mentioned earlier, the analytical differentiation of R w.r.t. flowfield
(W ) and metric (X ) terms needs to be undergone. It is possible either to differentiate only the
five mean flow equations without differentiating the turbulent dynamic viscosity �T , that is, (12)
(frozen �T assumption, N�T ), or to fully differentiate the equations system including the turbulence
model (�lin

T ).
The convection term is discretized using first-order Roe’s flux. The discrete diffusion term is

based on cell-centered gradient of Q�. The gradients at two adjacent cells are averaged at the common
interface and corrected in the direction linking the two cells’ centers, from Q� cell values in order
to have a short stencil in the considered direction. Discrete P , D, and C terms are calculated from
cell-centered values and gradients. It is then needed to derive these schemes w.r.t. discrete flowfield
(Equation (5)) and mesh nodes coordinates (Equation (6)).

2.3. The refinement indicator

The dJ=dX
¶ field provides valuable information about the sensitivity of J w.r.t. the mesh

coordinates X . Considering the following first-order Taylor expansion:

J.X C dX i;j / � J.X/ C
dJ

dX i;j

dX i;j ; (13)

the first-order effect on J due to an isolated move of a node X i;j
|| in the polygon defined by the

neighboring nodes is linked to the sensitivity dJ=dX i;j . The latter is true for a displacement dX i;j

– for Euler flows, please refer to Section 5 in [25]. This relation suggests that the objective function
J is highly sensitive to the X i;j node if dJ=dX i;j is large** and the distance of node Xi;j to the
closest neighboring node (denoted as hi;j ) is significant. A refinement in that node location is then
needed.

Some cautions need to be made about the obtained dJ=dX field. In particular, it will be projected
according to the mesh node location. Namely, P.dJ=dX/ D dJ=dX � .dJ=dX � n/ � n if the node
is on the support†† of J , walls, farfield (or mesh block) borders; P.dJ=dX/ D 0 if the node is on a

§The superscript T defined the transpose operator while the subscript T the turbulent component.
¶The pedices m and l drop for the sake of brevity.
||For structured grid, .i; j / indices uniquely identify a mesh node.
**In this framework, there is no quantitative link between �.i; j / and its effect on J . The term large is always w.r.t the

ensemble of all �.i; j / for a given W and X . This justifies the use of the term indicator instead of estimator.
††In the current paper applications, the support of J , where J is a global aerodynamic function, is typically the

airfoil surface.
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corner of the support of J or on a corner of farfield (or mesh block) domain, while P.dJ=dX/ D

dJ=dX elsewhere. In this paper, the � -criterion introduced by Peter et al. [18] and Nguyen-Dinh
et al. [19] will be exploited. This indicator follows directly from the second term of the right-hand
side of relation (13), and it reads as follows:

�.i; j / D






P

�
dJ

dX

�




hi;j

2
: (14)

The presence of hi;j in the refinement indicator is important in situations where large vector of
P .dJ=dX/ is encountered in a mesh that is already fine. In this case, it is not possible to perform a
mesh refinement by either adding or moving the nodes. The comparison of the results obtained with
the �- (the � -criterion without hi;j ) and the � -criteria has been already performed for Euler flows
by Peter et al. [18]. � has been identified as the correct indicator for mesh adaptation.

2.3.1. Venditti and Darmofal method. The classical goal-oriented error-based approach for finite-
volume schemes has been introduced by Venditti and Darmofal. The error expression given by
Venditti et al. in equation (12) of their article [16] is reported here after:

Jh .W h/ ' Jh

�

W
H
h

�

C
�

ƒ
H
h

�T

Rh

�

W
H
h

�

„ ƒ‚ …

Computable Correction

C
�

R
ƒ

h

�

ƒ
H
h

��T

2

4
@Rh

@W h

ˇ
ˇ
ˇ
ˇ
ˇ
W

H
h

3

5

�1

Rh

�

W
H
h

�

;

„ ƒ‚ …

error in computable correction

(15)
where H and h are the characteristic mesh size of the coarse and fine grids, respectively, and R

ƒ

h is
the adjoint residual operator. In this framework, the improved functional evaluation consists in the
first two terms of the right-hand side of relation (15) and the refinement strategy is to reduce the
error in computable correction (ECC).

Previous studies for Euler flows have shown good consistency between the refinement zones
detected by the � -criterion and the ECC of the classic error-based method; please refer to Section 2.8
in [18] and to Appendix B in [25]. This comparison is also given for a 2D transonic turbulent flow
in Section 4.4.1.

3. NUMERICAL SETUP

3.1. The elsA code

The ONERA Navier–Stokes finite-volume compressible elsA [26] solver has been used. The numer-
ical scheme is based on Roe flux using a second-order MUSCL scheme (van Albada limiter) for the
convective term while first-order Roe flux for the turbulent flow. The viscous fluxes of the averaged
and turbulent flows are discretized through a centered scheme with cell-centered gradients corrected
at the cell faces. The turbulence closure is assured by the SA turbulence model [24].

3.1.1. Non-matching structured meshes. The elsA code mainly deals with structured meshes. This
kind of grids clearly shows some limitations in the case of complex geometry and generally results in
a high number of nodes needed w.r.t. unstructured meshes. In order to alleviate the latter drawback,
elsA can handle domain decomposition with discrete meshes that do not have match at their com-
mon interface. Thanks to this capability, non-matching joint between the different structured mesh
blocks limits the spread of the local mesh refinement through the entire computational domain. The
interface between the different domains may be straight or curved. In the first case, the conservation
property is ensured, while in the second case, this approach is quasi-conservative [27]. In the exam-
ples given in Section 4, the non-matching multi-block strategy limits the local refinement along the
i -direction over all of the domain by splitting the mesh in three concentric O-meshes. Despite this
flexibility, the optimality of the domain decomposition choice remains an open question.

5



Table I. Verification with an OAT15A.

Rotation Camber Thickness
Method Œ�10�3� Err. rel. % Œ�10�1� Err. rel. % Œ�10�2� Err. rel. %

FD 9.6 – 3.5 – 3.4 –
AdjParam ( N�T ) 8.178 �14:8 2.568 �26:6 2.458 �27:7

AdjParam (�lin
T

) 9.142 �4:8 2.981 �14:8 2.916 �14:2

AdjMesh (�lin
T

) 9.142 �4:8 2.981 �14:8 2.932 �13:8

Comparison of the derivative of CD w.r.t shape parameters obtained from FD and
discrete adjoint method (AdjParam) with both frozen ( N�T ) and linearized �T (�lin

T
/.

Comparison of the derivative obtained through the derivation of CD w.r.t mesh nodes is also
given (AdjMesh).
FD, finite differences.

3.2. Verification

A test case on a OAT15A airfoil has been recently performed [28] in order to assess the contribution
of the turbulence model derivation. The following results are representative of the actual accuracy
of the elsA adjoint [29]. The flow is at Ma D 0:73, Re D 13 � 106 with AoA D 1:5ı. Three shape
parameters have been considered: angle of incidence, thickness through an affinity operator in the
thickness coordinates, and camber through a local modification of the camber line.

Recalling Equation (5), in the elsA implementation, the dJm=d˛l may be computed in two
fashions:

�
dJm

d˛l

�

AdjParam

D
@Jm

@X

dX

d˛l

C ƒ
T
m

@R

@X

dX

d˛l

; (16)

�
dJm

d˛l

�

AdjMesh

D
dJm

dX

dX

d˛l

; (17)

where dX=d˛l is computed through finite differences in both cases. Table I shows the results of
dCD=d˛l given by finite differences, AdjParam (for both N�T and �lin

T ), and AdjMesh (only for �lin
T )

for the three shape parameters. It is possible to identify three main patterns:

1. As expected, the results given by AdjParam and AdjMesh with �lin
T agree very well one to

each other.
2. The linearization of the turbulence model leads to a significant improvement of the sensitivity

estimation; namely, the error is two-third less for the rotation case and halved for the other two
cases.

3. The adjoint module of elsA behaves very well for global shape parameters, for example,
rotation. Some issues rise for local shape modifications.

The adjoint elsA has some approximations on farfield boundaries and walls. Matching and non-
matching joins pose limit to the adjoint precision because of ghost cells construction in the direct
computation ‡‡. It is recalled that because a linear system needs to be solved, local errors in the
adjoint derivation spread over the domain and impact the final solution. Nevertheless, the adjoint
elsA is able to capture the correct QoI sensitivity trend in a wide range of applications, for example,
Euler, RANS, 2D and 3D, full aircraft configuration, and matching and non-matching mesh.

4. APPLICATION TO 2D RANS FLOW ABOUT A RAE2822 AIRFOIL

The proposed mesh adaptation technique is applied to a 2D RANS flow about a RAE2822 air-
foil at two different operational conditions: a transonic condition that corresponds to case 6 of

‡‡Two raw of ghost cells in the direct computation would need 3 raw of ghost cells in the adjoint one for Roe-MUSCL
flux.
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Cook et al. [30] equally used by Venditti et al. [17] and a detached subsonic condition derived from
the latter by keeping the same Reynolds to Mach number ratio as in helicopter rotor operational
condition. The efficiency of the proposed method is tested over a mono-block mesh as well as on
a non-matching multi-block configuration. Refinement based on the functional CD is considered
which estimation is in general harder than the CL one. For the CD-based adapted mesh, the CL

value is also given for the sake of completeness. The considered tolerance is equal to 0.0005, that is,
five drag counts. This value is in line with Li et al. [31]. Higher [32, 33] and lower [17] tolerances
are also considered in literature.

4.1. Mesh characteristics

For all applications in this section, structured O-meshes have been used where the index i runs
clockwise along the airfoil from the trailing edge, while j goes from the airfoil wall to the farfield
boundary. The circular farfield boundary is placed at 150 chords from the airfoil leading edge. The
hierarchy of NACA0012 meshes from Vassberg et al. [34] has been modified for a RAE2822 airfoil.
Moreover, they have been adapted for RANS flows by adding a boundary layer (BL) growth in j

direction. The number of mesh nodes in the BL can be imposed where the BL height is computed
by using the estimation of the turbulent BL over a flat plate through the one-seventh-power law. The
first cell height h0 is fixed but differs in the two operational conditions in order to have yC lower
than 1 in both cases. The cell height h in j direction is given by hj C1 D .hj /p where p varies as
1 < p < 1:1 based on the number of nodes in j , Nj .

Concerning the non-matching multi-block configuration, the original mono-block mesh has been
split in three concentric O-meshes. In many engineering applications, the surface mesh refinement is
constrained or needs special care. In this context, it has been decided to test the proposed method in
the case where the first block mesh (which contains the airfoil) is frozen through all the adaptation
procedure. This block is uniformly refined in i with 401 nodes with 40 nodes in the BL (Figure 1(a)).
For the two operational conditions, the first block dimension (in j direction) varies. In the subsonic
case, it has been enlarged in order to ensure that the recirculation bubble is fully included in the first
block. The second and third blocks are adapted following the � -criterion. The cell height growth is
conserved through the fixed block interfaces.

4.1.1. Refinement procedure. The refinement is carried out by adding lines in both directions i and
j . The new mesh is interpolated in the reference fine grid with a number of nodes Ni D Nj D 2049.

Figure 1. Starting non-matching multi-block mesh. In the special case of the starting mesh, the interface
between blocks 2 and 3 is match. During the adaptation steps, mesh nodes are free to move in a non-matching

framework; see, for instance, Figure 5(b) and (c). (a) Blocks 1 and 2 and (b) blocks 2 and 3.
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Figure 2. Convergence of CD for the base solution, mono-block, and multi-block adaptation in the transonic
flow condition.

The nodes position is defined through the following interpolation operators � and B:

¹1; Niº¹1; Nj º
�
! Œ1; 2049�Œ1; 2049�

B

! R
2: (18)

In order to add lines in the current mesh, a criterion is introduced based on the � -criterion (14).
For the sake of brevity, only the i direction is considered. Introducing Nc as

NciC
1
2

D
ci C ciC1

2
where ci D

1

Nj

v
u
u
u
t

NjX

j D1

�2; (19)

the method consists in adding a number of lines at i C 1
2

, which is proportional to NciC
1
2

value. A

maximum number equals to 4 is retained for each i C 1
2

location. In the particular case of i direction,
the mesh lines (cell widths) are regularized in order to ensure a smooth nodes location§§. An explicit
third-order dissipation flux is used. The cell widths � are obtained through n C 1 iterations through
the relation �nC1

iC
1
2

D �n

iC
1
2

C D4
iC1 � D4

i where D4
i D �k4.�iC

3
2

� 3�iC
1
2

C 3�i�
1
2

� �i�
3
2
/. These

fluxes are set to 0 at i equals 1 and Ni , while � 1
2

D � 3
2

, and �Ni C
1
2

D �Ni �
1
2

.

4.2. Transonic flow

As mentioned earlier, a transonic condition is retained as in Section 6.2.1 of the paper of Venditti
et al. [17]. The flow is at Reynolds number equals to 6.5�106 and Mach number at 0.725 with
AoA D 2:466ı. A shock wave appears at the pressure side at x=C � 0:55 where C is the chord.

The starting mesh is the same for the standard base refinement (i.e., by doubling Ni;j at each step)
and for the CD-based mono-block adaptation, namely, with Ni D Nj D 51 uniformly distributed in
i direction and NBL D 10. Concerning the multi-block adaptation, the first block is frozen and uni-
formly refined in i with 401 nodes with 40 nodes in the BL as mentioned in Section 4.1. This first
block has been extracted from the second last base mesh of the black curve in Figure 2. The remain-
ing blocks have Ni D 101. The CD convergence is plotted in Figure 2 where the asset given by the
proposed method is patent for the mono-block adaptation w.r.t. the standard refinement. The method
equally managed to refine the non-matching multi-block case where the physical shock crosses the

§§For j direction, there is no need for a smoothing operator because the cell height h follows the aforementioned rule
from the wall to the farfield boundary.
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non-matching interface between blocks 1 and 2. The limit values may be found in Table II. For
both kind of meshes, the CD estimation error is under four drag counts. A very good agreement
also between numerical results and experiments is proved. The underestimation of CD is visible
also in figure 8 (right) of the paper of Venditti et al. [17] through the Allmaras’s computation. The
CL values show excellent agreement one to each other. The nodes saving for the mono-block case
are of the order of 75% w.r.t. the second last base mesh. While concerning the multi-block case,
please note that almost 19,000 nodes out of 39,500 are imposed by the frozen first block. The pre-
cision scatter between the results of the mono-block and multi-block meshes may be explained by
the quasi-conservative approach at high curvature interfaces (e.g., leading edge) between the two
non-matching blocks, as mentioned in Section 3.1.1.

4.3. Subsonic detached flow

For the subsonic detached case, the operational condition has been derived from the transonic one
by keeping the same Reynolds to Mach number ratio as in helicopter rotor operational condition.
Namely, the flow is at Reynolds number equals to 2.7�106 and Mach number at 0.3 with AoA D 11ı.
The converged flow exhibits a trailing edge separation bubble at x=C > 0:9.

Figure 3 shows the CD convergence. The starting mesh is equal to the one used for the transonic
case except for the first cell height h0 and the physical size of the first block in the case of multi-
block refinement as mentioned in Section 4.1. This justifies the different starting point in terms of

Table II. Transonic case.

Block Ni Nj NBL NTOT CD CL

Experiment – – – – – 0.0127 0.743
Base (finest) – 801 801 80 641,601 0.01200 0.744
Mono-block – 221 179 77 39,559 0.01213 0.738

1 (frozen) 401 47 40
Multi-block 2 210 71 – 39,437 0.01235 0.743

3 142 40 –

Comparison of CD and CL values obtained from the standard base refinement (finest
grid) and from the CD-based adapted mono-block and multi-block meshes. The
number of nodes in i and j directions is shown as well as the number of nodes in the
BL and the total mesh size, NTOT . The experimental values from Cook et al. [30]
are equally reported.

Figure 3. Convergence of CD for the base solution, mono-block, and multi-block adaptation in the subsonic
detached flow condition.

9



number of nodes of the blue curves in Figures 2 and 3. Also in this case, the proposed method
well behaved w.r.t. the standard base refinement. In Table III, the limit values are reported. The CD

estimation error is also in this case of maximum three drag counts while of 0 drag count for the
mono-block case. The CL values are also all coherent. The nodes saving for the mono-block case

Table III. Subsonic detached case.

Block Ni Nj NBL NTOT CD CL
Base (finest) – 801 801 80 641,601 0.02987 1.295
Mono-block – 163 179 71 29,177 0.02986 1.290

1 (frozen) 401 59 40
Multi-block 2 178 80 – 45,027 0.03018 1.293

3 132 54 –

Comparison of CD and CL values obtained from the standard base refinement (finest
grid) and from the CD-based adapted mono-block and multi-block meshes. The
number of nodes in i and j directions is shown as well as the number of nodes in the
BL and the total mesh size, NTOT .

Figure 4. Comparison of mono-block meshes. The starting mesh is given in (a) starting mesh (2061 nodes)
while final adapted meshes in (b) CD-based adapted mesh, transonic flow (39,559 nodes) and (c) CD-based

adapted mesh, subsonic flow (29,117 nodes).
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Figure 5. Comparison of non-matching multi-block meshes. The starting mesh is given in (a) while final
adapted meshes in (b) and (c). (a) Starting mesh – transonic (22,284 nodes) and subsonic (26,603 nodes),
(b) CD-based adapted mesh, transonic flow (40,005), (c) CD-based adapted mesh, subsonic flow (45,027

nodes).
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are of the order of 82% w.r.t. the second last base mesh. For the multi-block mesh, almost 24,000
nodes out of 45,000 are imposed by the frozen first block.

4.4. Analysis of the obtained mesh pattern

In order to deepen the analysis of the proposed method and of the results, it is interesting to get a
closer look to the obtained anisotropic CD-based adapted meshes as well as to the values of the � -
criterion. This analysis is carried out only for the mono-block case for the sake of brevity. The same
considerations apply to the multi-block case.

Figure 4 shows the starting mesh as well as the CD-based adapted ones for both operational con-
ditions. The image layout is similar to the one of figure 9 of the paper of Venditti et al. [17], which
allows a straightforward comparison between the obtained meshes. Taking into account the intrinsic
construction differences between structured and unstructured grids, in the transonic case (b), sim-
ilar areas are highlighted, namely, the upstream flow region (typical for adjoint-based adaptation),
the wake, the shock region at x=C � 0:55, and leading and trailing edge. In structured mono-block
grid, it is clear that these local refinements are convected through all the computational domain.
For the subsonic case (c), refinement is performed in the upstream flow region, separation region at
x=C > 0:8, wake, and leading and trailing edge.

In Figure 5, the starting mesh and the CD-based adapted ones for both operational conditions for
the multi-block case are shown. The block interfaces are depicted in green. The same area high-
lighted in Figure 4 is visible here. In this case, the use of non-matching multi-block approach limits
the convection of these refinements to the farfield boundaries. For the upstream flow region, the
refinement crosses the interfaces and equally for the wake region but in a lightly fashion.

The Mach iso-contours are given in Figures 6–8 for the starting mesh as well as for the finest
mesh of the standard base refinement and for the CD-based adapted meshes for both operational
conditions. Good agreement is proved between Figure 7(a) with Figure 8(a) and Figure 7(b) with
Figure 8(b). Please note the poor initial estimation of the flow for the starting meshes (Figure 6).

4.4.1. The � -criterion and comparison with the Venditti and Darmofal indicator. The � -criterion
for the mono-block transonic case adaptation is shown in Figure 9 for all adaptation steps. It is
possible to notice the progressive reduction of the � values as well as the crucial zones for this
operational condition, for example, region of the flow upstream, the airfoil, and the wake and the
shock regions at x=C � 0:55. Please note that the relation (14) that defines � depends both on the
local mesh size through ri;j and also on the dJ=dX. For this reason, � may also vary in regions
where no mesh refinement has been performed, for example, pressure side in Figure 9(e)–(f).

A comparison between the refinement zones detected by the � -criterion (Figure 9) and by the
ECC of the classic error-based method (Figure 10) has been performed on the six meshes of the
� -based adaptation. As expected, the two different indicators highlight the same zones, namely,

Figure 6. Comparison of the Mach iso-contour with the mono-block starting mesh. (a) Transonic case and
(b) subsonic case. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 7. Comparison of the Mach iso-contour with the base mono-block finest mesh. (a) Transonic case
and (b) subsonic case. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 8. Comparison of the Mach iso-contour with the CD-based adapted mono-block mesh. (a) Transonic
case and (b) subsonic case. [Colour figure can be viewed at wileyonlinelibrary.com]

the wake, the zone upwind the profile, and the shock regions. Please refer to previous studies [18,
25] where the use of the more flexible unstructured grid allows to properly appreciate the agreement
between the two approaches.

5. APPLICATION TO 3D RANS FLOW ABOUT AN M6 WING

In this section, a tri-dimensional application is presented. In this context, the proposed mesh adap-
tation technique is expected to reduce the mesh nodes needed for a proper estimation of the global
aerodynamic functions. Nevertheless, the growth of mesh nodes due to the spread through the entire
computational domain following a local refinement is expected to be stronger than in 2D case. The
adaptation is carried out for 3D RANS transonic flow about an ONERA M6 wing [35]. The wing
is symmetric w.r.t. ´ D 0. The most common flow condition used for CFD simulations corresponds
to the test number 2308 of [35]. The efficiency of the proposed method is tested over a mono-block
mesh configuration. As in Section 4, refinement based on the functional CD is considered with the
same convergence tolerance, namely, 0.0005.

5.1. Mesh characteristics and refinement

Figure 11 depicts the starting regular mesh with Ni D Nj D 65 and Nk D 33 (139,425 nodes).
A structured O–O mesh has been used where the index i runs clockwise along the wing section
from the trailing edge along the pressure side and back to the trailing edge along the suction side
(green planes at imin and i D 40 in Figure 11(b)), the index j goes from the wing surface to
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Figure 9. Comparison of the � -criterion for the mono-block transonic case mesh adaptation. (a) Step 0:
starting mesh, (b) step 1, (c) step 2, (d) step 3, (e) step 4, (f) step 5: final mesh. [Colour figure can be viewed

at wileyonlinelibrary.com]
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Figure 10. Comparison of the error in computable correction (ECC) of Venditti and Darmofal for the
mono-block transonic case mesh adaptation. Please note that the meshes with which this analysis has been
performed are the same of Figure 9. (a) Step 0: starting mesh, (b) step 1, (c) step 2, (d) step 3, (e) step 4, (f)

step 5: final mesh. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 11. ONERA M6 wing. The starting regular structured mesh (Ni D Nj D 65, Nk D 33) prior to
adaptation. (a) View of the symmetry plane and wing surface and (b) view of the mesh topology: i -mesh

planes in green, j -mesh planes in blue, and k-mesh planes in orange.

the farfield boundary (blue planes at jmin, which corresponds to the wing surface and j D 45 in
Figure 11(b)), and the index k runs from the tip to the root of the wing (orange planes at k D 10

in Figure 11(b)). Please note that due to mesh assembly, the k-mesh planes are symmetric w.r.t.
´ D 0. The hemispheric farfield boundary is placed at 145 chords from the leading edge. The mesh
is interpolated in the reference fine grid with Ni D Nj D 513 and Nk D 257 in the same fashion
as in the 2D case (Section 4.1.1). Thus, all i -mesh planes are identified by the vector �i , similarly
by vector �j and �k for all j -mesh and k-mesh planes. The interpolated mesh is then uniquely
identified by the three vectors �i , �j , and �k with dimension Ni , Nj , and Nk , respectively.

5.2. Transonic flow

As mentioned earlier, a transonic condition is retained. The flow is at Re D 11:72 � 106 based on
the mean aerodynamic chord of 0.64607 m and Mach number at 0.8395 with AoA D 3:06ı and
null angle of sideslip. Under this condition, the classical �-shock structure is observed on the wing
surface. For this study, the trailing edge closure leads to a root chord of length 0.8131, and the
trapezoidal part of the original M6 wing leads to a reference surface of 0.7532 [18, 36].

The starting mesh prior to adaptation is the same for the standard base refinement (i.e., by dou-
bling the total number of nodes at each step) and for the CD-based mono-block adaptation: namely,
with Ni D Nj D 65 and Nk D 33, uniformly distributed in i and k directions and NBL D 20. The
CD convergence is plotted in Figure 12 for regularly refined and � -based adapted grids. The asset
given by the proposed method is patent. The limit values may be found in Table IV. The CD esti-
mation error in the CD-based adapted mesh is under five drag counts w.r.t. both the estimation from
the finest standard grid and from the Richardson method [37]. Concerning the CL, the estimation
error is under one lift count. In the context of 3D meshes, in order to easily identify the refinement
zones, Figure 13 has been added. The figure shows the index vectors � for the mesh interpolation
of the starting base mesh and of the CD-based adapted mesh. Please note the uniform distribu-
tion in i and k while the exponential distribution in j (due to the BL) for the starting base mesh.
The low slope areas in the � distribution of the CD-based adapted mesh correspond to refinement
areas. For instance, in Figure 13(a), a refinement is undergone around imin and imax (trailing edge –
please recall the mesh topology explained in Section 5.1) as well as around i D 0:5 (leading edge).
Similarly, in Figure 13(c), a refinement is identified around kmin (wing tip) and kmax (symmetry
plane). This kind of analysis is more difficult for j indices because of the exponential growth in
the BL.
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Figure 12. Convergence of CD for the regular and adapted meshes in the transonic 3D flow condition about
the M6 wing.

Table IV. 3D ONERA M6 wing case.

Ni Nj Nk NBL NTOT CD CL

Richardson – – – – – 0.01870 0.274
Base (finest) 321 321 161 64 16:59 � 106 0.01877 0.275
Mono-block 109 131 57 34 0:813 � 106 0.01915 0.268

Comparison of CD and CL values obtained from the standard base refinement
(finest grid) and from the CD-based adapted mono-block mesh. The number of
nodes in i and j directions is shown as well as the number of nodes in the BL and
the total mesh size, NTOT . The limiting values from the Richardson method are
equally given.

Figure 13. Index vectors � for the mesh interpolation of the starting base mesh (black line) and of the
CD-based adapted mono-block mesh (red line). Please note the uniform distribution in i and k while the
exponential distribution in j for the starting base mesh. (a) i -Mesh plane, (b) j -mesh plane, and (c) k-mesh

plane.

6. CONCLUSION

An enhanced goal-oriented mesh adaptation method has been presented based on aerodynamic
functional total derivatives w.r.t. mesh nodes in a finite-volume mono-block and non-matching
multi-block-structured grid framework for RANS flow. The linearization of the SA turbulence model

17



improves the precision of the estimated adjoint. The retained refinement indicator � based on the
dJ=dX and on the local mesh size has been proved to be a robust tool for identifying zones consid-
ered as influential in the QoI estimation. Applications to 2D RANS flow about a RAE2822 airfoil
have been presented. For the mono-block mesh case, for both aerodynamic conditions, the obtained
CD-based adapted meshes lead to a good estimation of forces. Although structured grid has been
used, a clear anisotropy in the mesh pattern is visible. The constraints given by this kind of meshes
have been relaxed thanks to non-matching multi-block technique, which limits the spread of local
mesh refinement through all the domain. In this context, the proposed method has proven to be effi-
cient also to adapt the multi-block mesh in the presence of a more refined frozen-wall mesh block.
This recalls how also regions of the domain, which are not close to the airfoil boundary, need refine-
ment. This is equally true for QoI (thus J ) whose support is only the airfoil surface mesh (e.g.,
CD), which is entirely included in the well-refined frozen-wall mesh block. The 3D RANS tran-
sonic flow about a M6 wing case has proven the asset of the refinement approach even for a more
complex geometry. The numerical method has anyway shown its efficiency and versatility in terms
of flow types (Euler [18] and RANS here), of aerodynamic operational conditions (transonic and
detached subsonic), and of mesh types (mono-block and multi-block under constraints). It has been
recently extended to unstructured grids [25] for Euler flows, and this could be the next line of work
for RANS flows.
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