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Malaria is a public health issue in the Amazonian region, with major transmission foci depending on specific local characteristics associated with changing environmental and socio-demographic contexts. French Guiana is a French overseas territory with ~260,000 inhabitants. It remains one of the major malaria foci in the region, despite an improving epidemiological situation during the past ten years. The number of reported clinical cases has significantly dropped from 4,479 in 2005 to 434 in 2015 [START_REF] Petit-Sinturel | Situation du paludisme en Guyane française en 2015[END_REF], and now corresponds to an incidence rate of two cases for 1,000 inhabitants for the whole territory, making it possible to target the pre-elimination of the disease in 2018 (Agence Régionale de Santé Guyane 2015). Plasmodium vivax is at present predominant and this species was responsible for 67% of the diagnosed cases of malaria in the territory in 2014, the others being mainly due to Plasmodium falciparum [START_REF] Musset | Malaria on the Guiana Shield: a review of the situation in French Guiana[END_REF][START_REF] Ardillon | Bilans 2013 et 2014 de la situation du paludisme en Guyane[END_REF]. However, this epidemiological situation is heterogeneous in space and time. In particular, a recrudescence of malaria cases is currently observed in the inland region (Saül, Cacao, and Régina) and eastern French Guiana (municipalities of Camopi and Saint-Georges-del'Oyapock), with a general incidence rate reaching 55.2 cases per 1,000 inhabitants in 2013 [START_REF] Musset | Malaria on the Guiana Shield: a review of the situation in French Guiana[END_REF], likely due to the emergence and/or persistence of local foci of high malaria transmission [START_REF] Berger | Investigation of a sudden malaria outbreak in the isolated Amazonian village of Saul, French Guiana, January-April 2009[END_REF][START_REF] Musset | Malaria on the Guiana Shield: a review of the situation in French Guiana[END_REF]. This Amazonian region, especially near the international borders, includes vulnerable populations. Some are hard-to-reach and have poor access to health services and treatment-seeking behaviors that may favor the development of resistance to antimalarial drugs [START_REF] Musset | Malaria on the Guiana Shield: a review of the situation in French Guiana[END_REF][START_REF] Wangdi | Cross-Border Malaria: A Major Obstacle for Malaria Elimination[END_REF]. Uncontrolled areas of malaria transmission are also prevalent in illegal gold mining areas (Pommier de Santi et al. 2016a, Pommier de Santi et al. 2016b). The epidemiological situation remains quite unstable, and preelimination of malaria, corresponding to an incidence rate below one case for 1,000 inhabitants in any locality of French Guiana, remains a major challenge.

In this context, public health authorities must maintain control efforts while targeting them more precisely and objectively in time and space [START_REF] Alimi | Prospects and recommendations for risk mapping to improve strategies for effective malaria vector control interventions in Latin America[END_REF]. A map of malaria risk in French Guiana is updated regularly by the regional unit of the French National Public Health Agency, based on the number of cases reported per locality and the data available on movements of human populations at risk, especially due to gold mining activities. This map is validated by the local expert committee of epidemic diseases (Comité d'Experts des Maladies à Caractère Épidémique, CEMCE), which brings together different experts of the disease in the region (from the Health Surveillance Agency, the Pasteur Institute of French Guiana, the Regional Unit of the National Public Health Agency, vector control services, hospitals, and other diagnosis and care centers, and the Defense Health Service in French Guiana). The lack of objective knowledge of several key factors, especially the spatiotemporal distribution of the main malaria vectors and human populations infected by Plasmodium and/or carrying gametocytes, makes such a map highly approximate.

Anopheles (Nyssorhynchus) darlingi Root (Diptera: Culicidae) is one of the most efficient malaria vectors in South America and is considered to be the primary malaria vector in French Guiana because of its anthropophilic behavior, natural infectability, high density, and sensitivity to P. falciparum [START_REF] Girod | Anopheles darlingi bionomics and transmission of Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae in Amerindian villages of the Upper-Maroni Amazonian forest, French Guiana[END_REF][START_REF] Hiwat | Behavioral heterogeneity of Anopheles darlingi (Diptera: Culicidae) and malaria transmission dynamics along the Maroni River, Suriname, French Guiana[END_REF][START_REF] Fouque | Annual variations in the number of malaria cases related to two different patterns of Anopheles darlingi transmission potential in the Maroni area of French Guiana[END_REF]. Used entomological data collection for the entire territory, for the mapping of entomological risk indicators at the regional scale, is not feasible. French Guiana occupies a large territory (84,000 km²) which is mostly covered by rain forest (more than 80%) and highly inaccessible. Knowledge of the recent geographical distribution of An. darlingi is thus restricted to coastal areas, some villages along the international border rivers, and some illegal gold mining sites (Figure 1). Species Distribution Modeling (SDM) offers an efficient solution to geographically extrapolate such knowledge to the entire territory [START_REF] Pearson | Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar: Predicting species distributions with low sample sizes[END_REF]. Species Distribution Modeling produces maps of species habitat suitability by using known presence locations of the species and relevant environmental data. The use of SDM is thus encouraged to "improve and facilitate the development of alternative vector control strategies" [START_REF] Alimi | Prospects and recommendations for risk mapping to improve strategies for effective malaria vector control interventions in Latin America[END_REF]. Numerous SDM approaches are proposed in the literature. Some of them, such as Maximum Entropy (Maxent; [START_REF] Phillips | Maximum entropy modeling of species geographic distributions[END_REF], Genetic Algorithm for Rule-Set Prediction (GARP; Stockwell 1999), Boosted Regression Trees (BRT;[START_REF] Friedman | Additive Logistic Regression: a Statistical View of Boosting[END_REF], Generalized linear and additive models (GLM and GAM; [START_REF] Guisan | Generalized linear and generalized additive models in studies of species distributions: setting the scene[END_REF], and Multivariate adaptive regression splines (MARS; [START_REF] Leathwick | Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish[END_REF], exploit only species presence information, offering a significant advantage over methods that also require absence data. Indeed, absence data are often difficult to obtain. According to [START_REF] Peterson | Ecological niche modelling and understanding the geography of disease transmission[END_REF] and [START_REF] Hirzel | Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data?[END_REF], absence can result from (1) the non-detection of the species in a suitable habitat, even if it is present, (2) the actual absence of the species for historical reasons, whereas the habitat is suitable, and (3) the true absence of the species and the unsuitability of the habitat.

Comparative studies [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF][START_REF] Tognelli | An evaluation of methods for modelling distribution of Patagonian insects[END_REF][START_REF] Pearson | Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar: Predicting species distributions with low sample sizes[END_REF][START_REF] Hernandez | The effect of sample size and species characteristics on performance of different species distribution modeling methods[END_REF][START_REF] Wisz | Effects of sample size on the performance of species distribution models[END_REF] show that Maxent is able to fit complex functions between habitat suitability and predictor variables, is the least sensitive to the size of the presence dataset, and tends to outperform other comparable methods when the dataset is small. In this study, the mapping of the habitat suitability of An. darlingi at the scale of all of French Guiana was performed using the Maxent SDM approach. This work aims to provide reliable maps for improving malaria transmission risk mapping in French Guiana, and to identify the environmental factors and associated mechanisms that favor the presence of An. darlingi.

Materials and Methods

Study area

French Guiana (84,000 km²), a French overseas region located in South America, is separated from Suriname by the Maroni River and from Brazil by the Oyapock River and the Tumuc-Humac mountains. More than 80% of the territory is covered by rain forest. The country has an equatorial climate characterized by two annual dry seasons, from mid-August to mid-November and in March, and two wet seasons, from mid-April to mid-August and mid-November to February. The average annual rainfall reaches 4,000 mm and 2,000 mm in the wettest (north-east) and driest (north-west) areas, respectively [START_REF] Hammond | Tropical forests of the Guiana Shield: ancient forests in a modern world[END_REF]. The average monthly rainfall is >100 mm for the entire territory throughout the year, except for the three driest months: September, October, and November [START_REF] Héritier | Le climat guyanais ; petit atlas climatique de la Guyane française[END_REF]. The average humidity is between 80% and 90%. The temperature is homogeneous over the entire territory throughout the year, with an average annual temperature of 26°C. The difference between the minimum and maximum daily temperature is more important than the annual variations. For example, in Maripasoula (on the border with Surinam) and Camopi (on the border with Brazil), the annual ranges of the minimum and maximum temperatures were, 4.3°C and 9.6°C (averages over the period [2001][2002][2003][2004][2005][2006][2007][2008], respectively, whereas the mean daily thermal amplitude was 9.8°C (average over the period [START_REF] Singer | Agricultural colonization and malaria on the Amazon frontier[END_REF]-2008;Météo-France, 2016). The population of ~260,000 inhabitants is unequally distributed throughout the territory. Approximately 90% of the population lives in the coastal area and most of the rest lives along the Maroni and the Oyapock rivers (Amerindians and Bush-Negroes). However many people live and/or transit through inland and remote areas of the territory (forestry workers, gold miners, and soldiers). According to many studies [START_REF] Berger | Investigation of a sudden malaria outbreak in the isolated Amazonian village of Saul, French Guiana, January-April 2009[END_REF][START_REF] Verret | Malaria outbreak in troops returning from French Guiana[END_REF][START_REF] Queyriaux | Plasmodium vivax malaria among military personnel, French Guiana, 1998-2008[END_REF][START_REF] Hustache | Malaria risk factors in Amerindian children in French Guiana[END_REF], Stefani et al. 2011, Pommier de Santi et al. 2016a), Amerindians, gold miners, and soldiers may be highly infected by malaria, whereas the areas in which they live and/or transit are those with the poorest knowledge of the presence and density of malaria vectors. It is thus of potential interest to consider the malaria risk, study the distribution of malaria vectors, and implement prevention and control actions over the entire territory of French Guiana.

Species Records

Presence sites of An. darlingi were provided by surveys of the Medical Entomology Unit of the Pasteur Institute of French Guiana and the Defense Health Service in French Guiana. Culicidae collections were performed using either human landing catches or traps (light traps or odor baited traps). Human landing catches consisted of exposing collector's lower leg and collecting landing mosquito with a mouth aspirator. Collectors were members of the Pasteur Institute or Defense Health Services, they were aware of the risks associated with the method and had given their free consent. Malaria prophylaxis was proposed and information on the medication was explained. Light trap catches were performed with Center for Disease Control and Prevention (CDC) light traps, and odor baited catches were performed with Mosquito Magnet ® traps (Woodstream Corporation, Lititz, PA) baited with Octenol, a combination considered to be the best candidate for Anopheles surveillance in the region [START_REF] Vezenegho | Anopheles darlingi (Diptera: Culicidae) dynamics in relation to meteorological data in a cattle farm located in the coastal region of French Guiana: advantage of Mosquito Magnet trap[END_REF].

Anopheles species were morphologically identified using taxonomic keys specific for the region [START_REF] Floch | Anophèles de la Guyane française[END_REF][START_REF] Faran | A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera: Culicidae)[END_REF], Forattini 1962). Only Culicidae collections performed since the year 2000 were precisely geolocated by GPS coordinates and were used for the study (Figure 1). These data correspond to 74 capture sites for the family Culicidae, and to 48 presence sites for the species An. darlingi.

The difficulty in accessing most of the French Guiana territory, and the priority given to the areas at risk of malaria transmission where many people live, led to a significant sampling bias with oversampling of the anthropized region of the territory, notably those easily accessible by roads (Figure 1).

Ecological knowledge and hypotheses

The presence of An. darlingi is linked to compositional and configurational features of the land cover and land use, as they partially determine breeding, feeding, and resting sites of the vector [START_REF] Stefani | Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data[END_REF]. The natural environment for this vector in the Amazonian region includes floodable savanna, swamps [START_REF] Girod | Unravelling the relationships between Anopheles darlingi (Diptera: Culicidae) densities, environmental factors and malaria incidence: understanding the variable patterns of malarial transmission in French Guiana (South America)[END_REF][START_REF] Zeilhofer | Habitat suitability mapping of Anopheles darlingi in the surroundings of the Manso hydropower plant reservoir, Mato Grosso, Central Brazil[END_REF], and flooded forest [START_REF] Rozendaal | Relations between Anopheles darlingi breeding habitats, rainfall, river level and malaria transmission rates in the rain forest of Suriname[END_REF]. Larvae are found along river edges, on flooded riverbanks, creeks, and pools formed near river-beds [START_REF] Rozendaal | Relations between Anopheles darlingi breeding habitats, rainfall, river level and malaria transmission rates in the rain forest of Suriname[END_REF][START_REF] Hiwat | Behavioral heterogeneity of Anopheles darlingi (Diptera: Culicidae) and malaria transmission dynamics along the Maroni River, Suriname, French Guiana[END_REF]. Breeding sites are generally situated at low altitude [START_REF] Mouchet | Occupation du sol et sa dynamique sur la bande côtière de la Guyane de 2005 à 2011[END_REF]) and solely in freshwater, as An. darlingi is sensitive to salinity [START_REF] Deane | Notas sobre a distribuição ea biologia dos anofelinos das regiões nordestina e Amazônica do Brasil[END_REF].

Hydrological and geomorphological factors are responsible for the formation and destruction of Anopheles breeding sites [START_REF] Smith | Hydrological and geomorphological controls of malaria transmission[END_REF].

Human activities, comprising deforestation and fish farming, also contribute to the creation of active breeding sites [START_REF] Patz | Effects of environmental change on emerging parasitic diseases[END_REF][START_REF] Richard | Le Paludisme en forêt[END_REF][START_REF] Stefani | Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data[END_REF][START_REF] Takken | Effects of environmental change on malaria in the Amazon region of Brazil[END_REF][START_REF] Terrazas | Deforestation, drainage network, indigenous status, and geographical differences of malaria in the state of Amazonas[END_REF][START_REF] Vittor | The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon[END_REF][START_REF] Vittor | Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi[END_REF]. Unpaved roads, tracks, and culverts form ideal breeding sites for An. darlingi in the Amazon region [START_REF] Singer | Agricultural colonization and malaria on the Amazon frontier[END_REF]. The presence of An. darlingi is also maintained by regular human presence due to its strong anthropophilic behavior. However, the presence and density of An. darlingi can either be favored or restricted depending on the type and intensity of the anthropogenic impacts. [START_REF] Stefani | Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data[END_REF] systematically reviewed the literature and showed that all the studies describe the same mechanisms linking deforestation, land use, and the degree of urbanization with malaria transmission risk in the Amazonian region: opening the forest and maintaining a high degree of interaction between forested and deforested areas decreases the distance between feeding, breeding, and resting sites of An. darlingi, favoring the presence and high density of the vector (as well as a high probability of contact between humans and vectors); in contrast, intensifying deforestation and creating large urbanized and/or cultivated surfaces tends to decrease suitable habitat for An. darlingi. These two antagonistic consequences of human activities were considered in the SDM described here, by explicitly separating favorable and unfavorable factors in the environmental characterization.

The optimum temperature range for An. darlingi is between 20 and 30°C with a humidity of above 60% [START_REF] Martens | Potential impact of global climate change on malaria risk[END_REF]. Several studies established a minimal monthly rainfall threshold to designate suitable breeding habitats for Anopheles (reviewed in [START_REF] Smith | Hydrological and geomorphological controls of malaria transmission[END_REF]. These values vary between 10 and 80 mm and need to be maintained for three or four months.

Environmental Variables

Environmental variables chosen as SDM inputs must characterize the ecological factors that influence the presence of An. darlingi, previously described. These factors are separated into three types: 1) natural environment features, associated with land cover, land use, and geomorphology for which the impact on the presence of An. darlingi depends on specific values or categorical classes;

2) anthropogenic activities that non-permanently alter the natural environment on a highly local scale and favor the presence of An. darlingi; 3) urbanization, corresponding to human presence and activities that permanently alter the natural environment over large areas and hinders the presence of the vector. Meteorological variables were not included in the model, because the temperature, rainfall, and humidity fall within the optimal ranges for presence of the species in French Guiana.

Thus, these variables cannot significantly explain differences in the time average habitat suitability distribution over the year (this point is extensively discussed in the Discussion section).

Raw Geographic Data. Variables chosen as SDM inputs were derived from the following raw geographic data:

-Geomorphological landscape (GLS) and Geomorphological landforms (GLF) from the French Forest Office (ONF) [START_REF] Guitet | Landform and landscape mapping, French Guiana (South America)[END_REF]; -Landscape types (LS) from the French Agricultural Research Centre for International Development (CIRAD) [START_REF] Gond | Broad-scale spatial pattern of forest landscape types in the Guiana Shield[END_REF]. This provides the distribution of landscape types in French Guiana, most being forested landscapes; Table 1 summarizes the main features of these raw geographic data.

Definition of Environmental Variables Used as Inputs for SDM. Several variables were extracted from the previously described raw data to better reflect the ecological knowledge and hypotheses mentioned above. The reference spatial resolution (pixel size) permitting the integration of all environmental layers was set to 1 by 1 km, i.e., the coarsest resolution of the available layers, associated with the LS map.

The length of roads and tracks outside of urban areas (ROADS) was computed in the 1 km-cell grid from the BD TOPO® database.

The sublayers composing the HFP were first rasterized into 30˗m grid cells, the smaller polygon of the HFP having a size of approximately 40 by 10 m. Distinct attributes were then extracted:

-The percentage of urbanization (PER_URB) within the 1 km grid cells; -The percentage of urbanization within the eight neighbor cells of each urban cell (PER_URB_NEIGH), which permits distinguishing small from large urban areas. This layer was obtained for each 1 km-cell considered to be urban (i.e., with PER_URB ≥ 50%), by averaging the PER_URB values for the eight (1 km side) neighbor pixels; -The human activities which non-permanently alter the natural environment (HA), by first summing the scores of the following sublayers: tourist and forest camps, mining activities and logged areas, hunting areas nearby rivers, and then, by computing the minimum, median, and maximum values within the 1˗km grid cells.

The agriculture sublayer from HFP was not used because it covers only the coastal area. The population density sublayer was also excluded because it did not have sufficient level of detail. The sublayer of potential hunting areas near roads and tracks were not used to avoid duplication of the length of roads and tracks outside of urban areas computed previously.

For each 1˗km grid cell, the majority class of the categorical variables GLS and GLF, and the minimum, median, and maximum altitude (ALT) values were computed.

Eventually, some corrections of the LS layer were performed as it did not identify urban areas and did not distinguish flooded forests associated with freshwater from those of the coastal strip associated with brackish water (mangroves): LS cells with an PER_URB value greater than or equal to 50% were reclassified into a new LS class referred to as Urban; LS cells classified as Flooded forest and corresponding to mangroves according to the coastal land use map provided by the ONF (Office National des Forêts Direction Régionale de Guyane, 2013) were reclassified as Mangrove.

The variable PER_URB was excluded from the input SDM variables, as the urban areas were mapped, and their extent quantified, by the corrected LS and PER_URB_NEIGH layers, respectively.

Table 1 lists and describes the environmental variables used to build the model.

Maxent Model Principle

Maxent is an SDM which requires environmental variables and species presence-only data. It is based on the principle of maximum entropy to estimate an (a priori) unknown probability distribution over the entire study area. This probability distribution assigns a value that is proportional to the probability of the presence of the species to each pixel of the study area. It is therefore interpreted as a habitat suitability index (HSI) across the study area [START_REF] Phillips | Maximum entropy modeling of species geographic distributions[END_REF]).

The Maximum Entropy principle consists of approximating the unknown probability distribution by finding the one that maximizes entropy and satisfies the constraints imposed by the environmental features at the known sites of presence. Environmental features are a set of input environmental variables chosen according to their expected relevance for the studied taxon [START_REF] Phillips | Maximum entropy modeling of species geographic distributions[END_REF][START_REF] Elith | A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt[END_REF]. The constraints ensure that the environmental values expected under the approximated probability distribution are consistent with environmental information observed at the presence points.

In practice, the Maxent distribution is defined on a set of points called background points. These points should reflect the available environmental conditions of the study area and are chosen by uniform random sampling. This approach assumes that the presence data are not biased and that environmental conditions are uniformly sampled [START_REF] Yackulic | Presence-only modelling using MAXENT: when can we trust the inferences?[END_REF]. However, in practice, some areas are more intensively sampled than others, and environmental conditions are not uniformly distributed and may imply a strong sampling bias. [START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF] proposed selecting the background points with the same environmental bias as the presence dataset to correct the effect of this sampling bias.

Model Building and Evaluation

Eleven environmental variables and 48 An. darlingi presence points (their coordinates were in the table in supplementary material S1) are used as inputs for Maxent. Only one presence site was selected to build the model when more than one occurred in the same pixel. As a result, only 39 presence sites were actually used for building the model. Hinge and categorical features were selected for the environmental variables. A hinge feature provides a good compromise between simplicity and the quality of the approximation of the species response curves [START_REF] Elith | A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt[END_REF][START_REF] Phillips | Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[END_REF].

In this study, the distribution of the background points was biased so that the selection bias corresponds to that of the sampling. The sampling bias was defined as the relative sampling effort in the environmental space, and was estimated by considering the capture locations of Culicidae, obtained using the same capture techniques and supposed to be subjected to the same sampling bias as the An. darlingi species. The details of the method to create the relative sampling effort map are described in supplementary material S2.

The model was computed using version 3.3.3k of Maxent. The recommended values derived from [START_REF] Phillips | Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[END_REF] concerning the regularization parameters and the background set size, were applied. Regularization parameter values were set to 0.25 and 0.5 for categorical and hinge features, respectively, and the size of the background was set to 10,000. The extrapolation option was not selected to avoid making predictions in environmental domains in which the model was not trained. The model was fitted using the full data set and evaluated using a 10-fold cross-validation procedure. The Receiver Operating Characteristic (ROC) curves and the associated Areas Under the ROC Curve (AUC) were computed. This was completed by computing the mean partial AUC ratios [START_REF] Peterson | Rethinking receiver operating characteristic analysis applications in ecological niche modeling[END_REF], consisting of the ratios of the partial AUCs of the model over the null AUC (corresponding to random prediction), for omission errors (E) of 20, 10, and 5%. The Continuous Boyce Index (CBI), considered to better adapted to presence-only models than the AUC [START_REF] Hirzel | Evaluating the ability of habitat suitability models to predict species presences[END_REF], was also computed. The gain (regularized training gain) was also used to evaluate the performance of the model prediction. It is a measure of the likelihood of the sample, and indicates how much better the estimated distribution fits the presence points than the uniform distribution, which corresponds to a null gain [START_REF] Yost | Predictive modeling and mapping sage grouse (Centrocercus Urophasianus) nesting habitat using Maximum Entropy and a longterm dataset from Southern Oregon[END_REF].

The importance of each variable was estimated using two methods, a heuristic method and the jackknife test. The heuristic method computes the percentage contribution of each variable to the model. During the training process, the increase of the gain is due to the adjustment of the feature weights and this increase is assigned to the environmental variable that the feature depends on. The sum of these increases in gain indicates the percentage contribution of each environmental variable.

The jackknife test evaluates the individual contribution of each variable to the model by estimating the difference of the gain when removing each variable, one by one, and when considering the given variable alone to build the model.

Results

The mean AUC was 0.93, and the mean partial AUC ratios were 1.08, 1.03, and 1.01 for maximum omission errors sets to 20, 10, and 5% respectively. The mean CBI was 0.356 and the mean gain was 3.14. Three variables cumulatively contributed >80% (Table 2): the length of roads and tracks outside of urban areas (ROADS), the percentage of urbanization of neighboring pixels (PER_URB_NEIGH), and landscape (LS). The maximum value of the human activities which non-permanently alter the natural environment (HA_MAX), geomorphological landscape (GLS), minimum altitude (ALT_MIN), and geomorphological landform (GLF) contributed moderately to the model, with contributions of 6.84%, 5.35%, 1.34%, and 1.19%, respectively. The following input variables contributed very little to the model: minimum and median values of human activities which non-permanently alter the natural environment (HA_MIN and HA_MED; 0.35 and 0.24%, respectively); and median and maximum values of altitude (ALT_MED and ATL_MAX; 0.69 and 0.06%, respectively).

The results of the Jackknife test confirmed the non-significant contribution of the input variables HA_MIN, HA_MED, ALT_MED, and ALT_MAX (Table 2).

A second model was built using only the most highly contributing environmental variables: ROADS, LS, PER_URB_NEIGH, HA_MAX, GLS, GLF, and ALT_MIN. The overall performance of this simpler model was very similar to the previous one, with the mean AUC and partial AUC ratios equal to 0.93 and 1.11, 1.05, and 1.03, respectively. The mean gain was equal to 3.19 and the mean CBI was 0.421. Relative contributions of the input variables were also very similar (Table 3).

The response curves of the environmental variables are represented in Figures 2 and3. They show that the HSI is maximal when the PER_URB_NEIGH is below 8%. Above this value, the HSI decreases progressively towards 0. The HSI increases as ROADS increases up to 7,000 meters, reaches a plateau value, and then tends to decrease above 10,000 meters. Among all LS classes, Woodland savanna/dry forest and Open forest contribute the most to the high HSI values. The geomorphological landscape classes Coastal flat plain and Plain with residual relief and the geomorphological landform classes Small-size and flat wet land, Small-size rounded hill, and Lowered half-orange reliefa tropical relief type corresponding to a hill with convex flanks giving to it a roughly hemispherical shape [START_REF] George | Dictionnaire de la géographie[END_REF] and usually linked to flat or swampy lowlands drained by streams with meanders -are also associated with high HSI values. The HSI is maximal when ALT is ~0, with a rapid decrease as altitudes increase. The HA_MAX response curve presents a more complicated profile. The HSI increases for HA_MAX values between 0 and 8, decreases until HA_MAX reaches 24, and then again increases as values continue to climb above 24.

The map of habitat suitability for An. darlingi, based on all the presence data for modeling, shows six main areas (A -F) with a high HSI and a seventh area (G) corresponding to an epidemiological interest area (see Figure 4). A qualitative analysis was performed to determine the characteristics of the environmental variables of the areas with high HSI values (Table 4).

In the coastal area (A), where 90% of the Guyanese population lives, the HSI tends to be higher along the main road representing the main traffic route in French Guiana. Focusing on the main urban areas, represented in Figure 5, the HSI values within the highly urbanized districts of Cayenne and Kourou (rectangles in Figure 5) are lower than those of the surrounding pixels that are not considered to be highly urbanized. A very high HSI was predicted within the urban area of Saint-Laurent-du-Maroni. However, none of the pixels characterizing this city has a The areas for which the model did not predict the HSI, due to the choice to not extrapolate to environmental domains not used to train the model, correspond to areas with an altitude higher than 400 meters. They represent a small number of pixels of the study area.

Discussion

The prediction performances of the model are excellent and significantly greater than those of the null model. The following discussion focuses on the ecological interpretation of the results and the methodological choices and alternatives.

Environmental Factors Explaining the Habitat Suitability

The geographic distribution of habitat suitability is consistent with existing knowledge of the entomological situation despite the small number of presence points. The high HSI values can be explained by different environmental contexts depending on the geographical locations. In most areas (A, B, D, and E), the HSI values depend on human presence and activities, characterized by the environmental variables HA_MAX and ROADS (in areas D, E, and B, most roads are not paved and correspond mostly to tracks). The significantly positive correlation between the variable ROADS and the HSI confirms that road and track opening, accompanied by deforestation and pooling of rainwater at the roadside, may favor breeding sites [START_REF] Singer | Agricultural colonization and malaria on the Amazon frontier[END_REF]. The response curve for the variable ROADS (Figure 3) reaches a plateau above 7,000 meters of road per square kilometer and decreases thereafter. The decrease of the HSI at values above 7,000 meters suggests that the density of the road network leads to an improvement of the road quality (paved road eliminating culverts, adding sidewalks), thus limiting the availability of breeding and/or resting sites, in the same way as urbanization. Indeed, the response curve of the PER_URB_NEIGH variable confirms that highly urbanized areas provide a poorly suitable habitat for An. darlingi (Figure 3). Intensive urbanization implies concrete paving, the decrease or removal of green areas and forests, and consequently, the destruction of breeding and resting sites for An. darlingi [START_REF] Stefani | Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data[END_REF]). This phenomenon is observed in the highly urbanized areas of Cayenne and Kourou (Figure 5). In contrast, Saint-Laurent-du-Maroni, the second largest urban area of French Guiana in terms of urbanization size and density, has high HSI values. In fact, unlike Cayenne and Kourou, this area is not considered to be highly urbanized using the criterion of this study (PER_URB_NEIGH ≥ 50%). However, the result for Saint-Laurent-du-Maroni seems unlikely because the presence of An. darlingi has not yet been reported in an urban area. Further field works could confirm the presence of this species in the city. The sensitivity of the model for the criterion that defines a highly urbanized area may also merit further study.

The values of HA_MAX in areas D and E were essentially associated with mining activity. In French Guiana, this activity is responsible for forest loss reaching 2,000 hectares per year (Office National des Forêts Direction Régionale de Guyane, 2014). Between 2001and 2013[START_REF] Alvarez-Berríos | Corrigendum: Global demand for gold is another threat for tropical forests[END_REF] estimated that the largest forest loss due to gold mining in the tropical and subtropical moist forest in South America was situated in the Guianan region including French Guiana. This suggests that this activity, resulting in deforestation and creating sources of standing water such as mining pits, combined with the presence of a large number of people, creates suitable conditions for An. darlingi. The high HSI in these two areas is also explained by the Mixed high and open forest landscape which is associated with human disturbance [START_REF] Gond | Broad-scale spatial pattern of forest landscape types in the Guiana Shield[END_REF]. Indeed, this landscape is described as a forest environment linked to young or unstable vegetation mostly due to first stages of anthropization. These results confirm the important role of human presence in the creation of suitable habitats for An. darlingi, which is also consistent with the strong anthropophilic behavior of this vector. Some landscape types which are not directly associated with human presence or activities were also associated with a HSI. The Woodland savanna/dry forest class appears to highly contribute to high HSI values (Figure 2). It corresponds to the driest landscape in French Guiana [START_REF] Gond | Broad-scale spatial pattern of forest landscape types in the Guiana Shield[END_REF]), but can be seasonally inundated due to its poor drainage, creating breeding sites [START_REF] Rosa-Freitas | An ecoregional classification for the state of Roraima, Brazil. The importance of landscape in malaria biology[END_REF]). The high HSI values in this area are in accordance with previous studies [START_REF] Vezenegho | Anopheles darlingi (Diptera: Culicidae) dynamics in relation to meteorological data in a cattle farm located in the coastal region of French Guiana: advantage of Mosquito Magnet trap[END_REF], Dusfour et al. 2013), which reported finding An. darlingi in the coastal savanna environments of French Guiana. In uninhabited areas (zones F and C in Figure 4), a high HSI is associated with the Open forest class (LS layer) and flat terrain. This LS class can be associated with different land cover types in French Guiana [START_REF] Gond | Broad-scale spatial pattern of forest landscape types in the Guiana Shield[END_REF]) depending on the geographical location.

Consequently, this LS class may differentially affect An. darlingi habitat suitability. The Open forest in area C mainly corresponds to wetlands (classified as Flooded forest according to the coastal land use map provided by the Office National des Forêts Direction Régionale de Guyane, 2013), whereas in area F, it corresponds to Large surfaces of bamboo thicket and forbs. Anopheles darlingi was found in flooded forest; however, to our knowledge, no information is available concerning its presence in large areas of bamboo thicket and forbs. The prediction in these areas should be taken with precaution as a more precise description of the habitats within Open forest class is required.

Overall, this information highlights that natural environment could form highly suitable habitats despite the high anthropophily of An. darlingi.

Meteorological Variables

In this study, meteorological variables were not used to build the model. Temperatures fall within the optimal range for the species presence, and were considered to be geographically and temporally too homogeneous to explain differences in the spatial distribution of habitat suitability. Such a hypothesis is common in the Amazonian context. [START_REF] Olson | Links between climate, malaria, and wetlands in the Amazon Basin[END_REF] report that in their study region (Amazon basin), "monthly temperatures were between 24.6°C and 29.4°C (well within the range for optimal malaria transmission) for 95% of the observations," and consequently did not include temperatures in their model. In French Guiana, several studies also used rainfall data to study the intra-annual variations in An. darlingi density [START_REF] Hiwat | Behavioral heterogeneity of Anopheles darlingi (Diptera: Culicidae) and malaria transmission dynamics along the Maroni River, Suriname, French Guiana[END_REF][START_REF] Girod | Unravelling the relationships between Anopheles darlingi (Diptera: Culicidae) densities, environmental factors and malaria incidence: understanding the variable patterns of malarial transmission in French Guiana (South America)[END_REF]. The exclusion of rainfall data is more debatable, as rainfall clearly influenced the intra-annual density of An. darlingi in the study region [START_REF] Hiwat | Behavioral heterogeneity of Anopheles darlingi (Diptera: Culicidae) and malaria transmission dynamics along the Maroni River, Suriname, French Guiana[END_REF][START_REF] Girod | Unravelling the relationships between Anopheles darlingi (Diptera: Culicidae) densities, environmental factors and malaria incidence: understanding the variable patterns of malarial transmission in French Guiana (South America)[END_REF][START_REF] Vezenegho | Anopheles darlingi (Diptera: Culicidae) dynamics in relation to meteorological data in a cattle farm located in the coastal region of French Guiana: advantage of Mosquito Magnet trap[END_REF] even if the relationship was not systematically observed [START_REF] Girod | Unravelling the relationships between Anopheles darlingi (Diptera: Culicidae) densities, environmental factors and malaria incidence: understanding the variable patterns of malarial transmission in French Guiana (South America)[END_REF]. The evidence for this impact on densities is that An. darlingi habitat suitability varies at an intra-annual scale, due to the alternation of dry and wet seasons. However, the entire study area is subject to this alternation.

Moreover, given the high density of the French Guiana hydrological network and that the driest area (north-west) still receives 2,000 mm a year, it can be reasonably assumed that An. darlingi can find suitable conditions within the entire territory throughout most of the year. In French Guiana, the geomorphological landscape highly influences the availability of breeding sites, and therefore their spatial distribution, whereas the rainfall quantities influence the intra-annual variations of An. darlingi densities. As a consequence, on an average over the year, we assume that the significant factor influencing the distribution of habitat suitability is not the quantity of rainfall, but the capacity of the landscape to provide suitable breeding sites when it rains.

Model Parametrization

The model was run by using the regularization parameter values and background set size recommended by [START_REF] Phillips | Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[END_REF], instead of those determined from specific experiments, as suggested by [START_REF] Merow | A Practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[END_REF]. [START_REF] Phillips | Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[END_REF] tested a set of regularization parameter values with 48 species datasets that contained 11 to 13 environmental variables and a small number of categorical variables (1-3, as they considered discrete ordinal variables to be categorical). Nine of these datasets contained between 30 and 60 occurrences. The characteristics of the dataset exploited in our study (39 occurrence records; 13 and seven environmental variables including three categorical ones) are assumed to be quite similar of those of the datasets used by [START_REF] Phillips | Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[END_REF]. We thus assumed that the pseudo-optimal parameters proposed by [START_REF] Phillips | Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[END_REF] could be confidently used in our study. Similarly, the background size was set to 10,000 based on the tests realized by [START_REF] Phillips | Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[END_REF], with 226 species and a median number of 57 presence sites. Better prediction performance may have been obtained by tuning the regularization values and background size and adding input environmental variables and features. However, the risk would have been to favor overfitting to the detriment of the bioecological interpretation of the model (see for example [START_REF] Merow | A Practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[END_REF]. According to the entomologists who participated in the study, the model appears to be a good compromise between overfitting (that would have predicted suitable areas near occurrence points only) and being too general (that would have predicted suitable areas in too many environmental contexts for which the specialists have no species presence evidence).

Correction of the sampling bias effect

In this study, the effect of sampling bias was corrected by selecting background points with the same environmental bias as the sampled points. This approach appeared to be useful when applied to An. darlingi in French Guiana. Without a bias effect correction, the model predicted very high HSI values in highly urbanized areas whereas these areas are known to be unsuitable for this vector (see above). The biased background set is more concentrated around the sampled points (in the environmental space) than the uniform random background, and is not likely to include environmental conditions that are highly dissimilar to those encountered at the sampled points. As a result, environmental conditions highly dissimilar to those of the sampled points can be subjected to extrapolation, which may lead to erroneous habitat suitability predictions and bio-ecological interpretations. This justifies not using the extrapolation option for modeling. The predicted HSI map from the model with a biased background contains several excluded areas, whereas that of the model with a uniform random background does not. Excluded areas correspond to high altitude areas which are unsuitable for An. darlingi [START_REF] Mouchet | Occupation du sol et sa dynamique sur la bande côtière de la Guyane de 2005 à 2011[END_REF]).

When using a uniform random background, the three most contributive variables (cumulative contribution equal to 85.5%) were all directly linked to human presence and territory accessibility (ROADS: 38.1%, PER_URB_NEIGH: 34.9%, and HA_MAX: 12.5%). Thus, apart from urban areas, high HSI values were associated with high HA_MAX and ROADS values. However, when correcting the sampling bias effect, the Landscape (LS) variable was the second most contributive variable (14.1%), the ROADS variable contribution increased to 62.6%, and the PER_URB_NEIGH variable contribution decreased to 11.1% (see Table 3).

From a quantitative point of view, the two approaches (with and without applying the correction of the sampling bias effect) resulted in identical AUC and partial AUC ratios. However, the regularized gain and the CBI were lower without correction, with values equal to 2.81 (vs. 3.18) and 0.284 (vs. 0.421), respectively. Thus, correction of the sampling bias effect gave better results: both more consistent with knowledge from the field and more accurate in terms of prediction. The fact that the contributions of the LS and HA_MAX variables respectively increased and decreased with the use of the biased background, tends to show that the correction method actually manages to counterbalance the over-representation of inhabited areas (cities, villages, and gold mining areas) in the sampled data.

However, the very high contribution of the variable ROADS may be a residual effect of sampling bias, as sampling is essentially performed in the vicinity of accessible roads and tracks. Further studies are necessary to objectively and quantitatively assess the actual performance of the proposed methodology for correcting the effect of sampling bias. [START_REF] Alimi | Prospects and recommendations for risk mapping to improve strategies for effective malaria vector control interventions in Latin America[END_REF] highlighted the utility of SDMs for gaining a better understanding of the geographical range and distribution of vectors for eliminating malaria and preventing outbreaks.

Habitat Suitability and Malaria in French Guiana

The coastal strip in French Guiana is generally malaria free, although some cases resulting from local transmission are regularly diagnosed [START_REF] Ardillon | Bilans 2013 et 2014 de la situation du paludisme en Guyane[END_REF]. This study, as well as that of [START_REF] Vezenegho | Anopheles darlingi (Diptera: Culicidae) dynamics in relation to meteorological data in a cattle farm located in the coastal region of French Guiana: advantage of Mosquito Magnet trap[END_REF], shows that the savanna in French Guiana may be highly suitable for An. darlingi. In the forest, Pommier de Santi et al. (2016c) found a link between mining, malaria cases, and the presence of An. darlingi. Indeed, >74% of malaria cases in French army soldiers were associated with operations to counteract illegal gold mining (Pommier de Santi et al. 2016a).

According to the results of the present study, some areas associated with intense gold mining activity, known to be malaria transmission foci, are not necessarily associated with very high HSI values. In the village of Camopi, the annual malaria prevalence was 70% for children younger than seven years of age between 2000 and 2002 [START_REF] Carme | Malaria in an outbreak zone in Oyapock (French Guiana): incidence of malaria attacks in the American Indian population of Camopi[END_REF], reaching 100% in 2006 [START_REF] Hustache | Malaria risk factors in Amerindian children in French Guiana[END_REF]). However, only some pixels on the border of the Camopi and Oyapock rivers have high values on the HSI map (area G in Figure 4). This is consistent with the study of [START_REF] Girod | Unravelling the relationships between Anopheles darlingi (Diptera: Culicidae) densities, environmental factors and malaria incidence: understanding the variable patterns of malarial transmission in French Guiana (South America)[END_REF], which showed that the number of An. darlingi caught in this village was very low relative to the incidence of malaria cases. These findings collectively highlight two important points. First, the HSI map shown in Figure 4 does not correspond to a map of malaria transmission risk.

Transmission risk depends on many factors that were not taken into account here, such as the parasitic charge and immunological status of the local population, compositional and configurational features of the landscape [START_REF] Stefani | Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data[END_REF][START_REF] Li | Mapping a knowledge-based malaria hazard index related to landscape using remote sensing: application to the cross-border area between French Guiana and Brazil[END_REF], and behavioral factors.

Second, this highlights that malaria transmission can occur in areas where there is a very low density of An. darlingi. This may be due to the presence of other Anopheles species such as An.

(Nys.) nuneztovari Galbaldón, An. (Nys.) oswaldoi Peryassú, An. (Nys.) intermedius Peryassú, An.

(Nys.) marajoara Galvão and Damasceno, or An. (Nys.) ininii Sénevet and Abonnenc (Diptera: Culicidae), already known to be naturally infected with Plasmodium species and/or described as efficient secondary malaria vectors [START_REF] Dusfour | Incrimination of Anopheles (Anopheles) intermedius Peryassú, An. (Nyssorhynchus) nuneztovari Gabaldón, An. (Nys.) oswaldoi Peryassú as natural vectors of Plasmodium falciparum in French Guiana[END_REF], Pommier de Santi et al, 2016c).

Environmental Characterization

A significant limitation of this study was the spatial resolution of the environmental data. Capture campaigns are generally carried out at a local scale (villages or camps; [START_REF] Vezenegho | Anopheles darlingi (Diptera: Culicidae) dynamics in relation to meteorological data in a cattle farm located in the coastal region of French Guiana: advantage of Mosquito Magnet trap[END_REF], Dusfour et al. 2013). The spatial resolution of the study was not sufficient to take into account the heterogeneity of the environment at the capture scale. The use of environmental data with higher spatial resolution, such as the canopy height estimation from [START_REF] Fayad | Canopy height estimation in French Guiana with LiDAR ICESat/GLAS data using principal component analysis and Random Forest regressions[END_REF] or finer characterization of the land cover could improve future studies. However, these data are not consistently available across the entire territory.

In conclusion, the results of this study help to complete our knowledge on the spatial distribution of the principal malaria vector in this Amazonian region, and to identify the main factors that favor its presence. These results can be exploited to define the necessary targeted vector control strategies in a malaria pre-elimination context, and to extrapolate the acquired knowledge to other Amazonian contexts. They also suggest areas that need to be targeted to complete the field knowledge, validate the prediction and strengthen the model. Eventually, these proposed methodological developments can be applied to other species, including other disease vectors. The parameter D min was set from a priori knowledge of An. darlingi bio-ecology. As highly urbanized areas are not suitable for An. darlingi (see § I.3), we stated that a pixel associated with

An. darlingi presence cannot belong to a highly urbanized pixel. Reciprocally, a pixel considered to be highly urbanized cannot belong to the environmental neighborhood of a pixel where An. darlingi was observed.

Consequently, given P, the set of pixels where the species was observed and U, the set of pixels belonging to highly urbanized areas, D min was defined as follows:

  (2) A pixel is considered to be highly urbanized if it belongs to the LC class Urban and if its eight neighboring pixels present an average urbanization percentage (PER_URB_NEIGH) higher than or equal to 50%.

The concepts of environmental space and neighborhood, as well as the key method parameters are schematically represented in Figure S1. Given X, the set of pixels of the study area, and

  X i i c = c
 , a vector such that 1 = c i if i is sampled and 0 = c i otherwise, the relative sampling effort at pixel i, z i , is then defined as:

     X j ij X j ij i w c w = z / (3) 
The relative sampling effort was computed for each pixel of the study area. The resulting map was used to bias the random selection of background points. Consequently, for a given pixel, the greater the relative sampling effort, the higher the chance of selecting the pixel as a background point. 
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  Altitude (ATL) derived from the Digital Elevation Model provided by the Shuttle Radar Topography Mission (SRTM, spatial resolution: 30 meters) of the United States Aeronautics and Space Administration (NASA); -Human footprint (HFP): An integrated human activity index that gives a general measure of the extent of expected threats on biodiversity, by assigning a score depending on the nature of the disturbance. It combines sublayers spatializing human population density, urban areas, legal and illegal mining sites, agriculture, forest settlements and camps, tourist camps, logged areas (forest activities), and potential hunting areas corresponding to a zone of two kilometers around roads, tracks and rivers, likely to be used by humans. The total disturbance score is the sum of all human activity scores (de Thoisy et al. 2010); -Roads and tracks from the BD TOPO® database of the French Institute of Geographical and Forestry Information (IGN).

PER_URB_NEIGH

  value higher than or equal to 50%. The high HSI values in areas B, D, E, and G are characterized by the environmental variables ROADS, HA_MAX, the classes Open forest and Mixed high and open forest, and flat or moderately hilly terrain. The high HSI in areas C and F is essentially linked to Open forest and flat terrain.
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 1 Figure 1. Culicidae capture points and Anopheles darlingi presence points (from 2000 to 2013).
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 2 Figure 2. Response curves of categorical environmental variables.
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 3 Figure 3. Response curves of numerical environmental variables. Dashed lines show the mean values and the grey regions represent the interval between the maximum and minimum values.
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 4 Figure 4. Habitat suitability index map. Six main areas with a high habitat suitability index (A to F) and Camopi village (G) are circumscribed by the red circles and rectangles.

Figure 5 .

 5 Figure 5. Zoom of urban areas. a, d, and g: habitat suitability index maps. b, e, and h: landscape type. c, f, and i: percentage urbanization of neighbor pixels. Rectangles correspond to highly urbanized areas (LS class is Urban and PER_URB_NEIGH ≥ 50%). Cayenne and Kourou include highly urbanized areas, but Saint-Laurent-du-Maroni does not.
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  French Institute for Statistical and Economic studies (INSEE); Regional Departments for Food, Agriculture and the Forest (DAAF); ONF; Regional Equipment, Habitat and Planning Authority (DDE) andHammond et al. (2007).b See the section on environmental variables in Materials and Methods.c A priori effect on An. darlingi presence: (+) favorable; (-) unfavorable; (/) depends on categorical variable values.

  Pagès, J. 2014. Multiple Factor Analysis by Example Using R. Chapman & Hall, CRC Press.

  

Table 1 . Raw environmental data and derived variables used to build the model.

 1 

	Number of	Producer, reference	Raw environmental	Derived from	Date(s)	Original spatial	Derived SDM input	Type of feature	Classes or	Environment	A priori effect on An.	Input
	input		data	(information		resolution or	variable(s)	extraction for each	range of	types 2	darlingi presence 3	variable(s)
	variable			source)		interpretation		1x1 km pixel	values and		and bibliographic	type
						scale			units		references	
	1	Forest National Office	Geomorphological	SRTM	2000	≥ 5000 m	Geomorphological	Majority class	12 classes	Natural	( / )	Categorical
		(ONF), (Guitet et al.	landscape (GLS)				landscape (GLS)			environment	Smith et al. (2013)	
		2013)										
	2	Forest National Office										
		(ONF), (Guitet et al.										

Table 2 . Mean contributions and jackknife results of the eleven input environmental variables.

 2 

	Environmental variables	Contribution (%)	Cumulative contribution (%)	Gain with the variable only	Decrease of the gain without the
					variable (%)
	ROADS	51.45	51.45	2.20	-7.98
	PER_URB_NEIGH	17.17	68.62	1.86	-0.41
	LS	15.32	83.94	2.23	-4.67
	HA	7.43	91.37	min: 0.02	min:-0.06
		(min: 0.35;		median: 0.15	median: -0.22
		median: 0.24;		max: 0.43	max: -2.10
		max: 6.84)			
	GLS	5.35	96.72	1.40	-2.59
	ALT	2.09	98.81	min: 1.12	min: -1.04
		(min: 1.34;		median: 1.04	median: -0.39
		median: 0.69;		max: 0.76	max: -0.03
		max: 0.06)			
	GLF	1.19	100	0.80	-0.21

Table 3 . Mean contributions and jackknife results of the seven input environmental variables of the simpler model.

 3 

	Environmental variables	Contribution (%)	Cumulative contribution (%)	Gain with the variable only	Decrease of the gain without the
					variable (%)
	ROADS	62.61	62.61	2.31	-8.61
	LS	14.10	76.71	2.35	-6.23
	PER_URB_NEIGH	11.15	87.86	2.05	-0.58
	HA_MAX	5.39	93.25	0.37	-1.74
	GLS	3.84	97.09	1.44	-1.90
	GLF	2.1	99.19	1.01	-0.32
	ALT_MIN	0.88	100	1.27	-1.29

Table 4 . Characterization of areas with a high HSI ns

 4 . signifies that the high HSI of the concerned area was not driven by that environmental variable, (+) signifies that when the value of the variable increases, the HSI also increases also, (-) signifies that when the value of the variable decreases, the HSI increases, and cells with classes name signifies that the presence of the given class implies a high HSI.

	Area	ROADS LS classes	PER_URB_NEIGH HA_MAX GLS classes	GLF classes	ALT
	A	(+)	-Woodland savanna / Dry forest	(-)	(+)	-Coastal plain with low relief	-Small size and flat wetland	(-)
			-Mixed high and open forest			-Plain with residual reliefs (back	-Large flattened and wet relief	
						coastal)	-Wet hillock (low base-level)	
	B	(+)	-Open forest	ns.	(+)	-Peneplain with moderate hills	-Wet hillock (low base-level)	(-)
			-Mixed high and open forest				-Large flattened relief	
	C	ns.	-Open forest	ns.	ns.	-Coastal flat plain	-Large flattened and wet relief (-)
	D	(+)	-Mixed high and open forest	ns.	(+)	ns.	ns.	(-)
	E	(+)	-Mixed high and open forest	ns.	(+)	-Peneplain with moderate hills	-Large flattened relief	(-)
	F	ns.	-Open forest	ns.	ns.	-Peneplain with moderate hills	-Lowered half-orange	(-)
	G	(+)	Mixed high and open forest	ns.	(+)	ns.	ns.	(-)
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darlingi. The collection methods were identical and the sampling bias for the family was assumed to be representative of that for the focal species.

The sampling bias was defined as the relative sampling effort in the environmental space. For a pixel i, it corresponds to the ratio of the number of sampled pixels over the total number of pixels, within the environmental neighborhood of i.

First, all pixels of the study area were represented in the environmental variable space. This was accomplished by performing a Factorial Analysis of Mixed Data (FAMD) (Pagès, 2004). This analysis jointly takes into account numerical and categorical variables and makes it possible to represent the pixels within an Euclidean, orthonormal space defined from the whole set of environmental variables.

The membership degree of a pixel j to the neighborhood of pixel i, denoted w ij , was defined by a Gaussian-like membership function:

with d ij the euclidean distance between i and j in the factorial space, and D min the threshold distance over which j does not significantly belong to the environmental neighborhood of i, i.e. over which

. The membership degree w ij has the following properties: The blue lines define the limit of the neighborhood of i. Only point j is situated above these lines. Thus j is in the neighborhood of i in the first factorial plane.