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Introduction

Geometric inference deals with the problem of recovering the geometry and
topology of a compact subset K of Rd from an approximation by a finite set
P . This problem has seen several important developments in the previous
decade. Many of the proposed constructions share a common feature: they
estimate the geometry of the underlying compact set K using offsets of P ,

P r :=
⋃
p∈P

B(p, r), (1)

which can also be seen as the r-sublevel set of the distance function to P .
These offset correspond to what is called tubular neighborhoods in differential
geometry. First and second-order geometric quantities are encoded in the
tube Kr around a manifold. For instance, the classical tube formula asserts
that it is possible to estimate the curvature of a compact smooth submanifold
K from the volume of its offsets. One can hope that if the finite set P is close
to K in the Hausdorff sense, some of this geometric information remains in
the offsets of P . In this chapter, we will see how this idea can be used to
infer generalized notions of curvature such as Federer’s curvature measures.

Notation The space Rd is equipped with the canonical dot product 〈.|.〉
and the induced norm ‖.‖

Distance function and sets with positive reach

Throughout this chapter, K will denote a compact set in the Euclidean d-
space Rd, usually with no additional regularity assumption. The distance
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function to K, denoted dK , is defined by

dK : x ∈ Rd 7→ min
p∈K
‖x− p‖ (2)

In this short section, we review some regularity properties of the distance
function to a compact set, which we will use to establish stability results
for generalized notions of curvature. We also introduce the class of sets
with positive reach and sets with positive µ-reach, for which it is possible
to define and infer generalized notions of curvature.

Definition 1 (Offset). The r-offset of K, also called tubular neighborhood
in geometry, is the setKr of points at distance at most r ofK, or equivalently
the sublevel set Kr := {x ∈ Rd; dK(x) ≤ r}.

Definition 2 (Hausdorff distance). The Hausdorff distance between two
compact subsets K and P of Rd can be defined in term of offsets:

dH(K,P ) := min{r ≥ 0 s.t. K ⊆ P r and P ⊆ Kr} (3)

Loosely speaking, a finite set P is within Hausdorff distance r from a com-
pact set K if it is sampled close to K (P ⊆ Kr) and densely in K (K ⊆ P r).
An alternative characterization of the Hausdorff distance is given by the
following equality, where ‖f‖∞ = supx∈Rd |f(x)|.

dH(K,K ′) := ‖dK − dK′‖∞ (4)

Gradient of the distance and sets with positive reach

Projection function, medial axis and gradient The semi-concavity of
the squared distance function to a compact set has been remarked and used
in different contexts [14, 22, 3, 18]. We will use the fact that for any compact
subset K ⊆ Rd, the square of the distance function to K is 1-semiconcave.

Definition 3. A function φ defined on a subset Ω of Rd is λ-concave if and
only if the function φ− λ ‖.‖2 is concave.

It is easy to see that the distance function to a compact set is 1-Lipschitz.
By Rademacher’s theorem, this implies that this function is differentiable
almost everywhere. The next proposition shows that the squared distance
function to a compact set has the same regularity as a concave (or con-
vex) function. In particular, Alexandrov’s theorem implies that distance
functions to compact set are twice differentiable almost everywhere.
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Definition 4 (Projection function and medial axis). A point p of K that
realizes the minimum in the definition (2) of the distance function dK(x)
is called a projection of x on K. The set of such projections is denoted
projK(x), and is always non-empty by compactness of K. The medial axis
of K, denoted Med(K) is the set of points x in Rd that have more than
one projection on K. On the complement of the medial axis, points have a
single projection on K, allowing one to define a map pK : Rd\Med(K)→ K
called the projection function on K.

Proposition 5. The squared distance function to a compact subset K of
Rd is 1-semiconcave and differentiable on Rd \ Med(K). For every x /∈
Med(K) ∪K, one has

∇xd2
K = 2(x− pK(x)) ∇xdK =

x− pK(x)

‖x− pK(x)‖ (5)

Proof. The function dK(.)2 − ‖.‖2 is a minimum of linear functions:

dK(x)2 − ‖x‖2 = min
p∈P
‖x− p‖2 − ‖x‖2

= min
p∈P
‖p‖2 − 2 〈x|p〉

and is therefore concave. A concave function is differentiable almost every-
where, and one has∇x[dK(.)2−‖.‖2] = −2pK(x) at points of differentiability.
This implies the desired formulas.

Sets with positive reach In his seminal article on curvature measures
[12], Federer introduced the class of sets with positive reach, a class which
generalizes both convex subsets and compact smooth submanifolds of Rd.

Definition 6 (Reach). The reach of a compact set K, denoted by reach(K)
is the minimum distance between K and its medial axis.

Example 7. It is well known that the projection to a closed convex set
K ⊆ Rd is uniquely defined on the whole space, so that reach(K) = +∞.
The reciprocal of this statement is a theorem of Motzkin [21]: if reach(K) =
+∞, then K is convex.

Example 8. The tubular neighborhood theorem implies that a smooth com-
pact submanifold of Rd always has positive reach. In the case of a smooth
compact hypersurface, this follows from the proof of Proposition 23. In ad-
dition, the reach of submanifold M is always less than the minimum radius
of curvature of M .
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Example 9. Note however, that the reach is a global quantity, and cannot
be lower bounded by any function of the minimum curvature radius. For
instance, consider a compact set consisting of two spheres of radius R at
distance ε. Then, the reach of the union of those two sphere is ε

2 while
the minimum curvature radius remains constant and equal to R. It is also
possible to construct similar examples involving connected manifolds.

The definition of curvature measures of sets with positive reach relies
on the fact that the boundary of small tubular neighborhoods around those
sets are hypersurface of class C1,1, that is C1 hypersurface with a Lipschitz
normal vector field (see [12, Theorem 4.8]).

Proposition 10 ([12]). Let K ⊆ Rd be a set with positive reach. Then,
for any r in (0, reach(K)) the restriction of the projection function to Kr is
Lipschitz. In particular, the level set ∂Kr = d−1K ({r}) is a C1,1 hypersurface.

Generalized gradient and sets with positive µ-reach

The reach of a compact set a very unstable quantity. For instance, the
reach of a triangulation is always zero, whereas smooth surfaces, which have
positive reach, can be approximated arbitrarily well by triangulations. In
this section, we will see how to define a relaxed notion of reach using a
generalized gradient of the distance function.

Generalized gradient The distance function to a compact set is differ-
entiable everywhere but on the medial axis. However, the semiconcavity
property allows one to define a generalized gradient of the distance function
everywhere. This generalized gradient coincides with the usual gradient of
the distance function when it is differentiable.1

Definition 11. Let K be a compact subset of Rd and let x be a point in
Rd \K. We define the generalized gradient of the distance function to K at
x by:

∇dK(x) =
x− p̃K(x)

dK(x)
, (6)

where p̃K(x) is the center of the (uniquely defined) smallest ball containing
the set of projections projK(x).

1This generalized gradient coincides with the orthogonal projection of the origin on the
supdifferential of the distance function [4, Lemma 5.2].
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In particular, the norm ‖∇dK(x)‖ equals one if and only if projK(x) is
contained in a ball with zero radius, i.e. if it is a singleton. In other words,

Med(K) = {x ∈ Rd \K; ‖∇dK(x)‖ < 1}. (7)

Sets with positive µ-reach. The µ-reach is a relaxed version of the reach,
which had originally been introduced because of its better stability proper-
ties with respect to perturbations of the compact set [5]. By Equation (7),
the reach of a compact set K is equal to the maximal radius r such that
‖∇dK(x)‖ = 1 on the offset Kr:

reach(K) = sup {r ≥ 0;∀x ∈ Kr, ‖∇dK(x)‖ = 1} . (8)

This remark suggests a parameterized notion of reach, called the µ-reach.

Definition 12 (µ-Reach). Let µ ∈ (0, 1). The µ-reach of a compact set K
is the maximal radius r such that ‖∇dK(x)‖ ≥ µ on the offset Kr:

reachµ(K) = sup {r ≥ 0; ∀x ∈ Kr, ‖∇dK(x)‖ ≥ µ} . (9)

With µ = 1, we recover the notion of reach introduced earlier.

In addition to smooth manifolds and convex sets, the class of compact
sets with positive µ-reach also contains triangulations and non-convex poly-
hedra. Offsets of sets with positive µ-reach are not smooth in the sense of
Proposition 10, but they still possess some regularity properties.

Offsets of compact sets with positive µ-reach Let K ⊂ Rd be a
compact set with positive µ-reach. A theorem of Fu [15, Corollary 3.4]
implies that for any radius r in (0, reachµ(K)), the closure of the complement
of the tubular neighborhood Kr has positive reach. This lower bound was
made quantitative in [6].

Theorem 13 ([6]). Let K ⊆ Rd be a set with positive µ-reach. Then, for
any radius r in (0, reachµ(K)), one has

reach
(
Rd \Kr

)
≥ µr. (10)

From Proposition 10, this implies that offsets of Rd \Kr are of class
C1,1. These so-called double offsets are used in computer aided design to

5



smoothen a surface. The (r, t)-double offset of K is the set of points that
are at distance t of the complementary of Kr:

Kr,t := Rd \Kr
t

=
{
x ∈ Rd; d

(
x,Rd \Kr

)
≤ t
}

(11)

The following theorem is thus a direct consequence [6].

Theorem 14 (Double offset theorem). Let K ⊆ Rd be a set with positive
µ-reach. Then, for any radius r in (0, reachµ(K)) and every t < µr the
hypersurface ∂Kr,t is C1,1-smooth. In addition,

reach(∂Kr,t) ≥ min(t, µr − t). (12)

This implies in particular that the smallest of the principal radii of curvature
at any point of ∂Kr,t is at least min(t, µr − t).

Boundary measures and Federer’s curvature mea-
sures

In this section, we introduce Federer’s curvature measures, which apply to a
large class of compact subsets embedded in the Euclidean space. The main
objective here is to prove a stability theorem for these curvature measures
which implies that it is possible to estimate them from point cloud data. As
a first step, we consider a a simpler notion called boundary measures and
introduced in [8] for the purpose of geometric inference.

Boundary measures

Loosely speaking, the boundary measure associated to a surface encodes the
distribution of normals to the surface at a certain scale, and can be used
to detect sharp edges, or highly curved areas, where the concentration of
normals is much higher.

Definition 15 (Boundary measures). If K is a compact subset and E a
domain of Rd, the boundary measure µK,E is defined as follows: for any
subset B ⊆ Rd, µK,E(B) is the d-volume of the set of points of E whose
projection on K is in B, i.e.

µK,E(B) = Hd(p−1K (B ∩K) ∩ E). (13)

Here and in the following, Hd denotes the d-dimensional Hausdorff measure.
By construction, the total mass of this measure is equal to Hd(E).
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Figure 1: Boundary measure of K ⊂ Rd. The medial axis Med(K) of K
is the dashed line. Remark that the boundary of the offset ∂Kr is smooth
everywhere but at its point of intersection with the medial axis.

Example 16. Let S be a unit-length segment in the plane with endpoints
a and b. The set Sr is the union of a rectangle of dimension 1 × 2r whose
points project on the segment and two half-disks of radius r whose points
are projected on a and b. It follows that

µS,Sr = 2r H1
∣∣
S

+
π

2
r2δa +

π

2
r2δb (14)

Example 17. If P is a convex solid polyhedron of R3, F its faces, E its
edges and V its vertices, then one can see that:

µP,P r = H3
∣∣
P

+ r
∑
f∈F
H2
∣∣
f

+ r2
∑
e∈E

H(e) H1
∣∣
e

+ r3
∑
v∈V

K(v)δv (15)

where H(e) is the angle between the normals of the faces adjacent to the
edge e and K(v) the solid angle formed by the normals of the faces adjacent
to v. As shown by Steiner and Minkowski, for general convex polyhedra the
measure µK,Kr is a sum of weighted Hausdorff measures supported on the
i-skeleton of K, and whose local density is the local external dihedral angle.

Stability of boundary measures

In this section, we suppose that E is a fixed open set with rectifiable bound-
ary, and we obtain a quantitative stability theorem for the map K 7→ µK,E .
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What we mean by stable is that if the Hausdorff distance between two com-
pact sets K and P is small, then the bounded-Lipschitz distance between
the boundary measures µK,E and µP,E is also small.

Definition 18 (bounded-Lipschitz distance). The bounded-Lipschitz dis-
tance between two signed measures µ, ν with finite total mass is

dbL(µ, ν) = sup
f

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ , (16)

where the supremum is over all 1-Lipschitz function in Rd s.t. ‖f‖∞ ≤ 1.

Theorem 19. If E is a fixed open subset of Rd with rectifiable boundary,
for each compact K ⊆ Rd, then

dbL(µK,E , µK′,E) ≤ const(E,K, d)dH(K,K ′)1/2 (17)

Moreover the constant only depends on the diameter of K.

Before proving this theorem, we will first show that the exponent 1/2 in
the right-hand side of Equation (17) is optimal.

Lemma 20. There exists a sequence of compact subsets Kn of Rd converging
to a compact set K and a domain E, such that

dbL(µK,E , µKn,E) ≥ const ·dH(K,Kn)1/2 (18)

Proof. Let K be the closed unit disk in the plane, Kn be the regular polygon
with n edges inscribed in K, and let E be the annulus B(0, 2) \ B(0, 1).
Denote ` the edgelength of Kn. Pythagoras theorem can be used to bound
the Hausdorff distance between K and Kn in term of `n: dH(K,Kn) ≤
const ·`2n. The measure µ = µK,E is proportional to the uniform (lineic)
measure on the unit circle. On the other hand, the map pKn projects a
constant fraction of the mass of E onto the vertices Vn of Kn. The cost
of spreading out the mass concentrated on these vertices to get a uniform
measure on the circle is proportional to the distance between consecutive
vertices, so that dbL(µD,E , µP`,E) ≥ const ·`n.

The next lemma shows that Theorem 19 can be deduced from a L1

stability result for projection functions.

Lemma 21. dbL(µK,E , µL,E) ≤ ‖pK − pL‖L1(E)
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Proof. Consider a 1-Lipschitz function f on Rd. Then, by the change of
variable formula, and using the Lipschitz property,∫
Rd

f(p)d(µK,E(p)− µL,E(p)) =

∫
E
f(pK(x))− f(pL(x))dHd(x)

≤
∫
E
‖pK(x)− pL(x)‖ dHd(x) = ‖pK − pK‖L1(E)

Taking the maximum over 1-Lipschitz functions bounded by 1 gives the
desired bound.

Proposition 5 allows us to rewrite the projection function pK as the
gradient of a convex function: setting ψK(x) := 1

2(‖x‖2 − dK(x)2), one
has pK = ∇ψK . This rewriting recasts a difficult geometric question into
a seemingly easier analytical question, namely a L1-stability of gradients
of convex functions. This is the object of the next theorem. The proof
presented here is different from the original proof in [8] and gives a slightly
better constant.

Theorem 22 ([8]). Let φ, ψ : Rd → R be two convex functions and E be a
bounded domain with rectifiable boundary. Then,

‖∇φ−∇ψ‖2L2(E) ≤ 2 ‖φ− ψ‖L∞(E) (‖∇φ‖L∞(E) + ‖∇ψ‖L∞(E))Hd−1(∂E)
(19)

Proof. Note that if the inequality (19) holds for smooth convex functions,
then it also holds for any convex function. Indeed, it suffices to remark that
any convex function φ can be approximated by a sequence of smooth convex
functions (φn) such that ∇φn converges uniformly to ∇φ on any compact
domain. By another approximation argument, it is possible to replace E by
a domain with smooth boundary. From now on, we will assume that φ, ψ
and ∂E are smooth. We use Stokes theorem to get:∫

E
‖∇φ−∇ψ‖2 =

∫
∂E

(φ− ψ) 〈∇φ−∇ψ|nE〉 −
∫
E

(φ− ψ)∆(φ− ψ) (20)

The first term of this sum is easily bounded, using the fact that an integral
is bounded by the maximum of the integrand multiplied by the measure of
the domain, and the Cauchy-Schwartz inequality:∣∣∣∣∫
∂E

(φ− ψ) 〈∇φ−∇ψ|nE〉
∣∣∣∣ ≤ ‖φ− ψ‖L∞(E) (‖∇φ‖L∞(E)+‖∇ψ‖L∞(E))Hd−1(∂E)

(21)

9



We can bound the second term similarly:∣∣∣∣∫
E

(φ− ψ)∆(φ− ψ)

∣∣∣∣ ≤ ‖φ− ψ‖L∞(E)

∫
E

(|∆φ|+ |∆ψ|) (22)

We now use the convexity hypothesis, which implies that ∆φ is non-negative,
which allows us to apply Stokes theorem again:∫

E
|∆φ| =

∫
E

∆φ =

∫
∂E
〈∇φ|nE〉 ≤ ‖∇φ‖L∞(E)Hd−1(∂E) (23)

Combining Equations (22)–(23), we get∣∣∣∣∫
E

(φ− ψ)∆(φ− ψ)

∣∣∣∣ ≤ ‖φ− ψ‖L∞(E) (‖∇φ‖L∞(E) +‖∇ψ‖L∞(E))Hd−1(∂E)

(24)
Finally, Equations (20), (21) and (24) give the desired inequality (19).

Proof of Theorem 19. We introduce the functions ψK(x) := 1
2(‖x‖2−dK(x)2),

which is convex, and we define ψK′ similarly. Now, thanks to Lemma 21
and using the Cauchy-Schwarz inequality, we have

dbL(µK,E , µK′,E) ≤ ‖pK − pK′‖L1(E) ≤ Hd(E) ‖pK − pK′‖L2(E) . (25)

We are now ready to apply Theorem 22. Without loss of generality, we as-
sume that the Hausdorff distance between K and K ′ is bounded by diam(K)
and that K contains the origin. Using ‖pK‖∞ = maxp∈K ‖p‖ ≤ diam(K),

‖∇ψK‖L∞(E) + ‖∇ψK′‖L∞(E) ≤ ‖pK‖∞ + ‖pK′‖∞ ≤ 3 diam(K). (26)

Finally, we need to control the quantity ‖φ− ψ‖L∞(E). For this purpose, we

use the relation ‖dK − dK′‖∞ = dH(K,K ′):

‖φ− ψ‖L∞(E) =
∥∥d2

K − d2
K′
∥∥
L∞(E)

≤ (‖dK‖L∞(E) + ‖dK′‖L∞(E))dH(K,K ′)

≤ const(K,E)dH(K,K ′), (27)

where the last inequality follows from the assumption that dH(K,K ′) ≤
diam(K), which implies that ‖dK′‖L∞(E) ≤ ‖dK‖L∞(E) + diam(K). The
stability inequality (17) then follows from (25), Theorem 22 and Equa-
tions (26)–(27).
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Figure 2: Offset of a polygon in the Euclidean plane

Tube formulas and Federer’s curvature measures

We start with the tube formulas of Steiner, Minkowski and Weyl, before
turning to the more precise tube formula of Federer, which is then used to
define the curvature measures of a large class of compact sets.

Tube formulas A tube formula for a compact set K in Euclidean space
asserts that the Lebesgue volume of the tubular neighborhoods Kr is a
degree d polynomial in r on a certain interval. The first tube formula is due
to Steiner and shows that if K is a convex polygon in the Euclidean plane,
the function r 7→ Hd(Kr) is a polynomial of degree two, and more precisely,

Hd(Kr) = H2(K) + rH1(∂K) + πr2 (28)

The proof of this fact is (almost) contained in Figure 2: every vertex with
exterior angle αi contributes a volume of αir

2 to Kr, while every segment
contributes r × `j . Summing these up on every segment and vertex yields
the 2D Steiner formula. Minkowski proved a similar polynomial behaviour
for the volume of the offsets of any compact convex set in Rd.

Weyl [25] proved that the polynomial behavior for r 7→ Hd(Kr) also
holds for small values of r when K is a compact smooth submanifold of
Rd. He also proved that the coefficients of this polynomial can be computed
from the second fundamental form of K. The following proposition deals
with the (simple) case of an hypersurface bounding a compact domain.
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Proposition 23. Let K be a bounded domain of Rd with smooth boundary
M . Then, for sufficiently small values of r > 0,

Hd(Kr) = Hd(K) +
d−1∑
k=1

const(d, k)rk+1

∫
M

 ∑
i1<···<ik

κi1 . . . κik(p)

dp (29)

where κ1(p), . . . , κd(p) are the principal curvatures at point p of ∂K = M .

Proof. Let n be an oriented normal field on M . The map Φ : M × R →
Rd, (p, t) 7→ p + tn is locally injective; by compactness of M , it is also
injective on M×[0, r] for r small enough. One has d(p,t)Φ = idTpM+tdpn+n,
i.e.

∣∣det(d(p,t)Φ)
∣∣ = |det(id + tdpn)|. For t = 0, det(d(p,t)Φ) = 1 > 0 at

any point p ∈ M ; as a consequence, and by compactness of M again, this
determinant remains positive for small enough values of t. This allows us to
apply a following change-of-variable formula for small valus of r:

Hd(Kr) = Hd(K) +

∫
Kr\K

1dx

= Hd(K) +

∫
M

∫ r

0
det(id + tdpn)dtdn

(30)

The eigenvalues of the map dpn are the d principal curvatures of M at p,
which means:

det(id + tdpn) =
d−1∏
i=1

(1 + tκi(p)) =
d∑

k=1

tk

 ∑
i1<···<ik

κi1(p) . . . κik(p)

 (31)

We conclude the proof by putting Equation (31) in Equation (30).

Federer’s curvature measures The contribution of Federer to the the-
ory of tube formulas is twofolds. First, Federer defines the class of compact
sets with positive reach, which includes both compact convex sets and com-
pact smooth submanifolds of Rd. The reach of a compact subset of Rd is an
interesting quantity, because it gives a lower bound on the largest R such
that the map r 7→ Hd(Kr) is a polynomial of degree d on [0, R]. Second,
Federer associates to any set with positive reach a family of d + 1 curva-
ture measures, which allow one to recover local curvature information. The
construction of these curvature measures rely on a local version of the tube
formula [12].

As mentioned in Section 1.1, sets with positive reach generalize both
convex sets and compact smooth submanifolds. In order to introduce the
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curvature measures of a set K with positive reach, Federer first proves that
for any positive r in (0, reach(K)], the boundary of the offset ∂Kr is a hyper-
surface of class C1,1, i.e. ∂Kr is a C1 hypersurface with a Lipschitz normal
field. Federer’s then extends the tube formula presented in Proposition 23 to
this less smooth setting. Finally, the existence of curvature measures for K,
as well as the polynomial behaviour for the volume of the offsets is obtained
by approximation, by letting r go to zero. We will not prove these facts,
but only quote Federer’s existence result. As usual, ωk denotes the volume
of the k-dimensional sphere in Rk+1.

Theorem 24 (Federer). For any compact set K ⊆ Rd with positive reach,
there exists d+1 signed measures ΦK,0, . . . ,Φ

d
K,d such that for r ≤ reach(K),

µK,Kr =

d∑
i=0

ωd−iΦK,ir
i. (32)

Definition 25. The measures ΦK,0, . . . ,ΦK,d introduced in Theorem 24 are
called Federer’s curvature measures of K.

Stability of Federer’s curvature measures

The purpose of this section is to show that Federer’s curvature measures of a
compact set with positive reach can be estimated from a Hausdorff approx-
imation of this set, without any regularity hypothesis on the approximating
set. In order to do so, we explain how to associate an ersatz of Federer’s
curvature measures to any compact set, which coincide with the original
curvature measures when the set has a sufficiently large reach.

Definition 26 (Approximate curvature measures). Let R > 0 and r be
a family of numbers (ri)0≤i≤d such that 0 < r0 < . . . < rd. Given any
compact set K in Rd and any Borel set B, we define the approximate curva-

tures (Φ
(r)
K,i(B))0≤i≤d as the set of coefficients which satisfy the interpolation

equations:

∀0 ≤ i ≤ d− 1, µK,Kri (B) =

d∑
j=0

ωd−jΦ
(r)
K,j(B)rji (33)

Since the numbers (ri) are distinct, this define the approximate curvature
measures uniquely. More precisely, by Lagrange interpolation, there exist
real coefficients (Lij) such that

∀0 ≤ i ≤ d− 1, Φ
(r)
K,j =

∑
0≤i≤d

LijµK,Kri . (34)
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This shows that the approximate curvature measure Φ
(r)
K,j is a signed mea-

sure. Moreover, one recovers Federer’s curvature measures when the reach of

K is sufficiently large. More precisely, if rd ≤ reach(K), then Φ
(r)
K,j = ΦK,j .

We are now able to state the following stability theorem from [8].

Theorem 27. Given any compact set K ⊆ Rd and (r) as in Definition 26,
there exist a constant C = const(K, r, d) such that for any compact set K ′

sufficiently close to K,

dbL

(
Φ
(r)
K,j ,Φ

(r)
K′,j

)
≤ CdH(K,K ′)1/2

Moreover, if rd ≤ reach(K) then one can estimate Federer’s curvature mea-
sures of K from K ′:

dbL

(
Φ
(r)
K,j ,ΦK′,j

)
≤ CdH(K,K ′)1/2.

We will see first how Theorem 27 can be deduced from the following
stability result for boundary measures.

Theorem 28. Given any compact set K ⊆ Rd and r a positive number,
there exist a constant C = const(K, r, d) such that for any compact set K ′

sufficiently close to K,

dbL

(
µK,Kr , µK′,K′r

)
≤ CdH(K,K ′)1/2.

Proof of Theorem 28. Let E be the symmetric difference between Kr and
K ′r. Then, by the triangle inequality for the bounded-Lipschitz distance,

dbL

(
µK,Kr , µK′,K′r

)
≤ dbL

(
µK,E , µK′,E

)
+dbL (µK,Kr , µK,E)+dbL

(
µK′,K′r , µK′,E

)
Theorem 19 implies that the first term of the right-hand side is of order

O(d
1/2
H (K,K ′)). We only need to deal with the two last terms. Given any 1-

Lipschitz function f with ‖f‖∞ ≤ 1, the change-of-variable formula implies∫
Rd

f(x)d(µK,Kr − µK,E) ≤
∫
Kr

f(pK(x))dHd(x)−
∫
E
f(pK(x))dHd(x)

≤ Hd(Kr \ E)

Taking the maximum over such functions gives a bound on the bounded-
Lipschitz distance between these measures. Overall, we have

dbL

(
µK,Kr , µK′,K′r

)
≤ Cd

1/2
H (K,K ′) +Hd(Kr \ E) +Hd(K ′r \ E).

Defining ε = dH(K,K ′), one has the inclusion Kr \ E ⊆ Kr \Kr−ε. This
term can be shown to be of order O(dH(K,K ′)) using Proposition 4.2 from
[8] and the coarea formula.
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(a) Fandisk (b) Sharp sphere

Figure 3: Convolved boundary measures of 100k point clouds sampled from
point clouds sampled from the fandisk and sharp sphere models and rescaled
so as to have unit diameter. The offset radius is set to r = 0.05 and r = 0.1
respectively and the convolution radius is given by ε = 0.02 and ε = 0.03.

Proof of Theorem 27. Thanks to Equation (34), one has for any 1-Lipschitz
function f such that ‖f‖∞ ≤ 1,∣∣∣∣∫

Rd

fd(Φ
(r)
K,j − Φ

(r)
K′,j)

∣∣∣∣ ≤ ∑
0≤i≤d

|Lij |
∣∣∣∣∫

Rd

fd(µK,Kri − µK,Kri )

∣∣∣∣
≤
∑

0≤i≤d
|Lij | dbL(µK,Kri , µK,Kri )

≤ const(K, (r), d)dH(K,K ′)1/2,

where the second inequality follows from the definition of the bounded-
Lipschitz distance, and the third inequality comes from Theorem 28. To
conclude, it suffices to apply the definition of the bounded-Lipschitz distance
once again.

Computation of boundary measures and visualization

We explain briefly how to compute the boundary measure of a point cloud,
that is a finite subset P of Rd. The Federer’s curvature measures can be
recovered from the boundary measures through polynomial fitting. The
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computation relies on the Voronoi diagram of P , which is a practical way
of encoding the distance function to P in low dimension.

Definition 29 (Voronoi diagram). Let P be a point cloud of Rd. The
Voronoi diagram of P is a decomposition of the space into convex polyhedra
called Voronoi cells. The Voronoi cell of the point p in P is defined by:

VorP (p) = {x ∈ Rd; ∀q ∈ P, ‖x− p‖ ≤ ‖x− q‖}. (35)

Lemma 30. Let P be a point cloud of Rd. The boundary measure of P with
respect to a domain E is given by

µP,E =
∑
p∈P
Hd(VorP (p) ∩ E)δp. (36)

In addition, when E = P r is an offset of P , one has

µP,P r =
∑
p∈P
Hd(VorP (p) ∩ B(p, r)). (37)

Proof. Equation (36) follows from the fact that a point x belongs to the
Voronoi cell of p in P if and only if dP (x) = p and iff pP (x) = p. To prove
the second equation, we only need to remark that

VorP (p) ∩ P r = {x ∈ Rd; dP (x) = ‖x− p‖ and dP (x) ≤ r}
= {x ∈ Rd; dP (x) = ‖x− p‖ and ‖x− p‖ ≤ r}
= VorP (p) ∩ B(p, r)

Thanks to this lemma, computing boundary measures amounts to eval-
uating the volume of intersections of Voronoi cells with balls. This leads
to a practical algorithm in dimension 2 and 3 [20]. This approach becomes
too costly in higher dimensions due to the exponential complexity of the
Voronoi diagram, but it is possible to resort to a Monte-Carlo method [8].

Visualization It is not trivial how to visualize a finitely supported measure
µP,P r on Rd, even when the ambient dimension is d = 2, 3. The obvious idea
is to display a ball whose volume is proportional to the mass of the Dirac at
each point in the support of the measure. This is however not satisfactory as
two measures which are close for the bounded-Lipschitz distance could lead
to very different visualizations. Indeed, consider µ = δx and µη = (δx+δy)/2
where ‖x− y‖ ≤ η: µ would be displayed as a single ball B(x, r) while the
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Figure 4: Feature points extracted from a point cloud sampling of a CSG
model by thresholding low values of the convolved boundary measure.

nearby measure µη would be displayed as two overlapping balls of smaller
radius B(x, αr) ∪ B(x, αr) with α = 2−1/d.

In order to construct a visualization which is stable with respect to the
bounded-Lipschitz distance, we therefore convolve each boundary measure
with a fixed bounded-Lipschitz function χ.

Definition 31 (Convolution). The convolution of a finite measure µ on Rd
with a bounded measurable function χ is the function µ∗χ : Rd → R defined
by

[µ ∗ χ](x) :=

∫
Rd

χ(y − x)dµ(y) (38)

The convolved measure µ ∗ χ is stable with respect to the bounded-
Lipschitz distance, by its very definition. More precisely,

Lemma 32. Let χ be a function on Rd such that Lipχ ≤ 1 and ‖χ‖∞ ≤ 1.
Then for finite measures µ, ν,

‖µ ∗ χ− ν ∗ χ‖∞ ≤ dbL(µ, ν) (39)

In practice, we choose the convolution kernel to be the “hat function”
χε(y) = max(ε−‖x− y‖ , 0), and we display at each point in P a ball whose
volume is proportional to the value of the function µP,P r ∗χε. Figure 3 shows
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the convolved boundary measures of point clouds sampling piecewise-smooth
surfaces in R3.

Sharp features extraction Extracting the set of sharp features of a com-
pact sets known through a finite point cloud sampling is of interest in many
geometry processing applications. Figure 3 suggests that the sharp corners
carry more mass than the points on the sharp edges, which again carry more
mass than the smooth points. This observation can be turned into more
quantitative estimations, see e.g. [19, Chapter 3]. In Figure 4 we display
points whose boundary measures carries more mass than some threshold, or
more precisely (for the same reasons as in the previous paragraph), where
the values of the function µK,Kr ∗ χε are higher than some threshold.

Voronoi covariance measures and local Minkowski
tensors

In some applications, such as feature-aware surface reconstruction, scalar
quantities such as those encoded in Federer’s curvature measures are not
sufficient, and one also wishes to recover directional information such as
principal curvature directions or the direction of a sharp edge in a piecewise
smooth surface.

Covariance matrices of Voronoi cells

Voronoi-based normal estimation [2, 1] rely on the intuition that for a noise-
less sampling of a smooth surface the Voronoi cells are elongated in the direc-
tion of the normal to the surface. For instance, in Figure 5, the Voronoi cell
of the red point on upper face is an elongated cylinder, and it is possible to
estimate the normal to that face by analyzing the shape of this Voronoi cell.
A practical tool for estimating the direction in which a domain is elongated
is the notion of covariance matrix.

Definition 33 (Covariance matrix). The covariance matrix of a bounded
domain V ⊆ Rd is the symmetric matrix, or tensor, defined by:

cov(V, p) =

∫
V

(x− p)⊗ (x− p)dx

where v ⊗ w denotes the n× n matrix defined by [v ⊗ w]i,j = wivj .
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Figure 5: The Voronoi cell of a point x on a cube is pencil, triangle or
cone-shaped depending on the dimension of the normal cone.

The covariance matrix of a domain is also known as the inertia matrix in
solid mechanics and its eigenvectors capture the principal axes of the domain
V with respect to the base point p. In the case of a noiseless sampling of a
smooth surface, one can approximate the normal direction at each sample
by the eigenvector corresponding to the largest eigenvalue of the covariance
matrix of the corresponding Voronoi cell intersected with a bounding box of
the point set [1]. Under strong noise, individual Voronoi cells can become
ill shaped, but it is possible to average the covariance matrices of nearby
Voronoi cells to recover the correct normal directions.

Note, however, that the shapes of Voronoi cells provide more informa-
tion than just the normal direction. When the underlying surface is not
smooth, some of its points will have normal cones rather than single normal
directions. Nevertheless, even in this case, the shapes of Voronoi cells ac-
curately reflect the shapes of the underlying normal cones. Some geometric
properties of these normal cones can then be estimated using the covariance
matrices of the Voronoi cells.

Voronoi covariance measure

It is possible to mimick the definition of the boundary measure to construct
a tensor-valued measure which summarizes and extends the covariance ma-
trices of Voronoi cells.

Definition 34. The Voronoi covariance measure (also called VCM) of a
compact subset K of Rd with respect to a bounded domain E a tensor-
valued measure denoted by VK,R. This measure maps every (Borel) subset
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B of Rd to the symmetric matrix defined by:

VK,E(B) :=

∫
E∩p−1

K (B∩K)
(x− pK(x))⊗ (x− pK(x))dx (40)

Example 35. The Voronoi covariance measure of a point cloud P ⊆ Rd
summarizes the covariance matrices of Voronoi cells. More precisely, the
Voronoi covariance measure of P with respect to a bounded domain E is a
sum of Dirac masses. The weight in front of each Dirac is the covariance
matrix of the corresponding Voronoi cell. More precisely,

VK,E =
∑
p∈P

cov(VorP (p), p)δp. (41)

These quantities can be computed efficiently, provided that one is able to
compute (or approximate) the intersection between the Voronoi cell and E.

Definition 36. The bounded-Lipschitz distance between two measures µ, ν
taking values in a normed vector space (X, ‖.‖) is defined by

dbL(µ, ν) = sup
f

∥∥∥∥∫ fdµ−
∫
fdν

∥∥∥∥ . (42)

For tensor-valued measure, the vector space is the space of symmetric ma-
trices and ‖.‖ is the operator norm.

The Hausdorff stability result for boundary measures (Theorems 19 and
28) can be generalized to Voronoi covariance measures. The VCM can be
used for the estimation of the location and direction of sharp features, lead-
ing to a practical and efficient algorithm [20].

Theorem 37. Given any compact set K ⊆ Rd and r a positive number,
there exist a constant C = const(K, r, d) such that for any compact set K ′

sufficiently close to K,

dbL

(
VK,Kr ,VK′,K′r

)
≤ CdH(K,K ′)1/2.

Extensions The Voronoi covariance measure is closely related to the no-
tion of local Minkowski tensor, which was recently introduced by Hug and
Schneider [17]. Theorems 37 and 27 have been extended to this setting by
Hug, Kiderlen and Svane [16]. A robust variant of the Voronoi covariance
measure is introduced and studied in the PhD thesis of Cuel [10].
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Stability of anisotropic curvature measures

In this last section, we consider the question of approximating anisotropic
curvature measures of a compact set from a Hausdorff-approximation. Here,
we assume that the unknown compact set K has positive µ-reach: this
include smooth manifolds, convex domains and triangulations (see §1.2). We
show that it is possible to approximate the anisotropic curvature measures
of Kr from those of K ′r, where K ′ is a Hausdorff approximation of K and
where r lies in some range. In practical applications, the second set K ′ is
a point cloud and its offset K ′r is a finite union of balls, whose anisotropic
curvature measures can be computed.

Anisotropic curvature measures of sets with positive reach

Let V be a compact set with positive reach and let t in (0, reach(V )). Since
the hyper-surface ∂V t is of class C1,1, the second fundamental form and
the principal curvatures of ∂V t are defined almost everywhere. One can
therefore define the anisotropic curvature measure introduced in [9].

Definition 38. Let V be a compact set with positive reach. The anisotropic
curvature measure of V associates to any Borel set B the matrix

HV (B) = lim
t→0

∫
∂V t∩p−1

V (B)
H∂V t(p)dp,

where H∂V t is a matrix-valued function defined on Rd that coincides with
the second fundamental form of ∂V t on the tangent space, and vanishes on
the orthogonal component.

Remark that this definition is coherent with the Federer curvature mea-
sures. Indeed, the kth Federer curvature measures satisfies for every Borel
subset B of Rd:

ΦV,k(B) = lim
t→0

∫
∂V t∩p−1

V (B)
sk(p)dp,

where pV is the projection onto V and sk is the k-th elementary symmetric
polynomial of the principal curvatures λ1,...,λd−1 of ∂V t.

Now, let K be a compact set whose µ-reach is greater than r > 0. Then
V = Rd \Kr has a reach greater than µr. It is then possible to define the
curvature measures of Kr [23, 24] by:

Φk
Kr(B) = (−1)kΦk

V (B) and HKr(B) = −HV (B).
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Figure 6: Tightness of the bound of Theorem 39. We consider compact sets
K = [p, q] and K ′ = [p, q] ∪ {s}, where s is at a distance ε from K. We have
dH(K,K ′) = ε and the total curvature θ of K ′r between a and b satisfies θ =
2 arccos

(
r−ε
r

)
= O (

√
ε) .

Stability of the curvature measures of the offsets

The following theorem states that if a compact set K is close in the Hausdorff
sense to a compact set K ′ with positive µ-reach, then the Federer curvature
measures and anisotropic curvature measure of the offsets Kr and K ′r are
close for the bounded-Lipschitz distance. This result is similar but not
equivalent to Theorem 27. The result in Theorem 27 is limited to the Federer
curvature measures but it derives from Theorem 28, which holds without any
assumptions on the underlying compact set, whereas Theorem 39 requires to
assume a lower bound on the µ-reach. We recall that the bounded-lipschitz
distance is given in Definition 36.

Theorem 39. Let r > 0, K and K ′ be two compact subsets of Rd such that
reachµ(K ′) > r. We suppose that the Hausdorff distance ε = dH(K,K ′)

between K and K ′ is such that ε < µ2

60+9µ2
r. Then one has

dbL(ΦKr,k,ΦK′r,k) ≤ const(r, µ, d,K)
√
ε

and
dbL(HKr ,HK′r) ≤ const(r, µ, d,K)

√
ε,

where const(r, µ, d,K) depends on r, µ, d and the diameter of K.

This theorem implies that one can estimate locally the curvature mea-
sures of a compact set K ′ with positive µ-reach from an Hausdorff approxi-
mation. If f : Rd → R is measurable function, the previous theorem implies
that ∣∣∣∣∫ fdΦKr,k −

∫
fdΦK′r,k

∣∣∣∣ ≤ const(r, µ, d,K) ‖f‖BL

√
ε, (43)
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where ‖f‖BL = Lip(f) + ‖f‖∞‖ is the bounded-lipschitz norm of f . The
similar inequality holds for the anisotropic curvature measure. In practice,
we take the hat function f(x) = max(1− ‖x− c‖/r, 0) equal to 1 at a point
c ∈ ∂K ′r. Then we can retrieve local information about the curvature of
K ′r from the curvature of Kr in the neighborhood of c.

As illustrated in Figure 6, the upper bound of Theorem 39 is tight.
However the constant const(r, µ, d,K) in Equation (43) can be localized. It
does not have to depend on the whole compact set K, but can only depend
on the diameter of the support spt f = {x ∈ Rd, f(x) 6= 0} of f . See [7] for
more details.

Computation of the curvature measures of 3D point clouds

When the compact set K is a finite point set in R3 it is possible to pro-
vide explicit formula for the curvature measures. The boundary of Kr is a
spherical polyhedron: its faces are spherical polygons; its edges are circle
arcs contained in the intersection of pairs of spheres of radius r with cen-
ters in K; its vertices belong to the intersection of three spheres of radius
r with centers in K. One has explicit integral formula for the curvature
measures for each vertex/edge/face of the spherical polygon [7]. Moreover,
the combinatorial structure of ∂Kr is in one-to-one correspondence with the
boundary of the α-shape of K [11].

In Figures 7 and 8 below, the curvatures are represented on the boundary
of the α-shape (for α = r) of the point clouds where each triangle is colored
according to the curvature value of its corresponding vertex in ∂Kr and
to the colorbar on the right of Figure 7. Note that the color values are
different for the different examples (since the extrema values are different).
This algorithm can be easily adapted to calculate the anisotropic curvature
measures for a finite set of points. In particular, this allows to estimate the
principal curvatures and principal directions from a point set.

Sketch of proof of Theorem 39

We first need to introduce the notion of normal cycle for sets with positive
reach. Let V be a set with positive reach. We define the set:

S(V ) = {(p, n) ∈ Rd × Sd−1, p ∈ ∂V and n ∈ NorV (p)},

where NorV (p) := {v ∈ Rd; ∃t > 0,pV (p+ tv) = p} is the normal cone of V
at p. One can show that S(V ) is a Lipschitz (d-1)-manifold. The normal
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Figure 7: The Gauss (left) and mean (right) curvatures computed on the offset of
a point set sampled around a smooth surface. The colors are related to the values
of the curvature according to the colorbar on the right, the blue color corresponding
to the lowest values.

Figure 8: The Gauss (first and second image) and mean (third and fourth image)
curvatures computed on the offset of a point cloud sampled around a non-manifold
set union of a cube with a disc and a circle. As expected, the vertices and the
boundary of the disc have a large Gaussian curvature.
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cycle N(V ) of V is then by definition the (d-1)-current on Rd × Rd defined
for every (d-1)-differential form ω by:

N(V )(ω) =

∫
S(V )

ω.

The normal cycle contains in fact all the curvature information and allows
to define the curvature measures [9]. For every k, the curvature measure
ΦV,k(B) is given by N(V )(f̄ωk) where f̄(p, n) = 1B(p) and ωk is a d − 1-
differential form on Rd × Rd that does not depend on V . Similarly, the
anisotropic curvature curvature measure HV (X,Y ) applied in the directions
X and Y is given by N(V )(f̄ωX,YH ), where ωX,YH is a d− 1-differential form
that depends on X and Y .

The proof can now be divided into three steps: in the first step, we show
that the problem can be carried onto the double offsets (that are smooth);
in a second step, we compare the normal cycles of the double offsets; in the
last step, we combine Step 1 and Step 2 to show that the curvature measures
of the two offsets are close. Let K and K ′ be two compact sets with positive
µ-reach that satisfy all the assumptions of Theorem 39.

Step 1: Carrying the problem into the double offsets
First note that Rd \Kr and Rd \K ′r have positive reach. We introduce the
map:

F−t : Rd × Rd → Rd × Rd
(p, n) 7→ (p− tn, n)

.

If V is any compact set with positive reach, the map F−t induces naturally
a one-to-one correspondence between the support of the normal cycle of
the offset V t and the support of the normal cycle of V . In particular, this
map allows to send simultaneously the normal cycles of Kr,t and K ′r,t to
respectively the normal cycles of Kr and K ′r. More precisely, one has:

N(Rd \Kr)−N(Rd \K ′r) = F−t](N(Kr,t)−N(Kr,t)),

where F−t] denotes the push-forward for currents. Therefore, in order to

compare the normal cycles of Rd \Kr and Rd \K ′r, it is sufficient to com-
pare the normal cycles of the double offsets Kr,t and K ′r,t.

Step 2: Comparison of the normal cycles of the double offsets
In order to compare the normal cycles of Kr,t and K ′r,t, we first need to
compare their (geometrical) supports in Rd × Rd. One first shows that
the Hausdorff distance between ∂Kr,t and ∂K ′r,t is less than ε/µ. Using a
result of [4] one also shows that the difference between the normals of ∂Kr,t
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and ∂K ′r,t is bounded by 30
√
ε/(µt). Hence the (geometrical) supports of

N(Kr,t) and N(K ′r,t) are close to each other. Let us take t = µr/2. Since
the reach of ∂Kr,t is larger than t, the projection map p∂Kr,t onto ∂Kr,t is
then defined on the offset Ut := (∂Kr,t)t. Since ∂K ′r,t ⊂ Ut, the map p∂Kr,t

induces a one-to-one map between ∂K ′r,t and ∂Kr,t. We now define

ψ : Ut × Rd → spt (N (Kr,t))
(x, n) 7→ (p∂Kr,t(x), np∂Kr,t (x))

.

Using the affine homotopy between ψ and the identity, the homotopy Lemma [13,
4.1.9 page 363-364] allows to show that N(Kr,t) and N(K ′r,t) are close. More
precisely

N(Kr,t)−N(K ′r,t) = ∂R, (44)

where ∂R is the boundary of a particular d-rectifiable R current whose sup-
port spt(R) has a d-volume bounded byHd(spt(R)) ≤ k(r, µ, d)Hd−1(∂K ′r,t)√ε,
where Hk denotes the k-dimensional Hausdorff measure and k(r, µ, d) is a
constant that only depends on r, µ and d.

Step 3
Here, instead of applying the measures to a Borel set, we apply them to a
function f : Rd → R (that can be for example indicatrix of Borel sets). Let
us take an differential form ωk associated to a given curvature measure. We
could also consider the form ωX,YH associated to the anisotropic curvature
measure. By combining previous equations, one has:

ΦRd\Kr,k
(f)−ΦRd\K′r,k(f) = N(Rd \Kr)(f̄ωk)−N(Rd \K ′r)(f̄ωk) = F−t]∂R(f̄ωk).

We show that F−t is
√

1 + t2-Lipschitz. Since ωk and dωk are uniformly
bounded by a constant depending on the dimension, Lip(f̄) = Lip(f), one
gets by Stokes theorem:

|ΦRd\Kr,k
(f)− ΦRd\K′r,k(f)| ≤ k(r, µ, d) ‖f‖BL Hd−1(∂K ′r,t)

√
ε,

The previous inequality still holds for Kr and K ′r. To conclude the proof, we
use the bound on Hd−1(∂K ′r,t) [8] and also use the critical function stability
result to get rid of the assumption on the µ-reach of K.
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