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We performed a thorough investigation of the drying dynamics of a charged colloidal dispersion drop in a
confined geometry. We developed an original methodology based on Raman micro-spectroscopy to measure
spatially-resolved colloids concentration profiles during the drying of the drop. These measurements lead to es-
timates of the collective diffusion coefficient of the dispersion over a wide range of concentration. The collective
diffusion coefficient is one order of magnitude higher than the Stokes-Einstein estimate showing the importance
of the electrostatic interactions for the relaxation of concentration gradients. At the same time, we also per-
formed fluorescence imaging of tracers embedded within the dispersion during the drying of the drop, which
reveals two distinct regimes. At early stages, concentration gradients along the drop lead to buoyancy-induced
flows. Strikingly, these flows do not influence the colloidal concentration gradients that generate them, as the
mass transport remains dominated by diffusion. At longer time scales, the tracers trajectories reveal the forma-
tion of a gel which dries quasi homogeneously. For such a gel, we show using linear poro-elastic modeling, that
the drying dynamics is still described by the same transport equations as for the liquid dispersion. However, the
collective diffusion coefficient follows a modified generalized Stokes-Einstein relation, as also demonstrated in
the context of unidirectional consolidation by Style et al. [Crust formation in drying colloidal suspensions, Style
et al., Proc. R. Soc. A 467, 174 (2011)].

I. INTRODUCTION

Understanding the drying dynamics of a colloidal disper-
sion is probably one of the most challenging issue in the field
of coating engineering [1, 2]. This intricate process cou-
ples both fundamental aspects of colloidal physics and trans-
port phenomena (interactions, stability, convection/diffusion,
etc.) [3–10], up to the formation of solids with internal me-
chanical stresses which are released through (often detrimen-
tal) instabilities such as shear bands [11–14], film delamina-
tion [15, 16], and cracks [17–19].

The common description of drying in many geometries
(suspended or confined drops, films, etc.) is the following:
solvent evaporation (at a rate Ė) induces convection towards
the evaporating air/dispersion interface, thus concentrating the
colloids up to the formation of a close-packed colloidal mate-
rial, see e.g. Refs. [20–23]. This concentration process is
mainly governed by the competition between drying-induced
convection in the bulk (at a velocity Ė relatively to the evap-
orating interface) and collective diffusion relaxing concentra-
tion gradients. The scale of the expected gradient ξ ∼ D0/Ė
where D0 is the colloid diffusion coefficient, is often com-
pared to a characteristic length scale L (e.g. film thickness)
using the Péclet number Pe = ĖL/D0. In most experiments,
Stokes-Einstein estimates for D0 point out that the drying of
dispersions leads to the formation of a thin crust at the evap-
orating interface, e.g. ξ ' 10–100 µm for particles with radii
a = 10–100 nm dispersed in water, and for Ė ' 100 nm/s.

However, highly charged colloids repeatedly used as model
systems in this wide research area (e.g. the commercial Lu-
dox silica nanoparticles in some of the above cited works),
deserve further attention. Indeed, long range electrostatic
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interactions (as compared to the colloid radii a ∼ 10 nm)
may lead to a collective diffusion coefficient much larger
than the Stokes-Einstein prediction D0. The collective dif-
fusion coefficient D(ϕ) indeed results from an interplay be-
tween colloidal interactions and hydrodynamic interactions at
finite concentrations [24, 25], and it follows the generalized
Stokes-Einstein relation Eq. (16), see later Sec. V for a more
detailed discussion. Higher values than D0 can thus be ob-
served in colloidal dispersions with high osmotic compress-
ibility (strong repulsive interactions) and low hydrodynamic
friction of the relative flow solvent/particles. Such phenom-
ena are well-known by the community investigating the dy-
namics of colloids, and it has been reported many times us-
ing scattering techniques, see e.g. Refs. [26–28]. Other ev-
idences were even reported using measurements of concen-
tration gradients in the context of unidirectional drying us-
ing in-situ SAXS [11, 12], or by measurements of permeate
flux in ultra-filtration experiments [29]. Moreover, a tran-
sition from a liquid to a poro-elastic gel often occurs for
these highly charged colloids at concentrations well below the
close-packing [7, 8, 11, 30]. Such a transition was shown to
play a crucial role for the formation of shear bands in unidi-
rectional drying [11, 13, 14]. Despite the numerous works em-
ploying these charged nanoparticles to investigate the drying
of dispersions, a quantitative description of the concentration
process taking into account these phenomena is still missing.

In the present work, we provide spatially-resolved mea-
surements of the colloid concentration during the drying of
a charged nanoparticles dispersion in a model geometry: a
confined drop between two circular plates, see Fig. 1. These
original measurements based on Raman micro-spectroscopy
enable us to evidence that evaporation induces slight concen-
tration gradients within the drop owing to enhanced collective
diffusion. Moreover, these spatially-resolved measurements
of the concentration fields make it possible to extract precise
estimates of the collective diffusion coefficient D over the col-
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loid volume fraction range ϕ ≈ 0.25–0.6. The measured val-
ues of D(ϕ) are about one order of magnitude higher than D0,
the Stokes-Einstein estimate. We also combine these mea-
surements with fluorescence imaging of tracers within the dis-
persion. These experiments reveal two distinct regimes before
the consolidation. At low colloid volume fraction ϕ ≤ 0.3, the
concentration gradients lead to buoyancy-induced flows as the
density of the dispersion evolves with ϕ . Strikingly, we show
that these flows do not influence the concentration gradients
that generate them, as colloidal transport remains dominated
by diffusion in such confined geometries [31]. For ϕ ≥ 0.3,
these buoyancy-induced flows vanish, and the trajectories of
the tracers suggest the formation of a gel which dries quasi
homogeneously. For such a poro-elastic gel, it has recently
been shown by Style et al. that the collective diffusion coeffi-
cient does not strictly follow the generalized Stokes-Einstein
relation as in a liquid dispersion [32]. This result, due to the
constraints imposed by the geometry, was demonstrated the-
oretically in the context of unidirectional consolidation using
non-linear poro-elasticity [33]. We find again the same result
in our experimental configuration but using linear poro-elastic
modeling, as solvent evaporation induces only slight concen-
tration gradients during the drying of the drop.

II. CONFINED DRYING

Figure 1(a-b) illustrates the geometry of confined drying:
a drop is squeezed between two circular wafers separated by
small spacers of fixed height h [34]. In the following experi-
ments, the typical drop volume ranges from ' 0.5 to 2.5 µL,
the wafer radius Rw = 3.81 cm, h ranges from 80 to 250 µm,
and the initial drop radius is R0 ' 1 mm. This model geom-
etry offers numerous advantages as compared to free films
or sessile droplets: (i) drying rates are mainly governed by
a diffusive mass transfer and thus by geometrical parame-
ters, (ii) axis-symmetry combined with confinement provides
both simplified experimental observations and easy modeling,
and (iii) the limited free surface hinders Marangoni instabil-
ities. This geometry recently emerges for these reasons as
a powerful technique for investigating quantitatively the dry-
ing of complex fluids: formation of crusts in hard-sphere dis-
persions [35] and the associated buckling instability [21, 36],
drying of anisotropic colloidal dispersions [37], and even dy-
namic investigation of phase diagrams of copolymer solu-
tions [38]. A complete theoretical description of the drying
kinetics (including the case of pure solvents and binary mix-
tures) can be found in Refs. [38, 39], and we only summarize
below the information needed in the following.

The drying kinetics of a pure water drop is limited in this
geometry by the quasi-static diffusion of the vapor within the
cell. The evaporative flux at the air/drop interface is J(R) =
−Dgcs(1−ae)/[R ln(R/Rw)], where cs is the concentration of
saturated water vapor pressure in air (cs ' 1 mol/m3), ae the
external residual humidity, and Dg the diffusion coefficient of
the vapor in the gas phase. Mass conservation leads to the
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FIG. 1. (color online) (a) Schematic (top and side) views of the
experiments: a drop of an aqueous colloidal dispersion is confined
between two circular wafers separated by a fixed height h. A thin
PDMS layer coated on each inner side of the glass wafers prevents
from the pinning of the receding contact line. Colors code the drying-
induced concentration gradient of colloids, g indicates the gravity di-
rection, and blue arrows show the diffusive drying within the cell. (b,
left) Raman imaging: a laser is focused at a given location within the
drop, and the scattered light is collected using a spectrometer. The
drop is then scanned along its diameter using a motorized stage. (b,
right) Fluorescence microscopy: fluorescent tracers (green symbols)
are dispersed within the drop to visualize flows.

following temporal evolution for the drop radius:

dR
dt

=
D̃

R ln(R/Rw)
, (1)

with the effective diffusion coefficient D̃=Dgνscs(1−ae) and
νs the molar volume of water (νs ≈ 1.8×10−5 m3/mol). For
the room conditions investigated in the present work (T = 18–
21◦C, ae = 0.4–0.65), D̃ ranges from 2.2 to 3× 10−10 m2/s
and the velocity of the receding meniscus is of the order of
∼ D̃/(R ln(R/Rw)) ' 100 nm/s for radii R ' 1 mm . Note
that for small drops radius R� Rw, the exact geometry im-
parted by the cell only plays a logarithmic role through the
term ln(R/Rw) (i.e. increasing the wafer’s size only decreases
logarithmically the drying kinetics).

We further define the normalized area α(t) = [R(t)/R0]
2,

with R0 = R(t = 0). The solution of Eq. (1) is:

4D̃t/R2
w = βα [ln(βα)−1]−β [ln(β )−1] , (2)

with β = [R0/Rw]
2.

We now turn to the case of colloidal dispersions, and we
briefly summarize the classical description of mass transport
within such binary mixtures. We consider (incompressible)
colloids of radii a dispersed in water, and we define ϕ their
volume fraction. We then define vf and vs the average ve-
locities of the solvent and colloids respectively. Conservation
equations are:

∂tϕ +∇.(ϕvs) = 0 , (3)
∂t(1−ϕ)+∇.(1−ϕ)vf = 0 , (4)
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and the volume averaged velocity v = ϕvs + (1−ϕ)vf thus
follows the condition ∇.v = 0. The flux of colloids classically
writes:

ϕvs = ϕv−D(ϕ)∇ϕ . (5)

In the confined geometry depicted in Fig. 1, we assume that
the meniscus can recede freely, and that colloids do not adsorb
on the cell surfaces or migrate at the air/dispersion interface.
The evaporative flux at the drying interface is not affected by
the colloids as the chemical activity of water remains always
close to unity, even for strongly interacting small colloids (see
e.g. Ref. [39]). Equation (1) therefore still describes the dry-
ing kinetics of the drop.

Axis-symmetry and the incompressibility condition ∇.v =
0 impose that the conservation of colloids follows:

∂ϕ

∂ t
+v.∇ϕ =

1
r

∂

∂ r

(
rD(ϕ)

∂ϕ

∂ r

)
+

∂

∂ z

(
D(ϕ)

∂ϕ

∂ z

)
. (6)

For negligible convection within the drop, solvent evapora-
tion from the drying interface is expected to induce the for-
mation of concentration gradients on a scale ξ ∼D(ϕ)/Ṙ due
to the competition between collective diffusion and the reced-
ing of the meniscus [39]. However, these radial concentration
gradients ∂rϕ are associated to density gradients orthogonal
to the gravity ∂rρ(ϕ), which may in turn induce buoyancy-
driven flows along r (at least for a liquid dispersion). Such
evaporation-induced natural convection has been reported in
similar confined geometries and for various molecular mix-
tures [31, 38, 40].

We show recently in the case of weak concentration gra-
dients along the drop (large D(ϕ) and/or low Ṙ), that these
buoyancy-driven flows have no influence on the concentra-
tion gradients that generate them in a confined geometry [31].
This striking regime occurs for moderate Rayleigh numbers
Ra = vmh/D ∼ O(1), where vm is the scale of the buoyancy-
driven flows. Indeed, solutes (nanoparticles in our case) are
convected by natural convection only on a scale h� R during
τd ∼ h2/D for Ra∼O(1). As diffusion homogenizes concen-
trations over h for t ≥ τd , and since the height-averaged ra-
dial component of the velocity is strictly 0 (mass conservation
∇.v = 0), the solute transport is dominated by diffusion. Av-
eraging Eq. (6) over the height h for Ra ∼ O(1) indeed leads
to

∂ϕ

∂ t
=

1
r

∂

∂ r

(
rD(ϕ)

∂ϕ

∂ r

)
, (7)

with the following boundary condition for the colloid flux at
the receding meniscus:

−(D(ϕ)∇ϕ)r=R = ϕ(r = R)Ṙ . (8)

In this regime of moderate Ra, concentrations are homoge-
neous over the cell height h and mass transport is dominated
by diffusion despite the presence of buoyancy-driven flows,
see Ref. [31] for further details. This regime has been re-
ported for several binary mixtures, including molecular solu-
tions [31] and polymer solutions [38]. We will demonstrate

later that it also occurs for the charged colloidal dispersion in-
vestigated in the present work. Finally, the average concentra-
tion within the drop < ϕ > is simply related to the normalized
area α through:

< ϕ >=
1

πR2

∫ R

0
2πrϕ(r, t)dr =

ϕ0

α
(9)

In the confined drop, solvent evaporation induces the for-
mation of concentration gradients at the drying interface on
a scale ξ ∼ D(ϕ)/Ṙ. For radii a = 10 nm, Stokes-Einstein
estimate D0 ≈ 2 × 10−11 m2/s, predicts the formation of
a thin crust during the drying kinetics: ξ ' 200 µm for
Ṙ ' 100 nm/s. As shown later, our experimental results for
charged dispersions of small colloids show that concentration
gradients over the drop are much more weaker, and associ-
ated to collective diffusion coefficients D(ϕ) ≈ 10–30D0 for
the whole range of concentration. Such high values prevent
from the formation of a thin crust, and lead only to slight
concentration gradients. Moreover, our experiments reveal a
transition from a liquid dispersion (sol) to a poro-elastic solid
(gel) at ϕ ≈ 0.3. Below ϕ ≈ 0.3, the weak concentration gra-
dients induce natural convection as explained above, but the
transport remains dominated by diffusion as Ra ∼ O(1), see
Sec. IV C. We will also discuss in Sec. V how the description
of the collective diffusion coefficient related to the osmotic
compressibility of the dispersion and the permeability to the
relative flow solvent/colloids [24, 25] is affected by such a
liquid→solid transition [32].

III. MATERIALS AND METHODS

A. Confined drying experiments

We use glass wafers (3” diameter, 1 mm thickness) coated
by a thin layer of cross-linked poly(dimethylsiloxane) PDMS
(thickness ' 30 µm, Sylgard 184). The thin PDMS layer pre-
vents from the pinning of the receding meniscus, at least in
the first stage of the drying process, see Sec. IV. We pay
a particular attention to the neatness of the PDMS layer, as
any adsorbed dust may pin the receding meniscus and lead to
mechanical instabilities (see Sec. IV). The spacers consist of
small pieces (' 6 mm2) made of glass or PDMS films, with
thicknesses h ranging from 80 to 250 µm. Room humidity
ranges typically from ae = 0.4 to 0.65, with variations below
0.05 during a given experiment.

In a classical experiment, we place a drop with a controlled
volume of' 1 µL at the center of one of the glass wafers. We
then carefully close the cell using the second wafer and start
immediately a video acquisition using a stereomicroscope and
a CCD camera. Classical resolution is 5 µm/pixel and frame
rate is 6 images/min.

To visualize flow patterns within the drop, we seed the col-
loidal dispersion with a small amount of fluorescent particles
(Fluorospheres, diameter 500 nm, carboxylate-stabilized, vol-
ume fraction < 0.01%). Trajectories are recorded using fluo-
rescence imaging using the same stereomicroscope as above.
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To measure precisely flow profiles, see Fig. 7, we use an in-
verted microscope (IX71, Olympus) and a high NA objective
(60X, NA= 1.2) to monitor the trajectories of the tracers at
different focal planes with steps of 10 µm or 20 µm (the typi-
cal field of view of the camera is�R), see Fig. 1(b). Standard
tracking algorithms are used to compute the velocities of the
tracers as a function of the height z within the cell.

B. Dispersions

We investigate Ludox dispersions of silica nanoparticles,
and more precisely the monodisperse anionic grade AS40
(Sigma-Aldrich). The mean colloid radius is a = 11 nm, the
mass fraction of the stock dispersions is' 40% and these col-
loids are stabilized by negative silanol groups at their inter-
face. The surface charge density depends on the pH of the
dispersion (pH= 9.2) and on the counterions concentration,
and is typically of 0.5 e/nm2 [41, 42]. To estimate the volume
fraction ϕ0 of the dispersion, we measure its density and its
dry extract (at 150◦C for ' 30 min), and we assume the addi-
tivity of the volumes. These measurements lead to the density
of the silica particles ρs = 2.216 g/mL and ϕ0 ' 0.24.

The aim of the present work is to demonstrate that electro-
static interactions play a large role for the drying process, even
for stock dispersions which may thus contain ionic species. In
our experiments, we mainly use AS40 dispersions as received
and we thus do not control their exact ionic content by using
osmotic equilibrium against known solutions. The counteri-
ons of AS40 dispersions are ammonium hydroxide ions, as
compared to the other monodisperse anionic grade TM40 for
which counterions are sodium ions [43]. AS40 dispersions are
often used in applications for which the presence of sodium is
detrimental. Ammonium hydroxide ions are indeed in equi-
librium with ammonia gas dissolved in the dispersion, and the
later may eventually evaporate [43]. To check whether our re-
sults depend on the possible counterions volatility or not, we
also investigated TM40, and we observe similar behaviors but
with slightly shifted concentration values (data not shown).

C. Raman micro-spectroscopy

We use a custom-made Raman micro-spectrometer setup
coupled to an inverted microscope (Olympus IX71 and Andor
Shamrock). A laser beam (λ = 532 nm, Coherent Sapphire
SF) is focused with a 20X objective (NA= 0.45) at approxi-
matively z≈ h/2 within the cell. Scattered light is collected by
the same objective, filtered to get the Raman contribution, and
directed to the spectrometer, see Fig. 1(b). A confocal pinhole
(100 µm) conjugated with the focal plane prevents from col-
lecting excessive out-of-focus contributions. Typical experi-
mental parameters are: acquisition time 2 s, slit 200 µm, laser
power at the focal plane ' 25 mW, and grating 600 lines/mm.

To monitor the concentration process in space and time dur-
ing drying, we scan the drop along its diameter (2R0 ' 2 mm)
using a motorized stage (Märzhäuser) synchronized with the
Raman measurements. A typical spatial scan lasts 2 min

with a spatial step of 30 µm. This process is repeated up to
the complete consolidation in order to get space-time Raman
measurements of the drying dynamics.
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FIG. 2. (Color online) (a) Typical Raman spectrum acquired within
the drop (black). The green and red spectra correspond to the Ra-
man contribution of PDMS and water respectively. (b) Typical
space-time plot of the water contribution during the drying of a drop
(h = 250 µm, drop volume 1 µL). The white circles are the posi-
tions of the drop meniscus. (c) Different calibration curves showing
the drop-averaged water contribution < Iw > vs. the averaged col-
loid concentration within the drop ϕ0/α (black symbols). The col-
ored symbols correspond to other measurements obtained with 60X
(blue) and 20X (red) objectives at steady state or by simple dilution
(see text). The continuous line is the linear fit of the data used to
convert the Raman signal into a colloid concentration ϕ .

D. Raman calibration and screening of the drying kinetics

Figure 2(a) shows a typical Raman spectrum acquired
within the drop. This spectrum is corrected for the baseline
measured in the range 2400–2700 and 3850-4000 cm−1. In
the investigated spectral range, the data evidence a contribu-
tion of the PDMS layers (2800–3000 cm−1) despite the confo-
cal pinhole, and a wide contribution in the region 3500 cm−1

due to the OH stretching and bending modes of the water
molecules. The measurements of the silica concentration from
such data are not straightforward as the Raman spectra do
not display any signature of the silica particles in the spec-
tral range investigated [44]. However, we show below using a
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careful calibration that quantitative measurements of the col-
loid volume fraction ϕ are still possible from the measure-
ments of the Raman water contribution only.

Figure 2(b) shows a typical space-time plot of the Raman
water contribution (estimated from the spectra at 3400 cm−1)
during the drying of drop. As kinetics are rather long (' 1 h),
we ignore the small acquisition time of a spatial scan to build
this space-time plot. The meniscus positions are determined
with a subpixel resolution from such data, and the dynamics
R vs. t is thus known. We only consider the first 55 min of the
data (before the final consolidation with a steady radius R),
and we do not considered the Raman data acquired at longer
time scales as the drop delaminates from the wafers and cracks
appear, see Sec. IV.

The mean water contribution within the drop decreases
from ' 650 to ' 260 (arbitrary units) at t ' 55 min for this
data set with slight spatial gradients over the drop (< 6 %),
all along the drying process. These measurements provide a
self-calibration as the drying kinetics R vs. t leads to the tem-
poral evolution of the average concentration < ϕ >= ϕ0/α ,
see Eq. (9). Figure 2c shows the average water contribu-
tion < Iw >= (2/R2)

∫ R
0 drrIw(r, t) as a function of ϕ0/α .

These measurements, normalized to get < Iw >→ 1 when
< ϕ >→ 0, clearly evidence the affine behavior < Iw >=
1− 0.94 < ϕ >. Figure 2(c) displays different superimposed
data sets evidencing the reproducibility of this relation.

To check the robustness of this calibration, we also per-
formed independent measurements using both the 20X ob-
jective, and an oil-immersion objective (60X, NA= 1.4) at a
focal plane located ' 50 µm from the bottom PDMS layer.
To control the concentration within the drop, we proceeded as
follows. We first put diluted drops of known concentrations
and we acquire Raman spectra before significant drying. The
corresponding data follow again the affine behavior (colored
symbols, Fig. 2(c)). Then, we put a drop of the AS40 disper-
sion (ϕ0 ' 0.24), we measure its initial area, and we let the
solvent evaporates for ' 20 min. We then stop evaporation by
covering the cell by a closed box containing suspended water
drops to saturate the cell with a high humidity, and hence stop-
ping the drying kinetics. To make sure concentration gradients
along the drop relax through collective diffusion, Raman spec-
tra are acquired ' 10 min after evaporation stops. The area
of the drop is again measured to estimate the concentration
ϕ = ϕ0/α within the drop. This process is repeated until the
drop finally consolidates. These measurements (colored sym-
bols, Fig. 2(c)) again confirmed that the (normalized) Raman
water contribution follows the same affine law.

We expected the linear behavior < Iw >= 1−< ϕ > as (i)
Rayleigh scattering does not contribute to the measured signal
for such small particles (silica refractive index ' 1.46, a '
11 nm), and (ii) as the Raman signal is a priori proportional
to the number of water molecules contained within the sample
volume. The observed affine relation < Iw >= 1−0.94< ϕ >
suggests that a water contribution of ' 0.06 remains even
when ϕ→ 1. This small contribution may be due to an overes-
timation of the volume fraction ϕ0 using our dry extract mea-
surements (see Section III B), as water molecules may remain
attached to the silica surface despite this thermal treatment (as

recently discussed by Piroird et al. [10]). We do not inves-
tigate this issue in more details, and we use the calibration
displayed in Fig. 2 to extract the volume fraction ϕ from the
measured Raman water contribution.

IV. RESULTS

A. Drying kinetics and observed phenomenology

Figure 3 shows typical bright field observations of the dry-
ing of a AS40 dispersion drop at ϕ0 ' 0.24. At early time
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FIG. 3. (a)-(f) Typical bright field observation of the drying dy-
namics for t = 0, 34, 59, 62, 67 and 92 min (scalebar 500 µm,
h = 250 µm, see also the corresponding movie M1.avi [45]). On
snapshot (c), the receding meniscus leads to a deposit, and the ma-
terial further delaminates and fractures (d). Air finally invades the
pores of the solid network (e), up to the final material (f) (see also
the inset of (g) for a SEM view). (g) Normalized area α vs. time es-
timated from the analysis of the drying dynamics (see text). (h) Cor-
responding average concentration ϕ0/α vs. time t. The gray zone
corresponds to the time interval at which the gelation front crosses
the drop (see Fig. 6 and Section IV C).

scales (t < 60 min), the drop remains circular and its radius de-
creases smoothly. The meniscus recedes freely on the PDMS
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surface and no deposit is formed. When the PDMS layers are
not carefully cleaned, the observed scenario is quite different
(see the movie M5.avi in Supplemental Material [45]). The
receding contact line may indeed pin at a given location, lead-
ing to the further buckling of the drop (often referred to as the
invagination instability). Such behaviors were reported ear-
lier by Pauchard et al. in similar experiments and such insta-
bilities were hindered by using glass wafers coated by liquid
lubricating layers [21]. In the following, we only focus on
experiments with clean wafers and the drops remain circular
during drying.

From image analysis, we extract the normalized drop area
α vs. t and thus the mean concentration ϕ0/α within the drop.
The temporal evolutions α(t) are nicely fitted by Eq. (2) with
values for D̃ ranging from 2.3 to 3×10−10 m2/s for several ex-
periments. At t ≈ 60 min, and thus ϕ ≈ 0.6, a deposit forms
on the PDMS layers and a sequence of mechanical instabil-
ities rapidly occurs, see Fig. 3. The drop first delaminates
from the PDMS layers, and a crack often appears across the
drop. At longer time scales, a sharp change of refractive index
suggests that air invades the drop from its outer boundary (e).
Ultimately, the final material does not evolve anymore (f), and
the corresponding SEM images show materials with sharp in-
terfaces (see the inset of Fig. 3(g)). We do not focus in the
present work on such mechanical instabilities, and we only
investigate the early stage of drying corresponding to the con-
centration process up to the final consolidation (t ≤ 60 min).

B. Concentration profiles and collective diffusion coefficient

Figure 4 shows a typical temporal evolution of the colloid
concentration field measured using our Raman technique, see
Section III D. We plot in Fig. 4 only a few curves along the
drying process for the sake of clarity (the temporal resolution
of the full data is' 2 min, see Fig. 2(b)). These concentration
profiles clearly reveal that evaporation does not lead to the for-
mation of a thin crust of concentrated colloids at the receding
boundary, but only to slight gradients along the drop. These
profiles are well-fitted by

ϕ(r, t) = ϕc(1+ εr2/R2) , (10)

where ϕc is the concentration at r = 0 and ε � 1, see the
continuous lines in Fig. 4.

Assuming that the description of the transport process
within the dispersion is correct, see Sec II and namely Eqs. (7-
8), we can now estimate the collective diffusion coefficient
D vs. ϕ from such measurements. Indeed, both concentra-
tion gradients ∂rϕ and drying kinetics Ṙ are measured, and
the boundary condition Eq. (8) possibly gives an estimate of
D(ϕ). To minimize the dispersion of D(ϕ) induced by the
estimation of two numerical derivatives (∂rϕ and Ṙ), R vs. t
is fitted using Eq. (2) to estimate precisely Ṙ (see Fig. 3(g)),
and the fits of the profiles by Eq. (10) yield estimates of the
gradients at r = R (see Fig. 4).

Figure 5 shows the output of such measurements for various
cell heights ranging from 80 to 250 µm. For the whole con-
centration range, D(ϕ) deviates significantly from the Stokes-

−500 0 500

0.3

0.4

0.5

0.6

r (µm)

ϕ
(r
,t
)

FIG. 4. Typical concentration profiles ϕ(r, t) measured within
the drop using Raman spectroscopy (h = 170 µm, drop volume
0.75 µL). The continuous lines are parabolic fits, see Eq. (10). 4 (�
resp.): concentration profile corresponding to the start (the end resp.)
of the drop gelation (see Section IV C). The gray line is ϕc ' 0.32.

Einstein estimate D0 = 2× 10−11 m2/s as D(ϕ) ' 10–30D0,
evidencing the crucial role played by the electrostatic inter-
actions on the relaxation of concentration gradients, even for
such a stock dispersion (i.e. without removing ionic species).
Despite the spread of the data related to the estimate of two nu-
merical derivatives, our measurements outline the following
behavior: D(ϕ) first decreases from ' 6 to ' 2×10−10 m2/s
for ϕ increasing from ϕ0 to ' 0.35, and D(ϕ) remains nearly
constant ' 2±0.5×10−10 m2/s for larger ϕ .

0.3 0.5 0.6
10

−11
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/s
)
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0
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20
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D
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0
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FIG. 5. Collective diffusion vs. concentration estimated using the
combined measurements of the drying dynamics R(t) and the con-
centration profiles ϕ(r, t), see Eq. (8). The different symbols cor-
respond to experiments performed with cells of different heights
h = 80, 170 and 250 µm. The continuous line is the Stokes-Einstein
estimate D0 ' 2×10−11 m2/s. Inset: same data normalized by D0 in
a linear-linear plot.

Boulogne et al. performed similar experiments as those re-
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ported in Fig. 3 using different charged dispersions, includ-
ing Ludox HS40 and TM50 with volume fractions ϕ0 ranging
from 0.1 to 0.22 [21]. Their observations are quite different,
as they always reported invagination of the drop, suggesting
the formation of an elastic crust at the outer of the drop and
its buckling. These observations were not linked to the pin-
ning of the receding meniscus, as the contact line receded
freely on thin viscous lubricating layers on the wafers. How-
ever, their different geometry (larger drops R0 ≈ 2.9 mm, and
smaller wafers Rw = 8 mm), leads to significantly larger ve-
locities Ṙ ' 400 nm/s (see Fig. 2 in Ref. [21]). If we assume
that our measurements of D(ϕ) apply to their investigated dis-
persions, the expected scale of the concentration gradient is
ξ = D(ϕ)/Ṙ ' 250 µm � R0, whereas ξ ∼ R0 ' 1 mm in
our case. This may confirm the formation of a crust of concen-
trated colloids at the receding meniscus in their experimental
configuration.

C. Flow patterns: from drying-induced buoyancy flows to
homogeneous drying

To validate the use of Eq. (8) to estimate D(ϕ), we should
also confirm that the colloid transport is dominated by col-
lective diffusion even if natural convection occurs within the
drop, see Eq. (7). We thus seed the dispersion using fluores-
cent tracers and monitor their trajectories during drying, see
Fig. 6(a-b). These experiments reveal two distinct flow pat-
terns, see the movie M2.avi in Supplemental Material [45]
and the space time plot in Fig. 6(c) along a given drop ra-
dius. At early stages (typically t ≤ 15 min), we observe
axis-symmetrical recirculating flows which convect the trac-
ers, from the meniscus to the drop center for z < h/2 and
from the drop center to the meniscus for z > h/2. The max-
imal radial velocity of such flows is of the order of 1 µm/s
for h = 250 µm. These flows then stop in the range t = 15 –
30 min, and the tracers follow further radial trajectories to-
wards the center of the drop, uniformly over the cell height. In
this last regime, tracers concentrate homogeneously, leading
us to refer to this regime as the homogeneous drying regime.

As discussed earlier, the axis-symmetrical flows observed
at early time scales correspond to buoyancy-driven flows,
as also recently demonstrated using similar experiments but
with molecular mixtures [31, 38, 40]. The homogeneous dry-
ing regime suggests the transition to a solid in which tracers
are trapped. Despite the obvious displacements of fluores-
cent tracers during the drop drying, we also show below that
our measurements of collective diffusion coefficients remain
valid, as the mass transport is still described by Eq. (7).

1. Buoyancy-driven flows

The measurements of the concentration profiles shown in
Fig. 4 are associated to density gradients along the drop. For
a liquid dispersion, these weak concentration gradients induce
natural convection which can be calculated using the lubrica-
tion approximation. Assuming that the variation of the viscos-

(c)
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)
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r/R(t)0 0.2 0.8 1
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100
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FIG. 6. (color online) (a) and (b) Fluorescence images obtained
by superimposing 10 successive frames at time t = 4 min (a) and
t = 50 min (b) corresponding to the two regimes discussed in the text
(scalebar 250 µm, h = 250 µm). The streaks help to highlight the
flow within the drop, see also the movie M2.avi [45]. The red arrows
show the two different flow patterns. (c) Space-time plot of the fluo-
rescence intensity along the green lines shown in (a) and (b). (d) The
same space-time plot, but re-scaled with r/R(t) (see also the movie
M3.avi [45]).

ity η of the dispersion along the drop is negligible, the radial
velocity component is given by [31]:

vr(z) =
(ρs−ρe)gh3∂rϕ

12η
z̃(1− z̃)(2z̃−1) , (11)

with z̃ = z/h, and ρe the water density. The maximal flow
velocity (for z̃ ' 0.2 and z̃ ' 0.8) is roughly given by vm '
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0.008δρgh3/(ηR), where δρ is the density difference across
the drop.

(a) (b) (c)

−1 −0.5 0 0.5 1
0

1

vr(z)/vm

z/
h

(d)(d)(d)(d)

FIG. 7. Top: these pictures show the averaging of 4 successive fluo-
rescence images to evidence flows within the drop, for different cell
heights (a) h = 80, (b) 170 and (c) 250 µm. Only a drop quarter
is shown for clarity, scale bars 250 µm, see also the movie M4.avi
in Supplemental Material [45]. (d) Velocity profiles measured using
particle tracking in the drying-induced buoyancy regime for h = 170
and 250 µm at r = R(t)/2, and normalized by the maximal veloc-
ity vm. The continuous line is the theoretical prediction given by
Eq. (11). The different symbols correspond to different measure-
ments.

Figure 7(d) shows velocity profiles measured using parti-
cle tracking for different drops (h = 170 and 250 µm) and at
r = R(t)/2 along the cell height h. These profiles are well
fitted by Eq. (11) validating the above description. More im-
portantly, Figs. 7(a–c) report streak-like velocimetry to evi-
dence the strong dependence of these buoyancy-driven flows
with the cell height h (vm ∼ h3, see also the corresponding
movie in SI). For h = 250 µm, velocities vm are of the order
of 1 µm/s at the very beginning of the drying process, and
smaller than 0.4 µm/s for h = 170 µm, and even smaller than
100 nm/s for h = 80 µm. These values are in rough agree-
ment with the theoretical estimates given by Eq. (11) and
the viscosity of the stock dispersion measured using classi-
cal rheometry (η ' 15 mPa.s, cone-plane geometry, Kinexus
Malvern rheometer) leading to vm ' 0.6 µm/s for h = 250 µm
and a gradient ∂rϕ ' 0.06/R at r = R/2 (see the first concen-
tration profiles shown in Fig. 4). Our estimations should be
taken with care considering that the viscosity of the disper-
sion evolves with the volume fraction both in space and time.
Moreover, Eq. (11) is strictly valid within the lubrication ap-
proximation which does not strictly apply to our investigated
geometries (R0 ' 1 mm, h up to 250 µm).

As discussed earlier in this work, these buoyancy-driven
flows may have no influence on the concentration gradients

that generate them in a confined geometry. This regime occurs
when the Rayleigh number Ra = vmh/D, follows Ra∼ O(1),
see Ref. [31] for more details. In our experiments, D(ϕ)
ranges from 6× 10−10 m2/s to 2× 10−10 m2/s for ϕ = 0.24–
0.35, see Fig. 5. Ra thus ranges from 0.8 to 2.5 for h= 250 µm
and vm ' 1 µm/s (i.e. Ra ∼ O(1)), demonstrating that the
drying-induced concentration gradients in silica nanoparticles
is not affected by the buoyancy-driven flows. These flows,
however, can convect larger colloidal species such as the flu-
orescent tracers dispersed in the drop.

This result is even confirmed directly by the measurements
reported in Fig. 5. The values of D(ϕ) indeed do not depend
on h, whereas buoyancy-driven flows strongly depend on h as
vm ∼ h3, see also Figs. 7(a–c) and the corresponding movie in
SI.

2. Gelation

At a given time, these buoyancy-driven flows suddenly van-
ish close to the receding meniscus r'R, and this phenomenon
progresses within the drop up to its center. At longer time
scales, the fluorescent tracers seem to be trapped within the
dispersion, and they follow radial trajectories towards the cen-
ter of the drop.

These observations suggest the formation of a gel which
traps the fluorescent tracers, that further dries up to the drop
consolidation without sticking on the PDMS layers. The gela-
tion front which crosses the drop from r = R up to r = 0 (see
the green dotted line in Fig. 6(c)), suggests that this transition
occurs at a critical concentration ϕc.

Indeed, our combined measurements of fluorescence imag-
ing and concentration profiles make it possible to confirm this
picture and to roughly estimate ϕc. We first extract the nor-
malized drop area α1 at which we observe the beginning of
the gelation at r = R, and the normalized area α2 at which
the gel fully invades the drop (see the corresponding range
highlighted by the green dotted line in Fig. 6(c)). We then
report in Fig. 4, the concentration profiles corresponding to
these two critical α . For α ' α1 (symbols 4), concentration
reaches ϕc ' 0.32 at r = R, while for α ' α2 (symbols �), one
observes ϕ(r, t)' ϕc at r = 0 (see the gray line in Fig. 4). The
crossing of the gelation front within the drop arises from the
existence of slight concentration gradients which intersect the
concentration ϕc at different positions r, see e.g. the interme-
diate profile displayed Fig. 4.

Our measurements give a rough estimate ϕc ' 0.32±0.02
for this liquid→solid transition which should be considered
cautiously. Indeed, we estimate ϕc from the vanishing of the
buoyancy-driven flows, while the latter may also vanish for
a sudden increase of viscosity, see Eq. (11). Nevertheless,
this rough estimate is in good agreement with other reported
values in the literature for similar systems. Ludox disper-
sions, and more generally any dispersion of highly charged
particles, are indeed well-known to form elastic gels at con-
centrations well-below close-packing. This feature has been
reported many times in the context of drying, at volume frac-
tions ϕ ranging from 0.1 to 0.4 depending on the ionic con-
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tent of the dispersion, and the surface charge density (in-situ
SAXS , indentation, microscopy) [7, 8, 11]. Direct rheologi-
cal measurements were also reported on a similar Ludox dis-
persion (HS40) showing a sharp transition from a viscous dis-
persion (sol) to elastic gels at ϕ ' 0.3 [30]. We also con-
firmed our measurement ϕc ' 0.32 by performing slow dry-
ing experiments of AS40 dispersions in small vials (drying
times ' 30–60 h at T = 40◦C under constant stirring) as in
Ref. [30]. These experiments reveal the formation of elastic
gels for concentrations roughly above ϕc ' 0.3 (measured us-
ing dry extract).

To locate this liquid→solid transition within the whole dy-
namics, we also report in Fig. 3 the α range (and thus the
temporal range) at which the gelation front crosses the drop.
This plot evidences that this transition occurs long before the
final consolidation of the drop.

3. Homogeneous drying

We now investigate the trajectories of the tracers in this gel
phase. Figure 6(d) shows the same space-time plot as in (c),
but against the rescaled variable r/R(t). Trajectories in this
space-time plot are vertical lines, suggesting that the radial
velocities of the tracers are given by

vr '
r
R

Ṙ , (12)

without any variation over the cell height. This feature is bet-
ter evidenced using the movie M3.avi in Supplemental Mate-
rial [45], for which a zoom is continuously adjusted to get
a fixed drop radius on the screen. In this movie, tracers
seem immobile showing that they homogeneously concentrate
within the drop.

These results enable us to assess that the trajectories of
the fluorescent tracers in this second regime do not follow
the volume-averaged velocity v = ϕvs + (1−ϕ)v f = 0, see
Sec. II, but more likely the velocity of the silica nanoparticles
vs. Tracers are indeed trapped within the colloidal elastic net-
work, and follow its deformation. Relation (12) simply shows
that the drop dries homogeneously, i.e. ϕ(r, t) ≈ ϕ0R2

0/R2,
as the concentration gradients are of the order of ε � 1, see
Eq. (10) and Fig. 4.

The same result can be demonstrated more rigorously using
the framework of large deformation poro-elasticity [33]. One
can indeed relate the (Eulerian) radial displacement field us of
the solid network to the local concentration field ϕ(r, t). This
relation takes the following form in our confined cylindrical
geometry:

us = r−
(

r2 +2
∫ r

0
(

ϕ

ϕ0
−1)rdr

)1/2

, (13)

see for instance Eq. (14) in Ref. [46] for a demonstration in the
case of a spherical geometry. Assuming in the above equation
that ϕ(r, t)≈ ϕ0R2

0/R2 at first order, leads to:

us ≈ r− r
R0

R
, (14)

and finally to

vs =
∂tus

1−∂rus
≈ rṘ

R
. (15)

(see e.g. Eq. (7) in Ref. [33]). This shows again that the tra-
jectories velocities of the tracers follow the solid network flux
vs, see Eq. (12).

V. DISCUSSIONS AND CONCLUSIONS

In the present work, we performed a thorough investigation
of the drying kinetics of a charged dispersion in a confined
drop. Our measurements based on Raman micro-spectroscopy
lead to measurements of the collective diffusion coefficient of
the dispersion over a wide concentration range. Fluorescence
imaging also reveals a transition from a liquid dispersion to
a solid at a concentration ϕc well below the close-packing of
the colloids. We also report that natural convection occurs
for such drying experiments, but that mass transport remains
dominated by diffusion within such confined geometries.

Equations (5) and (7) in Sec. II were derived in the general
context of binary liquid dispersions. More specifically, the
term ϕv in Eq. (5) corresponds to the convective flux of col-
loids, whereas −D(ϕ)∇ϕ describes the diffusive part of the
flux (in the reference frame of the volume average velocity).
The collective diffusion coefficient D(ϕ) follows the general-
ized Stokes-Einstein relation

D(ϕ) = ϕ
k

ηw

∂Π

∂ϕ
, (16)

where ηw is the water viscosity, k the permeability of the dis-
persion, and Π(ϕ) its osmotic pressure. This equation shows
that the diffusive transport −D(ϕ)∇ϕ is actually driven by
gradients of osmotic pressure hindered by the hydrodynamic
friction of the relative flow solvent/particles [24, 25].

For a liquid dispersion, the global pressure P often follows
a simple mechanical equilibrium ∇P = 0. One can thus define
the pervadic pressure p = P−Π, corresponding to the pore
pressure of the dispersion [47, 48]. With such a definition, the
relative flow solvent/particles can also be written as:

(1−ϕ)(v f − vs) =−
k

ηw
∇p , (17)

thus taking the form of the Darcy equation. This correspon-
dence between Darcy and Fick laws were discussed at length,
namely by Peppin et al. in Refs. [47, 48] in the context of
processes driving suspensions out-of-equilibrium (e.g. ultra-
filtration, drying, consolidation,. . . ).

For a poro-elastic media, the mechanical equilibrium may
not follow ∇P = 0, and the fluid transport should be described
by the equations of poro-elasticity. In that case, the relation
∇(p+Π) = 0 may fail, as mechanical equilibrium of the gel
has to be described by a constitutive relation taking also into
account specific boundary conditions. This feature was sug-
gested theoretically recently by Style et al. in the context of
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unidirectional drying [32]. They demonstrated more specifi-
cally that the colloid transport is still described by Eq. (7), but
with a collective diffusion coefficient given by

D(ϕ) = ϕ
k

ηw

3(1−ν)

1+ν

∂Π

∂ϕ
, (18)

where ν is the Poisson ratio of the gel. This last relation shows
how the confinement and the mechanical equilibrium impacts
the generalized Stokes Einstein relation Eq. (16) known to
describe the relaxation of concentration gradients in a liquid
dispersion. However, unidirectional drying corresponds to a
highly non-linear configuration which should be described us-
ing the formalism of large deformation poro-elasticity, see for
instance Ref. [33] for the consolidation of soft porous mate-
rials. This complex configuration may prevent from a simple
comparison between theory and experiments in order to con-
firm that such a liquid→solid transition impacts the general-
ized Stokes-Einstein relation (from Eq. (16) to Eq. (18)).

Our experimental configuration, the drying of a confined
gel, leads to similar conclusions obtained by Style et al. and
more exactly Eq. (18), but within the framework of linear
poro-elasticity [49] (see also for instance Ref. [50] for the
drying of films). Indeed, we demonstrate in Appendix A us-
ing linear poro-elasticity modeling, that mass transport is also
still described by Eq. (7) as above, but with a collective dif-
fusion coefficient given by Eq. (18) as shown by Style et al..
The framework of linear poro-elasticity applies in our geome-
try as the concentration gradients over the drop are small, see
Appendix A for a demonstration.

We plan in a near future to use again the methodology
developed in the present work to measure collective diffu-
sion coefficients over a wider range of concentration (from
ϕ → 0 to the consolidation) for colloidal dispersions with a
controlled ionic content. The combined measurements of the
equation of state Π(ϕ) and of D(ϕ) may yield to the first di-
rect measurements of the permeability k(ϕ) using the general-
ized Stokes-Einstein relation Eq. (16) in the liquid state. The
control of the ionic content would also enable us to model
both Π(ϕ) and D(ϕ) knowing the surface charge density of
the particles, see e.g. the cell model recently used in the con-
text of ultra-filtration of charged dispersions [29]. More im-
portantly, we also plan to perform systematic measurements
of the collective diffusion coefficient using scattering tech-
niques for such dispersions. The comparison of these values
to the possible measurements using the above methodology
would indeed enable us to directly test whether the confine-
ment in such drying experiments impacts or not the general-
ized Stokes-Einstein relation as suggested above, and demon-
strated earlier by Style et al. [32].

Appendix A: Linear poro-elasticity modeling of the drying of a
confined gel

The solvent transport for a poro-elastic solid is classically
described by the conservation equations Eqs (3-4) as above,
and the volume average velocity v still obeys ∇.v= 0, and thus
v = 0 in our geometry. The relative flux solvent/colloids is

given by the Darcy law Eq. (17) with p the pore pressure. The
latter is related to a constitutive relation between the effective
stress of the gel, and its deformations [49].

Let us consider the drop in the gel phase at t = ti. The mean
concentration within the drop is given by < ϕ >= ϕ0/α(ti).
The deformations of the elastic network in this confined ge-
ometry, are described by the tensor

ε =

∣∣∣∣∣∣
∂rur 0 0

0 ur/r 0
0 0 0

∣∣∣∣∣∣ , (A1)

where ur is the radial displacement field. This is consistent
with the observations of the trajectories of fluorescent tracers
embedded within the gel, see Fig. 6. We also assume above
that the gel recedes freely on the cell surfaces as observed
experimentally.

Assuming small deformations from t = ti up to time t, and
for small concentration gradients along the drop, one can
safely assume that the effective stress σ ′ = σ + p follows a
simple linear poro-elastic, isotropic stress-strain relationship:

σ
′ = Λξ 1+(M −Λ)ε (A2)

with M and Λ the oedometric modulus and Lamé’s first pa-
rameter (we use here the same notation as in Ref. [33]). Me-
chanical equilibrium ∇(σ ′− p) = 0 writes in this cylindrical
geometry

∂r(rσ
′
rr)−σ

′
θθ = r∂r p , (A3)

and leads finally to

M ∂rξ = ∂r p . (A4)

We assume above that M , Λ are almost homogeneous over
the drop and take the values M (< ϕ >) and Λ(< ϕ >) during
the small deformation. These assumptions rely on the fact that
concentration gradients are small over the drop (as observed
experimentally), and on the fact that M (ϕ) and Λ(ϕ) do not
display abrupt variations with the volume fraction.

With such assumptions, the colloid volume fraction is re-
lated to ξ = tr(ε) through

∂rϕ(r, t) =−ϕ(r, t)∂rξ , (A5)

and the transport equation Eq. (3) takes finally the following
form:

∂tϕ =−1
r

∂r

(
r

k(ϕ)M (ϕ)

ηw
∂rϕ

)
. (A6)

Boundary condition at r = R still follows Eq. (8), and the col-
lective diffusion coefficient within the gel is thus:

D(ϕ)=
k(ϕ)M (ϕ)

ηw
, (A7)

also known as the consolidation coefficient [49]. The oedo-
metric modulus M is related to the osmotic compressibility
(as measured classically using osmostic shock techniques for
instance), and the above relation finally writes as Eq. (18), see
also Ref. [32] for more details.
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