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Friction-induced self-organization of a one-dimensional array of particles 

Farhang Radjai 
H ochstleistungsrechenzentrum, Forschungszentrum, 524 25 Jülich, German y 

Stéphane Roux 
Laboratoire de Physique et Mécanique des Milieux Héterogènes, 

Ecole Supérieure de Physique et Chimie Industrielles de Paris, 10 rue Vauquelin, F-75291 Paris Cedex 05, France 

We study the frictional motion of a linear array of parallel identical cylinders on a plane where 
all interparticle and particle-plane contacts can be described by a Coulomb friction law. The entire 
system can be characterized in its steady state by an effective coefficient of friction and an effective 
inertia, both varying with the external driving force. In the steady-state regime, the organization of 
the array appears as regions involving different rotation modes (sliding with no rotation, rolling on 
the support, alternate rotations, etc.). The mechanisms leading to this self-organization in modes 
are studied analytically. 

I. INTRODUCTION 

In the context of standard continuum mechanics, the 
only field needed to describe the elastic deformation of 
a solid body is the displacement field alone. Rotations 
do not appear. They can be computed indirectly from 
the rotational of the displacement field. Other elasticity 
theories have been developed in order to account for the 
rotational degrees of freedom of a solid material, such 
as "Cosserat" or "micropolar" theory [1]. Dimensional 
analysis shows that an intrinsic length scale À has to be 
introduced. This length may be interpreted as the scale 
below which rotations can significantly differ from those 
deduced from the rotation of the displacement field. At a 
larger scale, the difference vanishes, and thus upon coarse 
graining the standard theory is recovered. 

In the case of granular materials, the discontinuous ge­
ometry of the solid phase, and thus of the displacement 
field, makes it difficult to establish a direct connection 
between a discrete description at the particle level and a 
continuum homogenization at a large scale. In particular, 
the effect of individual rotations appears to play a deter­
mining role [2]. Although the framework of Cosserat the­
ory seems more suited to such media, it does not appear 
to provide a simple key to the analysis. Sorne attempts 
in this direction have been proposed [3]; however, basic 
questions remain, such as the identification of this intrin­
sic length scale, which is often postulated to be a typical 
particle size. Other effects may motivate the study of 
rotations in granular media, such as the propagation of 
sound (5,6]. 

• Also at Laboratoire de Physique et Mécanique des Milieux 
Héterogènes, ESPCI, 10 rue Vauquelin, F-75231 Paris Cedex 
05, France. 

Considering only the rotations of particles, one major 
difficulty appears immediately: the generally disordered 
geometry of the packing of particles induces a "frustra­
tion" of rotations. To mention only the two-dimensional 
case, as soon as a "loop" of contacting particles contains 
an odd number of elements, rotations of the particles in 
the loop are not possible without friction being mobilized 
on at least one contact. We employ the word frustra­
tion in analogy to the physics of spin glasses, where the 
presence of antiferromagnetic coupling between neigh­
bors makes it impossible to satisfy ali couplings simul­
taneously. We will not try here to develop the compari­
son between these two fields any further , although sorne 
suggestions along these lines have been proposed [4]. 

In this paper we consider a very simple system consist­
ing of an array of disks in mutual contact supported by a 
plane. Two neighboring particles are in contact with the 
plane and thus a pair of particles and the support form 
a loop of three solids such that rotations are frustrated. 
Since frustration involves sliding on at least one contact, 
it is important to incorporate the friction law accurately 
in the description of the system. We will consider here 
the most basic law of friction, namely, Coulomb's law of 
friction. 

When the array is pushed in the direction of its mean 
orientation, particles will move and rotate and a collec­
tive organization of rotations will emerge. This organiza­
tion is rather complex. In particular, it involves typical 
length scales w hi ch may be mu ch larger thau the parti cie 
size, depending on the coefficients of friction (interparti­
cle and particle-plane) and the confining pressure. This 
observation might motivate revisiting discrete-continuum 
transition through the analysis of intrinsic length scales 
different from the particle size. 

In order to present our approach, we will first describe 
in Sec. II the simple case of a single particle being pushed 
on a plane. In Sec. III, we will consider the more gen­
eral case of a long array and report on sorne numerical 
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simulations. In Sec. IV, we will study analytically the 
collective organization of the array and describe the dif­
ferent phases observed. We will discuss the transition 
between the different phases and the expected effects on 
the global motion of the entire system. 

II. THE CASE OF A SINGLE PARTICL E 

Consider first the geometry illustrated in Fig. 1: A 
single disk supported by a basal plane is pushed by a 
constant horizontal force N. The mass and radius of the 
particle are assumed to be unity. The acceleration of 
gravity is set to unity as well. All quantities are normal­
ized with respect to these natural units of the problem 
and, in particular, the moment of inertia I is a mere ge­
ometrie constant. The friction between the particle and 
the support is assumed to obey Coulomb's law with a 
friction coefficient J.L1

• The friction between the particle 
and the pushing block also follows Coulomb's friction law 
with a coefficient J.L· The translational and angular veloc­
ities of the particle are called v and w, respectively. We 
are interested in the steady-state regime, where the ac­
celeration is constant. All solids are assumed to be rigid, 
and thus they cannot interpenetrate. Figure 1 gives the 
convention used for the orientation of the forces. The 
tangent force at the parti de-block contact is called T, 
whereas the friction force on the support is S. The nor­
mal reaction of the support is R. 

The equations of the dynamics are the following: 

v = N- S, 
0 = R - 1- T , 

lw = S - T, 
(1) 

where the fust two equations refer to Newton's law of 
motion in the horizontal and vertical directions, and the 
last one accounts for the rotation. 

To find a complete solution to the equations of dy­
namics, we need two more equations prescribed by the 
friction law at the two contact points. A friction law is a 

T 

J.1.N 

v 

- J.1.N 1------

FIG. 1. Geometry of the single-sphere problem. 

relation between the friction force and the relative tan­
gential velocity at the contact point between two solids. 
The graph of this relation for Coulomb's law is displayed 
in Fig. 2. In two dimensions, it is written 

Vr = 0 ::} T E [-J.LN 1 J.LN] 1 

Vr > 0::} T = -J,LN, 
Vr < 0 ::} T = J.LN 1 

(2) 

where Vr is the relative tangential velocity and T and N 
are the tangential and normal components of the contact 
force. ln the case where Vr = 0, there is no equation 
relating the tangential force to the normal contact force. 
In the present case of a single particle, we will consider 
different configurations with different relative velocities 
at the contact points and we will show that the friction 
force is always uniquely determined. In the next section, 
we will discuss a more general formulation of Coulomb's 
law adapted to dynamical systems [7]. 

There are two particular values of rotation velocities: 
w 1 = 0 and w2 = v. Depending on the relative position 
of w with respect to these particular values, the tangent 
force at the contacts will assume different values. How­
ever, up to a change in the origin of time, the position of 
w with respect to the key values Wi can be equivalently 
analyzed through the relative positions of the accelera­
tions w with respect to Wi, since we are interested in the 
steady state, where the accelerations remain constant in 
time. Five different cases can be distinguished. 

(1) w > v. In this case, we have T = J.LN and S = 
- J.L' R. Since both tangent forces, T and S, contribute 
to a torque opposite to w, the angular acceleration has 
to turn negative. Therefore, no steady-state solution can 
be found. 

(2) w =v. In this case, T = J.LN, but S cannot be de­
duced directly from Coulomb's law. However, the kine­
matic constraint w = v suffices to determine the system 
entirely. The complete solution is written 

T = J.LN, 
R = 1 + J.LN, 

s = Ut'î )N, 
(3) 

. - (1-~-') N 
W - l+I . 

For this solution to be acceptable, the condition ISI < 
J.L1 R has to be satisfied. This gives a constraint on the 
value of N: 

J.L'(1 + I) N < N 1 = ---''----'-----,-=------,-
I + J.L - J.LJ.L'(1 + I ) 

(4) 

(3) 0 < w < v. ln this case, T = J.LN and S = J.L1 Ras 
given by Eq. (2). The complete solution of the system is 

s 

FIG. 2. Coulomb's law graph. 
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T = J.LN, 
R = 1 + J.LN, 
S = J.L' (1 + J.LN) , 

v = - J.L' + (1 - J.L1 J.L)N, 
w = t (J.L' - (1 - J.L1)J.LN) . 

(5) 

Compatibility of this solution with the conditions 0 < 
w < v sets the following constraints on the values of N: 

(6) 

(4) w =O. ln this case, S = J.L1 R while T is not deter­
mined by the friction law directly. The condition w = 0, 
however, gives an additional constraint which leads to 

T = _L_ 
1 1-J-1.'' v = N-_E_ 

R 1 = 1-f'' 
1- 1-''' 

w = o. s = _E_ 
1- 1-''' 

(7) 

The condition JTJ < J.LN implies 

(8) 

(5) w < O. In this case, S = J.L1 R and T = -J.LN. As 
in the first case, the two tangent forces contribute to a 
torque opposite to w and thus no steady-state solution is 
possible. 

ln this way, the dynamics of the block-particle sys­
tem show three possible steady-state phases: rolling 
(phase 1), rotating and sliding on the plane (phase 2), 
and sliding on the plane without rotating (phase 3). Fig­
ure 3 shows the friction forceS at the particle-plane con­
tact as a function of the driving force N. The former 
increases linearly with the applied force in the two fust 
phases to saturate to a value greater than J.L1 in the last 
one. 

As long as the translational motion of the particle is of 
interest, these results can be compared to the dynamics 
of a rigid block of mass m, pushed by a force N. The 
respective equation of motion is written 

0.30 

0.25 

0.20 

Cil 0.15 

0.10 

0.05 

0.00 
0.0 1.0 2.0 3.0 4.0 

N 

FIG. 3. Evolution of the particle-plane friction force as a 
function of the driving force N. Ali forces are normalized 
with respect to the weight of one particle (see text) . The 
first regime N < N1 corresponds to rolling on the support, 
the intermediate regime N1 < N < N2 corresponds to partial 
rotation where both contacts are sliding contacts, and finally 
in the last regime N > N2, the particle slides on the support 
with no rotation. Here, J.L = 0.1 and J.L1 = 0.2. 

N-Mm = mv, (9) 

where M is the coefficient of friction at the black-plane 
contact. Now, a look at the steady-state solutions of the 
single-particle problem [Eqs. {3), (5) , and (7)) in different 
regimes shows that they can ail be written in the canon­
ica} form of Eq. (9) if we introduce an effective inertia 
m* and an effective coefficient of friction M*: 

{

i!±fl_ 
(T=Il) , 

m*- 1 
- (1-1-''1-'), 

1, 

N<N1 
N1 < N < N2 
N2 <N. 

(10) 

The "effective friction force" on the plane is given by 
M*m*. While it is obvious that the inertia m• should 
depend on whether the particle slides or rolls, it is sur­
prising that the coefficients of friction J.L and J.L1 enter the 
expression for the inertia. Note that the effective iner­
tia is piecewise constant, and decreases by steps with N. 
Similarly, the effective coefficient of friction M* also de­
pends on the driving force in a piecewise constant man­
ner, increasing with N. The fust case, which corresponds 
to a low applied force, is somewhat counterintuitive. The 
effective coefficient of friction is exactly zero, even though 
there is a nonzero friction force in the system. This fric­
tion force being proportional to the acceleration, it only 
contributes to the effective inertia rather than to the co­
efficient of friction M*. We will see below that this be­
havior remains qualitatively valid for an array of parti­
des, with essentially the same low force behavior (zero 
coefficient of friction). 

The steady state can be characterized equivalently by 
the rotation of the particle. The relevant dimensionless 
variable is then a = wjv. The steady-state diagram in 
the N - a space is shawn in Fig. 4. For a given value 
of the driving force , whatever the initial velocities, a is 
attracted to a point on the steady-state diagram. In 
phase 1, the steady-state value of a is equal to unity, 
while it is equal to zero in phase 3. ln phase 2, a de­
creases with the driving force as 

(11) 

1.2 

1.0 

0.8 

0.6 
I:S 

0.4 

0.2 

0.0 

-0.2 o.o 1.0 2.0 3.0 4 .0 
N 

FIG. 4. Steady state of the single-particle problem inN -a 
space, where a = %· Ail forces and accelerations are normal­
ized ( see text). The steady state depends only on parameters 
and not on initial conditions. Here, J.L = 0.1 and J.L1 = 0.2. 
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It can also be shown that the particular motion of the 
particle, for a given driving force, is the one that mini­
mizes the dissipation. 

In the equations of the problem, the particular value 
of unity for the coefficients of friction appears to play a 
key role. So far, we have tacitly assumed that the two 
coefficients of friction were smaller than unity. However, 
it is now straightforward to understand what happens 
when this is not the case. If J.L < 1 and J.L1 > 1, then the 
only steady state is phase 1: the particle can only roll 
on the plane. If J.L > 1 and J.L1 < 1, then it is phase 3 
that dominates the steady state: the particle can only 
slide on the plane. In the case where both J.L and J.L' are 
greater than unity, no motion at ali is possible! The par­
ticle simply sticks to the plane. It is easy to see that if 
the driving force N had a component downward, then 
the same situation would occur even for smaller values 
of the coefficients of friction. In this respect, unity has 
nothing special and reflects only the particular geome­
try we consider here. In a long array of particles this 
same effect takes place when the coefficients of friction 
are greater than unity, and the applied force is screened 
by the particle in contact with the pushing block. This 
observation suggests that in granular media, things will 
change radically when the interparticle coefficient of fric­
tion is high ènough. In the forthcoming sections we will 
assume that the coefficients of friction are smaller than 
unity. 

III. A ONE-DIMENSIONAL ARRAY 
OF PARTICLES 

The study of the motion of a single particle provides us 
already with sorne insight into the question we address 
in the general case of a long array. How are the rotations 
of the particles organized in the steady state? How does 
the motion of the system depend on the applied force? 
Our aim is to propose a global description of the fric­
tional motion of this system as a result of the collective 
organization of rotations. 

We have set up a computer program to simulate the 
motions of particles on a plane. The case of a single par­
ticle (Sec. II) shows that the friction law is actually the 
most important ingredient of the problem. Our program 
prescribes the exact Coulomb law (with no regulariza­
tion) at the particle-particle and particle-plane contacts. 
We are interested in the situation where each particle 
remains in contact with its neighbors, so that the whole 
system can be considered as a single abject. This require­
ment is motivated by our purpose here to focus on the 
role played by the rotations in the translational motion 
of the array. Only if ali interparticle contacts are closed 
can the global translation be defined. Hence, the system 
we simulate is collision free and the relative velocities at 
contact points are only tangential. Moreover, our system 
involves no cohesion force and no elasticity. 

As we shall see later in this section, the close-contact 
condition is satisfied only for a limited region in the pa­
rameter space. We add a second block to confine the 
array, where a constant force opposite to the direction of 

motion is applied to the first particle of the array. Al­
though this new parameter is neither necessary nor suffi­
dent to prevent particle-particle contacts from opening, 
it is, in general, a very useful control parame ter, espe­
cially when the driving force is weak. So, the parameters 
are the following: J.L, J.L1

, and J.L11 are the coefficients of 
interparticle, plane-particle, and block-particle friction, 
respectively. The driving force NL, the confining force 
No, and the number of particles L are the other param­
eters, as shown in Fig. 5. 

A. Governing equations 

Figure 5 shows a scheme of the array with the sign 
conventions for forces used throughout this paper. With 
these conventions, the equations of dynamics for each 
particle i are written 

T(i)- T(i- 1) + R(i) = 1, 
N(i)- N(i- 1) + S(i) = 
T(i) + T(i- 1)- S(i) 

v, 
Iw(i). 

The boundary conditions are 

N(L) = NL, 
N(O) =No. 

(12) 

(13) 

There are 5L + 1 variables to be determined, whereas we 
have only 3L equations given by dynamics. The remain­
ing 2L + 1 equations are prescribed by the contact law 
at the 2L + 1 contact points. 

In order to avoid any artifact in the solution of our 
equations, we would like to use the exact Coulomb law 
of friction. However, it is not straightforward to im­
plement it in an algorithm, since, as shown in Fig. 2, 
the (vr, T) should belong to a set of admissible values. 

1.0 

0.5 

·8 0.0 

-0.5 

- l.O 

0 '"'"' 1 
<) -- ~ 2 

-1-1- 3 
*----*4 

0 5 

.o · .o 
o ··· ~ 
i ,'\ 

10 

' 1 
1 

' ' ~ '. 

15 

. 

FIG. 5. {a) An array of particles on a plane. (b) Forces 
exerted on the particle i and sign conventions. 
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A mathematical framework for handling such problems, 
known as nonsmooth analysis, has been developed [8]. 
In static equilibrium, where all the relative velocities are 
zero, Coulomb's law results indeed in an indeterminate 
state of forces (the so-called hyperstaticity of a sand­
pile at equilibrium). Nevertheless, in a dynamical system 
where the particles are moving and the states of contacts 
are permanently subject to change, the friction force on 
the vertical branch of Coulomb's law can be deter mined 
in a unique way. We have shown this explicitly in the 
case of the single-particle problem. The main point is 
that one has to distinguish the contacts where the rela­
tive tangential velocity remains equal to zero from those 
where this is not so. ln terms of the relative accelera­
tions, we would say that there are two classes of contacts 
where the relative tangential velocity is zero: one where 
only the relative tangential velocity is equal to zero and 
one where both the relative tangential velocity and accel­
eration are equal to zero. We shall caU them active con­
tacts and nonsliding contacts, respectively. Whenever a 
contact is active, i.e., when v,. = 0, there are three differ­
ent alternatives distinguished by the relative tangential 
acceleration ù,. at the contact. 

(1) v,. =O. In this case, the contact is nonsliding. The 
friction force T has to be in Coulomb's limits [-J..LN,J.LN], 
where N is the normal force at the contact. Here we have 
an equaiton and an inequality. When the equation v,. = 0 
supplements the equations of dynamics, we get the values 
of T and N and we can check for the inequality. If the 
inequality is satisfied as well, then we have the solution. 
If this is not so, we have to switch to one of the two other 
alternatives. 

(2) v,. > O. ln this case, the contact is sliding although 
it is active. So, we have to put T = - J,LN following the 
sign convention of Fig. 2. We supplement the equations 
of dynamics with the latter equation, from which we cal­
culate v,. among others, and we check for the inequality. 
If the inequality is not satisfied, then we turn to another 
alternative. 

(3) v,. < O. This is the same as the second case except 
that the corresponding equation is T = J,LN. 

In this way, Coulomb's law in its most general formu­
lation takes the following form: 

r = 0 and TE [-J.LN, J..LN], 
v,. = 0 => ~r > 0 and T = -J,LN, 

v,. < 0 and T = J,LN, (14) 
Vr > 0=> T= -J..LN, 
v,. < 0=> T=J..LN. 

ln order to solve the system of equations when a contact 
becomes active, the three alternative configurations are 
to be tried successively until the solution is found. Actu­
ally, there may be a great number of nonsliding contacts 
in a granular medium at the same time. Whenever a 
single contact becomes active, all the other nonsliding 
contacts are to be considered as weil. For p active con­
tacts, this implies 3P possible configurations. Depending 
on the situation, different phenomena may take place. 
When a contact becomes active, it may become nonslid-

ing, but cause other nonsliding contacts to turn sliding at 
the same time; or it may simply turn out to be a sliding 
contact and force other nonsliding contacts to become 
sliding ones as well, and so on. 

This basic image is too time consuming to be imple­
mented in an algorithm, since the number of possible con­
figurations grows exponentially with the number of active 
contacts. An important ingredient of our computer pro­
gram is a relaxation scheme that converges rapidly to the 
solution in the space of configurations. The method used 
is to start with an arbitrary configuration when, in the 
process of evolution of the system, sorne contact becomes 
active. Then, if the selected configuration is not the right 
solution, it is mapped onto the space of configurations in 
arder to build a new configuration to be tested. This 
iterative process converges very rapidly to the solution 
with the following mapping: 

v,. = 0 and T < -J.LN ----+ T = - J.LN, 
v,.= 0 and T > +J.LN ----+ T = +J.LN, (15) 
T =-J..LN and Vr < 0 ----+ v,. = 0, 
T = +J.LN and Vr > 0 ----+ v,.= o. 

This procedure has to be applied simultaneously to all 
active contacts. 

The evolution of the system can be studied starting 
from a random initial state. The easiest way to generate 
initial conditions is to choose initial velocities in such a 
way that ali contacts are sliding. For a given value of the 
driving force NL, all accelerations and forces can then 
be determined. These values do not change unless sorne 
contact becomes active. Meanwhile, the motion of each 
particle is uniformly accelerated and the time fJh needed 
for sorne contact to become active is simply given by 

. { . v,.(i) 
fJh =mm fJh(t) =- v,.(i)' oh(i) > o} . (16) 

At this moment, a relative tangential velocity at sorne 
contact vanishes and new values of forces and acceler­
ations are to be calculated. Since the states of sorne 
contacts change, the values of forces and accelerations 
undergo discontinuous changes. The motion is again uni­
formly accelerated. This event-driven process continues 
until the system achieves the steady state where at every 
contact the relative velocity and acceleration are of the 
same sign or both are zero. In the steady state, all forces 
and accelerations rem ain the same forever. 

B. Num erical results 

Our simulations show that, depending on the driv­
ing force, three different regimes may occur. For small 
enough values of the driving force and for most initial 
conditions, sorne interparticle contact opens and the ar­
ray separates in two or more identical arrays. On the 
other band, for large enough values of the driving force, 
sorne particle-plane contact may be lost and the geome­
try of the array is modified because of the rising of one 
particle. ln between these two limits, all contacts are 
preserved. We consider only this intermediate regime, 
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ters are such that the steady-state value of Mis smaller 
than the particle-plane coefficient of friction. 

The global steady-state coefficient of friction M of the 
array, although independent of the initial conditions, dif­
fers from the ordinary coefficient of friction in that it is a 
function of the driving force. Figure 9 shows this depen­
dence for a system of 20 particles. M increases from zero 
linearly with N L and satura tes to a value equal to the 
particle-plane coefficient of friction. In other words, for 
weak values of N L, the driving force is accelerating the 
system less than it would if the particles were replaced 
by a single block. Another effect of the driving force is 
to regulate the internai organization of forces so as to 
increase its frictional resistance. For weak enough values 
of the driving force, the system is in phase 1. Dissipation 
takes place only at interparticle contacts. In this regime, 
M increases linearly with the driving force because, as 
we shall see in the next section, in phase 1 all forces 
scale with the driving force except for the normal force 
on the plane. As the driving force increases, more and 
more particles of phase 2 appear in the tail of phase 1 
and hence the number of particles in phase 1 decreases. 
Then, Mis no more linear in NL. Finally, when the driv­
ing force is high enough, phase 1 disappears completely 
from the array so that ail particles are either in phase 2 
or in phase 3. In this regime, M is simply equal to the 
particle-plane coefficient of friction. Thus, the number of 
rolling particles indicates the capacity of the system to 
increase its friction. Figure 10 shows the configuration of 
rotations in the steady state of a system of 40 particles 
for different values of the driving force. The connection 
between the rotation modes and the global behavior of 
the array in translation will be studied in more detail in 
the next section. 

IV. THEORETICAL ANALYSIS OF THE 
STEADY STATE 

In this section we will focus on the steady state and the 
mechanisms leading to the spatial patterns of rotations. 
These patterns provide the key to the global description 
of the array as a single object in displacement. 

0.12 

0.10 

0.08 

::E 0.06 
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0.02 

0.00 
0.0 2.0 4.0 6.0 8.0 10.0 

NL 

FIG. 9. Variation of the global coefficient of friction of an 
array of 20 particles as a function of the driving force. Pa­
rameters are J.L = 0.01, J.L1 = 0.1 , and No = 0.05. 
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FIG. 10. Angular accelerations of particles in an array of 
40 particles for different values of the applied force. Here, 
J.L = 0.01 , J.L1 = 0.10, and No = O. 

A. Different phases 

The most interesting feature of the rotation patterns 
is that pure phases of rotation come one after another 
without mixing. This scheme suggests that as one goes 
along the array, sorne quantitative changes in the state 
of forces are followed by qualitative changes resulting in 
quite different behaviors. Let us consider first the case 
of rolling (phase 1). 

Since ali of the particles in phase 1 are rolling in the 
same direction, friction forces at interparticle contacts 
are fully mobilized so that the equations of dynamics can 
be supplemented in this case by 

T(i) = -J.LN(i). (18) 

Moreover, rolling implies 

w(i) =v. (19) 

From Eqs. (12), (18), and (19) we get the following ex­
pression for the friction force at particle-plane contacts: 

) ( )

i 
2J.L 1 + I . 1 + J.L 

S(i) =v- -- (No + --v -- , 
1 + J.L 2J.L 1 - J.L 

(20) 

as well as the following limit on the value of the particle­
plane force: 

- S(i) < J.L'(1 + J.LV). 
- 1 + J.LJ.L' 

(21) 

Equation (20) shows that the particle-plane friction is 
mobilized progressively along the array and its direction 
is opposite to that of the motion. The absolute value 
of the friction force has an upper bound given by (21). 
From (20) and (21) one gets the maximum number of 
parti des in phase 1: 

. {1 ( 1 1 - J.L ( . ')) t :::; L 1 = 1 + n - , v + J.L 
2J.L 1 - J.LJ.L 

( 1+1 .)}/ (1+J.L) - ln N 0 + ~v ln 
1 

_ J.L , (22) 
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where L 1 is the length of phase 1. So, the simple mech­
anism behind this phase is the progressive mobilization 
of the friction force at particle-plane contacts up to the 
maximum possible value of the friction force. Simulations 
in fact confirm this simple picture; see the functions S(i) 
and w(i) in Fig. 7 from the simulation of an array of 40 
particles. The contacts of the particles coming after the 
particle i = L 1 with the plane can no longer be nonslid­
ing and in phase 2, even if the particles continue rotating 
in the same direction, all contacts are sliding contacts. 

Now, let us consider the situation where all contacts 
are sliding contacts and all of the particles rotate in the 
positive direction (phase 2). The following equations are 
then to be used to supplement the equations of dynamics: 

T(j) -11-N (j), 
S(j) = -11-' R(j) , 
w(j) > o. 

(23) 

From these and the equations of dynamics we get the 
following expression for the angular accelerations: 

l . ( ') 211-(11-' +v) . !1-(1 + 11-') . 
W)=- J+ V 

1 - 11-J-L' 1 - I-Ll-L' 

+11-'(1 + 11-) -2 'N(. = 0) 
1 1 Il- J , 

- 11-/1-
(24) 

where j refers to the jth particle of phase 2 and N(j = 0) 
is the normal interparticle force on the fust partricle in 
the phase. At the same time, we have 

S(j) = _11-'(1 + 11-v). 
1 - 11-11-' 

(25) 

These equations show that the angular acceleration is de­
creasing linearly with the particle number while the fric­
tion force at the particle-plane contact remains constant. 
However, the positivity of the angular acceleration, which 
is a consistency condition, gives the maximum number of 
particles in the phase: 

. < L = _1_ [1 + 11-' v + 11-'(1 +11-) 
J -

2 11-' + v 2 2!1-

-(1- J-L~-L')N(j = o)], (26) 

where L2 is the length of phase 2. This simple mechanism 
behind phase 2 is illustrated in Fig. 7, where T(i) and 
w ( i ) are shown for a simulation of an arr a y of 40 partiel es. 
From the end of phase 2, the behavior changes again 
radically as the particles can no longer rotate consistently 
in the same direction. 

Let us now consider phase 3 , where the interpart icle 
contacts can no longer be sliding. The equations to be 
used to supplement the equations of the dynamics are 
the following: 

S(k) = - 11-' R(k), 
w(k) = - w(k + 1) =w. (27) 

Assuming that the fust particle in this phase in contact 
with the last particle of phase 2 bas a negative rotation 
velocity, we immediately get the following expression for 

the tangential interparticle force: 

T(k) = T(k = 0) + - + -[ 
11-' lw] 
2 2j.L1 (~)k 

1 - 1-L' 

k lw 11-' -(-1) -- - . 
211-' 2 

(28) 

The interparticle friction force oscillates with a period of 
two particles and grows exponentially. We remark that 
this behavior of the interparticle friction force is only re­
lated to the fact that the interparticle contacts here are 
nonsliding. Even in the case where w = 0, which is a 
particular case of phase 3, this oscillating behavior is ob­
tained. ln the same way, we get the following expression 
for the normal interparticle force: 

N(k) = N(k = 0) + k(v + 11-') 

[ 
11-' lw] + 11-' T(k = 0) + 2 + 211-, 

[ ( 
1 + ') kl x 1- -1-:1 . (29) 

From Eqs. (28) and (29) and the boundary condition 
T(O) = - 11-N(O) , it is easy to see that JT(k) l $ 11-N(k) 
for all k. The length of phase 3 is thus not limited by the 
mobilization of the interparticle friction forces. However, 
sorne limit arises from the normal particle-plane force 
which, for consistency of the equations, bas to be posi­
tive. The expression of the normal particle-plane force is 
the following: 

R(k) = 1 + (-1)k 1~ 
11-

+-- T(k = 0) + !:!:__ + __:::._ 2 [ 
1 l'] 

1 - 11-' 2 211-' 

x [-1 + 11-']k- 1 
1 - 11-' 

(30) 

The positivity of R(k) sets an upper limit on the length 
of phase 3: 

k $ L3 = 1 + {ln [ 1 ~ 11-' ( 1 + :, ) ] 

[ 
1-L' lw ] } 1 ( 1 + 11-' ) - ln T(O) + 2 + 211-, ln 1 _ 11-' , 

(31) 

where L 3 is the maximum length of the phase and T(O) 
is to be replaced with the last particle in phase 2. The 
particle coming just after the particle L 1 + L2 + L3 will 
rise as the reaction force on the plane vanishes. 

What is the relation between w and v in phase 3? 
There are not enough equations to relate these two accel­
erations. The answer is to be looked for in the boundary 
conditions. For the array to be stable (no contact open­
ing), we should have L $ L 1 + L 2 + L 3 . Suppose that 
there is an even number of particles in phase 3 so that 
the last particle is rotating in the positive direction. As 
the latter is in contact with a black, with a coefficient of 
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friction generally different from J.L, its angular accelera­
tion is different from that of phase 3. Simulations show 
that if J,.L11 < J.L, then the angular acceleration of the last 
particle is greater than that of phase 3. In this case, the 
contact between the last particle of the array and the last 
particle of phase 3 is sliding and we have the consistency 
condition T(k = L~ - 1) = -J,.LN(k = L~- 1), where L' 
is the length of phase 3. This gives the relation between 
w and v. As seen in Fig. 10, w decreases with the driving 
force, while v increases. Figure 11 shows the angular ac­
celerations of the particles in two simulations: one with 
J.L11 = 0, the other with J.L11 > J.L. ln this latter case, the 
rotations in phase 3 simply vanish. 

B. Global dynamics 

The global behavior of the array results from the juxta­
position of the three rotation phases. By global behavior, 
we mean the relation between the applied force NL - No , 
as input to the system, and the acceleration v, which is 
a global output. ln this section we will show that, as in 
the case of a single particle (Sec. II) , this relation can 
be cast in the canonical form of the equation of frictional 
motion of a single black: 

NL- No- F* = m*v , (32) 

where m* , the effective inertia and F*, the effective fric­
tion force on the plane, are functions of the parameters 
and the applied force. Figure 12 shows v as a function 
of N L - No for an array of 20 particles. The inverse 
of the slope at each point corresponds to the effective 
inertia for the corresponding value of the applied force, 
while the intersection with the axis of accelerations gives 
the effective friction force on the array. Three different 
regimes can be distinguished. 

(1) From zero up to a critical value N' of the applied 
force, the effective mass is constant. In this regime ali 
particles are in phase 1. From Eqs. (12) , {18), and (19) 
it can be shawn that the normal interparticle force in 
phase 1 is given by 

·9 

0.05 

0.00 

<>-<> )1" =0.00 
-~ Ji".O. IS 

-0.05 ,__ _ _..._ __ ~ __ .__ _ __._ __ _, 
0 2 4 6 8 10 

FIG. 11. Angular accelerations of particles in an array of 
ten particles for two different values of the particle-block co­
efficient of friction J.l-11

• The other parameters are JI- = 0.1 , 
J.L

1 = 0.2, No = 0.1, and N L = 2.8. 

0.30 

·?0.20 

0.10 

0.00 V--~--__._ __ _._ __ _.__ 

0.0 2.0 8.0 10.0 

FIG. 12. Translational acceleration of an array of 20 parti­
des as a function of the applied force N L - N 0 . Parameters 
are J.L = 0.01, J.L1 = 0.1, and No= 0.05. 

N( .) _ (N 1 + I . ) ( 1 + J.L) i 1 + l . 
'1. - o + --v -- - - - v 

2J,.L 1 - J.L 2J,.L ' 
(33) 

so that the effective mass is equal to 

m • = ~ [ ( 1 + J.L) L - 1] 1 2J,.L 1 - J.L 
(34) 

Thus, the effective inertia in this regime can be rouch 
greater than the real mass L of the system. lt increases 
rapidly with J.L and for small values of J.L , is at least 1 + I 
times the real mass of the array. 

From Eq. (33) we get also the following expression for 
the effective friction force: 

(35) 

ln Sec. III, we introduced a global coefficient of friction 
M, which is the "total'' friction force F on the plane di­
vided by the real mass L of the system. Since a global 
description implies analytically an effective inertia to be 
introduced, a description in terms of "effective" quanti­
ties is more consistent. Hence, we introduce the effective 
renormalized coefficient of friction by 

M* = F*. 
m* 

(36) 

We recall that the acceleration of gravity bas been set 
to 1. From Eqs. (34) and {35) , the expression of M* in 
the regime of collective rolling is given by 

(37) 

This is a simple expression in that it depends neither on 
the applied force nor on the number of particles. In this 
respect, M{ shows exactly ali the features of a Coulom­
bian coefficient of friction. 

The confining force No in this regime is a control pa­
rameter of M{. When No = 0, the effective coefficient 
of friction vanishes! The system is bence reduced to a 
black with no friction on the plane and an effective mass 
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greater than its real mass. This has interesting physical 
implications. For instance, since the effective inertia is 
greater than the real mass, the speed of sound through 
the system, due to a small elasticity at contact points, 
should be less by at least a factor of v'1 + I than when 
rotations are absent. On the other hand, since the fric­
tion force for small values of 1-L is proportional to the 
number of particles L, a small change in the confining 
force is amplified by a factor L to give a much larger 
friction force. 

(2) When the applied force is greater than N', the ef­
fect ive mass begins to increase with the applied force. 
At the same time, the number of particles in phase 1 de­
creases and there are more and more particles in phases 2 
and 3. As long as there are particles in phase 1, the effec­
tive mass continues to increase. From Eqs. (12) and (23) , 
it can be shown that the effective mass and coefficient of 
friction in phase 2 are given by 

m• - 1 L 
2 - 1-J.<p.' 

Mi = 1-L' 
(38) 

where Lis the number of particles in phase 2. In the same 
way, for phase 3, from Eqs. (12) and (27), we obtain 

m3 = L, 

M* = u' -~ [(~)L -1] 3 ,_ L 1 - p.' 

x ( -~.LN(k = 0) + ~ + J;,). 
(39) 

where Lis the length of phase 3. Here we have taken w to 
be an independent parameter which is related essentially 
on the particle-block coefficient of friction. The effective 
coefficient of friction in phase 3 is approximately equal 
to f.L

1
• The deviation from this value is of the order of I.L'3 

when the angular acceleration is zero, and of the order of 
f1,12 otherwise . 

The effective inertia and coefficient of friction of the 
array can be calculated from those of the phases: 

m • mi + m~ + mj, 

M * = Mimi+Mâmi +M;m; 
m.i +m;+m; 

(40) 

As the number of particles in phase 1 decreases, the ef­
fective coefficient of friction increases and, at the same 
time, the effective inertia of the array tends to its real 
mass. 

(3) For a certain value N" of the applied force, there 
will be no particle in phase 1 and the relation between ac­
celeration and applied force becomes linear again. In this 
regime, the effective mass is practically equal to the real 
mass of the system, except for small oscillations coming 
from phase 3. The effective coefficient of friction in this 
regime is equal to the particle-plane coefficient of fric­
tion. Figures 13 and 14 display the variation of effective 
coefficient of friction and effective inertia as a function of 
the applied force for an array of 20 particles. N 0 and f.L 

are the control parameters of the first regime. 
It can be seen from Fig. 13 that the necessary condition 

for observing the fust regime for any number of particles 
is given by a simple inequality: 

0.12 ,--~--~---~--~---, 

0.10 

0.08 

.::E 0.06 

0.04 

0.02 

0.00 b==~!;::···-""-···.:::.~·- "-"····:;;;:··:;;;; .. ·-;:;;;·-·;;:;;"-·====-'·:.::."''d"" M, 

0.0 2.0 4.0 6.0 8.0 10.0 
NL-NO 

FIG. 13. Variation of the effective coefficient of friction as 
a function of the applied force for the system of Fig. 12. 
Mt = 2J.t/ (l + I)No is the effective coefficient of friction in 
phase 1. M3 = J.t

1 is the mean value of the coefficient of 
friction in phases 2 and 3. 

( 41) 

When the confining force is small, the system is always 
in the fust regime for small enough values of t he ap­
plied force. Collective rolling of particles should occur 
for example at the free surface of sandpiles. Therefore, 
physical effects due to this mode should be observable in 
real sandpiles. 

V . CONCLU SION 

We have introduced a simple one-dimensional model 
of particles where the interplay of the dynamics and the 
contact law (Coulomb's law of fric t ion) leads to a well 
defined organization of the rotations of particles in the 
steady state. This self-organization has been studied nu­
merically and analyzed in terms of a juxtaposition of 
"pure modes." The latter have been fully characterized 
analytically and their respective lengths have been com­
puted. The agreement between the numerical simulations 
and the theoretical analysis is perfect. 

40 ,--~--~---~---~--, 

35 

30 

8 
25 

20 .... ---- ··----- _ ,, .. ,_ .... ,_ . .,,-. ..... --~ ........ 

15 L--~---~---~---~-~ 
0.0 2.0 4.0 6.0 8.0 10.0 

FIG. 14. Variation of the effective massas a function of the 
applied force for the system of Fig. 12. 
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The translational motion of the array on the plane in 
the steady state can be described in terms of a global 
friction force, increasing with the external driving force. 
However, direct analysis shows that an effective inertia 
has to be introduced. This in turn requires an "effective" 
coefficient of friction to be defined, which is different from 
the "global" coefficient of friction in many respects. 

Finally, let us stress the importance of length scales in­
termediate between the particle size and the system size 
appearing in rotation modes and force patterns, which 
may play a significant role in a continuum description 
of granular media. While this effect is limited here to 
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