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Dynamic observation-prediction for LTI systems with a tiwaeying delay
in the input

V. Léchappé, E. Moulay and F. Plestan

Abstract— A predictive-based controller is proposed to con- The inconvenient of these methods is that they usually
trol LTI systems in presence of time-varying delay in the require the discretization of an integral. For open-logbkt
input. The control method is based on the computation of an systems, the integral term can be computed without dis-

approximated (or asymptotic) prediction thanks to a dynamic .. .
system. Then, this prediction is “plugged” into any Lipschiz cretizing the integral [12]. However, for open-loop und¢ab

controller that stabilizes the delay-free system. Explidicondi-  Systems, the integral has to be discretized in a finite number
tions that guarantee the closed-loop stability are given tanks  of points. This step has to be done very carefully since it can

to a Lyapunov-Krasovskii analysis. A qualitative analysisof  destabilize the system as pointed out in [13]. A prediction
these conditions is performed and the results are illustragd in approach based on an approximated prediction computed

simulation. . .
Index Terms— Prediction-based control, time-varying delay, thanks to a dynamic system has been proposed for the first

dynamic prediction, Lyapunov-Krasovskii functional time in [14] for the control of input delay systems. The
advantage is that no discretization is required to comphée t
|. INTRODUCTION prediction. The idea has also been used for the observation

of systems with delayed output [15], [16], [17]. Recently,
Input delay systems are a subclass of time delay systerggme works have used the same idea of dynamic prediction
(TDS). The reader can refer to survey papers [1] and [2] faor control purposes: [18] with full state knowledge, [19ica
a general review on TDS. An input can be delayed becauggo] considering sample and hold phenomena.
of a large computation time or because of latencies during However, the works mentioned above consider a constant
communications. The latter example is particularly COMMORelay. In this article, the time-varying delay-case isteddy
for remote controlled devices such as UAVs, satellites or inding an extra term in the Lyapunov-Krasovskii functienal
Networked Control Systems (NCS). The exponential stability is proven for a large class of
There exist two different approaches to control inputontrollers and observers. In addition, explicit conditidor
delay systems: memoryless (or memory free) and memogyability are given and analyzed.
controllers. The advantage of memory free controllersas th  The paper is organized as follows. The different assump-
they do not require the computation of an integral. See fqfons and the problem are stated in Section II. In Section
example [3] for bounded control, [4] for adaptive contr&l] [ |, the dynamic observer-predictor is presented alond it
for a truncated predictor and [6] for sliding mode techn®&jue convergence proof and a qualitative analysis of the stgbili
The drawback is that they usually cannot guarantee a gog@nditions. This result is extended to the case of various
level of performance for unstable systems with large delaygup observers-predictors in Section IV. In Section V, sim-

In this case, memory controllers can be designed. Fejflations support previous theoretical results. Finaltyme
systems with a single delay in the input (as those considerg@rspectives are given in Section VI.

in this work), a memory controller is often a controller baise

on the computation of a prediction. It has been highlighted Il. PROBLEM STATEMENT

in [7] that state prediction is a fundamental concept for ] ) ] .
delay systems, much like state observation is for systems The_ class of systems considered in this work is the
with incomplete state measurements. The most well-known following

method to control dead time systems is probably the Smith (1) = Az(t) + Bu(t — h(t))

predictor. This frequency approach was introduced by Smith { y(t) = Cx(t) (1)

at the end of the 1950s in [8]. At the end of the 1970s and
the beginning of the 1980s, the result of Smith has beemhereh(t) is a known and time-varying delay. The objective
extended to state-space representation and unstablensystés to design prediction-based controllers without the need
by [9], [10] and [11]. of computing the exact prediction. Indeed, the discratirat

is delicate process that often requires a large computing
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s “plugged” in it. As a consequence, throughout this papdn addition, sincey is globally Lipschitz, there exists > 0

it is assumed that such that
Assumption 1: There exists a time differentiable and llg(Ce)|| < 1,|Cel] (11)
globally Lipschitz controlleru : « — u(z), that guarantees .
the existence a functioki, : R” — R for all ¢ € R™ Some assumptions are also made to
characterize the time-varying delayt):
Vu(z) = 2" Pz (2) Assumption 3: The time-varying delay.(t) is upper and

Jower bounded by strictly positive constants.

with P anxn symmetric matrix that satisfies the inequalitie i JoI - ]
Assumption 4: The delay is differentiable and its dynam-

Q||J7||2 < Va(z) <éllz?, ics is bounded.
Vu(I(t)) < —cullz(@®)]?, (3) In the next section, the dynamic observation-prediction
(|4 || < =], method is presented.

with ¢, ¢, ¢,,, ¢ > 0.

Remark 2.1: Note that the argument™in u(x(t)) will be
omitted for clarity. Furthermore, the notationst) or u(z) The observation and the prediction are computed by a
will be used indifferently when no confusion is possible. single dynamic system
Assumption 1 implies that the controllefx) globally ex- .
ponentially stabilizes delay-free systeme.J(Note that Tegor ~ ~(1) = Az(8) + Bu(t) +g(Cz(t = h(t)) —y(@)])  (12)
4.14 in [23] guarantees the existence of a Lyapunov functiogith ¢ a correction term verifying Assumption 2.
that verifies (3) for a general class of exponentially stable Remark 3.1: Note that to compute(t), the initial condi-
nonlinear systems. However, here a special form (but dpasskjon z(t) = ¢.(t) for t € [—himas, 0] With ¢, a continuous
of the Lyapunov functionl(, = = Px) is assumed. Remark function, is required. The prediction will be continuous
that differentiatingV,, along the trajectories of the delay-freejn ¢ = h(t). Also remark that the variable(t) has to be

system and using inequalities (3), one gets stored ot —h,,,q., t] Wwhich imposes constraints on practical
"[ATP + PAJx +u" BT P + 2" PBu < —c,||«| 2. (4) MPlementations. , N
N _ _ _ _ Then, a predictive feedback(z) with « that verifies As-
In addition, sinceu : x — u(x) is globally Lipschitz, there sumption 1 can be applied to stabilize (1). Notice that the
existsl,, > 0 such that non-delayed input:(t) enters system (12) and that the cor-

I1l. DYNAMIC OBSERVATION AND PREDICTION METHOD

()] < L]l (5) rection term involves the delayed estimation stgte-h(t)),
- that is whyz(t) is an approximation of:(¢ + h(t)).
for all € R™. It is also assumed that an estimatidrof In order to state the next result, the prediction error is
the stater can be computed thanks to an observer: denoted by
3(t) = Aa(t) + Bu(t — h(t) + g(Ca(t) — (1)) (6) elt) = 2(t —h(t)) = =(t). (13)
where the correction term is such that It is now possible to introduce the following theorem.

Assumption 2: There exists a globally Lipschitz function ~ Theorem 1. Consider system (1), wherg(t) is known
g that guarantees the existence of a funcfign R» — R and complies with Assumptions 3 and 4, and assume that
there exist a controllex and the correction term satisfying

Vy(e) = e Qe (7)  Assumptions 1 and 2 respectively. Suppose that system (1)
with e = & —2 andQ an x n symmetric matrix that satisfies is controlled byu(z) with z computed by observer-predictor
the inequalities (12) and define

m||€||2 < Vy(e) < mllelf?, T(t) = ||=(t)|*+ S [12(s)I1°+ s llep ()]
dv ) < —myglle(®)|]?, (8) SElt=fima ] St hmasf (14)
H 22| < mllell, Then, there exist, o, h*,6* > 0 such that, provided
with m, m, my,,m >0 . h(t) < h* and |A(t)| < 6%,

Remark 2.2: By a slight abuse of notatiog(Ce) will be
sometimes denotegi(c) to underline that it depends on theone has
observation erroe. T(t) <<Y(0)e ? VE>0 (15)
Assumptpn 2 implies that the functignglobally exponen- therefore Tim |[z(t)]| = 0.
tially stabilizes the observation error t—+00 .
. Proof: Note that the delay(¢) (respectivelyh(t)) will
é(t) = Ae(t) + g(Ce(?))- ) be denotedh (respectivelyi) in the proof to facilitate the

Similarly to (4), one gets reading. First, denoting,(t) = z(t — h(t)) — z(t), equation

eTIATQ + QAle + g7 (Co)Qe + T Qg(Ce) < —mylel?. D) PEOOMeS
(10) 5(t) = Az(t) + Bu(t) + g(Cey(t). (16)



The dynamics ok, (t) reads as so, reminding that

ép(t) = Acfp(t) + 9(Cep(t — 1))

t t
_h[Az(t—h)—i—Bu(t—h)—i—g(Cep(t—h()]?]?) _ hf lep(IPds < — [ [lép(s)||ds
t—hmax t—h(t)
and can be rewritten as follows ‘ 2
Cep(t) d S _h'rr}az ( f ||8p(5)||d5> s
ép(t) = Aep(t)+9(Cep(t)— [ F(s)ds t—n(t)
. Cep(t—h) , (29)
—h[Az(t — h) + Bu(t — h) + g(Ce,(t — h))]. it follows that
(18)

Since the delay is bounded from Assumption 3, there exist ~ Va(t) < fumaz|ép(1)]12 — 55— Im(2)]|?

Bmin, Pmaz > 0 such that ¢ ) 30
3T lep(s))Pas G0
hmin S h(t) S hmam' (19) t—hmas
The following Lyapunov-Krasovskii functional candidat i In addition, sincex and g are globally Lipschitz and using
proposed (26) and Holder's inequality, it can be deduced from (18)
that
V(t) = yVa(t) + Va(t) + Va(t) + Va(t) (20)
where sl < erllepll® + callml|* + eslf*[|=(t — h)|I?
Vi(t) = 2T () P2(1), (21) +eal | ep(t = )| [? a1
with P defined in (2), with ¢ = 4(||AJ[ +Ll|CI)2, ez = 42||CI|1%, es = 4(]|A]| +
1.1|B|)? so
Va(t) = 2 ()Qe, (1), (22) LBl
with @ defined in (7), Vs(t) < hmasler]lepl | + collm||® + eslhf*[|(t = h)||?
t +ealhPllep(t = )|1P] = g—IlIm(®)]|?
_ _ . 2 t
‘/EJ,(t) = / (hma;l; + s t)||ep(8)|| dS, (23) _% f ||€p(8)||2d8
t_hwnaz' tihmaz
(32)
L Finally,
Vi(t) = / (Pmaz + hmin + 5 — t)(||z(s)||2 + ||ep(5)||2)d5
t=h (24) Vit) < (hmaz + hmin) (2] + ||26p(t)||2) ,
and~ > 0. Sinceg is globally Lipschitz and from (4), the _hTi"(l ~ 1A= = I+ llep(t = 2)II%)
time derivatives ofi; satisfies — [ (1z(s)1* + lle(s)]|*)ds.
. t—h
Vi(t) < —cullz(®)[]* + BRIz llep()]]  (25) (33)

. o Thus, using Young's inequality, the “completing the sqtiare
with R = 214[|P[| ||C||. Moreover, by substitution one gets method and Assumptions 1 and 2, the following inequality
Cep(t) is obtained

t
%(s)ds < ly]|C]] / llep(s)llds,  (26) v, 1o 2 — 200 — 7] | 2(2)] 2
Cep(t—h(t)) t—h(t) - [%jm — % — hmazca | ||m(t)|[?
so using (10), it follows that _[% _ gcﬁ — hunaz (2 + 1)
Va(t) < —myllep()I* + R'[lep()]] [Im(®)]] —|B(M/2 + R'[2) - em]|[e (1))
+h|M|lep(t)]] [[2(t=h)] (27) —min =Rl (Bonin + | ol himazcs + M) | 2(t = )| |2

+AIR |lep@Il llep(t=R)]

_ ) _hmin_lhl(hmin+|h|hmawc2+R//2)||ep(t_h)||2
with R" = 2lg||(;?|| IIC[l, M= 2[|P]| ([A]| + L[|B]]) ¢

_[% _Ehmaz} f ||ép(5)||2d5

and ||m(t)|| = [ ||ép(s)||ds. Furthermore, using Leibniz PN
_ . t-h
differentiation rule, one gets —[1 = 2ehmaz] [ ([|2(s)]]* + ||ep(5)]|?)ds.
t—h
t (34)

V3(t) = hunaalép(t)]]* — / llép(s)[|*ds (28) with ¢ > 0. To makeV (t) + ¢V (t) < 0, it is sufficient
P to have the coefficients pre-multiplying the quadratic term



negative. It leads to the following conditions

7—;“ — 2hmas — ¥EE > 0, (35)
1 R12
- - hmaz Ll 36
omas 2y c2>0 (36)
my _yR*
[ 5 g, Nmar(2H c1)
—|h|(M/2 + R'/2) — gm] >0, (37)
Bonin — |A(hamin + |2l hmazcs + M/2) >0, (38)
hmin - |h|(hmzn + |h|hma102 + RI/2) > 07 (39)
1
5~ Ehmaz > 0, (40)
1 — 2ehpmas > 0. (41)

and|h(t)| < § < 6* ensures that

V(t) < —eV(1). (52)
Finally, equation (15) can be deduced from (52) by lengthy
but straightforward computations that are omitted herm
Remark 3.2: From (15), it can be said that the closed-
loop system is exponentially stable in terms of the n&fm
and that the convergence p%|| to zero is exponential.
This theorem shows that a predictive feedback computed
from observer-predictor (12) can stabilize system (1) pro-
vided that the delay and its variation are sufficiently small
The Lyapunov analysis that has been done to prove the
stability allows to find explicit bounds for and k. A
gualitative analysis of these bounds and ¢* is given

First, (35), (40) and (41) can be reformulated as followgdelow. It is reminded thalt, (respectivelyi,) is the Lipschitz

hmaz < h1 @andhp,q: < ho andh,,q. < hg with

h =2 [C—“ - 56} and hy = —. (42)
2e

212
Besides, (36) can be rewritten in the following form

2
R2 R’?
(27”9) +2e - (27”9)

hmam < < h3 (43)

202

with 1
hs = —. 44
NG (44)

Conditions (38)-(39) depend simultaneously b, and
|h|. From Assumption 4, there exists> 0 such thath(t)| <
0. Thus, rearranging the terms gives o < hsa andh,,q. <
hs with

1
and 1
_ L . /
hs = 5 lomin = O(0min + R'/2)]. (46)

Similarly condition (37) depends simultaneously bp,..
andd and can be reformulated as follows,.. < hg with
(M/2+ R'/2) — sm) .

_ 1 (mg AR
T 240\ 2 20u
(47)

In order to haveh,, hs and he positive,§ has to comply
with the condition below

he

0< 6 = min(él, 52, 63) (48)
with B b
L S e e
and ) I 7
03 = m (7 icyeie sm) . (50)

Choosinge and~ sufficiently small guarantees thag and
03 are positive. In that case, taking

h(t) < hmaz < h* = min(hl, hQ, hg, h4, h5, h6) (51)

constant associated to the functior{respectivelyg) and is
defined in (5) (respectively (11)).

o For a small value of, then h;, ho and hg increase
which means that a slow convergence rate of the closed-
loop system allows larger value of the delay.

« Similarly, for a small value of, thends increases which
means that the delay dynamics can be faster for a slow
convergence rate of the close-loop system.

» For a large value of, (that appears through, and
c2), thenhs, hs; and hg decrease which means that the
admissible delay is smaller for a fast observer.

« For a large value of, (that appears througty), then
h4 decreases which means that the admissible delay is
smaller for a fast controller.

o For a large value ob, thend; andds increase which
means that the delay dynamics can be faster for a small
delay interval.

o For a small value of), then hy, hs and hg increase
which means that a slow-varying delay can have a larger
amplitude.

Simulations show that for stable system$ Kurwitz), the

real valuesh* and §* can be large. On the contrary, for
unstable systems, these bounds become very small. However,
the use of sequential sub observers-predictors is a solutio
to relax this constraint. This method is presented in the nex
section.

IV. SUB OBSERVERSPREDICTORS

The idea is similar to the one presented in [14] and [18].
However, it is extended to the time-varying delay case. In
addition, the exponential stability (only asymptotic sliab
was proved in [18]) is proved for a larger class of observers
and controllers. The technique is to design various castade
observers-predictors; Each observer-predictor will ftettie
state for a fraction of the delay denotkdThis time-varying
prediction horizon is equal to

(53)



The equations of the cascaded sub observers-predictors @jigere A — 0 1 and B = 0 )

given below 0.1 0.1 1
_ Remark 5.1: Since system (57) is unstable, memoryless
z(t) = Az(t) + Bu(t — (r —1)h(t)) predictive technique involving saturated input [3] can het
+91([Cz1(t = h(t)) — y(t)]) applied to stabilize this system.
: The controller
zi(t) = Az(t)+ Bu(t — (r — i)h(t)) (54) u(t) = Kz(t) (58)
+9i(Clzi(t — h(t)) — zi—1(t)]) _ . .
where the gainK = [-2.1, —3.1] is tuned in order to place
the eigenvalues of the delay-free system-tb and —2. A
ir(t) = Az (t) + Bu(t) Luenberger observer has been chosen to observe and predict
+9r(Clzr(t — h(t)) — 2r—1(8)]) the state of the system so
wherez; € R™, i = 1,...,r. A predictive output feedback
u(z,) that verifies Assumption 1 can be applied to stabilize 9(Ce) = LCe
system (1). ith
In order to the state the next theorem, we define the Sl% T
prediction errors L =[-1.6,-0.76]". (59)
ep, = 21(t — h(t)) — x(t) (55) The eigenvalues ofd + LC are —0.5 and —1. Unlike for
and a simple observer, the gaih can not be chosen arbitrarily

- large to impose a faster dynamics of the observer-predictor
ep:(t) = 2i(t = h(t)) — zi-1(t) (56) than of the close-loop system. Remark that controller (58)
for all i = 2,...,r. The advantage of the sequential structurand the correction terthCe comply with Assumptions 1 and
is to relax the condition on the maximum delay value that i respectively. Different delays will be introduced and the
mentioned in Theorem 1. results 1, 2 or 3 sub observers-predictors will be compared.
Theorem 2: Consider system (1), wherk(t) is known First, the performances of the method are checked with
and complies with Assumptions 3 and 4, and assume thetnstant delays. On Figure 1, the effect on stability of an
there exist a controllex and gaing; satisfying Assumptions increasing constant deldyis illustrated. Note that the delays
1 and 2 respectively. Suppose that system (1) is controfled lapplied in simulation have the same order of magnitude as
u(z,) with z, computed by sequential observers-predictorthe dynamics of the closed loop system. It can be observed on
(54). Then, there exist* € N* and ¢* > 0 such that, Figure l1a forh = 0.5 s that the system can be stabilized for
provided » > * and |h| < &%, ||=(t)|| exponentially 1,2 or 3 sub observers-predictors. However, when the delay
converges to zero. is increased tch = 1 s on Figure 1b, the single observer-
The proof, omitted for space limitations, consists of a repredictor does not guarantee the stability anymore. This is
cursive analysis combined with similar computation as ifn accordance with Theorem 1 that states that there exists
Theorem 1. a maximum bound on the delay to preserve the stability.
Remark 4.1: In previous theorem, the exponential stabil-Finally, increasing again the delay to= 1.7 s makes the
ity in the sense of the norrff’ was shown. Here, only the 2 sub observers-predictors become unstable. Howevenit ca
exponential convergence f:(t)|| is proven because of the be seen that the stability is maintained using 3 sub observer
induction proof. predictors. This is illustrates Theorem 2 that states thextet
Theorem 2 shows that the condition on the delay size exists a minimum number of sub observers-predictors to
in Theorem 1 can be overcame by the use of sub observeggtarantee stability.
predictors. There is still a condition on the delay rate higt ~ On Figure 2, a time-varying delay affects the input of
condition cannot be removed without any knowledge of theystem (57). One can see that the system is stabilized using
future values ofh. The minimum number of sub observer-2 sub observers-predictors.
predictor has to be chosen such th#ét) < h* whereh* is
defined in Theorem 1. VI. CONCLUSION
The result of Theorem 2 (and 1) holds for any given con- ) )
troller w and a given correction term In practice, choosing |t has been shown that a single dynamic system can
a “slower” controller and a “slower” correction term allowseStimate and predict (approximately) the future state of

to reduce the number of sub observers-predictors. the system for a sufficiently slow time-varying delay. The
Above results are illustrated by simulation in the nexgdvantage of this method is that it does not require an iategr
section. discretization. Using sequential observers-predictdosva
to stabilize the system for an arbitrarily long delay preadd
V. SIMULATION it is sufficiently slow-varying. The exponential stabilitg
An unstable second order system is used to illustrate aboterms of a particular norm is proven and explicit bounds are
results provided. The extension to nonlinear systems is considered

#(t) = Az(t) + Bu(t — h(t)) (57) for future developments.
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Fig. 1: Influence of the number of sub-predictors with

constant delays

REFERENCES

[1] J.-P. Richard, “Time-delay systems: an overview of someent

advances and open problemAfitomatica, vol. 39, no. 10, pp. 1667—

1694, 2003.

K. Gu and S.-I. Niculescu, “Survey on recent results ie 8tability

and control of time-delay systemsJournal of dynamic systems,

measurement, and control, vol. 125, no. 2, pp. 158-165, 2003.

F. Mazenc, S. Mondié, and S.-I. Niculescu, “Global asyotip sta-

bilization for chains of integrators with a delay in the inpuEEE

Trans. Autom. Control, vol. 48, no. 1, pp. 57-63, 2003.

H.-L. Choi and J.-T. Lim, “Stabilization of a chain of egrators with

an unknown delay in the input by adaptive output feedbatkfEE

Trans. Autom. Control, vol. 51, no. 8, pp. 1359-1363, 2006.

S. Y. Yoon and Z. Lin, “Truncated predictor feedback cohtfor

exponentially unstable linear systems with time-varyingut delay,”

Systems and Control Letters, vol. 62, no. 10, pp. 837-844, 2013.

J.-P. Richard, F. Gouaisbaut, and W. Perruquetti, i8§dnode control

in the presence of delayRybernetica, vol. 37, no. 3, pp. 277-294,

2001.

L. Mirkin and N. Raskin, “Every stabilizing dead-time mwoller has

an observer-predictor-based structusgjtomatica, vol. 39, no. 10, pp.

1747-1754, 2003.

[8] O. J. M. Smith, “Closer control of loops with dead timeZhemical
Engineering Progress, vol. 53, no. 5, pp. 217-219, 1957.

[9] A. W. Olbrot, “Stabilizability, detectability, and spgum assignment

for linear autonomous systems with general time delayg2E Trans.

Autom. Control, vol. 23, no. 5, pp. 887-890, 1978.

W. Kwon and A. Pearson, “Feedback stabilization of dinsystems

with delayed control 1EEE Trans. Autom. Control, vol. 25, no. 2, pp.

266—269, 1980.

Z. Artstein, “Linear systems with delayed controls: éduction,”| EEE

Trans. Autom. Control, vol. 27, no. 4, pp. 869-879, 1982.

(2]

(3]

(4]

(5]

(6]

(7]

[10]

[11]

20 T

2 sub-predictors
151 .

i i i
0 5 10 15 20 25 30
t (sec)

Fig. 2: Time-varying delay» = 0.9 + 0.7sin(0.5¢) s

[12] K. Watanabe and M. Ito, “A process-model control forelam systems
with delay,” IEEE Trans. Autom. Control, vol. 26, no. 6, pp. 1261—
1269, 1981.

V. Van Assche, M. Dambrine, J.-F. Lafay, and J.-P. RidhdSome
problems arising in the implementation of distributedagekontrol
laws,” in Conference on Decision and Control, Phoenix, USA, 1999.
G. Besancgon, D. Georges, and Z. Benayache, “Asympstéte pre-
diction for continuous-time systems with delayed input apglication
to control,” in European Control Conference, Kos,Greece, 2007, pp.
1786-1791.

A. Germani, C. Manes, and P. Pepe, “A new approach toe stat
observation of nonlinear systems with delayed outplEEE Trans.
Autom. Control, vol. 47, no. 1, pp. 96-101, 2002.

N. Kazantzis and R. A. Wright, “Nonlinear observer dgsiin the
presence of delayed output measuremeigstems & Control Letters,
vol. 54, no. 9, pp. 877-886, 2005.

T. Ahmed-Ali, E. Cherrier, and F. Lamnabhi-Lagarrigu€ascade
high gain predictors for a class of nonlinear systemlEEE Trans.
Autom. Control, vol. 57, no. 1, pp. 221-226, 2012.

M. Najafi, S. Hosseinnia, F. Sheikholeslam, and M. Kaatini,
“Closed-loop control of dead time systems via sequentiab- su
predictors,”International Journal of Control, vol. 86, no. 4, pp. 599—
609, 2013.

T. Ahmed-Ali, I. Karafyllis, M. Krstic, and F. Lamnabfiagarrigue,
“Robust stabilization of nonlinear globally lipschitz dgl systems,”
in Recent Results on Nonlinear Delay Control Systems, ser. Advances
in Delays and Dynamics, M. Malisoff, P. Pepe, F. Mazenc, and
I. Karafyllis, Eds. Springer International Publishing,1%) vol. 4,
pp. 43-60.

I. Karafyllis, M. Krstic, T. Ahmed-Ali, and F. Lamnabtiagarrigue,
“Global stabilisation of nonlinear delay systems with a @aat
absorbing set,1nternational Journal of Control, vol. 87, no. 5, pp.
1010-1027, 2014.

M. Krstic, “Lyapunov tools for predictor feedbacks fdelay systems:
Inverse optimality and robustness to delay mismatch,Aimerican
Control Conference, Seattle, USA, 2008.

M. T. Nihtila, “Adaptive control of a continuous-timeystem with
time-varying input delay,"Systems & Control Letters, vol. 12, no. 4,
pp. 357-364, 1989.

[23] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]



