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We study cemented granular media by introducing cohesive bonding (sliding or rolling friction and
tensile strength) between grains in the framework of the contact dynamics method. We find that, for a wide
range of bond parameters, the macroscopic angle of friction at the peak state can be split into three distinct
terms of collisional, frictional and dilational origins. Remarkably, the macroscopic tensile strength
depends only on the bond tensile strength, and the friction angle at the peak state is proportional to the
dilatancy angle which varies linearly with sliding friction.

Cohesive granular materials are of particular interest to
various fields of science and engineering such as soil
mechanics, geology, and processing of fine powders and
grains. Although cohesive interactions can have very dif-
ferent physicochemical origins, their common denomina-
tor is to freeze, up to a threshold in force or torque, the
relative degrees of freedom between grains. Besides the
Coulomb friction, which is also present in cohesionless
materials as the main source of shear strength, well-known
examples of cohesive bonding are mineral cementation,
capillarity, and van der Waals forces in dense or fine-
grained materials [1,2].

From a grain-scale viewpoint, an interesting and largely
open issue is how local force thresholds scale up to macro-
scopic strength properties (friction angle and cohesion).
However, the influence of local thresholds can hardly be in-
vestigated by direct experiments. The thresholds are ma-
terial dependent and therefore cannot be isolated and var-
ied methodically. A unique opportunity is offered by capil-
lary cohesion which can be controlled by liquid content
[3–5]. For example, several studies have focused on the
effect of the adhesion force on the maximum angle of
stability [6].

On the other hand, discrete element simulations provide
a suitable tool to investigate large scale properties from
local parameters. Several numerical studies have been
reported focusing mostly on the compaction and flow
properties of cohesive granular materials [7–11]. We are
aware of few numerical studies dealing in a systematic
manner with the macroscopic strength properties [12,13].

In this Letter, we present a detailed analysis of the shear
strength in cohesive packs simulated by the contact dy-
namics method. Parametric study leads to an appealing
picture depicting the precise role of each bond parameter
in the cohesive behavior. The model of cohesive bonding in
the simulations was designed to mimic cohesion by ce-
mentation as observed in rocks and soils. It incorporates
the following features : (1) cohesive interactions are gov-

erned by shear force and torque thresholds that are propor-
tional to the normal force, as well as a tensile force
threshold [Fig. 1(a)]; (2) cohesive bonding occurs inside
a small zone between grains, representing in a way the
cementing material [Fig. 1(b)]; (3) contact rupture leads to
an irreversible loss of tensile strength (debonding) and the
contact turns to purely frictional behavior.

In the following, we attribute positive values to com-
pressive forces. By definition, the tensile force threshold
�Fa is the largest tensile force that can be supported by a
pair of grains along the contact normal. It is also useful to
introduce a tensile stress �a � Fa=‘ where ‘ is the mean
diameter of the grains in contact. For sliding friction, we
use Coulomb’s law in which the shear force threshold Tmax

is given by

Tmax � �s�N � Fa�; (1)

where �s is the coefficient of sliding friction and N is the
normal force. The offset �sFa can be interpreted as the
effect of adhesion forces increasing the contact area and
thus the resistance to sliding.

Full cementation requires also torque transmission at the
contact points. This is equivalent to a rolling resistance
with possibly a torque threshold �max. We assume that �max

obeys a Coulomb-like law [14]

�max � �r‘�N � Fa�; (2)

where �r is the coefficient of rolling friction. Obviously,
the length scales involved in the description of rolling
resistance are those of the cohesive bond. In grain-scale
numerical simulations, however, it is not desirable to in-
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FIG. 1. (a) Shear and torque failure envelopes and (b) cohesive
bond.
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troduce small length scales compared to grain size. In
Eq. (2), the presence of ‘ is simply meant to make �r
dimensionless. At the particle scale, �s, �r, and �a rep-
resent the microscopic parameters of the model that ex-
press at this scale the underlying physicochemical
properties of the contact interactions.

The kinetics of contact loss and gain is governed by a
creation length � and an elliptic zone of weak extension
located between the grains; see Fig. 1(b). The cohesive
bonds are created initially between all grains such that the
gap, i.e., the distance between their two closest material
points Pi and Pj, is below �. A cohesive bond persists as
long as the point Pj is located inside a small elliptical zone
fixed to disk i. The parameter � and the size of the elliptic
zone simply control the scale of strain softening and they
do not influence the results presented below as far as they
remain small compared to the average particle size.

The simulations are based on the contact dynamics
method [15,16]. Specific implementation for cohesionless
materials can be found elsewhere [17]. Numerical samples
are composed of 5000 disks with diameters uniformly
distributed by volume fraction between 1 m and 4 m.
The gravity is zero and, as for most geomaterials, the
restitution coefficients are set to zero. The packing is built
according to simple geometrical rules inside a rectangular
cell and then uniaxially compacted with zero friction in
order to produce a dense disordered configuration [17]. We
get a volume fraction � � 0:84 and a coordination number
Z � 3:9.

Before shearing, the two vertical walls are removed and
the confining pressure is applied directly on the disks
located at the boundaries of the sample [17]. The packing
is sheared as in a biaxial test by downward displacement of
the top wall for different values of the confining pressure
�3. Simulations were performed for the following set of
contact parameters: �s 2 �0:01; 0:1; . . . ; 0:6�, �r 2
�0; 0:1; 0:25�, �a 2 �0; 1; 2; 4; 10; 20� MPa.

Figure 2 displays typical stress-strain and volumetric
strain plots at different levels of confinement. The stress
ratio �1=�3, where �1 is the stress along the compression
axis, first rises to a peak in a rigid fashion and then
gradually declines with the shear strain �q � �1–�3, where
�1, �3 are major and minor cumulative strains. The peak
stress ratio is a decreasing function of the confining pres-
sure, as also observed in soil mechanics [18]. This behavior
reflects a decrease of the effective level of cohesion�a=�3.
In all tests, the stress ratio declines to the same constant
residual strength for �q > 0:1, corresponding to a perma-
nent loss of cohesion along the shear bands in this state.
The plots of the volumetric strain �p � �1 � �3 show
dilatant behavior due to the initially high solid fraction.

Our simulation data are fit well to the Mohr-Coulomb
model. In other words, the failure envelope of Mohr circles
constructed in the stress space (�, �), where � and � are,
respectively, the normal and shear stresses, is a straight line
(see inset to Fig. 5). For each combination of bond pa-

rameters, we determined the angle of friction�P (the slope
of the failure line) and the cohesion CP (intersection with
the � axis) at the peak state. We also determined the angle
of friction �R for the residual state (the cohesion CR being
zero in this state), as well as the dilatancy angle  �
sin�1���p=��q� at the peak state.

Figure 3 shows �P and �R as a function of the sliding
friction angle �s � tan�1��s� for three values of the co-
efficient of rolling friction �r. Each symbol and the cor-
responding error bar represent the mean and extreme
values of �P and �R for six different values of the tensile
strength �a. A remarkable feature of these plots is that the
macroscopic friction angles �P and �R are independent of
the tensile strength as the variability is small around the
mean values. Both �P and �R increase with �r.

As �s tends to zero, both angles of friction tend to a
finite value �0 lying between 4	 and 7	. This shows that
contact friction is not the only source of frictional behavior
at the macroscopic scale. Energy dissipation in this ‘‘fric-
tionless’’ limit can take place only as a result of inelastic
collisions through unstable particle rearrangements.
Dissipation by inelastic collisions being proportional to

FIG. 2 (color online). Shear stress (a) and volumetric strain (b)
as a function of shear strain at various confinement levels.

FIG. 3. Peak and residual friction angles �P and �R as a
function of sliding friction angle �s. Full lines (�R) represent
exponential fits whereas dashed lines (�P) join data points.
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the mean stress, its effect appears as a Coulomb-like
friction law with an apparent angle of friction �0.

The residual angle of friction�R increases with�s from
�0 and saturates to a value �1 that depends only on the
rolling friction �r. The data are well fit to an exponential
function:

�R � �0 � ��1 ��0��1� e���s�; (3)

with � ’ 0:1. Remark that, within statistical precision, � is
independent of�r. The nonlinear dependence of�R on�s
is consistent with other simulations reported in the past for
�r � 0 [19,20]. The saturation of �R suggests that, as �s
increases, a transition occurs in the grain-scale phenomena
underlying macroscopic friction. In particular, sliding and
rolling appear to be the dominant deformation modes at
low and high sliding frictions, respectively. It is a basic
observation that the stress-strain behavior is strongly de-
pendent on the initial value of the solid fraction. Only the
so-called ‘‘critical state,’’ reached at large shear strains, is
independent of the initial state [18]. This ‘‘critical state’’ is
such that the stress ratio �1=�3 is constant and the dila-
tancy angle is zero on average. Thus, the strength parame-
ter �R in the critical state should be considered as a
material property.

On the other hand, the peak strength �P reflects the
initial compactness of the material: higher dilatancy and
peak friction angles are expected for higher initial com-
pactness of the material. To check this correlation directly
from numerical data, we plot in Fig. 4(a) the dilatancy
angle  at the peak state as a function of the difference
between peak and residual friction angles �� �
�P ��R. We observe a nice linear dependence with a
slope close to 1. This indicates that the difference between
peak and residual friction angles is fully explained by
dilatancy. The dilatancy angle  for �� � 0 corresponds
to the macroscopic friction angle �0 for frictionless parti-
cles (see Fig. 3). Both,  and ��, are nearly linear func-
tions of �s and are barely influenced by �r [Fig. 4(b)].
Hence, with a good approximation, the dilatancy angle can
be split into two parts:


 �0 � �� 
 �0 � k�s; (4)

with k ’ 0:5. This remarkable correlation between friction
and dilatancy angles, here verified for a cohesive granular
material, is in agreement with Taylor’s model proposed for
cohesionless sand and known as stress-dilatancy relation
[18].

We now consider the Coulomb cohesion CP with respect
to the influence of bond parameters. For reasons that will
become clear below, we focus on the ‘‘theoretical’’ tensile
stress A� � CP=�P obtained by extrapolating the Mohr-
Coulomb envelope from the compressional regime to the
tensile regime (see inset in Fig. 5) [21].

Figure 5 shows A� as a function of the local tensile
strength �a. Each symbol and the corresponding error
bar represent the mean and extreme values of A� for the
whole set of sliding and rolling frictions. We observe a
linear dependence of the macroscopic tensile strength A�

on �a:

A� ’ 	�a; (5)

with 	 ’ 1:4. Interestingly, A� is independent of both
sliding and rolling frictions. This feature may be explained
by considering the stress on a plane perpendicular to the
direction of extension and remarking that the friction
forces and torques from contacts oriented along different
directions cancel out along this direction [5,21]. This
shows that the macroscopic strength parameters have dif-
ferent local origins. Local friction coefficients and inelastic
collisions are responsible for the macroscopic friction,
whereas the tensile strength at the contact scale seems to
be the unique origin of macroscopic tensile strength.

The picture arising from this parametric study is both
simple and rich. Equations (3) and (4) suggest an additive
partition of the friction angles as illustrated in Fig. 6. In
particular, the peak friction angle �P is expressed as a sum
of three terms of different origins:

�P � �0 ��� ��� 
 �� �  : (6)

The offset �0 is a purely collisional contribution indepen-
dent of rolling friction and tensile strength. The term�� �

�R ��0 represents a purely frictional contribution. It is
an exponential function of �s and saturates to �1 ��0

10

20

30

0 5 10 15 0 10 20

0

10

20

ba

∆ 

∆φ

s (°) (°)

ψ  
(°

)

∆φ
, ψ

ψ

 (
°)

FIG. 4. (a) Dilatancy angle  as a function of ��; (b)  and
�� as a function of the angle of sliding friction �s; see the text
for definitions.

FIG. 5. Macroscopic theoretical tensile strength A� (see inset)
as a function of bond tensile strength �a.
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which increases with rolling friction �r. The term �� �
��0 represents the contribution of dilatancy to the

shear strength and, according to Eq. (4), it is an approxi-
mately linear function of �s.

In the same way, from Eqs. (5) and (6), the Coulomb
cohesion can be expressed by a simple form:

CP 
 	�a�P 
 	�a tan��0 ��� � k�s�: (7)

This writing shows that the Coulomb cohesion is an in-
creasing function of all bond parameters, the basic contri-
bution coming from the tensile strength as a multiplicative
factor. It is noteworthy that the cohesion in the limit �s �
�r � 0 appears here to be a consequence of the collisional
friction angle �0, i.e., CP � 	�a tan�0. In the absence of
this term, the packing would behave as a cohesionless
material independently of the local tensile strength �a.
The constant 	 is likely to depend strongly on the distri-
bution of cohesive bonds in the initial state. In particular,
the fraction of cohesive bonds decays in inverse proportion
to the solid fraction, suggesting that 	 will decrease dra-
matically in loose packings. The same is true for the
parameter k relating  to �s. The dilatancy varies with
the initial value of the solid fraction so that we expect
lower values of k down to zero when the solid fraction is
decreased to the critical state solid fraction.

The well-defined partition of the macroscopic angles of
friction for a wide range of sliding and rolling friction
coefficients at the contact scale in cohesive granular media
is a key finding of the present investigation. In view of the
large number of independent numerical tests performed,
this result provides a solid basis for further insight into the
behavior of cohesive granular media. Along these lines, a
more detailed analysis of the respective roles of the sliding
and rolling friction with respect to the frictional term ��

merits further investigation. It is also important to consider
less compact configurations than those studied in this
work. Finally, the evolution of granular microstructure up
to and beyond the peak state is a crucial issue for under-
standing the scale up of bond interactions. On more general
grounds, some quantitative correlations discussed in this
Letter might turn out to be closely related to the underlying

model of cohesive bonding. But, we believe that the par-
tition of the Mohr-Coulomb strength parameters �P, �R,
and CP into collisional, frictional, and dilational parts, and
the role of the local tensile strength as the unique source of
the macroscopic tensile strength, are robust features of
cohesive granular materials with respect to the model of
cohesive bonding.

We thank K.-J. Chang for contribution to numerical
simulations and A. Delplanque for technical help.
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