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We give blow-up analysis for a Brezis and Merle's problem with Dirichlet condition. Also we have a proof for a Brezis

INTRODUCTION AND MAIN RESULTS

We set ∆ = -(

∂ 11 + ∂ 22 ) on open analytic domain Ω of R 2 .
We consider the following equation:

(P )    ∆u = V (1 - β 2 log |x| )e u in Ω ⊂ R 2 , u = 0 in ∂Ω.
Here, we assume that: 0 ∈ ∂Ω, β ≥ 0.

and, 0 ≤ V ≤ b < +∞, e u ∈ L 1 (Ω) and u ∈ W 1,1 0 (Ω), Note that:

f = 1 - β 2 log |x| ∈ W 1,1+ǫ (Ω) ∩ C 0 ( Ω) and xf = x(1 - β 2 log |x| ) ∈ W 1,∞ (Ω).
The previous function f is not Lipschitzian in 0 and not Holderian in 0. We take 0 ≤ β ≤ β 0 such that f > 0 on Ω.

We can see in [START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF] a nice formulation of this problem (P ) in the sens of the distributions. This Problem arises from geometrical and physical problems, see for example [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Nagasaki | Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities[END_REF][START_REF] Tarantello | Multiple condensate solutions for the Chern-Simons-Higgs theory[END_REF]. The above equation was studied by many authors, with or without the boundary condition, also for Riemannian surfaces, see , where one can find some existence and compactness results. In [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] we have the following important Theorem, Theorem A(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).For (u i ) i and (V i ) i two sequences of functions relative to (P ) with,

0 < a ≤ V i ≤ b < +∞ then it holds, sup K u i ≤ c,
with c depending on a, b, β, K and Ω.

One can find in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] an interior estimate if we assume a = 0, but we need an assumption on the integral of e u i , namely we have:

Theorem B(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).For (u i ) i and (V i ) i two sequences of functions relative to the problem (P ) with,

0 ≤ V i ≤ b < +∞ and Ω e u i dy ≤ C, then it holds; sup K u i ≤ c,
with c depending on b, β, C, K and Ω.

We look to the uniform boundedness on all Ω of sequences of solutions of the Problem (P ) and when a = 0 the boundedness of Ω e u i is a necessary condition in the problem (P ) as showed in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] by the following counterexample.

Theorem C(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).There are two sequences (u i ) i and (V i ) i of the problem (P ) with,

0 ≤ V i ≤ b < +∞ and Ω e u i dy ≤ C, such that, sup Ω u i → +∞.
To obtain the two first previous results (Theorems A and B) Brezis and Merle used an inequality (Theorem 1 of [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) obtained by an approximation argument and used Fatou's lemma and applied the maximum principle in W 1,1 0 (Ω) which arises from Kato's inequality. Also this weak form of the maximum principle is used to prove the local uniform boundedness result by comparing a certain function and the Newtonian potential. We refer to [START_REF] Brezis | Nonlinear elliptic equations with measures revisited[END_REF] for a topic about the weak form of the maximum principle.

When β = 0 the above equation has many properties in the constant and the Lipschitzian cases:

Note that for the problem (P ) (β = 0) by using the Pohozaev identity, we can prove that Ω e u i is uniformly bounded when 0 < a ≤ V i ≤ b < +∞ and ||∇V i || L ∞ ≤ A and Ω starshaped, when a = 0 and ∇ log V i is uniformly bounded, we can bound uniformly Ω V i e u i . In [START_REF] Ma | Convergence for a Liouville equation[END_REF] Ma-Wei have proved that those results stay true for all open sets not necessarily starshaped.

In [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF] (β = 0) Chen-Li have proved that if a = 0 and ∇ log V i is uniformly bounded and u i locally bounded in L 1 , then the functions are uniformly bounded near the boundary.

In [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF] (β = 0) Chen-Li have proved that if a = 0 and Ω e u i is uniformly bounded and ∇ log V i is uniformly bounded, then we have the compactness result directly. Ma-Wei in [START_REF] Ma | Convergence for a Liouville equation[END_REF] extend this result in the case where a > 0.

If we assume V more regular, we can have another type of estimates called sup + inf type inequalities. It was proved by Shafrir see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF] that, if (u i ) i , (V i ) i are two sequences of functions solutions of the previous equation without assumption on the boundary and, 0 < a ≤ V i ≤ b < +∞, then we have the following interior estimate:

C a b sup K u i + inf Ω u i ≤ c = c(a, b, K, Ω).
One can see in [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF] an explicit value of C a b = a b . In his proof Shafrir has used a blow-up function, the Stokes formula and an isoperimetric inequality see [START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF]. For Chen-Lin, they have used the blow-up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (V i ) i uniformly Lipschitzian with A its Lipschitz constant then, C(a/b) = 1 and c = c(a, b, A, K, Ω), see Brezis-Li-Shafrir [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF]. This result was extended for Hölderian sequences (V i ) i by Chen-Lin, see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF]. Also, one can see in [START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF], an extension of the Brezis-Li-Shafrir result to compact Riemannian surfaces without boundary. One can see in [START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF] explicit form, (8πm, m ∈ N * exactly), for the numbers in front of the Dirac masses when the solutions blow-up. Here, the notion of isolated blow-up point is used.

In [START_REF] Chang | Scalar curvature equation on 2and 3-spheres[END_REF] we have some a priori estimates on the 2 and 3-spheres S 2 , S 3 .

Here we give the behavior of the blow-up points on the boundary and a proof of a Brezis-Merle's Problem when 0 ≤ β ≤ β 0 .

The Brezis-Merle's Problem (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) is:

Problem. Suppose that V i → V in C 0 ( Ω) with 0 ≤ V i ≤ b for
some positive constant b. Also, we consider a sequence of solutions (u i ) of (P ) relative to (V i ) with β = 0, such that,

Ω e u i dx ≤ C, is it possible to have: ||u i || L ∞ ≤ C = C(b, C, V, Ω)?
Here, we give blow-up analysis and a proof of the Brezis-Merle Problem when 0 ≤ β ≤ β 0 . We extend the result of Chen-Li [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF]. For the blow-up analysis we assume that:

0 ≤ V i ≤ b, The condition V i → V in C 0 ( Ω)
is not necessary, but for the proof of the compactness for the Brezis-Merle problem we assume that:

||∇V i || L ∞ ≤ A.
Our Main results are:

Theorem 1.1. Assume that max Ω u i → +∞, where (u i ) are solutions of the problem (P ) with:

0 ≤ β ≤ β 0 , 0 ≤ V i ≤ b and Ω e u i dx ≤ C, ∀ i,
then, after passing to a subsequence, there are a finction u, a number N ∈ N and N points x 1 , . . . , x N ∈ ∂Ω, such that,

∂ ν u i → ∂ ν u + N j=1
α j δ x j , α j ≥ 4π, in the sens of measures on ∂Ω.

u i → u in C 1 loc ( Ω -{x 1 , . . . , x N }). Theorem 1.2.
Assume that (u i ) are solutions of (P ) relative to (V i ) with the following conditions:

0 ∈ ∂Ω, 0 ≤ β ≤ β 0 , and, 0 ≤ V i ≤ b, ||∇V i || L ∞ ≤ A and Ω e u i ≤ C, we have, ||u i || L ∞ ≤ c(b, β 0 , A, C, Ω).
In the last previous theorem we have a proof of the global a priori estimate which concern the problem (P ). Here we extend the result of Chen-Li (β = 0). The proof of Chen-Li and Ma-Wei [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF] use the moving-plane method (β = 0).

PROOF OF THE THEOREMS

Proof of theorem 1.1:

We have:

u i ∈ W 1,1 0 (Ω).
Since e u i ∈ L 1 (Ω) by the corollary 1 of Brezis-Merle's paper (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) we have e u i ∈ L k (Ω) for all k > 2 and the elliptic estimates of Agmon and the Sobolev embedding (see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF]) imply that:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).
We denote by ∂ ν u i the inner normal derivative. By the maximum principle we have, ∂ ν u i ≥ 0.

By the Stokes formula we have,

∂Ω ∂ ν u i dσ ≤ C,
We use the weak convergence in the space of Radon measures to have the existence of a nonnegative Radon measure µ such that,

∂Ω ∂ ν u i ϕdσ → µ(ϕ), ∀ ϕ ∈ C 0 (∂Ω).
We take an x 0 ∈ ∂Ω such that, µ(x 0 ) < 4π. For ǫ > 0 small enough set I ǫ = B(x 0 , ǫ) ∩ ∂Ω for the unit disk and otherwise we can suppose it as an interval.

We choose a function η ǫ such that,

           η ǫ ≡ 1, on I ǫ , 0 < ǫ < δ/2, η ǫ ≡ 0, outside I 2ǫ , 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (I 2ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
We take a ηǫ such that,

∆η ǫ = 0 in Ω ⊂ R 2 , ηǫ = η ǫ in ∂Ω.
Remark: We use the following steps in the construction of ηǫ :

We take a cutoff function η 0 in B(0, 2) or B(x 0 , 2):

1-We set η ǫ (x) = η 0 (|x -x 0 |/ǫ) in the case of the unit disk it is sufficient.
2-Or, in the general case: we use a chart (f, Ω) with f (0) = x 0 and we take µ ǫ (x) = η 0 (f (|x|/ǫ)) to have connected sets I ǫ and we take η ǫ (y

) = µ ǫ (f -1 (y)). Because f, f -1 are Lipschitz, |f (x) -x 0 | ≤ k 2 |x| ≤ 1 for |x| ≤ 1/k 2 and |f (x) -x 0 | ≥ k 1 |x| ≥ 2 for |x| ≥ 2/k 1 > 1/k 2 , the support of η is in I (2/k 1 )ǫ .            η ǫ ≡ 1, on f (I (1/k 2 )ǫ ), 0 < ǫ < δ/2, η ǫ ≡ 0, outside f (I (2/k 1 )ǫ ), 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (I (2/k 1 )ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
3-Also, we can take:

µ ǫ (x) = η 0 (|x|/ǫ) and η ǫ (y) = µ ǫ (f -1 (y)), we extend it by 0 outside f (B 1 (0)). We have f (B 1 (0)) = D 1 (x 0 ), f (B ǫ (0)) = D ǫ (x 0 ) and f (B + ǫ ) = D + ǫ (x 0 ) with f and f -1 smooth diffeo- morphism.            η ǫ ≡ 1, on a the connected set J ǫ = f (I ǫ ), 0 < ǫ < δ/2, η ǫ ≡ 0, outside J ′ ǫ = f (I 2ǫ ), 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (J ′ ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
And,

H 1 (J ′ ǫ ) ≤ C 1 H 1 (I 2ǫ ) = C 1 4ǫ, because f is Lipschitz.
Here H 1 is the Hausdorff measure.

We solve the Dirichlet Problem:

∆η ǫ = ∆η ǫ in Ω ⊂ R 2 , ηǫ = 0 in ∂Ω.
and finaly we set ηǫ = -η ǫ + η ǫ . Also, by the maximum principle and the elliptic estimates we have :

||∇η ǫ || L ∞ ≤ C(||η ǫ || L ∞ + ||∇η ǫ || L ∞ + ||∆η ǫ || L ∞ ) ≤ C 1 ǫ 2 ,
with C 1 depends on Ω.

We use the following estimate, see [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Tarantello | Multiple condensate solutions for the Chern-Simons-Higgs theory[END_REF],

||∇u i || L q ≤ C q , ∀ i and 1 < q < 2.
We deduce from the last estimate that, (u i ) converge weakly in W 1,q 0 (Ω), almost everywhere to a function u ≥ 0 and Ω e u < +∞ (by Fatou's lemma). Also, V i weakly converge to a nonnegative function V in L ∞ . The function u is in W 1,q 0 (Ω) solution of :

∆u = f V e u ∈ L 1 (Ω) in Ω ⊂ R 2 , u = 0 in ∂Ω.
According to the corollary 1 of Brezis-Merle's result, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF], we have e ku ∈ L 1 (Ω), k > 1. By the elliptic estimates, we have u ∈ C 1,ǫ ( Ω).

For two vectors v, w of R 2 we denote by v • w the inner product of v and w.

We can write,

∆((u i -u)η ǫ ) = f (V i e u i -V e u )η ǫ -2∇(u i -u) • ∇η ǫ . (1) 
We use the interior esimate of Brezis-Merle, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between ηǫ and u, we obtain,

Ω f V e u ηǫ dx = ∂Ω ∂ ν uη ǫ ≤ C ′ ǫ||∂ ν u|| L ∞ = Cǫ (2)
We have,

∆u i = f V i e u i in Ω ⊂ R 2 , u i = 0 in ∂Ω.
We use the Green formula between u i and ηǫ to have:

Ω f V i e u i ηǫ dx = ∂Ω ∂ ν u i η ǫ dσ → µ(η ǫ ) ≤ µ(J ′ ǫ ) ≤ 4π -ǫ 0 , ǫ 0 > 0 (3) 
From ( 2) and (3) we have for all ǫ > 0 there is

i 0 = i 0 (ǫ) such that, for i ≥ i 0 , Ω |f (V i e u i -V e u )η ǫ |dx ≤ 4π -ǫ 0 + Cǫ (4)
Step 2: Estimate of integral of the second term of the right hand side of (1).

Let Σ ǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ 3 } and Ω ǫ 3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ 3 }, ǫ > 0. Then, for ǫ small enough, Σ ǫ is hypersurface. The measure of Ω -Ω ǫ 3 is k 2 ǫ 3 ≤ meas(Ω -Ω ǫ 3 ) = µ L (Ω -Ω ǫ 3 ) ≤ k 1 ǫ 3 .
Remark: for the unit ball B(0, 1), our new manifold is B(0, 1 -ǫ 3 ).

( Proof of this fact; let's consider d(x, ∂Ω) = d(x, z 0 ), z 0 ∈ ∂Ω, this imply that (d(x, z 0 )) 2 ≤ (d(x, z)) 2 for all z ∈ ∂Ω which it is equivalent to (z -z 0 ) • (2x -z -z 0 ) ≤ 0 for all z ∈ ∂Ω, let's consider a chart around z 0 and γ(t) a curve in ∂Ω, we have;

(γ(t) -γ(t 0 ) • (2x -γ(t) -γ(t 0 )) ≤ 0 if we divide by (t -t 0 ) (with the sign and tend t to t 0 ), we have γ ′ (t 0 ) • (x -γ(t 0 )) = 0, this imply that x = z 0 -sν 0 where ν 0 is the outward normal of ∂Ω at z 0 ))

With this fact, we can say that S = {x, d(x, ∂Ω)

≤ ǫ} = {x = z 0 -sν z 0 , z 0 ∈ ∂Ω, -ǫ ≤ s ≤ ǫ}. It is sufficient to work on ∂Ω. Let's consider a charts (z, D = B(z, 4ǫ z ), γ z ) with z ∈ ∂Ω such that ∪ z B(z, ǫ z )
is cover of ∂Ω . One can extract a finite cover (B(z k , ǫ k )), k = 1, ..., m, by the area formula the measure of S ∩ B(z k , ǫ k ) is less than a kǫ (a ǫ-rectangle). For the reverse inequality, it is sufficient to consider one chart around one point on the boundary).

We write,

Ω |∇(u i -u) • ∇η ǫ |dx = Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx + Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx. ( 5 
)
Step 2.1:

Estimate of Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.
First, we know from the elliptic estimates that

||∇η ǫ || L ∞ ≤ C 1 /ǫ 2 , C 1 depends on Ω
We know that (|∇u i |) i is bounded in L q , 1 < q < 2, we can extract from this sequence a subsequence which converge weakly to h ∈ L q . But, we know that we have locally the uniform convergence to |∇u| (by Brezis-Merle's theorem), then, h = |∇u| a.e. Let q ′ be the conjugate of q.

We have, ∀g ∈ L q ′ (Ω)

Ω |∇u i |gdx → Ω |∇u|gdx
If we take g = 1 Ω-Ω ǫ 3 , we have:

for ǫ > 0 ∃ i 1 = i 1 (ǫ) ∈ N, i ≥ i 1 , Ω-Ω ǫ 3 |∇u i | ≤ Ω-Ω ǫ 3 |∇u| + ǫ 3 . Then, for i ≥ i 1 (ǫ), Ω-Ω ǫ 3 |∇u i | ≤ meas(Ω -Ω ǫ 3 )||∇u|| L ∞ + ǫ 3 = ǫ 3 (k 1 ||∇u|| L ∞ + 1).
Thus, we obtain,

Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 1) (6) 
The constant C 1 does not depend on ǫ but on Ω.

Step 2.2: Estimate of Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.

We know that, Ω ǫ ⊂⊂ Ω, and ( because of Brezis-Merle's estimates) u i → u in C 1 (Ω ǫ 3 ). We have,

||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ≤ ǫ 3 , for i ≥ i 3 = i 3 (ǫ).
We write,

Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx ≤ ||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ||∇η ǫ || L ∞ ≤ C 1 ǫ for i ≥ i 3 , For ǫ > 0, we have for i ∈ N, i ≥ max{i 1 , i 2 , i 3 }, Ω |∇(u i -u) • ∇η ǫ |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 2) (7) 
From ( 4) and (7), we have, for ǫ > 0, there is i

3 = i 3 (ǫ) ∈ N, i 3 = max{i 0 , i 1 , i 2 } such that, Ω |∆[(u i -u)η ǫ ]|dx ≤ 4π -ǫ 0 + ǫ2C 1 (2k 1 ||∇u|| L ∞ + 2 + C) (8) 
We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:

∆[(u i -u)η ǫ ] = g i,ǫ in Ω ⊂ R 2 , (u i -u)η ǫ = 0 in ∂Ω. with ||g i,ǫ || L 1 (Ω) ≤ 4π -ǫ 0 /2.
We can use Theorem 1 of [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] to conclude that there is q ≥ q > 1 such that:

Vǫ(x 0 ) e q|u i -u| dx ≤ Ω e q|u i -u|ηǫ dx ≤ C(ǫ, Ω).
where, V ǫ (x 0 ) is a neighberhooh of x 0 in Ω. Here we have used that in a neighborhood of x 0 by the elliptic estimates, 1 -Cǫ ≤ ηǫ ≤ 1. (We can take B(x 0 , ǫ 3 )).

Thus, for each x 0 ∈ ∂Ω -{x 1 , . . . , xm } there is ǫ x 0 > 0, q x 0 > 1 such that:

B(x 0 ,ǫx 0 ) e qx 0 u i dx ≤ C, ∀ i. (9) 
Now, we consider a cutoff function η ∈ C ∞ (R 2 ) such that η ≡ 1 on B(x 0 , ǫ x 0 /2) and η ≡ 0 on R 2 -B(x 0 , 2ǫ x 0 /3).

We write

∆(u i η) = f V i e u i η -2∇u i • ∇η + u i ∆η.
By the elliptic estimates (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second order[END_REF]) (u i ) i is uniformly bounded in W 2,q 1 (V ǫ (x 0 )) and also, in C 1 (V ǫ (x 0 )). Finaly, we have, for some ǫ > 0 small enough,

||u i || C 1,θ [B(x 0 ,ǫ)] ≤ c 3 ∀ i.
We have proved that, there is a finite number of points x1 , . . . , xm such that the squence (u i ) i is locally uniformly bounded (in C 1,θ , θ > 0) on Ω -{x 1 , . . . , xm }.

Proof of theorem 1.2:

Without loss of generality, we can assume that 0 is a blow-up point. Since the boundary is an analytic curve γ(t), there is a neighborhood of 0 such that the curve γ can be extend to a holomorphic map such that γ ′ (0) = 0 (series) and by the inverse mapping one can assume that this map is univalent around 0. In the case when the boundary is a simple Jordan curve the domain is simply connected, see [START_REF] Stoker | Differential Geometry[END_REF]. In the case that the domains has a finite number of holes it is conformally equivalent to a disk with a finite number of disks removed, see [START_REF] Krantz | Geometric functions theory[END_REF]. Here we consider a general domain. Without loss of generality one can assume that γ(B + 1 ) ⊂ Ω and also γ(B - 1 ) ⊂ ( Ω) c and γ(-1, 1) ⊂ ∂Ω and γ is univalent. This means that (B 1 , γ) is a local chart around 0 for Ω and γ univalent. (This fact holds if we assume that we have an analytic domain, in the sense of Hofmann see [START_REF] Hofmann | Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains[END_REF], (below a graph of an analytic function), we have necessary the condition ∂ Ω = ∂Ω and the graph is analytic, in this case γ(t) = (t, ϕ(t)) with ϕ real analytic and an example of this fact is the unit disk around the point (0, 1) for example).

By this conformal transformation, we can assume that Ω = B + 1 , the half ball, and ∂ + B + 1 is the exterior part, a part which not contain 0 and on which u i converge in the C 1 norm to u. Let us consider B + ǫ , the half ball with radius ǫ > 0. Also, one can consider a C 1 domain (a rectangle between two half disks) and by charts its image is a C 1 domain).

Note that, by the Brezis-Merle procedure, we have:

u i ∈ W 2,p (Ω) ∩ C 1,ǫ ( Ω), p > 2,
We use integration by parts. The second Pohozaev identity applied around the blow-up point 0, see for example [START_REF] Fusco | Functions of Bounded variations and Free discontinuity Problems[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF][START_REF] Necas | Direct Methods in the Theory of Elliptic Equations[END_REF], gives :

B + ǫ ∆u i (x • ∇u i )dx = - ∂ + B + ǫ g(∇u i )dσ, (10) with, 
g(∇u i ) = (ν

• ∇u i )(x • ∇u i ) -x • ν |∇u i | 2 2 .
Thus,

B + ǫ V i f e u i (x • ∇u i )dx = - ∂ + B + ǫ g(∇u i )dσ, (11) 
After integration by parts, we obtain:

B + ǫ 2V i (f + o(ǫ))e u i dx + B + ǫ x • ∇V i f e u i dx - ∂B + ǫ ν • xf V i e u i dσ =

Also, for u we have:

We use the fact that u i = u = 0 on {x 1 = 0} and u i , u are bounded in the C 1 norm outside a neighborhood of 0 to obtain:

a contradiction.

Here we used a theorem of Hofmann see [START_REF] Hofmann | Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains[END_REF], which gives the fact that γ(B + ǫ ) is a Lipschitz domain. Also, we can see that γ((-ǫ, ǫ)) and γ(∂ + B + ǫ ) are submanifolds.

We start with a Lipschitz domain B + ǫ because it is convex and by the univalent and conformal map γ the image of this domain γ(B + ǫ ) is a Lipschitz domain and thus we can apply the integration by part and here we know the explicit formula of the unit outward normal it is the usual unit outward normal (normal to the tangent space of the boundary which we know explicitly because we have two submanifolds).

In the case of the disk D = Ω, it is sufficient to consider B(0, ǫ) ∩ D which is a Lipschitz domain because it is convex (and not necessarily γ(B + ǫ )).

There is a version of the integration by part which is the Green-Riemann formula in dimension 2 on a domain Ω. This formula holds if we assume that there is a finite number of points y 1 , ..., y m such that ∂Ω -(y 1 , ..., y m ) is a C 1 domain and C 1 tests functions, see [START_REF] Fusco | Functions of Bounded variations and Free discontinuity Problems[END_REF], for the Gauss-Green-Riemann-Stokes formula, for C 1 domains with singular points (here a finite number of singular points). Here, for tests functions in W 1,q (Ω) ∩ C 0 ( Ω) this formula holds because we use approximation in B + ǫ for the trace, and by mean of γ and the area formula, the integration by part holds for the boundary of γ(B + ǫ ).

Remark: Note that a monograph of Droniou contain a proof of all fact about Sobolev spaces (with Strong Lipschitz property) with only weak Lipschitz property (Lipschitz-Charts), we start with Strong Lipschitz property and by γ we have weak Lipschtz property.