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Abstract TheEuropean sturgeon is critically endangered
and the French ex-situ conservation approach involves
developing a captive stock to produce offspring for release
to boost natural populations. The purpose of our study
was to assess the effects of rearing environment before
stocking on the survival, growth, and behavior of three-
month-old sturgeons from two different crossings.
Enriched rearing was designed to mimic the variability
of the natural environment using river water, natural pho-
toperiod, substrate, variable water current and depths.
Traditional rearing was carried out with bare tanks, un-
derground water, dark conditions, without current and at
constant depth. Fish survival was determinedmonthly and
growth was estimated weekly. Behavior was assessed
with exploration and novel prey tests in solitary using
video tracking. Results demonstrated that enriched condi-
tion resulted in bigger fish from the first month. Growth
curve analysis revealed that enriched environment made
both fish crossings grow in a similar manner. In contrast,
crossings growth differed in traditional rearing whichmay
reflect a genotype-environment interaction. Behavioral
data highlighted that enriched-reared fish were slower to

explore a new environment but more individuals engaged
on doing so than traditional-reared fish. Results also
showed that survival was high (>80%) during all the trial.
However, survival was lower during the second month in
enriched environment. Our findings advocate for the inte-
gration of enriched rearing practices within the juvenile
production for release in order to boost the performance
linked to fitness. Stocking practices and life history re-
search must work together to favor adaptive aquaculture
approaches, which support species conservation.
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Introduction

Most of the 25 species of sturgeons are believed to be at
risk (Birstein 1993; Billard and Lecointre 2000), and
72 % of the family are considered Bendangered^ or
Bcritically endangered^ according to the IUCN status
(IUCN 2015). Many species benefit from specific con-
servation measures, such as habitat restoration and pro-
tection, fishing regulations, and specific targeted stock-
ing practices (Waldman and Wirgin 1998; Jackson et al.
2002; Arlati and Poliakova 2009; Maltsev 2009; Williot
et al. 2009). The European sturgeon, Acipenser sturio
(Linnaeus, 1758) is a critically endangered migratory
species (Lepage and Rochard 1995; Lassalle et al. 2010;
Chassaing et al. 2016) which is currently the subject of a
European recovery plan (Rosenthal et al. 2007), along
with national action plans in France (MEDDTL 2011)
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and in Germany (Gessner et al. 2010). The species has a
complex life cycle involving migration periods associ-
ated with habitat shifts (Castelnaud et al. 1991; Rochard
et al. 2001; Acolas et al. 2011a, 2012). The reproduction
occurs in rivers betweenMay and June, following which
juveniles migrate to estuaries in the first year of their
life. They then remain and grow in estuaries for several
years. Sturgeons adopt a nomadic lifestyle by foraging
within estuarine and marine habitats until finally leaving
the estuary to further grow at sea before coming back to
the river to breed. However, knowledge about young
stages of this species in the wild is limited (Acolas et al.
2011b). The specific needs of this migratory species
with regard to habitat, as well as vulnerability during
migration, due to overfishing and habitat degradation
are major factors involved in population collapse over
the past few decades (Rochard et al. 1990). One species
restoration action consists of developing a captive stock
to produce offspring for release in river systems in an
attempt to boost natural populations (Chebanov et al.
2011; IUCN/SSC 2013).

Elasticity analyses which calculate the potential
to increase a population provided the highest values
for the young of the year stage (Gross et al. 2002).
Indeed, while this age-class suffers from the highest
natural mortality rate, there could be a recovery of
declining populations if vital rates such as growth,
survival and migration capacities during early stages
were increased (Secor et al. 2002). This aspect high-
lights the importance of hatcheries in conservation
programs, since captive fish survival rates in early
life stages can be significantly greater than those
found in the wild (Secor et al. 2002). Therefore,
stocking practices should consider knowledge pro-
vided by studies of early life history in order to
develop creative and adaptive aquaculture ap-
proaches that will allow support for better species
conservation (Chebanov et al. 2002; Secor et al.
2002). This type of research-based approach in
aquaculture is a promising avenue for sturgeon con-
servation. Generally, major concerns of stocking for
conservation purposes focused on the impact of
genetic drift (Busack and Currens 1995; Campton
1995; Yokota et al. 2003), introgression (Susnik
et al. 2004; Lamaze et al. 2012) and genotypic
fitness (Zhu et al. 2002; Aprahamian et al. 2003;
Jager 2005) on wild populations. Nowadays, rearing
environment of hatchery fish for stocking purposes
is a subject raising attention (Brown et al. 2003;

Strand et al. 2010; Roberts et al. 2011; Bergendahl
et al. 2016) because artificial environments may
induce behavioral responses different from those
expected in wild fish (Johnsson et al. 2014). Indeed,
hatcheries often expose the fish to selective repro-
duction and early life experiences in a safe setting,
which could strongly influence the behavioral
(Brown et al. 2003; Klefoth et al. 2012), genetic,
morphological and physiological attributes neces-
sary to respond adequately to natural conditions
after stocking (Brown et al. 2003; Braithwaite and
Salvanes 2005). In other words, artificial selection
enacted in hatchery conditions will produce fish
suited to that environment, but which may be not
well suited to face life in the wild. Fitness value,
defined as the ability of an individual to survive and
reproduce in a particular environment (Maynard-
Smith 1989), is difficult to quantify in nature
(Arnold 1983). Instead, some traits, such as growth
(Huusko and Vehanen 2011), swimming capacity
(Adams et al. 1997; Adams et al. 1999), foraging
abilities (Brown et al. 2003; Massee et al. 2007),
and the ability to detect and escape predators
(Alvarez and Nicieza 2003; De Mestral and
Herbinger 2013) are used as alternative predictors,
which can be measured in controlled conditions
(Arnold 1983). When comparing these fitness-
related traits in hatchery and wild-born fish, the
former often show behavioral deficiencies, such as
reduced territorial and feeding efficiency (Aarestrup
et al. 2005), reduced anti-predatory responses and
social interactions (Salvanes and Braithwaite 2006),
reduced reproductive success in the wild (Araki
et al. 2008), risk taking behavior (Sundström and
Johnsson 2001; Stamps 2007), increased vulnerabil-
ity towards angling (Klefoth et al. 2012) than in
wild fish. These deficits may lead to poor post-
release survival (Aarestrup et al. 2005; Braithwaite
and Salvanes 2005). However, exposing the fish to
variability during early stages, also called an
Benriched environment^, can reduce such deficien-
cies (Braithwaite and Salvanes 2005; Kotrschal and
Taborsky 2010; Roberts et al. 2014). Enriched con-
ditions are characterized by increased habitat com-
plexity (Braithwaite and Salvanes 2005; Johnson
et al. 2014), often mimicking the instability of nat-
ural habitats in photoperiod, temperature, prey avail-
ability, visual and spatial cues, and could be consid-
ered as a Btraining^ approach that would increase
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fish survival in the wild. Test on salmonids showed
that exposure to such conditions increases the ability
of fish to feed on novel prey (Brown et al. 2003) and
increased survival after restocking in semi-natural
conditions (Maynard et al. 1996). These results
could be explained by the improvement of cognitive
efficiency and behavioral flexibility as proven in
other reintroduced animal groups (Hunter et al.
2002; Rabin 2003).

Studies using enriched rearing conditions need to
be specifically designed for the fish species studied,
because the ways they can be improved largely de-
pend on the species’ sensitivity to environmental
conditions, i.e. phenotypic plasticity. In previous
studies, the majority of data obtained is related to
species of commercial interest (i.e. salmonids),
and were gathered under controlled conditions
(Braithwaite and Salvanes 2005; Salvanes and
Braithwaite 2006). However, there should be more
research into the effects of enriched environment on
fish performance (growth, survival and swimming
capacities) under natural conditions and on other fish
species. For fish species in reintroduction programs,
as is the case of the European sturgeon, there is a real
need to understand how rearing conditions of artifi-
cially reproduced larvae can affect life history and
performance traits that will directly impact fish fit-
ness once released into the wild (Chebanov et al.
2011). Fish performance is the product of a combi-
nation of environmental and genetic effects
(Dammerman et al. 2015). The program’s European
sturgeon broodstock is small, i.e. few numbers of
spawners and not all fish are ready to reproduce
every year, and breeding of genetic dissimilar indi-
viduals may not be enough to guarantee good off-
spring quality, since genetic quality (additive and
non-additive genetic effects) is not assessed (Neff
and Pitcher 2005; Pitcher and Neff 2007). Paternal
effects on early life history success may be more
important than previously thought, and may also

merit more extensive investigation (Rideout et al.
2004).

The aim of the present study was to assess the effects
of enriched rearing on the survival, growth and behav-
ioral performance of three-month-old sturgeons belong-
ing to two different crossings. This particular life stage
was chosen because it is one of the preferred stages used
for stocking in the Gironde.

Materials and methods

Fish

Fish specimens used in this experiment came from the
French captive stock, and experiments were carried out
at the Irstea experimentation station in St Seurin sur
l’Isle. Fish for this study were raised between June and
September 2014, from six days post-hatch (dph) until 92
dph (three-month old). Fish originated from assisted
fecundation of a single female with two males
(C1 = crossing male 1, C2 = crossing male 2) (Chèvre
et al. 2011). These wild-born spawners were chosen
based on availability and their characteristics are de-
scribed in Table 1.

Rearing conditions

Two sets of rearing conditions were tested: enriched and
traditional. Two hundred and fifty larvae from each
crossing were reared under each set of conditions
(n = 500 larvae per rearing conditions). During the first
month, for each rearing environment, larvae from each
crossing were reared separately in hatching tanks (race-
ways 135x50x22 cm; length*width*height; water
level = 15 cm, two raceways per rearing condition).
Later, 50 fish of each crossing (n = 100 per rearing
conditions) were randomly chosen, mixed and reared
together in larger tanks (two replica per rearing condi-
tion) until they were three months old. To identify their

Table 1 Spawners characteristics

Fish ID: 13D49, 2041121E3C4,
30411285AA5

Sex Cohort Capture year Time in captivity
(years)

Weight
(kg)

Total length
(cm)

Female1 1994 2003 11 29.4 169

Male 12 1994 1995 19 12.4 133

Male 23 1994 2002 12 27.6 163
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parental background, larvae from both crossings were
marked, beneath the rostrum, using visible implant elas-
tomer tags (VIE) (Northwest Marine Technology Inc.)
(Kapusta et al. 2015) at one-month old. Based on a
preliminary trial on one-month old Siberian sturgeon
(Acipenser baerii), the VIE tag was expected to last
two months.

Traditional rearing conditions were based on the
protocol used to raise fish for stocking in the Gironde
and captive stock supplementation (Chèvre et al. 2011).
In this experiment, we used tanks (from month two,
tanks size 120 × 120 × 60 cm, water level = 40 cm)
run indoors in darkness (0.43 ± 0.51 × 10 lx, mean ± SD,
Chauvin Arnoux luxmeter DA815) with a flow-through
system of underground water. Tank conditions were
maintained at a constant temperature of 18.4 ± 0.2 °C
and 30 % of water renewal per hour. Temperature and
oxygen (>90 %) were recorded automatically once ev-
ery 5 min with an automatic computerized system
(WTW™ devices). Additionally, ammonium (0.1 mg/
l), nitrites (0.02 mg/l), nitrates (1.5 ± 0.84 mg/l) levels
(Visocolor® ECO test kit) and pH (7.7 ± 0.12) were
registered weekly. Fish were fed ad libitum with live
artemia (Artemia salina) since 9 dph for 12 days, a mix
of artemia and unfrozen bloodworms (Chironomus sp.)
for nine more days and then only bloodworms as men-
tioned in Chèvre et al. (2011). Tanks were cleaned twice
per day by flushing water away.

Enriched rearing conditions consisted of small
mesocosms imitating the variability of the natural envi-
ronment. Spatial cues were added and manipulated.

Tanks were run outdoors to be subject to natural photo-
period, but covered with mesh to reduce brightness and
strong light (natural = 346.6 ± 634.0 × 10 lx; under
cover = 32.6 ± 55.9 × 10 lx) and avoid bird predation.
One-month old fish were placed in 170 × 100 × 75 cm
tanks (two replica, same density as in traditional rearing
i.e. density = 0.2 fish/m3). A partition wall was added in
the middle of the tanks to allow water current circulation
using a water pump. The water supply consisted of a
flow-through system of filtrated river water with the
same water flow as in traditional rearing. Temperature
(21.5 ± 1.5 °C, Fig. 1), oxygen (>90 %), were recorded
once every 5 min and ammonium (0.1 mg/l), nitrites
(0.04 ± 0.02 mg/l), nitrates (8.83 ± 3.31 mg/l) levels and
pH (7.8 ± 0.08) were registered weekly. During week 6–
8 of rearing, a mix of well and river water (1:1) was used
to decrease water temperature due to the high records
registered on week 3–5 (max. registered 25.8 °C,
Table 2, Fig. 1). Fish were fed in the same way as for
traditional rearing. Landscapes were created using dif-
ferent elements, according to variability encountered in
the river: sand (0–2 mm), fine gravel (8–16 mm), coarse
gravel with pebbles (30–95 mm) (standard A.S.T.M),
artificial logs (20–30 cm), variable water current and
depth (Table 3). These cues were modified once a week
and combination levels were chosen at random. Tanks
were cleaned twice per day by flushing water away.

The two types of rearing environment differed in
terms of temperature regime (Mann-Whitney, U = 0.5,
p < 0.01), nitrites (Mann-Whitney, U = 3.0, p < 0.01),
and nitrates (Mann-Whitney, U = 0.0, p < 0.01), but had

Fig. 1 Mean temperature during
fish rearing. Interrupted line
indicates enriched rearing and
continuous line traditional rearing
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similar levels of ammonium (Mann-Whitney, U = 18,
p = 1) and pH (Mann-Whitney, U = 2.0, p = 0.63) features.

Growth, survival and pigmentation.

Each month, the total number of live fish per crossing
per tank was counted to assess the mortality rate for each
treatment (two crossings x two rearing methods). Mor-
tality was determinedmonthly as: Mortality (%) = (num-
ber of dead fish / total number of fish) * 100. Survival
probability for fish on each rearing method, at the end of
the experiment, was calculated as the product of each
month survival probability, which was determined as:
survival probability = (number of live fish / total number
of fish). To assess growth and adjust the food ration, fish
were weighed to the nearest 0.001 g (Sartorius Practum
513-1S) and measured for length (Mitutoyo Absolute
Digimatic) individually (n = 25 per treatment) every
week from the second week of trial (not done before
due to small larvae size) until two months. During the
third month, fish were measured only once at the end of
the experiment to avoid handling before behavioral tests.
The heterogeneity index was determined at 92 dph as:
Coefficient of variation (%) = (Standard deviation /

mean weight) * 100. Observations on fish pigmentation
were done empirically as an unintended outcome of the
study.

Behavioral tests

To assess differences in fish cognition, behavioral tests
were carried out on randomly chosen 78 dph old juveniles.
A subsample of the fishwas used in the two different tests.
The first set up was designed to evaluate fish exploratory
behavior (n = 35 per treatment): It was carried out in
Komatex® (walls) and Plexiglas® (bottom) aquariums
(90 × 50 × 30 cm) divided into three compartments (start
and challenge chamber 20 × 50 × 30 cm; novel chamber
50 × 50 × 30 cm; Fig. 2), in dark conditions and using
either well or river water depending on fish rearing con-
dition. Water in the experimental arena was replaced
between every individual to eliminate chemical cues.
First, fish were placed individually in the Bstart chamber^
for five minutes. The divider was then removed to let the
fish explore the Bnovel^ and Bchallenge^ chambers (both
connected through a semi-circle passage of 4.5 cm radius)
for 15 min. Behavior was video recorded (Ikegami ®)
from above using EthoVision® XT 9 software (Noldus

Table 2 Temperature in enriched
rearing condition Week Min (°C) Max (°C) Daily mean (°C) Standard deviation

1 (1–7 July ) 18.5 21.6 19.9 0.7

2 (8–14 July) 18.8 22.0 20.8 0.5

3 (15–21 July) 20.0 24.9 23.1 1.1

4 (22–28 July) 22.6 25.8 24.1 0.7

5 (29 July – 4 August) 20.3 24.1 21.9 1.0

6 (5–11 August) 20.1 21.7 21.0 0.3

7 (12–18 August) 19.0 20.6 19.8 0.3

8 (19–25 August) 18.3 19.7 19.1 0.3

9 (26 August – 1 September) 19.3 22.7 21.6 0.7

10 (2–8 September) 20.5 23.1 21.9 0.6

11 (9–15 September) 20.4 23.1 21.9 0.6

12 (16–24 September) 19.8 23.0 21.8 0.7

Table 3 Landscape cues in the
mesocosms

1water velocity varied across the
water column and around the tank

Water parameters Landscape

Level Depth (cm) Average velocity (cm/s)1 Logs Substratum

1 0.70 8 ± 5 Present Large/medium

2 0.57 6 ± 4 Absent Medium/small

3 0.40 0 Large/small

Environ Biol Fish (2016) 99:887–901 891



et al. 2001) using infrared light. The measured parameters
were: latency to enter and swimming speed in the Bnovel
chamber^, success (pass or not), frequency (number of
successes) of movement into the Bchallenge chamber^,
latency to first enter the Bchallenge chamber^ and success
in exiting from it. After the test, every fish tested was
weighed and measured for length (up to 1 mm) to stan-
dardized swimming speed. The second behavioral test
Bnovel prey^ experiment was conducted after the explo-
ration test for a subsample (n = 20 per treatment). This test
aimed to measure the ability of individuals to feed on
unknown prey. Individuals were placed in separate glass
aquaria (28 × 19 × 17 cm) in darkness, using water
depending on their origin, and fasted for 24 h. Afterwards,
fish were provided with 10 live white worms
(Enchytraeus albidus) and given 60 min to feed. Success
to feed (food consumed or not) and amount of prey
consumed per fish were recorded. The white worms came
from a local aquarium store and were unfamiliar to the
fish. We choose this worm species because it has been
previously recorded in the stomach contents of wild juve-
niles (Acolas et al. 2011c).

Statistical analysis

The X2 test of independence was used to explore
differences in mortality between treatments, after de-
termining no differences among replicas (i.e. tanks).
A stepwise multinomial logistic regression model was
used to assess the best predictors of growth (i.e.
weight was used as proxy of growth) by testing the
effects of the rearing method, crossings, replicas, and
temperature. Analysis of variance and Mann-Whitney
and Scheirer-Hare-Ray tests (when assumptions on
normality and homoscedascity were not met) were

used to compare weight and length between treat-
ments at 14, 35, 64 and 92 dph. In addition, growth
for the different treatments was compared using gen-
eral lineal models (GLMs) with a Gaussian distribu-
tion considering age in accumulated thermal units to
compare fish at the same ontogenic stage. Behavioral
discrete data were analyzed using negative binomial
and binary regressions, continuous data using
Scheirer-Hare-Ray test and behavioral data correla-
tions were analyzed using Spearman correlations as
assumption on normality and homoscedascity were
not met. Statistical analyses were performed using R
statistical software (R-Core-Team 2013) and p-values
<0.05 were considered significant.

Results

Survival

No fish during the experiment died or exhibited symp-
toms due to obvious bacterial infection or any other
visible pathogen. During the first month of rearing,
mortalities were observed from 12 dph of rearing in all
treatments. The mortality rate during the first month
varied between 12.8 % and 18 %, and there was no
significant difference in mortality between treatments
(X2 = 2.05, df = 3, p = 0.15) (Table 4). For the second
month of rearing, mortality in enriched rearing was
10.15 % and significantly different from the value of
0.49%obtained in traditional rearing (X2 = 18.65, df = 1,
p < 0.01). In enriched rearing, a positive correlation was
identified between temperature and fish deaths (Spear-
man, rs = 0.54, p = 0.04). Mortality in enriched rearing
conditions decreased to 1.12 % during the third month,

Fig. 2 Behavioral experimental arena, 3-chamber aquarium
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and increased to 3.48 % for traditional rearing, but no
differences between both were found (X2 = 2.24, df = 1,
p = 0.13). Survival probability during all the experiment
was higher for traditional-reared fish (0.8) than for
enriched-reared fish (0.7).

Growth

For growth measurements, larvae were chosen random-
ly from all treatments and replicas data were pooled
together because no differences between them were
found. Initial weight and length were not measured
because larvae were too small to be accurately measured
alive. On this basis, we assume no initial difference due
to random sampling in the same hatching tanks for all
treatments.

The multinomial logistic regression model pointed
out Brearing^ and Bcrossing^ as the best growth predic-
tors explaining 82 % of data variation (AIC = 1950.6,
Cox-Snell = 0.82, Table 5), tank and temperature effects
were not considered to be significant explanatory
variables.

Differences in growth between rearing environments
favored enriched rearing from 14 dph onwards
(H2 = 59.7, p < 0.01). Both crossings had similar body
weight (Mann-Whitey; enriched, U = 298.5, p = 0.8; tra-
ditional U = 281.5, p = 0.6; Table 6) and length (one-way
anova; enriched F(1,45) = 0.85, p = 0.36 ; traditional

F(1,48) = 2.87, p = 0.09; Table 6) within each rearing
environment. By 35 dph until 92 dph, both crossings in
enriched conditions performed similarly but their weight
(Scheirer-Ray-Hare; method, H = 37.1, p < 0.01; cross,
H = 11.4, p < 0.01; Table 6, Fig. 3) and length (Scheirer-
Ray-Hare; method, H = 42.5, p < 0.01; cross, H = 8.2,
p < 0.01; Table 6) differed under traditional conditions.
Moreover the final heterogeneity index was higher for
traditional rearing (6 to 13 % higher than in enriched
condition).

Further analysis to compare juveniles of the same
ontogenic stage (age expressed in degree days), was
consistent with results previously obtained: similar
growth for both crossings enriched rearing (GLM,
p = 0.81, Fig. 4) but different growth among crossings
for traditional rearing (GLM, p < 0.01, Fig. 4). In
traditional rearing, fish from crossing two showed sim-
ilar growth performance to the fish from both crossings
in enriched rearing (GLM, p = 0.06, Fig. 4) for the same
ontogenic stage. In traditional rearing, crossing one had
the lowest growth performance of all. In addition, em-
pirical observations on pigmentation showed that fish
coloration differed between rearing conditions from 14
dph: fish reared in enriched tanks were dark colored,
while traditional fish were pale, although coloration was
not precisely measured.

Behavior

During exploratory tests, fish expressed different behav-
ior according to the rearing environment. First, no dif-
ferences between crossing and rearing conditions were
found in latency to enter the novel chamber (Scheirer-
Hare-Ray; method p = 0.17, cross p = 0.11, interac-
tion = 0.73) and in swimming speed within this novel
chamber (Scheirer-Hare-Ray; method p = 0.29, cross
p = 0.3, interaction p = 0.14). Fish reared under enriched
conditions took longer to enter the challenge chamber
for the first time (452 ± 243 s) than traditionally reared

Table 4 Rate of monthly survival according to treatment. Rep-
licas have been pooled together because there were no significant
differences between them. Different letters represent significant
differences

Survival rate (%)

Enriched Traditional

Month 1 83.8a 87.0a

Month 2 89.9a 99.5b

Month 3 98.9a 96.5a

Environ Biol Fish (2016) 99:887–901 893

Table 5 Multinomial logistic regression models. Rearing refers to traditional or enriched rearing conditions, crossing refers to C1 and C2
parental background and tank to replicas

Variables Significant variables AIC p-value Pseudo-square (Cox-Snell)

Rearing, crossing, tank, temperature rearing, crossing 2628.69 0.00 0.83

Rearing, crossing, temperature rearing, crossing 2304.31 0.00 0.83

Rearing, crossing rearing, crossing 1950.58 0.00 0.83



fish (437 ± 309 s) (Scheirer-Hare-Ray, method, H = 6.8,
p = 0.01), but 88.4 % of them engaged at least once into
the challenge chamber against 67.8 % of the tradition-
ally reared fish (GLMbinary logistic, X2 = 9.1, p = 0.02;

method, p < 0.01). Considering the fish that engaged in
the challenge chamber, enriched-reared fish made an
average of 1.53 entries while traditional-reared fish en-
tered an average of 1.29 times. Also, 81.1 % of the

Table 6 Growth performance of two crossings of juvenile Euro-
pean sturgeon (A. sturio) exposed to two different rearing condi-
tions. C1 (male 1) and C2 (male 2) indicate the fish crossings.

Letters indicate, for each line of the table, the comparison between
treatments: different letters represent significant differences

Traditional rearing Enriched rearing

Parameter C1 C2 C1 C2

Weight at 14 dph (g) 0.04 ± 0.0a 0.04 ± 0.0a 0.06 ± 0.0b 0.06 ± 0.0b

Length at 14 dph (cm) 1.9 ± 0.0a 1.9 ± 0.1a 2.1 ± 0.1b 2.2 ± 0.1b

Weight at 35 dph (g) 0.1 ± 0.0a 0.3 ± 0.1b 0.4 ± 0.1bc 0.4 ± 0.1c

Length at 35 dph (cm) 3.1 ± 0.3a 3.5 ± 0.4b 4.0 ± 0.4c 4.2 ± 0.4c

Weight at 64 dph (g) 1.5 ± 0.7a 2.1 ± 0.9ab 2.9 ± 1.2c 2.7 ± 1.0bc

Length at 64 dph (cm) 6.5 ± 1.3a 7.2 ± 1.3a 8.3 ± 1.2b 8.2 ± 1.2b

Final weight at 92 dph (g) 4.4 ± 2.0a 7.2 ± 2.8b 9.6 ± 3.0c 9.6 ± 3.2c

Final length at 92 dph (cm) 9.8 ± 1.5a 11.5 ± 1.7b 13.0 ± 1.3c 12.9 ± 1.5c

Heterogeneity at 92 dph (%) 46.7 39.9 31.9 33.7

Fig. 3 Box plot of juveniles weight of two crossings (C1 and C2)
of European sturgeon at (a) 14 dph, (b) 35 dph, (c) 64 dph and (d)
92 dph reared in enriched and traditional conditions. Circles
represent outliers, whiskers denote minimum and maximum

values, box indicates interquartile range and line indicates median.
Within each panel, different letters represent significant
differences
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enriched-reared fish and 71.4 % of the traditional-
reared, which entered the challenge chamber manage
to get out of it. However, no significant differences were
found in the number of entries (GLM negative binomial,
X2 = 6.4, p = 0.09) or success to exit (GLM binary
logistic, X2 = 6.2, p = 0.1) the challenge chamber
between rearing methods.

In the novel prey test, 81.9 % of fish ate at least one
worm (mean 5.59 ± 3.84 worms eaten), consequently, no
differences in feeding success (GLM binary logistic,
X2 = 2.8, p = 0.2) or the number of worms consumed
(GLM negative binomial, X2 = 3.5, p = 0.3) between
treatment was found. The amount of worms consumed
was not correlated to fish size (Spearman, rs = −0.10,
p = 0.35). Further correlations between number of preys
eaten and exploratory test parameters (latency to enter
novel chamber, latency to enter challenge chamber and
frequency to enter it) revealed a negative association be-
tween latency to enter to the challenge chamber and the
amount of prey consumed for traditional reared individuals
(Spearman, rs = −0.53, p = <0.01) but no significant
correlation was detected for enriched-reared individuals
or other tested correlations on any rearing condition
(Sperman, p > 0.05).

Discussion

When breeding fish for stocking purposes, it is impor-
tant to optimize early stage survival in order to reduce
the early mortality that would otherwise occur in the
wild due to predation, starvation or disease. Fish

survival gives a good initial quantitative insight into
the efficiency of hatchery conditions from a conserva-
tion point of view. Observed early mortality was most
likely produced by the adjustment from endogenous to
exogenous feeding, as reported in other sturgeon studies
at similar developmental stages (Charlon and Bergot
1991; Gisbert et al. 2000; Williot et al. 2005; Boucher
et al. 2014). Following the exogenous feeding transition,
mortality usually declines (Gisbert et al. 2000). In our
experiment, for the first and the third month of rearing,
mortality rates were similar between crossings and rear-
ing conditions, which is a promising result for the
enriched rearing approach. However, we highlighted a
higher mortality in enriched rearing during the second
month. This can be explained by the higher water tem-
peratures observed during the summer time. Even
though the precise optimal growth temperature for ju-
veniles of A. sturio is unknown, 20 °C have been re-
ported to maximize survival, hatching and metabolism
capacities on larvae of this specie (Delage et al. 2014).
Deleterious effects on larvae have been seen between 23
and 26 °C, (Delage et al. 2014). These results suggest
that survival during the first three months can be im-
pacted by temperature. Enriched rearing, as proposed in
this study, can be a promising approach as long as the
river water temperature can be maintained below 23 °C
as high mortality was not observed below this
temperature.

The growth of fish in rearing conditions is another key
life history trait considered by aquaculture practice stud-
ies. During rearing of larvae, many biotic (parental ef-
fects, genetic background, density, hierarchical

Fig. 4 Juveniles growth of two
crossings of European sturgeon
(A. sturio) during 3 months
(92 dph) of rearing in enriched
and traditional methods.
Interrupted lines indicate mean
values and continuous lines 95 %
confidence intervals. a) indicate
enriched rearing fish, both
crossings plotted together, b)
indicates C2 crossing in
traditional rearing and c) indicates
C1 crossing in traditional rearing
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interactions) (Huntingford et al. 2012) and abiotic pa-
rameters (temperature, salinity, pH, etc.) (Stickney 2005)
are intensively studied to create an optimal setup for fish
growth. We found that growth performance of European
sturgeon juveniles was influenced by crossing and rear-
ing methods. However, temperature is one of the factors
included in the Brearing method^. When comparing
growth, achieved in different conditions at the same
number of dph, temperature variation could partly ex-
plain these differences, since temperature is known to
have a significant influence on fish growth (Jobling
2002). Separating the effects of each parameter was not
the goal of this study but to test how environmental
heterogeneity could affect fitness-related traits instead.
In our study, fish in enriched environment tended to
grow better than those reared in traditional hatchery
conditions. All the parameters used in enriched condi-
tions were expected to have a positive impact on fish
performance. In different species, it has been demonstrat-
ed that a minimal light threshold is required to develop
and grow correctly (Boeuf and Le Bail 1999). In stur-
geons, photoperiod treatment increases fish growth rates
and weight gain compared with fish reared in darkness
(Ruchin 2007; Ghomi et al. 2010; Kryuchkov and
Obukhov 2010, as cited in Ghomi et al. 2010). Differ-
ences in fish growth in enriched rearing could also be
explained by substrate occurrence. For example, white
sturgeon larvae reared on substrate resulted in improved
growth and survival and these effects remained after
larvae were transferred to a bare environment (Boucher
et al. 2014). Such observations have been attributed to
reduction in fish activity and stress (Boucher et al. 2014)
because substrate provides shelter. Better growth of
enriched-reared fish can also be explained by exercise
conditioning caused by water currents. Some studies
suggest that the effects of training on fish significantly
increase final weight, growth rates and food conversion
efficiency (Young and Cech Young and Cech 1993;
Davison 1997). This is explained by an increment in
muscular development and heart performance that can
be beneficial in stocking programs because it might
improve survival in the wild (Young and Cech Young
and Cech 1993; Davison 1997). Being bigger can also
improve survival in the wild (Hutchings 2002; Wilke
et al. 2014) because bigger fish have wider size ranges
of prey items and have a lower predation risk than
smaller fish (Juanes et al. 2002).

When analyzing juvenile growth at the same devel-
opmental stage we highlighted that one crossing

performed differently depending on its rearing environ-
ment. This result might be explained by interaction
between genotype and the environment. Based on he-
matological indices, hatchery settings can be considered
as unnatural and stressful environment (Ruchin 2007;
Grant 2015). Exposure to stress can separate genotypes
according to their capacity to cope with it (Wu et al.
2003), which can explain the differences in growth of
both fish crossings and the higher heterogeneity in tra-
ditional rearing. Within the spawners, male 1 was the
smallest with the longest time in captivity and the lowest
growth performance in captivity (12.2 kg vs 27.6 kg for
male two of the same age). This could suggest malad-
aptation to captivity conditions; a tendency which ap-
pears to be mirrored through its offspring which perform
better in enriched environments (phenotypic plasticity)
(West-Eberhard 2003; Monaghan 2008). To be able to
conclude on this genotype-environment interaction on
European sturgeon, more families for common garden
experiment studies are needed in the future.

In addition to the well-established parameters (i.e.
survival and growth) directly assessed on fish during
the rearing period, other characteristics could play an
important role in their fitness once released in the wild.
For example, body pigmentation may provide with
good camouflage within the environment, reducing pre-
dation risk and increasing survival (Svanbäck and Eklöv
2011). In sturgeons, it is believed that body pigmenta-
tion is linked to behavioral traits and early life foraging
and migration (Kynard et al. 2005). We observed differ-
ences in pigmentation that may be caused by the light
differences between bothmethods and they could have a
significant influence on habitat-specific fitness of indi-
viduals after release. Another aspect to highlight is the
homing behavior occurring in anadromous species
(McDowall 2001; Metcalfe et al. 2002). Sturgeon is
considered to have strong homing skills, although there
are few data regarding their imprinting and homing
processes (Bemis and Kynard 1997; Waldman and
Wirgin 1998). Nevertheless, given the homing behavior
of other migratory fish groups such as salmonids
(Metcalfe et al. 2002), there is likelihood that
hatchery-reared sturgeons may exhibit a higher straying
rate than wild counterparts if the imprinting occurs at an
early stage. In this regard, rearing fish using water from
the release-sites, as in the present study, may produce
better-imprinted fish than those produced in well
water that is not found in the wild. In addition,
rearing on release-site water may overcome the
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introduction of parasite-naïve individuals that can fail
to join the natural population due to local pathogens
as have been documented previously (Work et al.
2000; Antolin et al. 2002).

Individual fish behavior may play an important role
in fish survival in the wild. Indeed, individual response
to challenging environments (e.g. stress coping style)
which correspond to potentially risky situations can
have a direct consequence on fish survival or growth
by influencing fish physiological and behavioral state
(Wingfield 2003; Øverli et al. 2007). Habitat heteroge-
neity promotes behavioral flexibility (i.e. ability to ad-
just their behavior to the new conditions) (Braithwaite
and Salvanes 2005; Salvanes et al. 2007; Kotrschal and
Taborsky 2010) and exploratory behavior (Nilsson et al.
1999; Zimmermann et al. 2001; Braithwaite and
Salvanes 2005) required to deal with unpredictable en-
vironmental conditions as the conditions found in the
wild. In our study, we found that more individuals from
enriched rearing entered the challenge zone of our ex-
perimental device, when compared to the group of tra-
ditionally reared fish. This can be interpreted as more
pronounced exploratory behavior within the individuals
reared in enriched environment and corroborates previ-
ous studies where exploratory tendency of individuals
could be a consequence of higher habitat heterogeneity
(Nilsson et al. 1999; Zimmermann et al. 2001; Meehan
and Mench 2002; Braithwaite and Salvanes 2005).
However, we found that fish from enriched conditions
took longer to enter the challenge zone. This apparently
paradoxical result can be explained by higher tendency
towards environmental assessment developed under
enriched conditions. Indeed, it has been suggested that
environmental variability improves individual reaction
to novel circumstances (Meehan and Mench 2002;
Salvanes et al. 2007; Strand et al. 2010). In this case,
the fish require longer time lapses in order to perceive
the cues, assess them and adjust the behavior accord-
ingly. In this perspective, we could associate the fish
from different rearing conditions to behavioral strategies
with different stress coping style, known to have a
genetic background but also to be under high influence
of early life environment (Frost et al. 2007; Chapman
et al. 2010; Roberts et al. 2011; Jonsson and Jonsson
2014). In this case, behavior of enriched-habitat reared
fish may be better suited to the conditions found in the
wild. Environmental heterogeneity also increases phe-
notypic variation (Crossman et al. 2014) and this is a
key feature that enhance population fitness and

facilitates its establishment and persistence (Whitman
and Agrawal 2009; Forsman 2014; Forsman 2015).
Therefore, the success of stocking programs with con-
servation purposes relies on genetic and phenotypic
diversity (Forsman 2014) that we can promote under
adaptive aquaculture approaches.

When analyzing the results on the novel prey test,
no significant differences between treatments were
found. We assume that this is an outcome of similar
feeding protocols in both rearing environments. In
enriched rearing no cues were manipulated during
feeding, and unpredictability on food supply has
been shown to shape behavioral traits (Chapman
et al. 2010). Also, it is possible that the fish motiva-
tional state were not enough to elicit different feeding
behavior. Prey characteristics as color, movement,
size, shape, fish stomach fullness (Croy and
Hughes 1991; Gill and Hart 1994) and prey density
(Ioannou et al. 2009) have an important role on
foraging behavior and our test conditions may not
match the thresholds required for our species to
initiate differential feeding on novel prey. However
a negative correlation between latency to enter the
challenge zone and amount of prey consumed was
highlighted on traditional-reared fish, which is diffi-
cult to interpret with the elements we have and
would require further experiments.

Overall, our results suggest that rearing condi-
tions for fish early stages should be taken into ac-
count for stocking purposes. We found that enriched
rearing conditions influence positively fitness relat-
ed traits of fish such as growth and behavior. They
would benefit from better growth but they would
also exhibit more exploratory but cautious behavior
when facing a new environment. We also suspect a
genotype-environment interaction in favor of
enriched rearing environment that would be promis-
ing to study on further research. These are important
results that encourage enhancing fish performance
within restocking programs with enriched rearing
practices.
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