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Ramanujan-Fourier series of certain arithmetic

functions of two variables

Noboru Ushiroya

Abstract. We study Ramanujan-Fourier series of certain arithmetic functions of two variables. We generalize Delange’s theorem
to the case of arithmetic functions of two variables and give sufficient conditions for pointwise convergence of Ramanujan-Fourier

series of arithmetic functions of two variables. We also give several examples which are not obtained by trivial generalizations of

results on Ramanujan-Fourier series of functions of one variable.
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1. Introduction

Let cq(n) denote the Ramanujan sums defined in [Ra18] as

cq(n) =

q∑
a=1

(a,q)=1

exp(2πian/q),

where q and n are positive integers and (a, q) is the greatest common divisor of a and q. Ramanujan
proved that cq(n) can be rewritten as

cq(n) =
∑
d|(q,n)

µ(q/d)d,

where µ is the Möbius function. Hardy [Ha21] proved that, for fixed n, cq(n) is a multiplicative
function. In other words,

cq1q2(n) = cq1(n)cq2(n)

holds for any q1, q2 ∈ N satisfying (q1, q2) = 1. Let f : N 7→ C be an arithmetic function. Ramanujan
[Ra18] investigated its Ramanujan-Fourier series which is an infinite series of the form

f(n) ∼
∞∑
q=1

aqcq(n), (1.1)

where aq are called the Ramanujan-Fourier coefficients of f , and he obtained the following results.

σs(n)

ns
= ζ(s+ 1)

∞∑
q=1

cq(n)

qs+1
, (1.2)

ϕ(n)

n
=

1

ζ(2)

∞∑
q=1

µ(q)

ϕ2(q)
cq(n), (1.3)

τ(n) = −
∞∑
q=1

log q

q
cq(n), (1.4)

r(n) = π
∞∑
q=1

(−1)q−1

2q − 1
c2q−1(n), (1.5)
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where σs(n) =
∑

d|n d
s with s > 0, ζ(s) is the Riemann zeta function, ϕ(n) is Euler’s totient

function, ϕs(n) = ns
∏
p|n(1− 1/ps), τ(n) is the number of divisors of n and r(n) is the number of

representations of n as the sum of two squares.
Let ∗ denotes the Dirichlet convolution, that is, (f ∗ g)(n) =

∑
d|n f(d)g(n/d) for arithmetic

functions f, g, and let ω(n) be the number of distinct prime divisors of n. We say that f : N 7→ C is
a multiplicative function if f satisfies f(mn) = f(m)f(n) for any m,n ∈ N satisfying (m,n) = 1.

Delange [De76] proved the following theorem.

Theorem 1.1. ([De76]) Let f(n) be an arithmetic function satisfying

∞∑
n=1

2ω(n) |(f ∗ µ)(n)|
n

<∞. (1.6)

Then its Ramanujan-Fourier series is pointwise convergent and

f(n) =

∞∑
q=1

aqcq(n)

holds where

aq =
∞∑
m=1

(f ∗ µ)(qm)

qm
.

Moreover, if f is a multiplicative function, then aq can be rewritten as

aq =
∏
p∈P

( ∞∑
e=νp(q)

(f ∗ µ)(pe)

pe

)
, (1.7)

where P is the set of prime numbers and νp(q) =

{
α if pα||n
0 if p - n.

Delange noted that, if f is a multiplicative function, then the condition (1.6) is equivalent to the
condition:

∑
p∈P

∑∞
e=1 |f(pe)− f(pe−1)|/pe <∞ since (f ∗µ)(pe) = f(pe)− f(pe−1) for e = 1. Under

this condition, we can directly calculate Ramanujan-Fourier coefficients aq for certain arithmetic
functions by using (1.7). For example, if we set f(n) = ϕ(n)/n, then we can easily calculate the right-
hand side of (1.7) and obtain aq = (ζ(2))−1µ(q)/ϕ2(q) which coincide with the Ramanujan-Fourier
coefficients of (1.3).

Many results concerning Ramanujan-Fourier series of arithmetic functions of one variable are
obtained by many mathematicians hitherto, however, as for Ramanujan-Fourier series of arithmetic
functions of two variables, to my knowledge, few results are known. We would like to extend Delange’s
theorem to the case of functions of two variables and obtain several examples which are extensions of
(1.2) ∼ (1.5).

2. Some Results

Let f , g : N× N 7→ C be arithmetic functions of two variables. The Dirichlet convolution of f and g
is defined as follows.

(f ∗ g)(n1, n2) =
∑

m1|n1, m2|n2

f(m1,m2)g(n1/m1, n2/m2).

We use the same notation µ for the function

µ(n1, n2) = µ(n1)µ(n2),
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which is the inverse of the constant function 1 under the Dirichlet convolution, that is, (µ∗1)(n1, n2) =
δ(n1, n2) holds where δ(n1, n2) = 1 or 0 according to whether n1 = n2 = 1 or not.

We investigate Ramanujan-Fourier series of arithmetical functions of two variables along Delange’s
article ([De76]). We first establish the following theorem which is an extension of Theorem 1.1 to the
case of arithmetic functions of two variables.

Theorem 2.1. Let f(n1, n2) be an arithmetic function of two variables satisfying

∞∑
n1,n2=1

2ω(n1)2ω(n2) |(f ∗ µ)(n1, n2)|
n1n2

<∞. (2.8)

Then its Ramanujan-Fourier series is pointwise convergent and

f(n1, n2) =

∞∑
q1,q2=1

aq1,q2cq1(n1)cq2(n2) (2.9)

holds where

aq1,q2 =

∞∑
m1,m2=1

(f ∗ µ)(m1q1,m2q2)

m1q1m2q2
. (2.10)

For the proof of the above theorem, we need the following lemma.

Lemma 2.2. ([De76]) For every positive integer k,∑
q|k

|cq(n)| 5 n2ω(k).

Proof of Theorem 2.1. We proceed as in [De76]. We first note that (2.8) implies the absolute conver-
gence of the right-hand side of (2.10). Next we show that the series

∑∞
q1,q2=1 aq1,q2cq1(n1)cq2(n2) is

absolutely convergent. It is easy to see that

∞∑
q1,q2=1

|aq1,q2cq1(n1)cq2(n2)| 5
∞∑

q1,q2=1

∞∑
m1,m2=1

∣∣∣(f ∗ µ)(q1m1, q2m2)

q1m1q2m2
cq1(n1)cq2(n2)

∣∣∣
=

∞∑
k1,k2=1

Wk1,k2 ,

where

Wk1,k2 =
∑

m1q1=k1
m2q2=k2

∣∣∣(f ∗ µ)(q1m1, q2m2)

q1m1q2m2
cq1(n1)cq2(n2)

∣∣∣ =
∣∣∣(f ∗ µ)(k1, k2)

k1k2

∣∣∣ ∑
q1|k1
q2|k2

|cq1(n1)cq2(n2)|.

By (2.8) and Lemma 2.2 we have

∞∑
k1,k2=1

Wk1,k2 5
∞∑

k1,k2=1

∣∣∣(f ∗ µ)(k1, k2)

k1k2

∣∣∣n1n22ω(k1)2ω(k2) � n1n2 <∞.

Hence the series
∑∞

q1,q2=1 aq1,q2cq1(n1)cq2(n2) is absolutely convergent. We have

∞∑
q1,q2=1

∞∑
m1,m2=1

(f ∗ µ)(q1m1, q2m2)

q1m1q2m2
cq1(n1)cq2(n2) =

∞∑
k1,k2=1

wk1,k2 ,
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where

wk1,k2 =
∑

m1q1=k1
m2q2=k2

(f ∗ µ)(q1m1, q2m2)

q1m1q2m2
cq1(n1)cq2(n2) =

(f ∗ µ)(k1, k2)

k1k2

∑
q1|k1
q2|k2

cq1(n1)cq2(n2).

Using the well known formula:
∑

q|k cq(n) = εk(n) where εk(n) =

{
k if k | n
0 if k - n ([Si89]), we have

∞∑
k1,k2=1

wk1,k2 =
∞∑

k1,k2=1

(f ∗ µ)(k1, k2)

k1k2
εk1(n1)εk2(n2)

=
∑
k1|n1

k2|n2

(f ∗ µ)(k1, k2)

k1k2
k1k2 = (f ∗ µ ∗ 1)(n1, n2) = (f ∗ δ)(n1, n2) = f(n1, n2).

Therefore (2.9) holds. This completes the proof of Theorem 2.1.

We say that f : N× N 7→ C is a multiplicative function of two variables if f satisfies

f(m1n1,m2n2) = f(m1,m2) f(n1, n2)

for any m1,m2, n1, n2 ∈ N satisfying (m1m2, n1n2) = 1. It is well known that if f and g are
multiplicative functions of two variables, then f ∗ g also becomes a multiplicative function of two
variables. For an arithmetical function f of two variable, the mean value M(f) is defined by

M(f) = lim
x,y→∞

1

xy

∑
n15x, n25y

f(n1, n2)

if this limit exists. Ushiroya [Us07] proved the following theorem.

Theorem 2.3. ([Us07]) Let f be a multiplicative function of two variables satisfying∑
p∈P

∑
e1,e2=0
e1+e2=1

|(f ∗ µ)(pe1 , pe2)|
pe1+e2

<∞. (2.11)

Then the mean value M(f) exists and

M(f) =
∞∑

m1,m2=1

(f ∗ µ)(m1,m2)

m1m2
=
∏
p∈P

( ∞∑
e1,e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
. (2.12)

We would like to investigate Ramanujan-Fourier series in the case when f is a multiplicative
function of two variables. The following theorem is an extension of Theorem 1.1 to the case of a
multiplicative function of two variables.

Theorem 2.4. Let f be a multiplicative function of two variables satisfying∑
p∈P

∑
e1,e2=0
e1+e2=1

|(f ∗ µ)(pe1 , pe2)|
pe1+e2

<∞. (2.13)

Then its Ramanujan-Fourier series is pointwise convergent and

f(n1, n2) =

∞∑
q1,q2=1

aq1,q2cq1(n1)cq2(n2) (2.14)
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holds where

aq1,q2 =

∞∑
m1,m2=1

(f ∗ µ)(m1q1,m2q2)

m1q1m2q2
(2.15)

Moreover, if M(f) 6= 0 and {q1, q2} > 1, where {q1, q2} denotes the least common multiple of q1 and
q2 , then aq1,q2 can be rewritten as follows.

aq1,q2 =
∏
p∈P

( ∑
e1=νp(q1)

∑
e2=νp(q2)

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
= M(f)

∏
p|{q1,q2}

{( ∑
e1=νp(q1)

∑
e2=νp(q2)

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
/
(∑
e1=0

∑
e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2

)}
, (2.16)

Remark 2.5. By (2.12) and (2.15), we have a1,1 = M(f).

Proof. First we note that, if f(n1, n2) is a multiplicative function of two variables, then f(n1, n2) =∏
p∈P f(pνp(n1), pνp(n2)) holds. Let f satisfy (2.13). Since (n1, n2) 7→ 2ω(n1)2ω(n2)|(f ∗µ)(n1, n2)|/n1n2

is a multiplicative function of two variables, we have∑
n15x, n25y

2ω(n1)2ω(n2) |(f ∗ µ)(n1, n2)|
n1n2

5
∑
k,`=0

∏
p∈P

2ω(pk)2ω(p`) |(f ∗ µ)(pk, p`)|
pk+`

�
∏
p∈P

∑
k,`=0

|(f ∗ µ)(pk, p`)|
pk+`

=
∏
p∈P

(
1 +

∑
e1, e2=0
e1+e2=1

|(f ∗ µ)(pe1 , pe2)|
pe1+e2

)

5 exp
(∑
p∈P

∑
e1, e2=0
e1+e2=1

|(f ∗ µ)(pe1 , pe2)|
pe1+e2

)
<∞

where we have used the well-known inequality 1 + x 5 exp(x) for x = 0. Since f satisfies (2.8), we
see by Theorem 2.1 that the Ramanujan-Fourier series of f is pointwise convergent and (2.14) holds.

Next we prove (2.16) under the condition M(f) 6= 0 and {q1, q2} > 1. For i = 1, 2, let qi =
∏
j p

eij
j

(eij = 0) and mi = ri
∏
j p

dij
j (dij = 0) be the prime factor decompositions of qi and mi respectively

where pj ’s are prime numbers satisfying pj | {q1, q2} and ri’s are positive integers coprime to q1q2.
Then we have

aq1,q2 =
∞∑

m1,m2=1

(f ∗ µ)(m1q1,m2q2)

m1q1m2q2
=

∑
dij=0

ri=1, (ri, q1q2)=1

(f ∗ µ)(r1
∏
j p

d1j+e1j
j , r2

∏
j p

d2j+e2j
j )

r1r2
∏
j p

d1j+e1j+d2j+e2j
j

.

Since f ∗ µ is multiplicative, we have

aq1,q2 =
∑
dij=0

ri=1, (ri, q1q2)=1

(f ∗ µ)(
∏
j p

d1j+e1j
j ,

∏
j p

d2j+e2j )∏
j p

d1j+e1j+d2j+e2j
j

× (f ∗ µ)(r1, r2)

r1r2

=
(∑
dij=0

(f ∗ µ)(
∏
j p

d1j+e1j
j ,

∏
j p

d2j+e2j )∏
j p

d1j+e1j+d2j+e2j
j

)( ∑
ri=1, (ri, q1q2)=1

(f ∗ µ)(r1, r2)

r1r2

)
=

∏
p|{q1,q2}

( ∑
e1=νp(q1)

∑
e2=νp(q2)

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
×
∏
p-q1q2

(∑
e1=0

∑
e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
.
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Since the condition M(f) 6= 0 implies
∑

e1,e2=0
(f∗µ)(pe1 ,pe2 )

pe1+e2
6= 0 for every p ∈ P by (2.12), we have

aq1,q2 =

∏
p|{q1,q2}

( ∑
e1=νp(q1)

∑
e2=νp(q2)

(f ∗ µ)(pe1 , pe2)

pe1+e2

) ∏
p∈P

(∑
e1=0

∑
e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
∏

p|{q1,q2}

( ∑
e1=0

∑
e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
= M(f)

∏
p|{q1,q2}

{( ∑
e1=νp(q1)

∑
e2=νp(q2)

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
/
(∑
e1=0

∑
e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2

)}
.

This completes the proof of Theorem 2.4.

Next we consider the case when f is represented in the form f(n1, n2) = g(n1n2) where g is a
multiplicative function of one variable. We begin with the following lemma.

Lemma 2.6. Let f(n1, n2) = g(n1n2) where g is a multiplicative function satisfying

∑
p∈P

(∑
e=1

|g(pe)− g(pe−1)|
pe

+
∞∑

e1,e2=1

|g(pe1+e2)− 2g(pe1+e2−1) + g(pe1+e2−2)|
pe1+e2

)
<∞. (2.17)

Then the mean value M(f) exists and

M(f) =
∏
p∈P

(
1 + 2

∑
e=1

g(pe)− g(pe−1)

pe
+

∞∑
e1,e2=1

g(pe1+e2)− 2g(pe1+e2−1) + g(pe1+e2−2)

pe1+e2

)
. (2.18)

Proof. It is easy to see that

(f ∗ µ)(pe, 1) = f(pe, 1)− f(pe−1, 1) = g(pe)− g(pe−1) if e = 1, (2.19)

(f ∗ µ)(pe1 , pe2) = f(pe1 , pe2)− f(pe1−1, pe2)− f(pe1 , pe2−1) + f(pe1−1, pe2−1)

= g(pe1+e2)− 2g(pe1+e2−1) + g(pe1+e2−2) if e1, e2 = 1. (2.20)

From (2.17), (2.19) and (2.20), it is also easy to see that (2.11) holds. Therefore Lemma 2.6 follows
by Theorem 2.3. This complete the proof of Lemma 2.6.

Now we can prove the following theorem.

Theorem 2.7. Let f(n1, n2) = g(n1n2) where g is a multiplicative function satisfying (2.17). Then
its Ramanujan-Fourier series is pointwise convergent and

f(n1, n2) =
∞∑

q1,q2=1

aq1,q2cq1(n1)cq2(n2)

holds where

aq1,q2 =
∞∑

m1,m2=1

(f ∗ µ)(m1q1,m2q2)

m1q1m2q2
.



N. Ushiroya, Ramanujan-Fourier series of certain arithmetic functions of two variables 7N. Ushiroya, Ramanujan-Fourier series of certain arithmetic functions of two variables 7

Moreover, if M(f) 6= 0, q, q1, q2 > 1 and {q1, q2} > 1, then aq,1, a1,q and aq1,q2 can be rewritten as
follows.

aq,1 = a1,q = M(f)
∏
p|q

∞∑
e=νp(q)

g(pe)− g(pe−1)

pe
+

∞∑
e1=νp(q)

∞∑
e2=1

g(pe1+e2)− 2g(pe1+e2−1) + g(pe1+e2−2)

pe1+e2

1 + 2

∞∑
e=1

g(pe)− g(pe−1)

pe
+

∞∑
e1,e2=1

g(pe1+e2)− 2g(pe1+e2−1) + g(pe1+e2−2)

pe1+e2

,

aq1,q2 = M(f)
∏

p|{q1,q2}

∞∑
e1=νp(q1)

∞∑
e2=νp(q2)

g(pe1+e2)− 2g(pe1+e2−1) + g(pe1+e2−2)

pe1+e2

1 + 2
∞∑
e=1

g(pe)− g(pe−1)

pe
+

∞∑
e1,e2=1

g(pe1+e2)− 2g(pe1+e2−1) + g(pe1+e2−2)

pe1+e2

.

Proof. Since (2.17), (2.19) and (2.20) implies (2.13), Theorem 2.7 holds by Theorem 2.4. We note

that if q2 = 1, then
∑

e1=νp(q1)

∑
e2=νp(q2)

(f∗µ)(pe1 ,pe2 )
pe1+e2

in (2.16) can be rewritten as

∑
e1=νp(q1)

∑
e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2
=

∑
e1=νp(q1)

(f ∗ µ)(pe1 , 1)

pe1
+

∑
e1=νp(q1)

∑
e2=1

(f ∗ µ)(pe1 , pe2)

pe1+e2

=

∞∑
e=νp(q1)

g(pe)− g(pe−1)

pe
+

∞∑
e1=νp(q1)

∞∑
e2=1

g(pe1+e2)− 2g(pe1+e2−1) + g(pe1+e2−2)

pe1+e2
.

This complete the proof of Theorem 2.7.

Next we consider the case when f is represented in the form f(n1, n2) = g((n1, n2)) where g is a
multiplicative function of one variable. Before describing Ramanujan-Fourier series of this case, we
would like to cite the following theorem.

Theorem 2.8. ([Us07]) Let f(n1, n2) = g((n1, n2)) where g is a multiplicative function satisfying

∑
p∈P

∑
e=1

|g(pe)− g(pe−1)|
p2e

<∞. (2.21)

Then the mean value M(f) exists and

M(f) =
∏
p∈P

(
1 +

∞∑
e=1

g(pe)− g(pe−1)

p2e

)
. (2.22)

Remark 2.9. We note that, if f(n1, n2) = g((n1, n2)), then it is easy to see that

(f ∗ µ)(pk, p`) =

{
g(pk)− g(pk−1) if k = ` = 1
0 otherwise.

(2.23)

Hence (2.21) clearly implies (2.13).

Now we can show the following theorem concerning Ramanujan-Fourier series in the case f(n1, n2) =
g((n1, n2)). Let k ∨ ` denote max(k, `).
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Theorem 2.10. Let f(n1, n2) = g((n1, n2)) where g is a multiplicative function satisfying

∑
p∈P

∑
e=1

|g(pe)− g(pe−1)|
p2e

<∞. (2.24)

Then its Ramanujan-Fourier series is pointwise convergent and

f(n1, n2) =
∞∑

q1,q2=1

aq1,q2cq1(n1)cq2(n2)

holds where

aq1,q2 =

∞∑
m1,m2=1

(f ∗ µ)(m1q1,m2q2)

m1q1m2q2
.

Moreover, if M(f) 6= 0 and {q1, q2} > 1, then aq1,q2 can be rewritten as follows.

aq1,q2 = M(f)
∏

p|{q1,q2}

{( ∞∑
e=νp(q1)∨νp(q2)

g(pe)− g(pe−1)

p2e

)
/
(

1 +
∞∑
e=1

g(pe)− g(pe−1)

p2e

)}
. (2.25)

Proof. Remark 2.9 says that (2.24) implies (2.13). Therefore the Ramanujan-Fourier series of f is
pointwise convergent by Theorem 2.4. It is easy to see that (2.25) holds by (2.16) and (2.23). This
completes the proof of Theorem 2.10.

Next we consider the case when f is represented in the form f(n1, n2) = g({n1, n2}) where g is
a multiplicative function of one variable. The following theorem is a special case of Theorem 1 in
[HT16] by Hilberdink and Tóth .

Theorem 2.11. ([HT16]) Let f(n1, n2) = g({n1, n2}) where g is a multiplicative function satisfying

∑
p∈P

∑
e=1

|g(pe)− g(pe−1)|
pe

<∞. (2.26)

Then the mean value M(f) exists and

M(f) =
∏
p∈P

(
1 + 2

∑
e=1

g(pe)− g(pe−1)

pe
−
∑
e=1

g(pe)− g(pe−1)

p2e

)
. (2.27)

Proof. We prove this theorem using a different method from [HT16]. It is easy to see that for
e, e1, e2 = 1

(f ∗ µ)(pe, 1) = g(pe)− g(pe−1),

(f ∗ µ)(pe1 , pe2) =

{
−(g(pe1)− g(pe1−1)) if e1 = e2 = 1
0 if e1 6= e2 and e1, e2 = 1.

Since the above relations and (2.26) imply (2.11), Theorem 2.11 holds by Theorem 2.3. This completes
the proof of Theorem 2.11.

Now we can prove the following theorem.



N. Ushiroya, Ramanujan-Fourier series of certain arithmetic functions of two variables 9N. Ushiroya, Ramanujan-Fourier series of certain arithmetic functions of two variables 9

Theorem 2.12. Let f(n1, n2) = g({n1, n2}) where g is a multiplicative function satisfying (2.26).
Then its Ramanujan-Fourier series is pointwise convergent and

f(n1, n2) =
∞∑

q1,q2=1

aq1,q2cq1(n1)cq2(n2)

holds where

aq1,q2 =

∞∑
m1,m2=1

(f ∗ µ)(m1q1,m2q2)

m1q1m2q2
.

Moreover, if M(f) 6= 0, q, q1, q2 > 1 and {q1, q2} > 1, then aq,1, a1,q and aq1,q2 can be rewritten as
follows.

aq,1 = a1,q = M(f)
∏
p|q

∞∑
e=νp(q)

g(pe)− g(pe−1)

pe
−

∞∑
e=νp(q)

g(pe)− g(pe−1)

p2e

1 + 2

∞∑
e=1

g(pe)− g(pe−1)

pe
−
∞∑
e=1

g(pe)− g(pe−1)

p2e

,

aq1,q2 = M(f)
∏

p|{q1,q2}

−
∞∑

e=νp({q1,q2})

g(pe)− g(pe−1)

p2e

1 + 2

∞∑
e=1

g(pe)− g(pe−1)

pe
−
∞∑
e=1

g(pe)− g(pe−1)

p2e

.

Proof. By Theorem 2.4 and Theorem 2.11, we can easily prove this theorem in a similar way as the
proof of Theorem 2.7. This completes the proof of Theorem 2.12.

Next we consider a problem such that how f can be determined from given Ramanujan-Fourier
coefficients aq1,q2 . We first consider the case when the Ramanujan-Fourier coefficients aq1,q2 is repre-
sented in the form aq1,q2 = M(f)h((q1, q2)) where h is a given multiplicative function of one variable.

Theorem 2.13. Let h be a multiplicative function of one variable. Then there does not exist a
multiplicative function f : N2 7→ C which satisfies the following conditions.∑

p∈P

∑
e1,e2=0
e1+e2=1

|(f ∗ µ)(pe1 , pe2)|
pe1+e2

<∞,

M(f) 6= 0,

f(n1, n2) = M(f)
∞∑

q1,q2=1

h((q1, q2))cq1(n1)cq2(n2).

Proof. Suppose there exists a multiplicative function f which satisfies the above conditions. Then we
have from (2.16)

apk,1/M(f) =
( ∞∑
e1=k

∞∑
e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
/
( ∞∑
e1=0

∞∑
e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2

)
= h((pk, 1)) = 1

for every k = 1. However, this never holds since

lim
k→∞

∞∑
e1=k

∞∑
e2=0

(f ∗ µ)(pe1 , pe2)

pe1+e2
= 0.

This completes the proof of Theorem 2.13.
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Next we consider the case when the Ramanujan-Fourier coefficients aq1,q2 is represented in the
form aq1,q2 = M(f)h(q1q2) where h is a given multiplicative function of one variable.

Theorem 2.14. Let h be a multiplicative function of one variable satisfying 1 − 2h(p) + h(p2) 6= 0
for every p ∈ P, and let f : N2 7→ C be a multiplicative function of two variables satisfying∑

p∈P

∑
e1,e2=0
e1+e2=1

|(f ∗ µ)(pe1 , pe2)|
pe1+e2

<∞,

M(f) 6= 0,

f(n1, n2) = M(f)
∞∑

q1,q2=1

h(q1q2)cq1(n1)cq2(n2).

Then f is determined from h as follows.

f(pk, 1) = f(1, pk) = 1 +
1

H(p)

k∑
e=1

pe(h ∗ µ ∗ µ)(pe+2), (2.28)

f(pk, p`) = 1 +
1

H(p)

k∑
e=1

pe(h ∗ µ ∗ µ)(pe+2) +
1

H(p)

∑̀
e=1

pe(h ∗ µ ∗ µ)(pe+2)

+
1

H(p)

k∑
e1=1

∑̀
e2=1

pe1+e2(h ∗ µ ∗ µ)(pe1+e2+2), (2.29)

where H(p) = 1− 2h(p) + h(p2) and k, ` = 1.

Proof. We set F (p) =
∑

e1=0

∑
e2=0

(f∗µ)(pe1 ,pe2 )
pe1+e2

. By (2.16) we have for any k, ` = 0

apk,p`

M(f)
=

1

F (p)

∑
e1=k

∑
e2=`

(f ∗ µ)(pe1 , pe2)

pe1+e2
= h(pk+`).

Considering differences of ∑
e1=k

∑
e2=`

(f ∗ µ)(pe1 , pe2)

pe1+e2
= F (p)h(pk+`)

with respect to k and `, that is, considering∑
e1=k+1

∑
e2=`+1

−
∑

e1=k+1

∑
e2=`

−
∑
e1=k

∑
e2=`+1

+
∑
e1=k

∑
e2=`

,

we have for any k, ` = 0

(f ∗ µ)(pk, p`)

pk+`
= F (p)(h(pk+`+2)− 2h(pk+`+1) + h(pk+`)) (2.30)

= F (p)(h ∗ µ ∗ µ)(pk+`+2). (2.31)

Putting k = ` = 0 in (2.30) we have 1 = F (p)(h(p2)− 2h(p) + 1). From this we obtain

F (p) =
1

h(p2)− 2h(p) + 1
=

1

H(p)
.
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Putting ` = 0 in (2.31) we have for any k = 1

f(pk, 1)− f(pk−1, 1)

pk
= F (p)(h ∗ µ ∗ µ)(pk+2).

Multiplying both sides by pk and considering summation, we have for any k = 1

f(pk, 1) = 1 +
1

H(p)

k∑
e=1

pe(h ∗ µ ∗ µ)(pe+2),

which implies (2.28). Next we prove (2.29). We can rewrite (2.31) as follows.

f(pk, p`)− f(pk, p`−1)− f(pk−1, p`) + f(pk−1, p`−1) =
1

H(p)
(h ∗ µ ∗ µ)(pk+`+2).

Considering summation we have

f(pk, p`) = f(pk, 1) + f(1, p`)− 1 +
1

H(p)

k∑
e1=1

∑̀
e2=1

pe1+e2(h ∗ µ ∗ µ)(pe1+e2+2),

which implies (2.29). This completes the proof of Theorem 2.14.

Next we consider the case when the Ramanujan-Fourier coefficients aq1,q2 is represented in the
form aq1,q2 = M(f)h({q1, q2}) where h is a given multiplicative function of one variable.

Theorem 2.15. Let h be a multiplicative function of one variable satisfying

∞∑
e=1

|h(pe)− h(pe−1)| <∞ and h(p) 6= 1 (2.32)

for every p ∈ P and let f : N2 7→ C be a multiplicative function of two variables satisfying∑
p∈P

∑
e1,e2=0
e1+e2=1

|(f ∗ µ)(pe1 , pe2)|
pe1+e2

<∞,

M(f) 6= 0,

f(n1, n2) = M(f)
∞∑

q1,q2=1

h({q1, q2})cq1(n1)cq2(n2).

Then there exists a multiplicative function g : N 7→ C such that f(n1, n2) = g((n1, n2)) for every
n1, n2 ∈ N and

g(pk) = 1− 1

1− h(p)

k∑
e=1

p2e(h(pe+1)− h(pe)). (2.33)

Proof. We set F (p) =
∑

e1=0

∑
e2=0

(f∗µ)(pe1 ,pe2 )
pe1+e2

. By (2.16) we have for any k, ` = 0

apk,p`

M(f)
=

1

F (p)

∑
e1=k

∑
e2=`

(f ∗ µ)(pe1 , pe2)

pe1+e2
= h(pk∨`).
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From this, as in the proof of Theorem 2.14, we have for any k, ` = 0

(f ∗ µ)(pk, p`)

pk+`
= F (p)(h(p(k+1)∨(`+1))− h(pk∨(`+1))− h(p(k+1)∨`) + h(pk∨`))

=

{
−F (p)(h(pk+1)− h(pk)) if k = ` = 0
0 if k 6= `.

(2.34)

Putting k = ` = 0 in (2.34) we have 1 = −F (p)(h(p)− 1). From this we obtain

F (p) =
1

1− h(p)
.

Putting ` = 0 in (2.34) we have for any k = 1

f(pk, 1)− f(pk−1, 1)

pk
= 0.

From this it follows that for any k = 1

f(pk, 1) = f(1, 1) = 1. (2.35)

When k > ` = 1, we can rewrite (2.34) as follows.

f(pk, p`)− f(pk−1, p`)− f(pk, p`−1) + f(pk−1, p`−1) = 0.

From this and (2.35) we have

f(pk, p`)− f(pk−1, p`) = f(pk, p`−1)− f(pk−1, p`−1) = · · · = f(pk, 1)− f(pk−1, 1) = 0,

and
f(pk, p`) = f(pk−1, p`) = · · · = f(p`, p`) = f(pk∧`, pk∧`).

Therefore, if we define the multiplicative function g : N 7→ C by the relation g(pe) = f(pe, pe) for
e = 0, then we have

f(pk, p`) = f(pk∧`, pk∧`) = g(pk∧`) = g((pk, p`)).

Since g is defined to be multiplicative, f(n1, n2) = g((n1, n2)) holds for every n1, n2 ∈ N.
In order to show (2.33), we put k = ` = 1 in (2.34) and obtain

f(pk, pk)− f(pk, pk−1)− f(pk−1, pk) + f(pk−1, pk−1)

p2k
= −F (p)(h(pk+1)− h(pk)).

From this we have for any k = 1

g(pk)− g(pk−1) = − 1

1− h(p)
p2k(h(pk+1)− h(pk)).

Considering summation, we see that (2.33) holds. This completes the proof of Theorem 2.15.

3. Examples

In this section, we give several examples. We begin with the following example which is a special case
of Theorem 2.7.
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Example 3.1. Let f(n1, n2) = ϕ(n1n2)/n1n2. Then its Ramanujan-Fourier series is pointwise con-
vergent and

ϕ(n1n2)

n1n2
= M(f)

∞∑
q1,q2=1

µ(q1)µ(q2)

ϕ((q1, q2))ϕ̃(q1q2)
cq1(n1)cq2(n2)

holds where M(f) =
∏
p∈P(1− 2/p2 + 1/p3) and ϕ̃(n) =

∏
p|n(p2 + p− 1).

Proof. Setting g(n) = ϕ(n)/n =
∏
p|n(1− 1/p), we have

g(pe) = 1− 1/p if e = 1

g(pe)− g(pe−1) =

{
−1/p if e = 1

0 if e = 2,

g(pe)− 2g(pe−1) + g(pe−2) =

{
1/p if e = 2
0 if e = 3.

Therefore g clearly satisfies (2.17). Using (2.18) we can calculate the mean value M(f) as follows.

M(f) =
∏
p∈P

(
1 + 2

−1/p

p
+

1/p

p2

)
=
∏
p∈P

(1− 2

p2
+

1

p3

)
.

Since M(f) 6= 0, we have by Theorem 2.7

ap,1 = M(f)
(
− 1

p2
+

1

p3

)
/
(

1− 2

p2
+

1

p3

)
= − M(f)

p2 + p− 1
,

apk,1 = 0 if k = 2,

ap,p = M(f)
( 1

p3

)
/
(

1− 2

p2
+

1

p3

)
=

M(f)

(p− 1)(p2 + p− 1)
,

apk,p` = 0 if k, ` = 1 and k + ` = 3.

Hence

aq1,q2 = M(f)
µ(q1)µ(q2)

ϕ((q1, q2))ϕ̃(q1q2)
(3.36)

holds if (q1, q2) = (pk, p`) where k, ` = 0. Since the function (q1, q2) 7→ aq1,q2/M(f) is multiplicative,
(3.36) holds for every q1, q2 ∈ N. This completes the proof of Example 3.1.

The formula (1.3) says that, if we set f(n) = ϕ(n)/n, then f(n) = M(f)
∑∞

q=1(µ(q)/ϕ2(q))cq(n)

holds since M(f) = 6/π2 in this case. However, Example 3.1 shows that the function f(n1, n2) =
ϕ(n1n2)/n1n2 does not have a similar expression of Ramanujan-Fourier series to that of (1.3). We

want to find an arithmetic function f satisfying f(n1, n2) = M(f)
∑∞

q1,q2=1
µ(q1q2)
ϕ2(q1q2)cq1(n1)cq2(n2). In

the following example, we give a function which satisfies the above relation.

Example 3.2. Let f(n1, n2) be the multiplicative function defined by

f(pk, p`) =

{
1− p/(p2 + 1) if k or ` = 0 and k + ` = 1
1− 2p/(p2 + 1) if k, ` = 1.

(3.37)

Then its Ramanujan-Fourier series is pointwise convergent and

f(n1, n2) = M(f)
∞∑

q1,q2=1

µ(q1q2)

ϕ2(q1q2)
cq1(n1)cq2(n2)

holds where

M(f) =
∏
p∈P

(1− 2

p2 + 1
).
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Proof. By (3.37) it is easy to see that

(f ∗ µ)(pk, p`) =

{
−p/(p2 + 1) if (k, `) = (1, 0) or (0, 1)
0 otherwise.

(3.38)

From the above relation it is obvious that f satisfies (2.13). Hence its Ramanujan-Fourier series is
pointwise convergent by Theorem 2.4. Using (2.12) and (3.38) we have

M(f) =
∏
p∈P

(
1 +

(f ∗ µ)(p, 1) + (f ∗ µ)(1, p)

p

)
=
∏
p∈P

(1− 2

p2 + 1
).

As for the Ramanujan-Fourier coefficients of f , we obtain by (2.16) and (3.38)

apk,1 = a1,pk =

{
M(f)(− 1

p2+1
)/(1− 2

p2+1
) = M(f) −1

p2−1
= M(f) µ(p)

ϕ2(p) if k = 1

0 = M(f) µ(pk)
ϕ2(pk)

if k = 2,

apk,p` = 0 = M(f)
µ(pkp`)

ϕ2(pkp`)
if k, ` = 1.

Hence

aq1,q2 = M(f)
µ(q1q2)

ϕ2(q1q2)
(3.39)

holds if (q1, q2) = (pk, p`) where k, ` = 0. Since the function (q1, q2) 7→ aq1,q2/M(f) is multiplicative,
(3.39) holds for every q1, q2 ∈ N. This completes the proof of Example 3.2.

Remark 3.3. If we put h(n) = µ(n)/ϕ2(n) in Theorem 2.14, then it is easy to see that f satisfies
(3.37) by (2.28) and (2.29). Thus we can make use of (2.28) and (2.29) when we want to find the
explicit function form of f satisfying f(n1, n2) = M(f)

∑∞
q1,q2=1 h(n1n2)cq1(n1)cq2(n2) for given h.

The following example is similar to Example 3.2.

Example 3.4. Let f(n1, n2) be the multiplicative function defined by

f(pk, p`) =

{
1− p/(ps + 2) if k or ` = 0 and k + ` = 1
1− 2p/(ps + 2) if k, ` = 1,

(3.40)

where s > 1. Then its Ramanujan-Fourier series is pointwise convergent and

f(n1, n2) = M(f)
∞∑

q1,q2=1

µ(q1q2)

(q1q2)s
cq1(n1)cq2(n2)

holds where
M(f) =

∏
p∈P

(1 + 2/ps)−1.

Proof. The proof is similar to that of Example 3.2. We note that

(f ∗ µ)(pk, p`) =

{
−p/(ps + 2) if (k, `) = (1, 0) or (0, 1)
0 otherwise.

(3.41)

From this we have

M(f) =
∏
p∈P

(
1 +

(f ∗ µ)(p, 1) + (f ∗ µ)(1, p)

p

)
=
∏
p∈P

(1− 2

ps + 2
) =

∏
p∈P

1

1 + 2/ps
.
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As for the Ramanujan-Fourier coefficients of f , we obtain by (2.16) and (3.41)

apk,1 = a1,pk =

{
M(f)(− 1

ps+2)/(1− 2
ps+2) = M(f)−1

ps = M(f)µ(p)
ps if k = 1

0 = M(f)µ(pk)
(pk)s

if k = 2,

apk,p` = 0 = M(f)
µ(pkp`)

(pkp`)s
if k, ` = 1.

Hence

aq1,q2 = M(f)
µ(q1q2)

(q1q2)s
(3.42)

holds if (q1, q2) = (pk, p`) where k, ` = 0. Since the function (q1, q2) 7→ aq1,q2/M(f) is multiplicative,
(3.42) holds for every q1, q2 ∈ N. This completes the proof of Example 3.4.

Remark 3.5. If we put h(n) = µ(n)/ns in Theorem 2.14, then it is easy to see that f satisfies (3.40)
by (2.28) and (2.29).

The following two examples are special cases of Theorem 2.7.

Example 3.6. Let f(n1, n2) = µ2(n1n2). Then its Ramanujan-Fourier series is pointwise convergent
and

µ2(n1n2) = M(f)

∞∑
q1,q2=1

aq1,q2cq1(n1)cq2(n2),

where M(f) =
∏
p∈P(1 − 3/p2 + 2/p3), and aq1,q2 is determined by the multiplicativity of (q1, q2) 7→

aq1,q2/M(f) and the following relations.

apk,p`/M(f) =



1 if (k, `) = (0, 0)
−2/(p2 + p− 2) if (k, `) = (1, 0) or (0, 1)
−1/(p2 + p− 2) if (k, `) = (2, 0) or (0, 2)
(−p+ 2)/(p3 − 3p+ 2) if (k, `) = (1, 1)
1/(p3 − 3p+ 2) if (k, `) = (2, 1) or (1, 2)
0 otherwise.

Proof. We proceed as in the proof of Example 3.1. If we set g(n) = µ2(n), then we have

g(pe) =

{
1 if e = 0 or 1
0 if e = 2

g(pe)− g(pe−1) =

{
−1 if e = 2

0 if e = 1 or e = 3

g(pe)− 2g(pe−1) + g(pe−2) =


−1 if e = 2

1 if e = 3
0 if e = 4.

Therefore g clearly satisfies (2.17). Using (2.18) we can calculate the mean value M(f) as follows.

M(f) =
∏
p∈P

(
1 + 2× −1

p2
+
(−1

p2
+

2

p3

))
=
∏
p∈P

(1− 3

p2
+

2

p3

)
.
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As for the Ramanujan-Fourier coefficients aq1,q2 , we have by Theorem 2.7

ap,1 = M(f)
(
− 1

p2
+
(
− 1

p2
+

1 + 1

p3

))
/
(

1− 3

p2
+

2

p3

)
= M(f)

−2

p2 + p− 2
,

ap2,1 = M(f)
(
− 1

p2
+

1

p3

)
/
(

1− 3

p2
+

2

p3

)
= M(f)

−1

p2 + p− 2
,

apk,1 = 0 if k = 3,

ap,p = M(f)
(−1

p2
+

2

p3

)
/
(

1− 3

p2
+

2

p3

)
= M(f)

−p+ 2

p3 − 3p+ 2
,

ap2,p = M(f)
( 1

p3

)
/
(

1− 3

p2
+

2

p3

)
= M(f)

1

p3 − 3p+ 2
,

apk,p` = 0 if k ∨ ` = 3 or k + ` = 4.

This completes the proof of Example 3.6.

The following example is an extension of (1.2) to the case f(n1, n2) = g(n1n2).

Example 3.7. Let f(n1, n2) = σs(n1n2)/(n1n2)s where s > 0. Then its Ramanujan-Fourier series
is pointwise convergent and

σs(n1n2)

(n1n2)s
= M(f)

∞∑
q1,q2=1

aq1,q2cq1(n1)cq2(n2),

where M(f) = ζ2(s + 1)/ζ(s + 2), and aq1,q2 is determined by the multiplicativity of (q1, q2) 7→
aq1,q2/M(f) and the following relations.

apk,1/M(f) = a1,pk/M(f) =
1− 1/p

pk(s+1)(1− 1/ps+2)
,

apk,p`/M(f) =
1− ps

p(k+`)(s+1)(1− 1/ps+2)
.

Proof. If we set g(n) = σs(n)/ns, then we have

g(pe) =
1

pes
1− p(e+1)s

1− ps
=

1

1− ps
( 1

pes
− ps

)
if e = 0

g(pe)− g(pe−1) =
1

1− ps
( 1

pes
− 1

p(e−1)s

)
=

1

1− ps
1− ps

pes
=

1

pes
if e = 1

g(pe)− 2g(pe−1) + g(pe−2) =
1

pes
− 1

p(e−1)s
=

1− ps

pes
if e = 2.

Therefore g clearly satisfies (2.17). Using (2.18) we can calculate the mean value M(f) as follows

M(f) =
∏
p∈P

(
1 + 2

∑
e=1

1

pe
1

pes
+
∑
e1=1

∑
e2=1

1

pe1+e2

1− ps

p(e1+e2)s

)
=
∏
p∈P

1− 1/ps+2

(1− 1/ps+1)2
=
ζ2(s+ 1)

ζ(s+ 2)
.
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As for the Ramanujan-Fourier coefficients aq1,q2 , we have by Theorem 2.7

apk,1 = M(f)
( ∞∑
e=k

1

pe
1

pes
+

∞∑
e1=k

∞∑
e2=1

1

pe1+e2

1− ps

p(e1+e2)s

)(1− 1/ps+1)2

1− 1/ps+2

= M(f)
1− 1/p

pk(s+1)(1− 1/ps+2)
,

apk,p` = M(f)
( ∞∑
e1=k

∞∑
e2=`

1

pe1+e2

1− ps

p(e1+e2)s

)(1− 1/ps+1)2

1− 1/ps+2

= M(f)
1− ps

p(k+`)(s+1)(1− 1/ps+2)
.

This completes the proof of Example 3.7.

Next we give examples which are special cases of Theorem 2.10. The following example is an
extension of (1.2) to the case f(n1, n2) = g((n1, n2)).

Example 3.8. Let f(n1, n2) = σs((n1, n2))/(n1, n2)s where s > −1. Then its Ramanujan-Fourier
series is pointwise convergent and

σs((n1, n2))

(n1, n2)s
= ζ(s+ 2)

∞∑
q1,q2=1

cq1(n1)cq2(n2)

{q1, q2}s+2
.

Proof. As in the proof of Example 3.7, if we set g(n) = σs(n)/ns, then we have

g(pe) =
1

1− ps
( 1

pes
− ps

)
for e = 0,

g(pe)− g(pe−1) =
1

pes
for e = 1.

Therefore (2.21) holds and we have by (2.22)

M(f) =
∏
p∈P

(
1 +

∞∑
e=1

1

p(s+2)e

)
= ζ(s+ 2).

For k and ` satisfying k + ` = 1 we also have by (2.25)

apk,p` = M(f)

∑∞
e=k∨`

g(pe)−g(pe−1)
p2e

1 +
∑∞

e=1
g(pe)−g(pe−1)

p2e

= M(f)

∑∞
e=k∨`

1
p(2+s)e

1 +
∑∞

e=1
1

p(2+s)e

= M(f)

1
p(2+s)(k∨`)

1
1− 1

p2+s

1
1− 1

p2+s

= M(f)
1

p(2+s)(k∨`) = M(f)
1

{pk, p`}2+s
.

Therefore aq1,q2 = M(f)/{pk, p`}2+s holds if (q1, q2) = (pk, p`) where k, ` = 0. Since the function
(q1, q2) 7→ aq1,q2/M(f) is multiplicative, we obtain the desired result. This completes the proof of
Example 3.8.

If we set s = 0 in Example 3.8, then we obtain the following example.

Example 3.9. Let f(n1, n2) = τ((n1, n2)) where τ(n) is the number of divisors of n. Then its
Ramanujan-Fourier series is pointwise convergent and

τ((n1, n2)) = ζ(2)
∞∑

q1,q2=1

cq1(n1)cq2(n2)

{q1, q2}2
.
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The following example is an extension of (1.3) to the case f(n1, n2) = g((n1, n2)).

Example 3.10. Let f(n1, n2) = ϕ((n1, n2))/(n1, n2). Then its Ramanujan-Fourier series is pointwise
convergent and

ϕ((n1, n2))

(n1, n2)
=

1

ζ(3)

∞∑
q1,q2=1

µ({q1, q2})
ϕ3({q1, q2})

cq1(n1)cq2(n2).

Proof. If we set g(n) = ϕ(n)/n, then g(pe) = 1 − 1/p for e = 1. Hence (2.21) holds and we have by
(2.22)

M(f) =
∏
p∈P

(
1 +

∞∑
e=1

g(pe)− g(pe−1)

p2e

)
=
∏
p∈P

(
1 +

(1− 1/p)− 1

p2

)
=
∏
p∈P

(
1− 1

p3

)
=

1

ζ(3)
.

We also have by (2.25)

apk,p` = M(f)

∑∞
e=k∨`

g(pe)−g(pe−1)
p2e

1 +
∑∞

e=1
g(pe)−g(pe−1)

p2e

= 0 if k ∨ ` = 2

and

ap,1 = a1,p = ap,p = M(f)
−1/p3

1− 1/p3
= M(f)

−1

p3(1− 1/p3)
.

Therefore aq1,q2 = M(f)µ({q1, q2})/ϕ3({q1, q2}) holds if (q1, q2) = (pk, p`) where k, ` = 0. Since the
function (q1, q2) 7→ aq1,q2/M(f) is multiplicative, we obtain the desired result.

The proof of the following example is similar to that of the previous example.

Example 3.11. Let f(n1, n2) = ϕs((n1, n2))/(n1, n2)s where s > −1. Then its Ramanujan-Fourier
series is pointwise convergent and

ϕs((n1, n2))

(n1, n2)s
=

1

ζ(s+ 2)

∞∑
q1,q2=1

µ({q1, q2})
ϕs+2({q1, q2})

cq1(n1)cq2(n2).

If we set s = 0 in Example 3.11, then we obtain the following example.

Example 3.12. Let f(n1, n2) = δ((n1, n2)) =

{
1 if (n1, n2) = 1

0 if (n1, n2) > 1.
Then its Ramanujan-Fourier

series is pointwise convergent and

δ((n1, n2)) =
1

ζ(2)

∞∑
q1,q2=1

µ({q1, q2})
ϕ2({q1, q2})

cq1(n1)cq2(n2).

The following example is an extension of (1.5) to the case f(n1, n2) = g((n1, n2)).

Example 3.13. Let f(n1, n2) = 1
4r((n1, n2)) where r(n) = #{(A,B) ∈ Z × Z;A2 + B2 = n}. Then

its Ramanujan-Fourier series is pointwise convergent and

1

4
r((n1, n2)) = M(f)

∞∑
q1,q2=1

χ({q1, q2})
{q1, q2}2

cq1(n1)cq2(n2),

where χ(n) =

{
0 if n is even

(−1)
n−1
2 if n is odd

and M(f) =
∏

p>2, p∈P

1

1− χ(p)/p2
.
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Proof. Let g(n) = 1
4r(n) and e ∈ N. Then g(2e) = 1 and

g(pe) =


e+ 1 if p ≡ 1 (mod 4)

0 if p ≡ 3 (mod 4) and e is odd
1 if p ≡ 3 (mod 4) and e is even.

From this we have g(2e)− g(2e−1) = 0 and

g(pe)− g(pe−1) =


1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4) and e is odd

1 if p ≡ 3 (mod 4) and e is even.

Hence (2.21) clearly holds. Furthermore, we have for k = 1

∞∑
e=k

g(pe)− g(pe−1)

p2e
=


0 if p = 2∑∞

e=k
1
p2e

= 1
p2k

1
1−1/p2

if p ≡ 1 (mod 4)∑∞
e=k

(−1)e

p2e
= − 1

p2k
1

1+1/p2
if p ≡ 3 (mod 4) and k is odd∑∞

e=k
(−1)e

p2e
= 1

p2k
1

1+1/p2
if p ≡ 3 (mod 4) and k is even.

(3.43)

Using (2.22) and(3.43) we can calculate the mean value M(f) as follows.

M(f) =
∏

p≡1( mod 4)

(
1 +

1

p2(1− 1/p2)

) ∏
p≡3( mod 4)

(
1− 1

p2(1 + 1/p2)

)
=

∏
p≡1( mod 4)

1

1− 1/p2

∏
p≡3( mod 4)

1

1 + 1/p2
=

∏
p>2, p∈P

1

1− χ(p)/p2
.

Let k, ` be non-negative integers satisfying k + ` = 1. Using (2.25) and (3.43) we obtain

a2k,2` = 0,

apk,p` = M(f)

1
p2(k∨`)

1
1−1/p2

1 + 1
p2−1

= M(f)
1

p2(k∨`) if p ≡ 1 (mod 4),

apk,p` = M(f)

(−1)k∨`

p2(k∨`)
1

1+1/p2

1− 1
p2+1

= M(f)
(−1)k∨`

p2(k∨`) if p ≡ 3 (mod 4).

Therefore aq1,q2 = M(f)χ({q1, q2})/{q1, q2}2 holds if (q1, q2) = (pk, p`) where p ∈ P. Since the
function (q1, q2) 7→ aq1,q2/M(f) is multiplicative, we obtain the desired result. This completes the
proof of Example 3.13.

Acknowledgment. The author sincerely thanks the referee, whose comments and suggestions es-
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