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Sieve functions in arithmetic bands

Giovanni Coppola & Maurizio Laporta

Abstract. An arithmetic function f is a sieve function of range Q, if its Eratosthenes transform g = f ∗µ is supported in [1, Q]∩N,
where g(q)�ε qε, ∀ε > 0. Here, we study the distribution of f over the so-called short arithmetic bands

⋃
1≤a≤H{n ∈ (N, 2N ] :

n ≡ a (mod q)}, with H = o(N), and give applications to both the correlations and to the so-called weighted Selberg integrals of

f , on which we have concentrated our recent research.
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1. Introduction and statement of the results

If an arithmetic function f : N→ C is the convolution product of g and the constantly 1 function, i.e.

f(n) = (g ∗ 1)(n) =
∑
d|n

g(d),

we say, with Wintner [Win43], that g = f ∗ µ is the Eratosthenes transform of f (where µ is the
well-known Möbius function). We call f a sieve function of range Q, if its Eratosthenes transform g
is essentially bounded, namely g(d) �ε d

ε, ∀ε > 0, and vanishes outside [1, Q] for some Q ∈ N, that
is to say,

f(n) =
∑
d|n
d≤Q

g(d).

As usual, � is Vinogradov’s notation, synonymous to Landau’s O-notation. In particular, �ε means
that the implicit constant might depend on an arbitrarily small and positive real number ε, which

might change at each occurrence. We also write gQ
def
= g ·1

[1,Q]
to mean that g vanishes outside [1, Q]

(hereafter, 1B denotes the indicator function of the set B ∩ Z). Moreover, note that f = g ∗ 1 is
essentially bounded if and only if so is g.

Sieve functions are ubiquitous in analytic number theory. For example, the truncated divisor
sum ΛR, exploited by Goldston in [Gol92], is a linear combination of sieve functions of range R
(see Sect. 5.). Compare also [Cop10b] for more examples of sieve functions. However, the reader is
cautioned that by a sieve function some authors simply mean any sieve-related function that often
arises within the theory of sieve methods (see [DiaHal08]).

We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal

http://episciences.org
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The first author has intensively investigated symmetry properties of sieve functions in short inter-
vals through the study of their correlations and the associated Selberg integrals ([Cop10a], [Cop10b]
and [CopLap15]). Here we wish to relate such a study to the distribution of a sieve function in modu-
lar arithmetic short bands. More precisely, for given positive integers q,N,H we search for non-trivial
bounds on the total (balanced) value of f in arithmetic bands modulo q defined as

Tf (q,N,H)
def
=
∑
a≤H

∑
n∼N

n≡a (mod q)

f(n)− H

q

∑
n∼N

f(n),

where n ∼ N means that n ∈ (N, 2N ]∩N (hereafter, we omit a ≥ 1 in sums like
∑

a≤H). In particular,
given any N,H ∈ N, we prove that (see the remark after Theorem 1.1) for every real sieve function
f of range Q� N and every q � N one has

Tf (q,N,H)�ε N
ε(N/q + q +Q). (1..1)

It transpires from our method that similar bounds can be immediately established for weighted
versions of the above problem, namely

Tw,f (q,N,H)
def
=

∑
0≤|a|≤H

w(a)
∑
n∼N

n≡a (mod q)

f(n)− 1

q

∑
0≤|h|≤H

w(h)
∑
n∼N

f(n),

whenever w : R→ R is a piecewise-constant weight. Indeed, it is plain that Tf (q,N,H) = Tu,f (q,N,H)
involves the unit step weight

u(h)
def
=

{
1 if h > 0
0 otherwise.

However, we give more general conditions on w to treat Tw,f (q,N,H). First, let us set

wH (h)
def
= w · 1

[−H,H]
(h) =

{
w(h) if h ∈ [−H,H] ∩ Z
0 otherwise,

L1` (ŵH )
def
=

1

`

∑
j<`

(j,`)=1

∣∣∣ŵH(j`)∣∣∣, where ŵH (β)
def
=

∑
0≤|h|≤H

w(h)e(hβ),

(hereafter, e(α)
def
= e2πiα ∀α ∈ R, and (j, `)

def
= g.c.d.(j, `), as usual in number theory). Thus, we can

write ∑
a

wH (a)
∑
n∼N

n≡a (mod q)

f(n) =
ŵH (0)

q

∑
n∼N

f(n) + Tw,f (q,N,H)

and state our first result.

Theorem 1.1. Let q,N,H,Q be positive integers such that q � N and Q � N , as N → ∞. For
every sieve function f : N→ R of range Q and every weight w : R→ R one has

Tw,f (q,N,H)�ε N
ε
(N
q

+ q +Q
)

max
`>1
`|q

L1` (ŵH ).

Remark 1.2. By taking w = u and recalling ‖r‖ def= minn∈Z |r − n|, ∀r ∈ R, we have ∀` > 1, (see
[Da00], Ch.25),

L1` (ûH ) =
1

`

∑
j<`

(j,`)=1

∣∣∣ ∑
h≤H

e
(
h
j

`

)∣∣∣� 1

`

∑
j<`

(j,`)=1

1

‖j/`‖
�
∑
j≤`/2

1

j
� log `.
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Therefore, (1..1) follows immediately from Theorem 1.1.
Another remarkable instance concerns the correlation of wH given by

WH(a)
def
=
∑∑
h1 h2
h2−h1=a

wH (h1)wH (h2) =
∑

0≤|h|≤H
0≤|h−a|≤H

w(h)w(h− a).

Note that WH vanishes outside [−2H, 2H]. Moreover, uniformly in β ∈ [0, 1], one has

ŴH(β) =
∑

0≤|h|≤2H

WH(h)e(hβ) =
∑
h

∑∑
m−n=h

wH (m)wH (n)e(hβ)

=
∣∣∣∑

r

wH (r)e(rβ)
∣∣∣2 = |ŵH (β)|2.

Besides revealing that not all the weights are correlations of other weights, this yields

ŴH(0) = ŵH (0)2 � H2,

when wH is uniformly bounded as H →∞. Moreover, if wH also satisfies the inequality

L2` (ŵH )
def
=

1

`2

∑
j<`

∣∣∣ŵH (j`
) ∣∣∣2 � H

`
, ∀` ≥ 1, (1..2)

then

L1` (ŴH) =
1

`

∑
j<`

(j,`)=1

ŴH

(j
`

)
≤ `L2` (ŵH )� H, ∀` ≥ 1.

�

(Hereafter, � indicates the end of a remark).

According to [CopLap16], a uniformly bounded weight wH (as H → ∞) is said to be good, if it
satisfies (1..2). Thus, the following result is immediately established in a completely analogous way
to the proof of Theorem 1.1.

Corollary 1.3. Let q,N,H,Q be positive integers such that q � N and Q � N , as N → ∞. For
every sieve function f : N→ R of range Q and every good weight w : R→ R one has

∑
a

WH(a)
∑
n∼N

n≡a (mod q)

f(n) =
ŴH(0)

q

∑
n∼N

f(n) +Oε

(
N εH

(N
q

+ q +Q
))
,

where WH is the correlation of wH .

Remark 1.4. Though analogous definitions can be easily formulated for a complex weight w (with
the only exception of WH , whose definition has to be modified by taking the complex conjugate of
wH (h1)), here we stick to real weights and real sieve functions for simplicity. �

Remark 1.5. From [CopLap16] (see Propositions 2 and 3 there) it turns out that, beyond the unit
step function u defined above, other remarkable examples of good weights are the sign function and
the Cesaro weight, respectively defined as

sgn(h)
def
=

{
0 if h = 0
h/|h| otherwise,

CH(h)
def
=

{
1− |h|/H if |h| ≤ H
0 otherwise.
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Since

CH(h) =
1

H

∑
t≤H−|h|

1 =
1

H

∑∑
m,n≤H
m−n=h

1,

then HCH is the correlation of uH , and consequently ĈH(0) = ûH (0)2/H = H. We conclude that
Corollary 1.3 is non-trivial for wH = uH , yielding∑

a

CH(a)
∑
n∼N

n≡a (mod q)

f(n) =
H

q

∑
n∼N

f(n) +Oε

(
N ε
(N
q

+ q +Q
))
.

�

Remark 1.6. The main terms in the formulæ furnished by Theorem 1.1 and Corollary 1.3 can be
explicitly related to the Eratosthenes transform of f = gQ ∗ 1, with Q� N . Indeed,∑

n∼N
n≡a (mod q)

f(n) =
∑
n∼N

n≡a (mod q)

∑
d|n

gQ(d) =
∑
d≤Q

g(d)
∑
n∼N

n≡a (mod q)
n≡0 (mod d)

1

=
∑
d≤Q

(d,q)|a

g(d)
∑
n∼N/d

nd≡a (mod q)

1 =
∑
d≤Q

(d,q)|a

g(d)

(
N

dq
(d, q) +O(1)

)

=
N

q

∑
d≤Q

(d,q)|a

g(d)

d
(d, q) +Oε

(
Q1+ε

)
.

In particular, for the long intervals we get the formula∑
n∼N

f(n) = R1(f)N +Oε
(
Q1+ε

)
, (1..3)

where the so-called first Ramanujan coefficient R1(f) is the mean value of f (see Sect. 2.):

R1(f)
def
=

∑
d≤Q

g(d)

d

= lim
x→∞

(∑
d≤Q

g(d)

d
+

1

x

∑
d≤Q

O (|g(d)|)
)

= lim
x→∞

1

x

∑
n≤x

f(n).

On the other side, by taking F as the Dirichlet series generating f , one has

lim
x→∞

1

x

∑
n≤x

f(n) = Res
s=1

F (s)
xs−1

s
.

Since f = gQ ∗ 1 is a sieve function, then F can be expressed in terms of the Riemann zeta function
ζ and the Dirichlet polynomial generating its Eratosthenes transform, namely

F (s)
def
=

∞∑
n=1

f(n)

ns
= ζ(s)

∑
d≤Q

g(d)

ds
.

Note that the zeta function forces F to have a simple pole at s = 1, provided the g series does not
vanish at s = 1. Thus, if f = gQ ∗ 1 is gauged by a weight w in the short interval [x − H,x + H]
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(i.e. H = o(N), as N →∞), then it is natural to take the expected mean value of wH (n− x)f(n) for
N < x ≤ 2N to be (compare [CopLap14])

ŵH (0)R1(f) =
∑
a

wH (a)
∑
d≤Q

g(d)

d
(that is independent of x).

Indeed, a basic tool for the study of the distribution of the sieve function f in short intervals is
its weighted Selberg integral

Jw,f (N,H)
def
=
∑
x∼N

∣∣∣∑
n

wH (n− x)f(n)− ŵH (0)R1(f)
∣∣∣2,

whose non-trivial bounds might lead to results on the distribution of f in almost all short intervals
[x −H,x + H], i.e. with o(N) possible exceptions x ∈ (N, 2N ] ∩ N. Observe that the trivial bound
for Jw,f (N,H) is N1+εH2, because f is essentially bounded. In [CopLap14] and [CopLap16] we have
investigated and exploited the link between Jw,f (N,H) and the correlation

Cf (a)
def
=
∑
n∼N

f(n)f(n− a),

in order to get non-trivial bounds under suitable conditions on f and a good weight w. �

As a consequence of Theorem 1.1, we obtain a further result on such a link with a slight general-
ization. Let us define the correlation of real arithmetic functions f1 and f2 as

Cf1,f2(a)
def
=
∑
n∼N

f1(n)f2(n− a).

In such a context, we might refer to Cf = Cf,f as the autocorrelation of f . Since the shift a is confined
to a � H, the conditions n ∼ N and H = o(N) clearly yield max(n, n − a) ≤ 2N + |a| ≤ 3N .
Moreover, if f1 and f2 are essentially bounded, then trivially Cf1,f2(0) � N1+ε, and for any a � H
one has

Cf1,f2(a) =
∑∑

n1∼N n2∼N
n2−n1=a

f1(n1)f2(n2) +Oε (N εH)

(to be compared to the previous definition of the correlation of a weight).
Correspondingly, the mixed weighted Selberg integral associated to the pair (f1, f2) is (compare
[Cop14])

Jw,(f1,f2)(N,H)
def
=
∑
x∼N

∏
j=1,2

(∑
n

wH (n− x)fj(n)− ŵH (0)R1(fj)
)
.

By assuming that f2 = g2 ∗ 1 is a sieve function of range Q2 it is readily seen that (see also the proof
of Lemma 3.3 below)

Cf1,f2(a) =
∑
q≤Q2

g2(q)
∑
n∼N
n≡a (q)

f1(n).

Moreover, Lemma 3.3 also shows that if f1 and f2 are sieve functions, then Jw,(f1,f2)(N,H) can
be expressed in terms of arithmetic bands of f1 or f2. Such favorable circumstances allow us to
apply Theorem 1.1 in order to obtain both a so-called first generation formula (consistently with the
terminology of [CopLap14]) for the correlation of the sieve functions f1 and f2 (more precisely, here
we use (1..1) that is a consequence of Theorem 1.1 as it is showed in Remark 1.2) and an estimate of
Jw,(f1,f2)(N,H) once f1 and f2 are gauged by a good weight w.
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Corollary 1.7. Let N,H,Q1, Q2 be positive integers with Q1 ≤ Q2 � N , as N → ∞. For any real
and essentially bounded arithmetic functions g1 and g2 supported in [1, Q1] and [1, Q2], respectively,
one has ∑

a≤H
Cf1,f2(a) = R1(f1)R1(f2)NH +Oε

(
N ε(N +Q2

2 +Q1H)
)
,

where fj = gj ∗ 1 for j = 1, 2. Furthermore, if H = o(N), as N → ∞, and w : R → R is a good
weight, then

Jw,(f1,f2)(N,H)�ε N
ε (NH +Q2H

2 +Q2
2H +H3).

Remark 1.8. For every real sieve function f of range Q� N , this corollary gives∑
a≤H

Cf (a) = R2
1(f)NH +Oε

(
N ε(N +Q2 +QH)

)
,

Jw,f (N,H)�ε N
ε (NH +QH2 +Q2H +H3).

We stress that such a bound for the weighted Selberg integral has been already established in Theorem
3 of [CopLap16]. In Sect. 4. we propose a much simpler proof through the new approach of the
arithmetic bands formulæ provided by Theorem 1.1.

Furthermore, from such an approach we find an important relation between weighted Selberg
integrals and the total (weighted) content of a sieve function f of range Q� N , namely (see Lemma
3.3 and the proof of Corollary 1.7)

Jw,f (N,H)�ε N
ε
∑
q≤Q
|TW,f (q,N,H)|+N εH2(Q+H), (1..4)

where for the correlation of wH we set

TW,f (q,N,H)
def
=
∑
a

WH(a)
∑
n∼N

n≡a (mod q)

f(n)− ŴH(0)

q

∑
n∼N

f(n).

�

Beyond Corollary 1.3, more generally, given an essentially bounded f , a non-trivial bound like∑
q≤Q
|TW,f (q,N,H)| � N1−δH2, for some real δ > 0,

might yield a non-trivial bound of the same type for Jw,f (N,H) (but not necessarily with the same
gain N δ) by means of (1..4). Analogous considerations hold for mixed weighted Selberg integrals.
Rather surprisingly, in spite of the fact that the presence of absolute values in the total content seems
to prevent it from further possible cancellation, the next theorem makes it clear that there are non-
trivial bounds for (weighted) Selberg integrals, involving a sieve function f of range Q � N1−δ for
some δ > 0, if and only if there are non-trivial results on the distribution of f in short arithmetic
bands.

Theorem 1.9. Let f : N → R be a sieve function of range Q � N1−δ, for some δ > 0, and let
w : R→ R be such that wH is uniformly bounded for any H � N1−δ, as N →∞.

I) The following three assertions are equivalent:

i) a non-trivial bound holds for
∑
q≤Q
|TW,f (q,N,H)|
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ii) a non-trivial bound holds for Jw,f (N,H)

iii) a non-trivial bound holds for Jw,(f,f1)(N,H), where f1 is any sieve function of range Q.

II) If N δ/2 � H � N1−δ, as N →∞, then the following assertions are equivalent:

iv) a non-trivial bound holds for
∑
q≤Q
|Tf (q,N,H)|

v) a non-trivial bound holds for the Selberg integral

Jf (N,H)
def
=
∑
x∼N

∣∣∣ ∑
x<n≤x+H

f(n)−R1(f)H
∣∣∣2.

Note that in iv) a non-trivial bound is meant to be of the type N1−δH for some δ > 0.

After a short section on some further notation and basic formulæ, in Sect. 3. we give the necessary
lemmata for our theorems and for Corollary 1.7, whose proofs constitute the fourth section, whereas
we omit the proof of Corollary 1.3, it being completely analogous to the proof of Theorem 1.1. In
Sect. 4. we specialize the results of the present article to the aforementioned function ΛR. The last
section is devoted to a comparison between classical results in arithmetic progressions and ours in
arithmetic bands.

2. Further notation and standard properties

As already mentioned, we omit a ≥ 1 in sums like
∑

a≤X . For the same sake of brevity, at times we
write n ≡ a (q) in place of n ≡ a (mod q). Thus, the well-known orthogonality of additive characters,

eq(r)
def
= e(r/q) = e2πir/q, (q ∈ N, r ∈ Z),

can be written as

1

q

∑
j (q)

eq(j(n−m)) =
1

q

∑
j≤q

eq(j(n−m)) =

{
1 if n ≡ m (mod q)
0 otherwise

,

since the sum is over a complete set of residue classes j (mod q).

We write
∑∗

j(q)

to mean that the sum is over a complete set of reduced residue classes (mod q), i.e.

the set Z∗q of 1 ≤ j ≤ q such that (j, q) = 1. In particular, the Ramanujan sum is written as

cq(n)
def
=

∑∗

j(q)

eq(jn).

Without further references, we will appeal to the well-known inequality (see [Da00], Ch.25)∑
V1<v≤V2

e(vα)� min
(
V2 − V1,

1

‖α‖

)
.

Recalling that 1(n)
def
= 1, ∀n ∈ N, we set

1d|n
def
=

{
1 if d|n
0 otherwise.
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Consequently, the aforementioned orthogonality of characters becomes

1d|n =
1

d

∑
j′(d)

ed(j
′n) =

1

d

∑
`|d

∑
j′(d)

(j′,d)=d/`

ed(j
′n) =

1

d

∑
`|d

c`(n).

Therefore, one has the following Ramanujan expansion of a sieve function f = gQ ∗ 1:

f(n) =
∑
d|n

gQ(d) =
∑
d≤Q

g(d)1d|n =
∑
d≤Q

g(d)

d

∑
`|d

c`(n)

=
∑
`≤Q

∑
d≤Q
d≡0 (`)

g(d)

d
c`(n) =

∑
`≤Q

R`(f)c`(n),

where we have introduced the so-called `−th Ramanujan coefficient of f , i.e.

R`(f)
def
=

∑
d≡0 (`)

gQ(d)

d
.

The hypothesis that g is essentially bounded yields the bound

R`(f)� 1

`

∑
m≤Q

`

|g(`m)|
m

�ε
Qε

`

∑
m≤Q

`

1

m
�ε

Qε

`
. (2..1)

We refer the reader to [SchSpi94] for more extensive accounts on the theory of the Ramanujan
expansions.

3. Lemmata

Here we state and prove two lemmas that are interesting in their own right. The first lemma is
required to prove Theorem 1.1, while the second one is invoked within the proofs of Corollary 1.7 and
Theorem 1.9. To this end, analogously to the exponential sums for the weights already introduced in
Sect. 1., we set

f̂(α)
def
=
∑
n∼N

f(n)e(nα) (α ∈ R).

Notice that now we can write

Tw,f (q,N,H) =
∑
a

wH (a)
∑
n∼N
n≡a (q)

f(n)− ŵH (0)
f̂(0)

q
,

TW,f (q,N,H) =
∑
a

WH(a)
∑
n∼N
n≡a (q)

f(n)− ŴH(0)
f̂(0)

q
,

while the formula (1..3) becomes

f̂(0) = R1(f)N +Oε(Q
1+ε).

The first lemma gives a similar relation between the `−th Ramanujan coefficient of f and f̂(α), when
α = j/` is any non-integer rational with (j, `) = 1. Note that such a formula is not a straightforward
consequence of Wintner’s criterion (see VIII.2 of [SchSpi94]).
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Lemma 3.1. Let f be a sieve function of range Q� N , with Q,N ∈ N. Then

f̂(j/`) = R`(f)N +Oε((`Q)ε(Q+ `)), ∀` > 1, ∀j ∈ Z∗` .

Proof. By hypothesis f = gQ ∗ 1 with an essentially bounded g. Hence

f̂(j/`) =
∑
d

gQ(d)
∑
v∼N

d

e`(jdv)

=
∑
d≡0 (`)

gQ(d)
(N
d

+O(1)
)

+O
( ∑
d6≡0 (`)

|gQ(d)|
‖jd/`‖

)
.

Since ∑
d≡0 (`)

gQ(d)
(N
d

+O(1)
)

= R`(f)N +Oε

(
Qε
(Q
`

+ 1
))

,

then the lemma is proved whenever we show that∑
d≤Q
d 6≡0 (`)

1

‖jd/`‖
�ε `

ε(Q+ `).

To this end, it suffices to observe that∑
d≤Q
d 6≡0 (`)

1

‖jd/`‖
≤

∑
0<|r|≤`/2

∑
d≤Q

jd≡r (`)

1

|r/`|
� `

∑
r≤`/2

1

r

(Q
`

+ 1
)
.

The proof is completed.

Remark 3.2. Note that the formula of the above lemma is non-trivial when `,Q� N1−δ, for some
δ > 0. Moreover, it is easy to see that it holds uniformly with respect to j ∈ Z∗` . �

Let us turn our attention to the next lemma. As already mentioned in Sect. 1., by means of
an elementary dispersion method, in [CopLap14], Lemma 7, we established a link between weighted
Selberg integrals and autocorrelations of an arithmetic function f gauged by a weight w such that
wH is bounded, as H →∞. Under the further hypothesis that the sieve function f and the weight w
are real, the formula of the aforementioned lemma becomes

Jw,f (N,H) =
∑

0≤|a|�H

WH(a)Cf (a) +
∑
x∼N
|ŵH (0)R1(f)|2

−2ŵH (0)R1(f)
∑
n≤3N

f(n)
∑
x∼N

wH (n− x) +Oε
(
H3N ε

)
.

Similarly, for the mixed weighted Selberg integral of sieve functions f1, f2 we have

Jw,(f1,f2)(N,H) =
∑
a

WH(a)Cf1,f2(a)− ŴH(0)R1(f1)R1(f2)N

− ŵH (0)
(
R1(f1)

∑
x∼N

∆2(x) +R1(f2)
∑
x∼N

∆1(x)
)

+Oε
(
H3N ε

)
, (3..1)

where we set ∆j(x)
def
=
∑

nwH (n− x)fj(n)− ŵH (0)R1(fj).
By using such a formula we prove the next lemma, where Jw,(f1,f2)(N,H) is expressed in terms of
arithmetic bands of f1 or f2.
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Lemma 3.3. Let g1 and g2 be real and essentially bounded arithmetic functions supported in [1, Q1]
and [1, Q2], respectively, with Q1, Q2 ∈ N such that Q1 ≤ Q2 � N , as N →∞. If w : R→ R is such
that wH is uniformly bounded, as H →∞, then one has

Jw,(f1,f2)(N,H) =
∑
q≤Q1

g1(q)TW,f2(q,N,H) +Oε
(
N εH2(Q2 +H)

)
=

∑
q≤Q2

g2(q)TW,f1(q,N,H) +Oε
(
N εH2(Q2 +H)

)
,

where we set fj = gj ∗ 1, and WH is the correlation of wH .

Proof. First, let us write∑
x∼N

∑
n

wH (n− x)fj(n) =
∑
n∼N

fj(n)
∑

n−H≤x≤n+H
w(n− x) +Oε

(
N εH2

)
= ŵH (0)

∑
n∼N

fj(n) +Oε
(
N εH2

)
.

Then, by arguing as in (1..3) and recalling that R1(fj)�ε Q
ε
j , we get∑

x∼N
∆j(x) = ŵH (0)

( ∑
n∼N

fj(n)−R1(fj)N
)

+Oε
(
N εH2

)
�ε N εH(Qj +H).

Since WH is even and Q1 ≤ Q2 � N , the above formula (3..1) yields

Jw,(f1,f2)(N,H) =
∑
a

WH(a)Cf1,f2(a)− ŴH(0)R1(f1)R1(f2)N

+Oε
(
N εH2(Q2 +H)

)
=

∑
a

WH(a)Cf2,f1(a)− ŴH(0)R1(f1)R1(f2)N

+Oε
(
N εH2(Q2 +H)

)
.

Thus, we can stick to the first equality, apply (1..3) to f1 and write∑
a

WH(a)Cf1,f2(a) − ŴH(0)R1(f1)R1(f2)N

=
∑
a

WH(a)
∑
n∼N

f1(n)
∑
q|n−a
q≤Q2

g2(q)

−ŴH(0)
∑
n∼N

f1(n)
∑
q≤Q2

g2(q)

q
+Oε

(
Q1+ε

2 H2
)

=
∑
q≤Q2

g2(q)
(∑

a

WH(a)
∑
n∼N
n≡a (q)

f1(n)− ŴH(0)
f̂1(0)

q

)
+Oε

(
Q1+ε

2 H2
)
.

The lemma is completely proved.
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4. Proofs of Theorems 1.1, 1.9 and Corollary 1.7

Proof of Theorem 1.1. By the orthogonality of additive characters we get

Tw,f (q,N,H) =
1

q

∑
a

wH (a)
∑
n∼N

f(n)
∑
j′≤q

eq(j
′(a− n))− ŵH (0)

q
f̂(0)

=
1

q

∑
j′<q

∑
a

wH (a)eq(j
′a)f̂

(
−j′/q

)
=

1

q

∑
`>1
`|q

∑∗

j (`)

f̂ (−j/`) ŵH (j/`),

where we have set ` = q/(j′, q). By applying Lemma 3.1 and (2..1) we see that

Tw,f (q,N,H) �ε
1

q

∑
`>1
`|q

(
|R`(f)|N + (`Q)ε(Q+ `)

) ∑∗

j (`)

∣∣∣ŵH(j`)∣∣∣
�ε

Qε

q

∑
`>1
`|q

(N
`

+Q`ε + `1+ε
)
`L1` (ŵH )

�ε N ε
(N
q

+Q+ q
)

max
`>1
`|q

L1` (ŵH ).

The theorem is completely proved.

Proof of Corollary 1.7. As already noticed in the proof of Lemma 3.3, we can write

Cf1,f2(a) =
∑
n∼N

f1(n)f2(n− a) =
∑
n∼N

f1(n)
∑
q|n−a
q≤Q2

g2(q)

=
∑
q≤Q2

g2(q)
∑
n∼N
n≡a (q)

f1(n).

Thus, the formula (1..3) and Theorem 1.1 (more precisely, we apply (1..1) here) yield∑
a≤H

Cf1,f2(a) =
∑
q≤Q2

g2(q)
(H
q
f̂1(0) + Tf1(q,N,H)

)
= H

( ∑
q≤Q2

g2(q)

q

) (
R1(f1)N +Oε

(
Q1+ε

1

))
+Oε

(
N ε

∑
q≤Q2

(N
q

+ q +Q1

))
= R1(f1)R1(f2)NH +Oε

(
N ε(N +Q2

2 +Q1H)
)
,

that is the first formula of Corollary 1.7. In order to prove the stated inequality for the mixed weighted
Selberg integral, it is enough to observe that Lemma 3.3 and the hypothesis Q1 ≤ Q2 � N imply

Jw,(f1,f2)(N,H) =
∑
q≤Q2

g2(q)TW,f1(q,N,H) +Oε
(
N εH2(Q2 +H)

)
�ε N ε

∑
q≤Q2

|TW,f1(q,N,H)|+N εH2(Q2 +H).
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Hence the conclusion follows immediately from Corollary 1.3.

Before going to the proof of Theorem 1.9, let us remark explicitly that (1..4) is plainly a particular
case of the latter inequality. Moreover, it transpires from the previous proof that, given any real and
essentially bounded arithmetic function g supported in [1, Q], with Q� N , for f = g ∗ 1 one has∑

a≤H
Cf (N) = R1(f)2NH +

∑
q≤Q

g(q)Tf (q,N,H) +Oε (N εQH) . (4..1)

Proof of Theorem 1.9. For simplicity and without loss of generality, let us assume that, whatever the
choice of an assertion among i)-v) as hypothesis, the gain of the non-trivial bound is always N δ.

Part I. i) =⇒ ii): as we said, let us suppose that∑
q≤Q
|TW,f (q,N,H)| � N1−δH2.

Thus, ii) follows immediately from (1..4), where H2(Q + H) � N1−δH2 because of the hypotheses
H,Q� N1−δ.

ii) =⇒ iii): since we assume that Jw,f (N,H) � N1−δH2, then by the Cauchy inequality and the
trivial bound for Jw,f1(N,H) we get

Jw,(f,f1)(N,H) ≤
√
Jw,f (N,H)

√
Jw,f1(N,H)

�ε N
ε
√
N1−δH2

√
NH2 � N1−δ/3H2.

iii) =⇒ i): after setting

sW,f (q)
def
=

{
sgn(TW,f (q,N,H)) if 1 ≤ q ≤ Q
0 otherwise,

it is readily seen that f1 = sW,f ∗ 1 is a sieve function of range Q. Thus, we can write∑
q≤Q
|TW,f (q,N,H)| =

∑
q

sW,f (q)TW,f (q,N,H).

Now, by taking g1 = sW,f and f2 = f in Lemma 3.3 we see that∑
q≤Q
|TW,f (q,N,H)| = Jw,(f,f1)(N,H) +Oε

(
N εH2(Q+H)

)
,

where again H2(Q+H) is non-trivial. The first part of the theorem is completely proved.

Part II. iv) =⇒ v): since Q� N1−δ and we assume that∑
q≤Q
|Tf (q,N,H)| � N1−δH,

then it is easily seen that the formula (4..1) yields∑
a≤t

Cf (a) = R1(f)2N [t] +Oε

(
N1−δ+εt

)
for all 1 ≤ t ≤ H,
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where [t] is the integer part of t. Thus, by partial summation we can write∑
1≤a≤H

(H − a)Cf (a) =

∫ H

1

∑
a≤t

Cf (a)dt

=

∫ H

1

(
R1(f)2N [t] +Oε

(
N1−δ+εt

))
dt

=
R1(f)2

2
NH2 +Oε

(
N1+εH

)
+Oε

(
N1−δ+εH2

)
.

Now, since Cf (0)�ε N
1+ε, and for 1 ≤ a ≤ H one has

Cf (−a) =
∑
n∼N

f(n)f(n+ a) =
∑

N+a<m≤2N+a

f(m− a)f(m)

= Cf (a) +Oε (N εH) ,

then ∑
0≤|a|≤H

(H − |a|)Cf (a) = R1(f)2NH2 +O
(
N1−δ/3H2

)
.

By using this formula in (3..1), where we take
WH(a) = HCH(a) = max(H − |a|, 0)

(see Remark 1.5), we immediately obtain Jf (N,H)� N1−δ/3H2.

v) =⇒ iv): we suppose that Jf (N,H)� N1−δH2 and set

sf (q)
def
=

{
sgn(Tf (q,N,H)) if 1 ≤ q ≤ Q,
0 otherwise,

f1
def
= sf ∗ 1.

Thus, we can write∑
q≤Q
|Tf (q,N,H)| =

∑
q

sf (q)
(∑
a≤H

∑
n∼N
n≡a (q)

f(n)− H

q

∑
n∼N

f(n)
)

=
∑
a≤H

( ∑
n∼N

f(n)f1(n− a)−R1(f1)
∑
n∼N

f(n)
)

=
∑
a≤H

∑
N−a<x≤2N−a

f(x+ a)f1(x)−R1(f1)R1(f)NH

+Oε(N
εQH)

=
∑
x∼N

f1(x)
∑

x<m≤x+H
f(m)−R1(f1)R1(f)NH

+Oε(N
ε(Q+H)H)

=
∑
x∼N

f1(x)
( ∑
x<m≤x+H

f(m)−R1(f)H
)

+Oε(N
ε(Q+H)H),

where we have applied (1..3) to both f and f1. Note that the O-term contribution is non-trivial
because of hypotheses on Q and H. In order to deal with the main term of the latter formula, after
recalling that f1 is essentially bounded, we apply the Cauchy inequality and the above assumption
on Jf (N,H) to get∑

x∼N
f1(x)

( ∑
x<m≤x+H

f(m)−R1(f)H
)
�ε N1/2+ε

√
Jf (N,H)

�ε N1+ε−δ/2H,
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which in turn yields ∑
q≤Q
|Tf (q,N,H)| � N1−δ/3H.

Theorem 1.9 is completely proved.

5. A remarkable truncated divisor sum

Let us recall that the truncated divisor sum defined in [Gol92] is

ΛR(n)
def
=
∑
d|n
d≤R

µ(d) log(R/d) = (logR)
∑
d|n
d≤R

µ(d)−
∑
d|n
d≤R

µ(d) log d,

so that ΛR is plainly a linear combination (with relatively small coefficients) of two sieve functions,

whose Eratosthenes transforms are respectively the restricted Möbius function, µR
def
= µ · 1

[1,R]
, and

µR · log.
After recalling also the well-known relations (see [Da00])

∞∑
d=1

µ(d) log d

d
= −1 and

∑
d≤R

µ(d)

d
,
∑
d>R

µ(d) log d

d
� exp

(
− c
√

logR
)
,

(hereafter, c > 0 is an unspecified constant), we see that

R1(ΛR) =
∑
d≤R

µ(d) log(R/d)

d

= (logR)
∑
d≤R

µ(d)

d
−
∑
d≤R

µ(d) log d

d
= 1 +O

(
exp

(
− c
√

logR
))
.

Thus, the mean value formula (1..3) gives∑
n∼N

ΛR(n) = N +O
(
N exp

(
− c
√

logR
))

+Oε(N
εR),

while, if R� N , a straightforward application of (1..1) yields∑
a≤H

∑
n∼N
n≡a (q)

ΛR(n) =
NH

q
+Oε

(
N ε
(N
q

+ q +R
))

+O
(
N exp

(
− c
√

logR
))
.

In case the level λ
def
= (logR)/(logN) is positive, i.e. 0 < λ0 ≤ λ < 1 (for a fixed λ0), we may replace

logR by logN in the above formulæ , where now c = c(λ). Assuming that this is the case, Corollary
1.7 provides the following first generation formula for the correlation of ΛR:∑

a≤H

∑
n∼N

ΛR(n)ΛR(n− a) = NH +O
(
NH exp

(
− c
√

logN
))

+Oε
(
N ε(N +R2 +RH)

)
.

It is worthwhile to remark that by following the classical approach in the literature the remainder
term for the single correlation is �ε N

εR2, that trivially yields a remainder �ε N
εR2H in the first

generation formula above, whereas by our method we save H.
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6. Further comments

The key of the present approach is that the correlation of a real sieve function f = gQ ∗ 1 can be
written as

Cf (a) =
∑
q≤Q

g(q)
∑
n∼N
n≡a (q)

f(n).

In the literature (see [IwaKow04], Ch.17), we find several studies of the distribution of an arithmetic
function f (not necessarily a sieve function) over primitive residue classes. Most results are focused
on non-trivial bounds for the error term

Ef (N ; q, a)
def
=

∑
n∼N
n≡a (q)

f(n)−Mf (N ; q, a)

for all (a, q) = 1, provided q is not too large. Here, Mf (N ; q, a) is the expected mean value term. Let
us recall two major variants of the problem. The first one concerns the Bombieri-Vinogradov type
mean ∑

q≤Q
max

(a,q)=1
|Ef (N ; q, a)| ,

for which we refer the reader to [Mot76]. The second classical variant is the Barban-Davenport-
Halberstam type quadratic mean ∑

q≤Q

∑
a≤q

(a,q)=1

Ef (N ; q, a)2.

The latter has also a short interval version introduced by Hooley [Hoo99], that is∑
q≤Q

∑
a≤ρq

(a,q)=1

Ef (N ; q, a)2, where ρ→ 0.

In all such problems, the challenging issue is the level λ
def
= (logQ)/(logN) of distribution of f

in arithmetic progressions (see [FriIwa10], §9.8 and §22.1). For example, the celebrated Bombieri-
Vinogradov Theorem gives a non-trivial bound for∑

q≤Q
max

(a,q)=1

∣∣∣ ∑
n∼N
n≡a (q)

Λ(n)− N

ϕ(q)

∣∣∣, where ϕ(q)
def
= |{a ≤ q, (a, q) = 1}|,

essentially with a level λ = 1/2 (which seems to be a structural barrier at least for the distribution of
primes). However, for many applications one can just deal with individual reduced class a and take
the sum over q ≤ Q, (q, a) = 1. Indeed, by assuming that a 6= 0, one can see that it is possible to
break the level 1/2 for the Bombieri-Friedlander-Iwaniec type mean (see [FriIwa10], Theorem 22.1)∑

q≤Q
(a,q)=1

∣∣∣ ∑
n∼N
n≡a (q)

Λ(n)− N

ϕ(q)

∣∣∣.
Consistently with the present notation, the above formula for the correlation of a sieve function

becomes
Cf (a) =

∑
q≤Q

g(q)Mf (N ; q, a) +
∑
q≤Q

g(q)Ef (N ; q, a),

where, by recalling that g(q)�ε q
ε, one has∑

q≤Q
g(q)Ef (N ; q, a)�ε Q

ε
∑
q≤Q
|Ef (N ; q, a)| .
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Thus, here for each individual residue a we deal with a sum over q ≤ Q without any further restriction.
Then, it is not surprising that a straight asymptotic

Cf (a) ∼
∑
q≤Q

g(q)Mf (N ; q, a)

has been proved for very few interesting instances of f , including the noteworthy case of the divisor
function (see the third version of [CopLap14] on arXiv for a brief account on this matter). Better
expectations for the first generation of correlation averages,∑

a≤H
Cf (a),

are given substance by Corollary 1.7 (and by the alternative approach of Lemma 12 in [CopLap14]).
Furthermore, note that Theorem 1.9 concerns the average∑

q≤Q

∣∣∣ ∑
a≤H

Ef (N ; q, a)
∣∣∣,

where, unlike the aforementioned means, the sums are taken over all the moduli q ≤ Q and over a
short interval of residue classes a, when f is a sieve function of range Q� N1−δ and H � N1−δ. The
bound for the weighted Selberg integral given in Corollary 1.7 and its application through Theorem
1.9 allow Q �

√
NHN−ε, that is to say, the level might go beyond 1/2 when we deal with not too

short intervals, e.g., H � N3ε.
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