
HAL Id: hal-01424769
https://hal.science/hal-01424769v1

Submitted on 2 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Sum-Radii Clustering
Nicolas K Blanchard, Nicolas Schabanel

To cite this version:
Nicolas K Blanchard, Nicolas Schabanel. Dynamic Sum-Radii Clustering. WALCOM 2017, Mar 2017,
Hsinchu, Taiwan. �hal-01424769�

https://hal.science/hal-01424769v1
https://hal.archives-ouvertes.fr


Dynamic Sum-Radii Clustering ?

Nicolas K. Blanchard1 and Nicolas Schabanel2

1 U. Paris Diderot (France), ENS Paris
http://www.irif.univ-paris-diderot.fr/users/nkblanchard

2 CNRS, U. Paris Diderot (France), IXXI, U.Lyon (France),
http://www.irif.univ-paris-diderot.fr/users/nschaban

Abstract. Real networks have in common that they evolve over time
and their dynamics have a huge impact on their structure. Clustering
is an efficient tool to reduce the complexity to allow representation of
the data. In 2014, Eisenstat et al. introduced a dynamic version of this
classic problem where the distances evolve with time and where coher-
ence over time is enforced by introducing a cost for clients to change
their assigned facility. They designed a Θ(lnn)-approximation. An O(1)-
approximation for the metric case was proposed later on by An et al.
(2015). Both articles aimed at minimizing the sum of all client-facility
distances; however, other metrics may be more relevant. In this article we
aim to minimize the sum of the radii of the clusters instead. We obtain
an asymptotically optimal Θ(lnn)-approximation algorithm where n is
the number of clients and show that existing algorithms from An et al.
(2015) do not achieve a constant approximation in the metric variant of
this setting.

Keywords: Facility Location, Approximation Algorithms, Clustering,
Dynamic Graphs

1 Introduction

Context. During the past decade, a massive amount of data has been collected
on diverse networks such as the web (pages and links), social networks (e.g.,
Facebook, Twitter, and LinkedIn), social encounters in hospitals, schools, com-
panies, conferences as well as in the wild [13, 15, 16]. These networks evolve over
time, and their dynamics have a considerable impact on their structure and ef-
fectiveness [14]. Understanding the dynamics of evolving networks is a central
question in many applied areas such as epidemiology, vaccination planning, anti-
virus design, management of human resources, and viral marketing. A relevant
clustering of the data is often needed to design informative representations of
massive data sets. Algorithmic approaches have already yielded useful insights
on real networks such as the social interaction networks of zebras [17]. In most
experiments, data is recorded first and analyzed next, see [15]. The complete evo-
lution of the network is thus known from the beginning, as opposed to the online

? This work was supported by Grants ANR-12-BS02-005 RDAM and IXXI-Molecal.



2 N. K. Blanchard and N. Schabanel

setting where one must continuously adapt a partial solution to new incoming
data [7] .

Previous work. Given a set of facilities, a set of clients, and a measure of dis-
tances between them, the facility location problem consists in opening a subset
of facilities and assigning the clients to open facilities so as to minimize a trade-
off between the cost of opening the facilities and the cost corresponding to the
distance between the clients and their assigned facilities. This problem and its
many variants have been extensively studied since the 1960s, using tools such
as LP-rounding [11], primal-dual methods [3] or greedy improvements [8]. The
uncapacited version, where any number of clients can connect to a facility, is
considered here as it is known to be a successful approach to clustering when
the number of clusters is not known a priori.

In 2014, [5] introduced a dynamic version of this classic problem to handle
situations where the distances evolve with time and where one looks for an
assignment consistent with the evolution of the distances. To achieve a balance
between the stability of the solution and its adaptability, they introduced a cost
to be paid every time a client is assigned to a new facility. As shown in [5],
in many natural scenarios the output solutions follow the observed dynamic
better than independent optimizations of consecutive snapshots of the evolving
distances. This has been further refined in [1], yielding an O(1)-approximation
algorithm when the distances are metric (i.e., follow the triangular inequalities).

Our approach: Dynamic Sum-Radii Clustering. In both articles [5, 1], the dis-
tance cost in the objective consisted of the sum of all distances between every
client and its assigned facility over all time steps. Whereas this distance cost
makes perfect sense in the case where clients need to physically connect to a
facility, other metrics are preferred in the context of clustering. The present
article introduces a dynamic version of the problem studied in [3]. We aim at
minimizing the radii of the clusters, i.e. the sum over all open facilities of their
distances to their farthest assigned client at each time step. This objective fo-
cuses on the closeness of the clients to their assigned facility regardless of the
number of clients assigned to each open facility. It is thus better suited to situa-
tions with clusters of very different sizes which are typically observed in nature
where groups tend to follow power laws in size [13]. Optimal solutions for this
objective cost have been explored in [6], where it was shown that even in the
1-dimensional euclidean space, optimal solutions can have surprisingly complex
structures.

In the general setting, we introduce a primal LP-rounding algorithm that
achieves a logarithmic approximation, which is shown to be asymptotically op-
timal unless P = NP . We then turn to metric distances and show that existing
algorithms from [1] do not achieve a constant approximation in this setting, as
the lack of cooperation between the clients is not being absorbed by the sum-
of-radii objective anymore. The next section presents a formal definition of the
problem and states our main results, proved in the following sections.



Dynamic Sum-Radii Clustering 3

2 Definition and Main Results

2.1 Definitions

Dynamic Sum-Radii Clustering (DSRC). Given a set F of m facilities, a set
C of n clients, their respective distances (dijt)i∈F,j∈C,t∈[T ] for each time step
t ∈ [T ] = {1, . . . , T}, an opening cost fit > 0 for each facility i at time t, and
a changing cost g > 0, the goal is to open at each time step t a subset Ot ⊆ F
of facilities and to assign each client j ∈ C to an open facility ϕjt ∈ Ot so as to
minimize the sum of:

Opening cost:
∑
t∈[T ]

∑
i∈Ot

(fit + rit), where for each fa-
cility i ∈ Ot, rit denotes its open radius: rit =
max{dijt : j ∈ C s.t. j is assigned to i at time t}.

Changing cost:
∑
t∈[T−1]

∑
j∈C g · 1{ϕjt 6=ϕj(t+1)}.

Precisely, this problem is strictly equivalent to the linear program (1), inspired
by [3, 5], when its variables xijt, yirt, zijt are restricted to integral values in {0, 1}.
Their integral values are interpreted as follows: xijt = 1 iff Client j is assigned
to Facility i at time t (Constraint (1.a)); yirt = 1 iff Facility i is open with
radius r at time t (Constraint (1.b)); zijt = 1 iff Client j is assigned to Facility i
at time t+1 and was not assigned to i at t (Constraint (1.c)). Note that one can
restrict the total number of yirt variables to mnT as one shall only consider the
radii r equal to some distance dijt for some j ∈ C, for each facility i and time t.

Minimize
∑

i∈F,r>0,t∈[T ]

yirt · (fit + r) + g ·
∑

i∈F,j∈C,t∈[T−1]

zijt

such that (1.a)
∑
i∈F

xijt > 1 (∀j ∈ C, t ∈ [T ])

(1.b)
∑

r : r>dijt

yirt > xijt (∀i ∈ F, j ∈ C, t ∈ [T ])

(1.c) zijt > xij(t+1) − xijt (∀i ∈ F, j ∈ C, t ∈ [T − 1])

and xijt, yijrt, zijt > 0.


(1)

We denote by LP the optimum (fractional) value of (1), and for each time
period U ⊆ [T ], by openCostU (x, y, z) =

∑
i∈F,r>0,t∈U yirt · (fit + r) the frac-

tional opening cost of solution (x, y, z) during the time period U , and by
changeCostU (x, y, z) = g ·

∑
i∈F,j∈C,t∈Ur{maxU} zijt the fractional changing cost

of (x, y, z) during U . The index U is omitted when U = [T ].

2.2 Preprocessing

As in [5], our algorithm first preprocesses an optimal solution to this LP in order
to obtain some useful properties. This preprocessing, detailed in the appendix,
uses a rounding scheme for the zijt to determine at which discrete time the clients
must change their assigned facility. This is achieved by the following Lemma.



4 N. K. Blanchard and N. Schabanel

Lemma 1 (Direct adaptation from [5]). Given an optimal solution to
LP (1), one can compute a feasible solution (x, y, z) together with a collection of
time intervals I1,1, . . . , I1,`1 , . . . , In,1 , . . . , In,`n such that:

– for all j ∈ C: Ij,1, . . . , Ij,`j form a partition of [T ]; and
– for all i ∈ F , j ∈ C and k ∈ [`j ]: xijt is constant during each time interval
Ijk; and

– for all j ∈ C: `j − 1 ≤ 2
∑
i∈F,t∈T zijt; and

– the new solution costs at most twice as much as the original.

Moreover, one can assume that for all i, j and t: xijt 6 1 and
∑
r yirt 6 1.

2.3 Our main results

Let us first recall that thanks to a standard reduction from the Set Cover problem
(folklore) to the (static) Facility Location problem, the Dynamic Sum-Radii
Clustering problem has no (1 − o(1)) lnn-approximation unless P = NP (see
Proposition 1 in appendix).

We then present three algorithms for the DSRC problem. Algorithms 1 and 2
(Sections 3.1 and 3.2) allow us to obtain a randomized approximation with
optimal approximation ratio Θ(lnn) for the general (non-metric) case:

Theorem 1 (Algorithm). With probability at least 1/4, Algorithm 2 (page 7)
outputs in polynomial expected time a valid solution to the DSRC problem, with
cost at most 8 ln(4n) ·OPT.

Note that the success probability and the approximation ratio can be im-
proved by independent executions of the algorithm. The techniques in Section 3.2
also apply to the algorithm in [5] in the non-metric setting, improving its ap-
proximation ratio from Θ(log nT ) to Θ(log n). We then turn to the metric case
and propose a candidate approximation algorithm based on the work [1], but
show, by exhibiting a hard metric instance family, that its approximation ratio
is no better than Ω(ln lnn) for the sum-of-radii objective.

Theorem 2 (Hard metric instance). There is a metric instance family for
which the Sum-of-radii ANS algorithm (algorithm 3, page 8) outputs solutions
with cost Ω(log log n) OPT w.h.p.

3 Tight approximation algorithm for the general case

3.1 O(log(nT ))-approximation

As in [5], the first step consists in preprocessing an optimal solution to the LP
in order to determine when clients should change the facility they’re assigned to.
Lemma 1 allows us to focus only on the opening cost within each time interval
Ijk independently for each client j. Indeed, if one can assign a unique facility ϕjk
to client j during each interval Ijk, then the changing cost for j is at most the



Dynamic Sum-Radii Clustering 5

number of intervals minus one times g. As Lemma 1 ensures that for all j ∈ C:
`j−1 ≤ 2

∑
i∈F,t∈T zijt, the resulting changing cost is at most twice the amount

paid by the optimal solution in the original LP. It is worth noting, though, that
the intervals are not the same for each client and are not synchronized. The
dynamic dimension of the problem is hence simplified but not eliminated.

From now on, we can assume that the clients don’t change facilities inside
each of their intervals (which is verified by our algorithms). Hence, we shall focus
on deciding which facilities to open, when, and with which radius, and how to
assign each client to one of them during each of their time intervals. Algorithm 1
does that by combining log nT partial solutions, each of expected cost LP and
obtained by opening a set of random facilities according the yirt.

Algorithm 1: O(log nT )-approximation

Preprocess an optimal solution to LP (1) to obtain a feasible solution (x, y, z) as in
Lemma 1.

Let Z = `1 + · · ·+ `n be the total number of time intervals Ijk associated to
(x, y, z) by Lemma 1.

Set rit := −∞ for all i ∈ F and t ∈ [T ].
repeat ln(2Z) times

for each facility i do
Draw a random variable Yi uniformly and independently in [0, 1].
for every time t do

Let ρit := max{ρ :
∑
r>ρ yirt > Yi} (ρit = −∞ if the set is empty)

Set rit := max(rit, ρit) and open Facility i with radius rit at time t if
rit > 0.

for each client j and time interval Ijk during which j is not yet covered do
Connect j to any open facility i (if there is one) that covers j during the

whole time interval Ijk (i.e., s.t. dijt 6 rit for all t ∈ Ijk).

We first analyse the cost of the algorithm, then prove that the solution is
indeed correct.

Lemma 2. The expected increase in total opening cost at each iteration of the
repeat loop is at most

∑
irt yirt(fit + r).

Proof. The probability that Facility i is open with radius r at each iteration
of the repeat loop is: Pr{ρit = r} = Pr

{
Yi 6

∑
ρ>r yiρt and Yi >

∑
ρ>r yiρt

}
=

Pr{Yi ∈ (γ, γ + yirt]} = yirt where γ =
∑
ρ>r yiρt and recalling that γ+ yirt 6 1

by Lemma 1. It follows that the expected opening cost for Facility i at time t
is precisely

∑
r yirt(fit + r). As the radius of each facility i increases by at most

ρit at each iteration of the repeat loop, the expected total added opening cost
of each loop is thus at most:

∑
it

∑
r yirt(fit + r).



6 N. K. Blanchard and N. Schabanel

Lemma 3. For each client j and each time interval Ijk, at the end of each
iteration of the repeat loop, the probability that j is not covered during Ijk is at
most 1/e.

Proof. Fix a client j and a time t. Client j is covered if there is an open facility i
with radius at least dijt, i.e. s.t. Yi 6

∑
r>dijt

yirt. As xijt 6
∑
r>dijt

yirt by

constraint (1.b), j is thus covered by i as soon as Yi 6 xijt which happens with
probability xijt. As the Yis are independent, j is not covered by any facility
at time t with probability at most

∏
i(1 − xijt) 6

(
1 −

∑
i xijt/m

)m
6 (1 −

1/m)m 6 1/e by concavity of the logarithm and constraint (1.a). Since the xijts
are constant for t ∈ Ijk, this also bounds from above the probability that j is
not covered during the whole time interval Ijk.

Theorem 3. With probability 1/4, Algorithm 1 outputs a valid assignment of
clients to open facilities with cost at most:

8 ln(2Z) · LP 6 8 ln(2Z) ·OPT 6 8 ln(2nT ) ·OPT.

Proof. As the iterations of the repeat loops are independent, each client j
has a probability at most 1/eln(2Z) = 1/2Z of not being covered during each
interval Ijk. The union bound taken over all intervals Ijk ensures that the
probability that some client is not covered at some time t by an open facil-
ity is at most Z/2Z = 1/2 at the end of the algorithm. Let A be the event
that all clients are covered at all time steps by the assignment ϕ computed
by Algorithm 1, and Ā its complementary event. Then, the E[cost(ϕ)|A] =
(E[cost(ϕ)] − E[cost(ϕ)|Ā] Pr Ā)/PrA 6 E[cost(ϕ)]/PrA 6 2 · ln(2Z) · 2 LP
by the previous lemmas. By Markov’s inequality, we conclude that with prob-
ability at least 1/4, Algorithm 1 produces a valid assignment of the clients to
open facilities with total cost at most 2 · 4 ln(2Z) LP 6 8 ln(2nT ) OPT, since
Z 6 nT obviously.

3.2 O(log n)-approximation

Concatenating two partial assignments around time t does not change the open-
ing cost of each partial assignment and increases the changing cost by at most
g · n. We can greedily split the instance into several time periods, making sure
that at least n and no more than 2n intervals Ijk end in each time period (except
for the last). Doing so, the cost of stitching together two consecutive partial as-
signments is at most n× g, hence no higher than the changing cost already paid
within each part. By running Algorithm 1 on each partial solution correspond-
ing to a time period and stitching the different solutions, we at most double
the changing cost, increasing the bound to 4 changeCost(x, y, z). On each time
period with T ′ intervals, the opening cost is at most 8 ln(2T ′) openCost(x, y, z),
with T ′ ≤ 2n. This implies that the overall approximation ratio is 8 ln(4n) for
Algorithm 2 on the facing page, proving Theorem 1.

Note that this technique also applies to the algorithm in [5], improving
the approximation ratio in the non-metric hourly sum-of-distances setting from
O(log nT ) to O(log n).



Dynamic Sum-Radii Clustering 7

Algorithm 2: Batch O(log n)-approximation

Preprocess an optimal solution to LP (1) to obtain a feasible solution (x, y, z) as in
Algorithm 1.

if Z 6 2n then
Run Algorithm 1

else
Partition time greedily into Q periods Uq = [tq, tq+1) where Q and (tq)q∈[Q+1]

are defined as follows: t1 = 1, and tq is defined inductively as the largest t 6 T
such that at most n intervals Ijk end between tq−1 and t− 1. Set
tQ+1 = T + 1.

for q = 1..Q do
Run several times Algorithm 1 with (x, y, z) on the instance restricted to

time period Uq until it outputs a valid solution with opening cost at most
8 ln(4n) openCostUq

(x, y, z).

Output the concatenation of the computed assignments in each time period Uq.

Proof (Proof of Theorem 1). Assume Z > 2n. As the instance restricted to inter-
val Uq contains Zq 6 2n overlapping intervals Ijk, Algorithm 1 outputs a solution
for this restriction with opening cost at most 8 ln(4n) openCostUq

(x, y, z) with
probability at least 1/4. It follows that Algorithm 1 is run at most four times on
expectation for each q, hence the polynomial expected time. The changing cost
paid for the concatenating of the solutions is then at most :

g · (Z1 + · · ·+ ZQ + n(Q− 1)) 6 g(Z+n·Zn ) 6 3g(Z−n) 6 6 changeCost(x, y, z)

It follows that the solution output by Algorithm 2 costs at most :

8 ln(4n) openCostUq
(x, y, z) + 6 changeCost(x, y, z)6 max(6, 8 ln(4n)) LP

6 8 ln(4n) OPT .

4 Lower bounds for the Metric Case

In this section, we focus on the metric case, i.e. where the distances dxyt (with
x, y ∈ F ∪ C) verify the triangle inequalities at all times. Exploiting this ad-
ditional property, [1] proposed an O(1)-approximation (referred to here as the
ANS algorithm) for the Metric Dynamic Facility Location problem with the sum-
of-distances objective. For the sum-of-radii objective studied here, it is unclear
whether an O(1)-approximation exists when the distances are metric. Indeed,
we were not able to obtain such an O(1)-approximation algorithm for metric
DSRC. However, we show in this section that the natural adaptation of the
ANS algorithm to the sum-of-radii setting cannot achieve any approximation
ratio better than Ω(ln lnn) by exhibiting a hard metric instance family. This
example demonstrates that the main issue is that clients have to collaborate to
make the right choices in order to avoid rare errors that would be absorbed by
the sum-of-distances objective but not by the sum-of-radii objective.



8 N. K. Blanchard and N. Schabanel

Adapting the ANS algorithm. The original ANS algorithm preprocesses the so-
lution of the LP further so that every variable in the LP only takes one positive
value besides 0. This is obtained by duplicating each facility at most nT times,
so that only one client xijt-variable contributes to each of the copies of the
yirt-variables and for one radius r only.

Lemma 4 ([1]). Given an optimal solution (x∗, y∗, z∗) to LP (1), one can com-
pute an equivalent instance together with a feasible solution (x′, y′, z′) to the
corresponding LP s.t.:

– each facility i is replaced in the new instance by a set of (at most nT ) virtual
facilities located at the same position as i at all times and with opening cost
fit; and

– (x′, y′, z′) verifies the properties in Lemma 1; and

– for each virtual facility i′, there is a constant ci′ and a client j such that
for all time steps t, x′i′jt ∈ {0, ci′}, y′i′,dijt,t ∈ {0, ci′} and y′i′rt = 0 for all
r 6= dijt; and

– the solution to the original LP is obtained for each facility by summing up
the fractional solutions over its virtual copies.

Algorithm 3: Sum-of-radii ANS algorithm (from [1])

Preprocess an optimal solution to LP (1) according to Lemma 4.
For each virtual facility i′ ∈ F ′: draw a random variable Yi′ according to the

exponential distribution of parameter ci′ independently.
For each client j: draw a uniform random variable Xj from [0, 1] independently.
for each time step t ∈ [T ] do

Starting from an empty bipartite Clients-Facilities graph Gt:
• add an arc from each client j to the facility i′ with minimal Yi′ among those

with xi′jt > 0;
• add an arc from each facility i′ to the client j with smallest Xj among those

with xi′jt > 0.
Open at time t every facility whose virtual copy belongs to a circuit in Gt with

the corresponding radius, and assign each client j to the open facility at the
end of the directed path originating from j enlarging its radius accordlingly.

Algorithm 3 presents the transcription of the ANS algorithm to the sum-
of-radii objective. The only difference lies in using LP (1) instead of the linear
program with the sum-of-distance objective in [1].



Dynamic Sum-Radii Clustering 9

4.1 A hard instance family

The key to the performance of the ANS algorithm for the sum-of-distances ob-
jective in [1] is that the Yis and Xjs drop exponentially when one follows the
directed path originating from a client, which ensures that just enough facilities
are open, and that all the clients are a constant factor away from their ideal
facility on expectation. Deviations from the expectation are absorbed by the
summation in the objective. In the following, we will exhibit a metric instance
showing that the adaptation to the sum-of-radii objective (Algorithm 3) cannot
obtain an approximation ratio better than Ω(ln lnn).

The static arborescent instance Th. Consider for now the static (one time-step)
instance Th where the metric distance is defined by the L∞ norm over Rh, where
the facilities are positioned at (±20,±2−1, . . . ,±2−k+1, 0, . . . , 0) for 0 6 k < h
and where the clients are positioned at (±20,±2−1, . . . ,±2−h+1). Facilities with
coordinates in (±20,±2−1, . . . ,±2−k+1, 0, . . . , 0) are said to be of level k; there
are 2k of them. We denote by λi the level of Facility i. We organize the instance
as a tree by declaring that the client or facility located at u = (u1, . . . , uh) is
a descendant of all the facilities located at (u1, . . . , uk, 0, . . . , 0) for 0 6 k < h.
The instance Th consists thus of n = 2h clients and m = 2h − 1 facilities. The
distance between any two locations u and v in the tree is equal to 2−k+1 where
k is the level of their lowest common ancestor. All facilities have zero opening
cost. Figure 1 shows a flat representation of T5.

Fig. 1. A flat representation of the instance T5 where each level of the tree lies in
a different dimension. The clients and facilities are represented by circles and stars
respectively. The levels of the facilities are represented by stars of decreasing size and
edges of decreasing thickness.

Lemma 5 (Proof omitted, see appendix p. 14). The optimal solutions to
LP (1) for the static instance Th have value 1 and the uniform solution, which
opens a fraction 1/h of every facility i with radius 2−λi and assigns each client
to each of the h facilities covering it with fraction 1/h, is optimal.

We will first show that the adaptation of the ANS algorithm outputs a solu-
tion with cost Ω(log log n)� 1 w.h.p. when presented with the uniform solution
to LP (1) for Th, and then show how to design a dynamic instance that forces
LP (1) to output this uniform solution.



10 N. K. Blanchard and N. Schabanel

Running the adapted ANS algorithm on Th with the uniform solution. The pre-
processing leaves the uniform solution unchanged and the random variables Yi
are i.i.d. according to an exponential law of parameter 1/h. In order to improve
readability, let us introduce Ui = 1− exp(−Yi/h) so that the Uis are uniformly
distributed and ordered as the Yis. The arcs in the graph G built by the algo-
rithm at time 1 then consist of an arc for each client j, pointing to its ancestor
facility i with the smallest Ui, and of an arc for each facility i, pointing to its
descendant client j with the smallest Xj .

Lemma 6 (Proof omitted, see appendix p. 14). The directed paths starting
from a client in G have length at most 4 as illustrated by Fig. 2.

i'

j'

i

j

Level k

Level l

Level h

Fig. 2. Paths in the graph G built by ANS algorithm from the uniform solution for Th.

To prove the Ω(ln lnn) lower bound (conditioned to the production of the
uniform solution when solving LP (1)), we first need a combinatorial lemma,
proved in the appendix. Let’s consider a complete rooted binary tree Aq of
height q where each node is labelled by a uniform random real chosen from [0, 1]
independently.

Lemma 7 (Proof omitted, see appendix p. 15). The probability pq(x) that
there is a branch in Aq where all the nodes have label > x verifies:

– if x < 1
2 , then 2− 1

1−x < pq(x) < 2− 1
1−x + (2x)q+2

4(1−x) and pq(x)↘ 2− 1
1−x .

– if x > 1
2 , then 0 < pq(x) < (1− x)(2(1− x))q and pq(x)↘ 0.

Using several technical lemmas in the appendix, we can prove the following:

Lemma 8 (Proof omitted, see appendix p. 15). The expected opening cost
of a facility i of level k is at least 2−k(ln k − β)/8h for a universal constant β.

Which allows us to conclude that:

Lemma 9. The expected opening cost of the solution output by the sum-of-radii
ANS algorithm 3 from the uniform solution to LP (1) for Th is Ω(ln lnn).

Proof. By linearity of expectation and the lemmas above, E[openCost] >∑h
k=10 2k · 2−k(ln k − β)/8h = Θ(

∑h
k=1(ln k)/h) = Θ(lnh) = Θ(ln lnn) since

n = 2h.



Dynamic Sum-Radii Clustering 11

4.2 Forcing the uniform fractional LP solution

Our lower bound for the Th instance relies on running the algorithm on the
uniform solution. Unfortunately, this solution is not a vertex of LP (1) and will
not be output by any linear solver. We thus extend the instance Th to a dynamic
instance Dh whose optimal solution is unique and uniform, concluding the proof
of Theorem 2. This Dh instance (detailed in the appendix) consists in several
initial time steps with very low cost where the clients and facilities are mixed
together (enforcing then the need for uniformity in the optimal solution), and a
final time step equivalent to Th.

Lemma 10 (Proof omitted, see appendix p. 18). All optimal solutions to
the instance Dh are uniform on the last time step.

We can now conclude the proof of Theorem 2 through two corollaries.

Corollary 1 (Proof omitted, see appendix p. 18). Algorithm 3 produces
the same output for the last time step of Dh as for Th.

Let Dn2

h be the instance obtained by making n2 independent copies of Dh

located at distant locations in Rh. The Hoeffding bound allows us to strengthen
the result above by showing that the approximation ratio sum-of-radii ANS
algorithm 3 on this new instance is at least Ω(ln lnn) with high probability,
when run from the uniform solution to LP (1):

Corollary 2. The opening cost of the solution output by the sum-of-radii ANS
algorithm 3 from the uniform solution to LP (1) for Dn2

h is Ω(ln lnn) with
probability 1− 2−n.

Proof. We directly apply the Hoeffding bound, observing that the cost of the
solution output by sum-of-radii ANS algorithm 3 on Dh is at most twice the
cost on Th, hence at most O(log n).

5 Conclusion and Open Problems

We have obtained an asymptotically optimal O(log n)-approximation algorithm
for DSRC in the general case, with a technique that translates to the sum-of-
distances case. We have also shown that the approximation ratio for the algo-
rithm in [1] is no better than Ω(ln lnn) for metric instances. This leaves open
the question of whether an O(1)-approximation algorithm exists in the metric
case. Further experimental work has to be conducted to evaluate how these al-
gorithms can help improve the representation of real dynamic graphs such as
the ones in [15]. One final remark is that our algorithms all rely on the primal
formulation of LP (1) while the algorithms in [3] for the static setting rely on
the dual. Unfortunately, the dual variables seem to act evasively with respect to
time in the dynamic setting. Understanding these dual variables is a promising
direction towards an O(1)-approximation, if it exists.



12 N. K. Blanchard and N. Schabanel

References

1. Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility loca-
tion via exponential clocks. In SODA, pages 708–721, 2015.

2. Babak Behsaz and Mohammad R. Salavatipour. On minimum sum of radii and
diameters clustering. Algorithmica, 73(1):143–165, 2015.

3. Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster
diameters. J. Comput. Syst. Sci., 68(2):417–441, 2004.

4. Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC,
pages 624–633, 2014.

5. David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolv-
ing metrics. In ICALP, pages 459–470, 2014.

6. Cristina G. Fernandes, Marcio T.I. Oshiro, and Nicolas Schabanel. Dynamic clus-
tering of evolving networks: some results on the line. In AlgoTel, pages 1–4, May
2013.

7. Dimitris Fotakis and Paraschos Koutris. Mathematical Foundations of Computer
Science 2012: 37th International Symposium, MFCS 2012, Bratislava, Slovakia,
August 27-31, 2012. Proceedings, chapter Online Sum-Radii Clustering, pages 395–
406. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

8. Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location
algorithms. J. Algorithms, 31(1):228–248, 1999.

9. Dorit S. Hochbaum. Heuristics for the fixed cost median problem. Math. Program.,
22(1):148–162, 1982.

10. Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming:
Solving linear programs in Õ(vrank) iterations and faster algorithms for maximum
flow. In Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, FOCS ’14, pages 424–433, Washington, DC, USA, 2014. IEEE
Computer Society.

11. Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location
problem. Inf. Comput., 222:45–58, 2013.

12. Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algorithms for
metric facility location problems. SIAM J. Comput., 36(2):411–432, 2006.

13. Mark E. J. Newman. The structure and function of complex networks. SIAM
Review, 45(2):167–256, 2003.

14. Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in
scale-free networks. Phys. Rev. Lett., 86:3200–3203, Apr 2001.

15. Juliette Stehlé, N. Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-François
Pinton, Marco Quaggiotto, Wouter Van den Broeck, C. Régis, B. Lina, and P. Van-
hems. High-resolution measurements of face-to-face contact patterns in a primary
school. PLoS ONE, 6(8):e23176, 2011.

16. Siva R Sundaresan, Ilya R Fischhoff, Jonathan Dushoff, and Daniel I Rubenstein.
Network metrics reveal differences in social organization between two fission-fusion
species, grevy’s zebra and onager. Oecologia, 151(1):140–149, 2007.

17. Chayant Tantipathananandh, Tanya Y. Berger-Wolf, and David Kempe. A frame-
work for community identification in dynamic social networks. In SIGKDD, pages
717–726, 2007.



Dynamic Sum-Radii Clustering 13

A Omitted proofs

A.1 Proof of Lemma 1 (Preprocessing)

Proof (Lemma 1). The proof is adapted to our LP and heavily inspired by the
one in [5] that was used again in [1], with a slightly different LP.

Given a optimal solution (x∗, y∗, z∗) to LP (1), we want to compute
a feasible solution (x, y, z) together with a collection of time intervals
I1,1, . . . , I1,`1 , . . . , In,1, . . . , In,`n such that:

– for all i ∈ F , j ∈ C, t ∈ [T ], r > 0: xijt 6 2x∗ijt and yirt 6 2y∗irt; and

– for all j ∈ C: Ij,1, . . . , Ij,`j form a partition of [T ]; and

– for all i ∈ F , j ∈ C and k ∈ [`j ]: xijt is constant during each time interval
Ijk; and

– for all j ∈ C: the total number of time interval changes for Client j, `j − 1,
verifies: `j − 1 6 2

∑
it z
∗
ijt.

To this end we set for each client j, tj0 = 0 and we are looking iteratively for

tk+1, equal to the biggest t ∈ (tjk, T + 1] such that
∑
i∈F

(
mintjk≤u≤t

x∗ijt

)
≥ 1

2 .

If tjk+1 = T + 1 we stop here, if not we create a new interval corresponding to

[tjk, t
j
k+1] and look for tjk+1, until we end with t`j = T + 1. We now have the

correct intervals, but the third condition isn’t satisfied yet. To do so, for each
interval we set xijt = 2 ×mintjk−1≤u≤tk

x∗iju. By construction, 2
∑
i∈F xiju ≥ 1.

By setting each yirt = 2× y∗irt we also make sure that xijt ≤
∑
r≥dijt yirt, so the

new solution is still feasible.

We can see that if between tjk and tjk+1 we have
∑
i∈F

(
mintjk−1≤u≤t

xuij

)
≤ 1

2 ,

it means that
∑
t∈(tjk,t

j
k+1]

ztij ≥ 1
2 . This in turn means that for each interval the

initial solution paid at least 1
2g, and here we pay at most g (to completely change

all the xtij between one interval and the next).

Hence both the changing cost and the facility opening cost are at most mul-
tiplied by 2 to achieve the property, and this preprocessing can be done in linear
time. For the last assertion mentioned in the lemma, note that, if at any point
xijt > 1, we can lower it to 1 without increasing any cost, and all clients will still
be covered at all time steps. Similarly, if at some point for some i,

∑
r yirt > 1,

we can reduce the value of the positive yirt with the smallest r, which improves
the cost of the solution and preserves the constraints.



14 N. K. Blanchard and N. Schabanel

A.2 Hardness

Proposition 1 (Hardness, folklore). The Dynamic Sum-of-Radii Clustering
problem admits no (1− o(1)) lnn-approximation unless P = NP .

Proof. We consider a Set Cover instance A1, . . . , Am ⊆ [n] and create an instance
of DSRC with opening cost fi = 1, changing cost g =∞ and T = 1. It consists
of one facility i per set Ai and a set of n clients, one per element. We set the
distances dij to 0 if j belongs to Ai and to∞ otherwise. Each solution with finite
cost to the DSRC corresponds to a collection of sets covering all the elements
of the Set Cover instance with the same cost, and reciprocally. An algorithm
that would guarantee a (1 − o(1)) × lnn approximation on DSRC would then
guarantee the same for the Set Cover problem which would imply P = NP
according to [4].

Remark 1. In the theorem we set g to ∞ for ease of reading but it is enough
to set it to m. Moreover, this result uses a single time step hence also holds for
(non-metric) Static Clustering with Sum of Radii as well.

A.3 Proofs for the hard instances Th and Dh

Proof of the two Lemmas about instance Th

Proof (Lemma 5). We proceed by recurrence. There is only one optimal solution
in T0 (open the only facility with radius 1) and it costs 1. Assume that all optimal
solutions cost 1 for Th−1. Consider an optimal solution in Th. Note that if a
fraction α of a facility of level k > 1 is used to cover some client in the opposite
subtree of the root, it has to be open with radius at least 2, and one can save
α by opening instead a fraction α of the root facility. Now, if a fraction α of
the facility of level 0 is open, as no facilities are used to cover each other’s side,
we are left with two instances of Th−1 downscaled by (1 − α)/2, for which the
optimal cost is 2(1−α)/2 by recurrence. Hence, optimal solutions to LP (1) for
instance Th cost 1.

Finally, the uniform solution which opens a fraction 1/h of every facility i
with radius 2−λi covers every client (since they are at distance 2−k of their

level-k ancestor facility) and costs
∑h−1
k=0 2k · 2−k/h = 1; it is thus optimal.

Proof (Lemma 6). Start from a client j′ pointing to the ancestor facility i′ with
the smallest Ui′ . Let j be the client pointed by i′, i.e. its descendant of minimum
Xj . If j = j′, then the path has length 2. If j 6= j′, let i be the facility pointed
by j. Note that i is necessarily a descendant of i′ since j′ pointing to i′ implies
that Ui′ is smaller than any of its ancestors. If i = i′, the path has length 3.
Finally, if i 6= i′, as j is the client with the smallest Xj among the descendants
of i′ which include the descendants of i, Xj is also the smallest among the
descendants of i and i necessarily points to j, thus the path has length 4.



Dynamic Sum-Radii Clustering 15

Proof of Lemma 7 (Combinatorial lemma)

Proof (Lemma 7). pq(x) verifies for all q > 0:{
p0(x) = 1− x

pq+1(x) = (1− x)(1− (1− pq(x))2) = (1− x)pq(x)(2− pq(x))

If 1/2 < x < 1, then 0 < pq(x) < 2(1− x) · pq−1(x) < (1− x)(2(1− x))q for all
q > 0.

Now, assume that 0 < x < 1/2. Let f(p) = (1 − x)p(2 − p). f is in-
creasing from [0, 1] onto [0, 1 − x], strictly convex, and verifies: f(p) = p ⇔
(p = 0 or p = 2− 1

1−x ), f ′(0) = 2(1 − x) > 1 and f ′(2 − 1
1−x ) = 2x > 0 and

2− 1
1−x 6 1− x 6 1. It follows that the sequence pq(x) = fq(1− x)↘ 2− 1

1−x .

Furthermore, let εq = pq(x)− 2 + 1
1−x . We have:

εq+1 = f(2− 1

1− x
+ εq)− 2 +

1

1− x
= εq(2x− (1− x)εq)

< 2x · εq < (2x)qε0 <
(2x)q+2

4(1− x)
,

since ε0 = −1− x+ 1
1−x = x2

1−x .

Expected cost of a facility

Before proving the Lemma, we need a few preliminary results.

Lemma 11. Each facility i is open with probability 1/h.

Proof. A facility i is open if its descendant client j with smallest Xj points to i,
i.e. if Ui is smaller than Ui′ for each i′ among the h ancestors of j. As the Xjs
and Uis are independent, this happens with probability exactly 1/h .

Let us now consider an open facility i. A client j′ which is not a descendant of
i might be assigned to i if it points to a facility i′ that points to a descendant j
of i as illustrated in Fig. 2, in which case Facility i will be open with radius
2l instead of 2k, where k and l are respectively the levels of i and the closest
common ancestor of j and j′.

Lemma 12. Given an open facility i of level k, i will end up being open with
radius at least 2−l by the sum-of-radii ANS algorithm with probability at least
2l−k/8l if k > l > 10.

Proof. Given that Facility i is open and points to a client j that points to i, i
will be open with radius at least 2−l if the following events occur together (see
Fig. 2):



16 N. K. Blanchard and N. Schabanel

(E1) The ancestor i′ of level l of i verifies: Ui′ < Ui′′ for each i′′ among the
ancestors of i′.

(E2) Xj < Xj′′ for each client j′′ descendant of the facility i′.

(E3) The subtree of i′ that does not contain i, contains a branch B leading to
some leaf j′ pointing to i′, i.e. such that Ui′′ > Ui′ for all facility i′′ ∈ B.

All probabilities in the following are conditioned to i being open and pointing to
some client j. The probability of event (E1) is 1/l as the U -values are u.i.d. The
probability of event (E2) is 2(l−h)−(h−k) = 2l−k since the X-values are u.i.d. and
since j has already the minimum X-value among the clients descending from i.
Furthermore, by Markov’s inequality, as the expected value of the minimum of
k u.i.d. reals in [0, 1] is 1

k+1 , we have that (E4) Xi <
2
k+1 with probability at

least 1
2 .

Given Xi and (E1), Xi′ is distributed as the minimum of l uniform random
reals in (Xi, 1] and its expected value is thus Xi+

1−Xi

l+1 . Consequently, given the

events (E1) and (E4), Markov’s inequality gives that with probability at least 1
2 :

Xi′ <
2
k+1 + 2

1− 2
k+1

l+1 < 1
3 for all k > l > 10. According to Lemma 7, if Xi′ <

1
3 ,

then event (E3) occurs with probability at least 2 − 1
1− 1

3

= 1
2 . We conclude by

independence of the X- and U -values that (E1), (E2) and (E3) occur together
with probability at least 2l−k/(l × 2× 2× 2) as soon as k > l > 10.

We can now finish the proof :

Proof (Lemma 8). Let ri be the radius at which i is open (ri = 0 if i is closed).
Then Pr{ri > 2−l} = Pr{i is open} · Pr{ri > 2−l | i is open} > 2l−k/8lh. Thus,

E[ri] =
∫∞
0

Pr{ri > r}dr >
∑k
l=10 2−l2l−k/8lh = 2−k(ln k − β)/8h for some

universal constant β.

The hard dynamic instance Dh

Definition 1 (The simplex instance). The instance Sh consists in h + 1
clients, all at distance 2 from each other, together with h+ 1 facilities, such that
the ith facility is at distance 1 from all clients but the ith, from which it is at
distance 2. All clients and facilities are at distance 1 from the origin. Recall that
any distances with values 1 or 2 are metric. This structure is also realized in
(Rh, L∞) by placing the clients at the vertices of an (h + 1)-simplex of side 2
centered at the origin, and the facilities at the center of the facets.

This simplex instance will be used to make sure that the h + 1 clients are all
nearly uniformly attached to the facilities, and by using many structures of that
kind (one per time step), we can force the clients to have a small preference to
have an uniform attachment to the facilities.



Dynamic Sum-Radii Clustering 17

Lemma 13. The LP (1) for Sh admits a unique optimal solution: open a frac-
tion 1

h of each facility with radius 1.

Proof. All facilities are open with radius 0, 1 or 2 as their distances to the clients
are either 1 or 2. The cost of the uniform solution proposed is h+1

h . Consider an
optimal solution. Suppose first that a fraction α of some facility is open with
radius 2. Opening a fraction α

h+1 of all facilities covers the same fraction of the

clients and costs only αh+1
h instead of 2α contradicting its optimality. Hence all

open facilities are open with radius 1. If some facility i were open with fraction
less than 1

h , then at least one other facility i′ would need to be open with fraction
more than 1

h to cover the clients on i’s facet. As the single client at distance 2
from Facility i′ cannot be covered by i′ and covering it costs at least 1, and the
total cost would then be more than 1 + 1

h , hence not optimal.

Definition 2 (The hard instance). We consider the following dynamic in-
stance Dh with T = 2h + 1 time steps, (h + 1)2h clients and 2h − 1 facilities
plus a special facility. It has no opening costs (fit = 0) and the changing cost is
g = 2−4h. This instance goes through two phases:

– The last time step consists of the structure Th where each client j is replaced
by h+ 1 copies of itself at the same location, plus the special facility located
far far away. We denote by σj the set of the h+ 1 copies of j.

– The first 2h steps consist of a series of scaled-down simplices. At time j, for
j = 1..2h, the h + 1 clients in σj and the h ancestor facilities of j plus the
special facilities adopt the simplex structure Sh scaled down by s = 2−4h; all
the other clients and facilities are located at the origin.

We define the uniform solution Dh as the solution where every client in σj
assigns a fraction 1

h to the h facilities at distance s in their simplex during the
first 2h time steps and moves (for h of them) the fraction 1

h it has assigned on
the special facility to the ancestor of j on which it had no assignment yet. In
this solution, all facilities are open at all time steps: with radius 0 (when at the
origin) or s (when at a vertex) in the simplex time steps, and with radius 2−λ

(where λ is their level in Th) at the last step.

Lemma 14. The total cost of Dh is at least 1 + 2h · h+1
h · s and the uniform

solution has cost 1 + 2h · h+1
h · s+ 2h · g .

Proof. Every solution costs at least as much as the static solution for each time
step. As we have 2h steps with cost at least h+1

h · s each, and one last step
with cost at least 1, we get the first part. This, however, ignores changing costs.
The uniform solution consists of the best static solutions at each time step. The
changing cost is paid at the last time step and involves moving a fraction h · 1h ·2

h

from the special facility (now far far away) to other facilities. This costs 2h · g in
total.



18 N. K. Blanchard and N. Schabanel

Lemma 15. Any solution that does not correspond to a static optimal on each
time step can be improved.

Proof. Suppose that a fraction 1
h + ε (for some ε > 0) of a client is assigned

to a facility during its simplex phase. It costs at least an additional εs to cover
the client at this step. Adopting the static optimal solution, we save εs on the
opening cost for the facility in this step, and increase the changing costs by at
most (h + 1)g = (h + 1)2−4h � εs. The same goes for the last step, where
increasing the fraction by ε costs at least ε · 2−h � ε · g.

This allows us to prove Lemma 10:

Proof (Lemma 10). In every solution to the first 2h time steps, we can defer
every changing cost to the last time step as all clients covered during their
simplex time step are covered during all simplices steps at no additional costs
(since they are located at the origin, covered by all facilities). This means that
one can assume that before the last step, the solution is uniform. During the
last time step, every client must move the 1

h fraction it had put on the virtual
facility to another facility. There is always one open facility covering the client
on which it can put that fraction, resulting in no additional costs besides the
changing cost. If some client chose another facility instead, this facility would
have to increase either its fraction or radius, yielding a strictly costlier and thus
non-optimal solution.

And finally, to prove Corollary 1:

Proof (Corollary 1). The special facility is not selected in the last time step
so it doesn’t affect the algorithm. As all the sets σj have the same size, as all
the random variables Xs and Y s are independent, and as the execution of the
algorithm only depends on their relative order, all the clients behave as if there
were only one client in each set σj . The cost of the algorithm at this last step is
thus identical to the one for Th.


