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Abstract

We present a general method for describ-
ing the conceptual neighborhood structure
of qualitative relations in temporal and spa-
tial reasoning. This method is based on
representing the topological structure of the
configuration spaces in terms of incidence
structures. We illustrate this approach on
some of the qualitative calculi introduced
in the literature, including Allen’s temporal
caleulus and Freksa's directional calenlus.

1 Introduction

The notion of conceptual neighborhoods has been ex-
plicitly introduced in temporal reasoning by C. Freksa
{[4]). His motivations are of a cognitive nature: al-
though knowledge about temporal or spatial situa-
tions tends to be imprecise and qualitative, the range
of possibilities in terms of relations can often be ex-
pressed in terms of relations which in some sense are
neighbors.

In the temporal reasoning framework proposed by
Allen, and more generally in the context of general-
ized interval caleuli, convex relations, which are one
of the possible interpretations of conceptual neigh-
borhoods, have interesting computational properties.
One is the fact that composition of elements can be
computed in constant time, because of the “min-max
formula”. Another is that although temporal reason-
ing in the full framework of Allen's algebra is NP-
hard, limitation to the subclass of convex relations
leads to polynomial problems.

Conceptual neighborhoods in spatial reasoning
have been introduced and studied along similar lines
by Freksa ([5]), Cohn and Randell {[10,11,1]), Egen-
hofer ([2]). In particular, it is an important nolion in
moddeling physical processes which vary continuously.
As a consequence, the intervening spatial relations
vary along paths of vicinity, imposing constraints on
the set of evolutions or envisionments which can be
reached from a given state.

The purpose of this paper is to propose a gen-
eral principle and tools for investigating the concept
of conceptual neighborhoods. The general principle
consists in considering the configuration spaces of the
qualitative relations, which gives a particular metric
model of the set of relations, and abstracting to get
its topological structure in terms of incidence struc-
tures. The tools are mainly derived from the theory
of regular cell complexes, which have been used in
a similar context by M. Fleck ([3]), and are used as
medeling tools in geographic information systems.

In the first part of the paper, we put this program
to work on the familiar case of temporal reasoning
in the case of Allen’s calculus, and in the less fa-
miliar extensions to generalized interval caleuli. We
then correlate the results we get to the point of view
related to the order structures of the gualitative rela-
tions. In the second part, we attack spatial reasoning,
covering in particular some of the cases where spatial
reasoning is basically recoverable from temporal rea-
soning. We then discuss some caleuli in the family of
qualitative triangulation, including the flip-flop eal-
culus ([8]) and Freksa's calculus ([5]). We conclude
this exploration by discussing the nature of the notion
of conceptual neighborhood we get in this way.

2 The qualitative structure of
configuration spaces

2.1 The topological structure of Allen's
relations

Let us start with the well known example of intervals
on the real line, which we consider here as couples
(A1, Xsz) of real integers, with z; < z3. Hence, the
set of intervals can be identified with the subset of the
real plane defined by X; < Xg, which is the upper
half-plane H limited by the first bisector (Fig. 1).
Now fix a given interval (y;,yz). The set of primitive
Allen’s relations then corresponds to a decomposition
of H into disjoint regions. For instance, relation m
(meets) corresponds to the subregion of H defined by
Xz = yi. The decomposition is shewn in Fig. 1.



Figure 1: Regions associated to atomic relations in
Allen's algebra

This decomposition contains metric informatien,
which has been used e.g. by Rit [12]. For example,
the set of intervals with a given duration is repre-
sented by a line parallel to the first bisector. However,
we are interested in qualitative, specifically topologi-
cal information. To express this type of information,
we introduce the incidence structure associated to the
decomposition.

First observe that each region of the decomposi-
tion, as a topological subspace of the plane, is home-
omorphic (isomorphic as a topological space) to a p-
eell (p is the dimension of the cell, which here is 0, 1,
or 2). A O-cell is a point, a I-cell an open segment,
a Z-cell the interior of a disk. Hence the decomposi-
tion is in fact a celkdecomposition of H, Also ohserve
that the closure of each region « in H is the disjoint
union of @ and a finite number of regions of lower
dimension. For instance, the closure of o (overlaps)
is the union of o itself (a 2-cell), m, s, f~ (which are
1-cells), and eg (a O-cell).

Definition 1 The edge relation & holds between o
and F if the topological closure of o contains § and
the dimension of 8 is one less than the dimension of
. This 15 denoled by 8(a) 3 5.

Definition 2 The incidence struciure of a cell de-
compesilion is the graph with one verfer for each cell,
and an arc from o to § if and only if 8(a) 3 4.

The incidence structure of the decomposition of H
corresponding to the relations of Allen is represented
in Fig. 2.

Clearly, this incidence graph contains the topolog-
ically invariant part of the cell-decomposition, How-
ever, for reasons which will become apparent later, we
consider the oppesite graph, that is, the graph with
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Figure 2: The incidence structure of Allen's relations
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Figure 3. A compact model of the opposite incidence
structure

the same vertices and the arcs reversed. The fact is
that this graph is also an incidence graph. It is even
more well-behaved, because it is the incidence graph
of a compact cell decomposition, which belongs to the
class of reqular cell-complezes. For this class, in fact,
the incidence structure uniquely determines the ecell-
complex (this is shown in [3]). In the case of Allen’s
relations, the corresponding cell-complex corresponds
to the decompesition of the polygon shown in Fig. 3.
Because the incidence structure of the original cell-
decomposition of the half plane can be recovered from
the polygon, this contains in essence the whole topo-
logical information about Allen’s relations. Before
proceeding further, however, we look at an alterna-
tive way of getting essentially the same structure.

2.2 Topology and order

Here the idea is to use the order structure on intervals,
A convenient way of getting it for free is introduced
in [7). A fixed interval (y;,%2) being given, eall 0, 1,
2,3, 4thefivezones defined by X < g, X =, <
X < ys. X =y, and X > y; respectively. Then each



Figure 4: Relations in the A(1)-caleulus

one of the primitive relations of Allen is characterized
by a pair of integers specifying in which of the five
zones the start and finish points of a given interval lie
with respect to (3, yz). We call the representation
of Allen’s relations as pairs of integers the canonical
representafion.

In this way, the set of primitive relations is iden-
tified with a subset of N % N, The order structure
on the reals is reflected by the natural order on the
integers, hence it is a reasonable choice to consider
the product order on the set of relations. In this way,
the set of relations becomes a distributive lattice, i.e.
a partially ordered set inm which each pair of elements
has a lower upper bound and an upper lower bound,
and such that the distributivity axiom is satisfied.

The important remark here is that the polygon is
recoverable from the lattice, or the lattice from the
polygon (by 2-subdivision of each eell).

2.3 Coneeptual neighborhoods and
generalized intervals

The preceding considerations about Allen’s relations
basically extend to the more general framework of
generalized intervals ([9,7]).

The simplest case is the case of instant calculus:
given a fixed instant y, it defines a decomposition
of the real line into three calls, corresponding to the
three relations <, eq, >. The decompasition, its inci-
dence graph, the opposite graph, and the decomposi-
tion corresponding to the opposite graph, are repre-
sented in Fig. 4. (We adopt the same presentation in
the next four Figures).

More generally, let a g-interval y = (yy,.. o Ug) be
8 Bequence y; < ... < y,. The set of relations
between p-intervals and g-intervals has a canenical
embedding as a distributive lattice in R®. This lat-
tice corresponds to the 2-subdivision of a polytope
of dimension inf(p q) embedded in RP, which is in
a natural way a compact model of the apposite inei-

Figure 5: Relations in the A(1) x A(l)-calculus

dence structure defined by the configuration space.

3 Conceptual neighborhoods in
spatial reasoning

3.1 The A(1) x A(1) and A(2) x A(2)-calculus

We remarked in [6] that the North-East- South-West
calculus of geographers is exactly the kind of calcu-
lus we get in 2D-space if we reason about points with
fixed directions of reference, ie. the A(l) x A(l)
calculus, where A(1) is the relation algebra which
describes the instant caleulus. In terms of cell de-
compositions, a fixed point in 2D-space defines a de-
composition into 9 regions as represented in Fig. 5.
The corresponding incidence structure, opposite inci-
dence structure and compact incidence structure are
also shown in the same Figure. As expected, the lat-
ter is just the product of two copies of the structure
described for the instant calculus.

In the same way, the compact incidence strue-
ture associated to the A(2) x A(2)-caleulus is the
4-dimensional cell-complex which is the product of
two copies of the cell-complex associated to Allen’s
caleulus.

3.2 Qualitative triangulation calculi

First consider the flip-flop caleulus ([8]). A pair of
points in 2-D space defines seven regions. The cor-
responding eell-decompasition, incidence structures,
and compact incidence structure are represented in

Next eonsider Freksa's caleulus [5]. We now get a
decomposition into 15 regions. The incidence infor-
mation is summarized in Fig. 7.
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Figure 6: The incidence structure of the flip-flop cal-
culus
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Figure 7: The incidence structure of Freksa's caleulus
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Figure 8 The incidence structure of the 8-relation
caleulus

3.3 The S-relation calculus

We also observed in [6] that, at least as far as its
relations are concerned, the gualitative spatial cal-
culus about regions considered by Cohn, Randell
([10,11,1]), Egenhofer ([2]) can be obtained from the
interval caleulus by quotienting relatively to time re-
versal. The set of relations is represented in Fig. 8
shows the corresponding structures and cell-complex,
which can be obtained from Allen’s situation as quo-
tients.

4 Discussion

We observed in a number of cases that abstracting the
topological structure of qualitative relations, both in
the temporal and spatial cases, can be conveniently
explained in terms of cell decompositions and their
incidence structures.

What light does this point of view shed on the prob-
lem of defining conceptual neighborhood structures?
First, it seems that this is a good way of considering
continuously varying structures, Intuitively, transi-
tion between regions represented by the edge rela-
tion correspond te minimal changes in the qualitative
structure. This fact is best illustrated by consider-
ing for instance relations between two 3-intervals A
transition corresponding to the edge relation or its in-
verse occurs when two distinet points are merged. If
d-intervals represent deformable, elastic objects, such
a merge can occur with all other relations being fixed.
This is no longer true if we reason about rigid abjects.
Here, the relative lengths of (21, z1), (x1. z3), and
(22, z3) with respect to their counterparts deter-
mine the degree of “collapsing” or “blowing-up” in-
duced by continuous change. This is best observed on
the lattice representing the set of relations between 3-
intervals. Imagine a fixed 3-interval y and a -interval
 moving from left to right. Initially, ¢ is way to the
left of y, corresponding to the relation whose canon-
ical representation is (0, 0, 0). If all six lengths are
distinct, then the point in the lattice representing the
position of z with respect to y will follow a path along
the arcs of the lattice, since each transition will only



involve two points and result in a well-behaved (in the
sense Lhal it leads from a relation to another relation
whese dimension differs by one). Hence one and only
cne among the increasing paths between (0, 0, 0) and
(6, 6, 6) is followed. In the particular case where two
or more lengths are the same, the representing point
will take short-cuts, corresponding to jumps between
dimension of 2 or more,

This suggests that the neighborhood structures we
get are in some sense the most general ones, and
that specific neighborhood structures can be obtained
from them by considering further properties of the
ahjects considered.
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