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In this paper, we present a new omnidirectional visual compass for a camera-robot, based on the phase correlation method in the 2-D Fourier domain. The proposed visual compass is accurate, robust to image noise, and frugal in the use of computational resources. Moreover, unlike the majority of existing ego-motion estimators, it does not rely on any geometric image primitive, and it only requires a minimal knowledge of the internal camera parameters. Extensive real-world experiments conducted with a hypercatadioptric camera mounted on the endeffector of a Stäubli manipulator and on a Pioneer robot, show the effectiveness of our approach.

and illumination changes. Another limitation of feature-based methods is that they generally rely on strong assumptions about the structure of the 3-D environment where the robot moves: for example, the approaches in [START_REF] Mariottini | An accurate and robust visual-compass algorithm for robot-mounted omnidirectional cameras[END_REF]- [START_REF] Bazin | Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment[END_REF] can only be used in man-made environments rich in straight lines.

To overcome these problems, several authors have proposed to exploit the pixel intensity of the overall image, interpreted as a 2-D signal, for estimating the pose of a camera-robot. This approach is alternatively referred to as dense, direct or global, depending on the context [START_REF] Irani | About Direct Methods[END_REF], and it led to the so-called appearance-based methods [START_REF] Labrosse | The Visual Compass: Performance and Limitations of an Appearance-Based Method[END_REF], [START_REF] Scaramuzza | Appearance-Guided Monocular Omnidirectional Visual Odometry for Outdoor Ground Vehicles[END_REF] in the standard image domain, and to strategies based on harmonic analysis (a generalization of Fourier analysis), in the spatial-frequency domain. The latter approaches have appeared in the literature in various manifestations. In [START_REF] Pajdla | Zero Phase Representation of Panoramic Images for Image Based Localization[END_REF]- [START_REF] Stürzl | Efficient visual homing based on Fourier transformed panoramic images[END_REF], by interpreting the rows of the panoramic cylinder as unidimensional signals, the Fourier components of the image (or "Fourier signature") are computed, and used for visual navigation: the Fourier signature is indeed crucial to reduce the computational and memory requirements of the algorithms developed in [START_REF] Pajdla | Zero Phase Representation of Panoramic Images for Image Based Localization[END_REF]- [START_REF] Stürzl | Efficient visual homing based on Fourier transformed panoramic images[END_REF]. Other geometric works have exploited the Fourier transform defined on the two-sphere and on the special Euclidean/rotation groups, for 2-D [START_REF] Kyatkin | Pattern Matching as a Correlation on the Discrete Motion Group[END_REF] and 3-D rigid-motion estimation [START_REF] Makadia | Direct 3D-Rotation Estimation from Spherical Images via a Generalized Shift Theorem[END_REF]- [START_REF] Benseddik | Camera Rotation Estimation using 3D Mesh Surfaces Representation of Spherical Images[END_REF].

In the image processing and pattern recognition literatures, the 2-D Fourier transform is routinely used for registration, i.e. for the estimation of the translation, rotation and scaling between two given images [START_REF] Zitová | Image registration methods: a survey[END_REF]. A key tool here is the so-called phase correlation method (a.k.a. "Phase-Only Matched Filter" or POMF in short). By relying on the shift property of the 2-D Fourier transform, the phase correlation method computes the cross-power spectrum of two images and searches for the location of a peak in its Fourier inverse: the position of the peak corresponds to the translation vector between the two images [START_REF] Alba | Phase correlation with sub-pixel accuracy: A comparative study in 1D and 2D[END_REF]. By using a log-polar representation, the phase correlation method can be easily extended to estimate the rotation angle and scaling between a pair of images [START_REF] Castro | Registration of Translated and Rotated Images Using Finite Fourier Transforms[END_REF], [START_REF] Keller | The Angular Difference Function and its Application to Image Registration[END_REF]. Unfortunately, this method is not well known in the robotics community, and its potential for visual localization has not yet been fully exploited. The only prior research that we were able to locate in the robotics literature is [START_REF] Kazik | Visual Odometry Based on the Fourier-Mellin Transform for a Rover Using a Monocular Ground-Facing Camera[END_REF], where the pose of a robotic platform is estimated via a calibrated ground-facing perspective camera, and [START_REF] Cassinis | Unsupervised matching of visual landmarks for robotic homing using Fourier-Mellin transform[END_REF], [START_REF] Checchin | Radar Scan Matching SLAM Using the Fourier-Mellin Transform[END_REF], where the Fourier-Mellin transform (akin to the polar Fourier transform) is used for the registration of a sequence of radar images, and for robot homing via visual-landmark matching, respectively.

B. Original contributions, organization and notation

In this paper, we design a new visual compass based on the phase correlation method, for a single-viewpoint omnidirectional camera mounted on a robot undergoing a 2-D motion. The proposed visual compass has several attractive features. In fact, it is:

• Correspondence-free. The overall image is used: no need for segmentation and extraction of geometric features, • Accurate and robust to image noise, • Frugal in the use of computational resources,

• Weakly calibrated: it only needs the coordinates of the estimated principal point of the camera to center the omnidirectional (catadioptric or fisheye) images.

A new dataset of indoor and outdoor images, called OVMIS, has been generated with a hypercatadioptric camera mounted on the end-effector of a Stäubli manipulator and on a Pioneer robot. Thanks to the precise ground truth provided by these robotic platforms, we rigorously studied the performance of the proposed algorithm and compared it with that of competing approaches. We publicly released the OVMIS dataset on the Internet for the entire research community.

Note that the visual gyroscope studied in [START_REF] Makadia | Direct 3D-Rotation Estimation from Spherical Images via a Generalized Shift Theorem[END_REF] is reminiscent of our approach. However, differently from [START_REF] Makadia | Direct 3D-Rotation Estimation from Spherical Images via a Generalized Shift Theorem[END_REF], in this paper the shift property is not applied to the Fourier-transformed omnidirectional image mapped to the unit sphere of equivalence (knowing the full set of internal camera parameters), but directly to the image in the log-polar Fourier domain. Moreover, our algorithm is non-iterative, and it does not rely on nonlinear minimization techniques to estimate the yawangle of the camera-robot.

The rest of this paper is organized as follows. In Sect. II, we review some basics of 2-D Fourier transform, and introduce the phase correlation method. In Sect. III, we describe our omnidirectional visual compass, and in Sect. IV we present the results of a vast experimental campaign conducted with an industrial manipulator and a wheeled robot. Finally, in Sect. V, the main contributions of the paper are summarized, and some possible directions for future research are outlined.

Notation: Throughout this paper, we use the symbol i = √ -1 to indicate the imaginary unit, C the set of all complex numbers, R n the n-dimensional Euclidean space, I n×n the n × n identity matrix, and δ(x) and δ(x, y) the unidimensional and bidimensional Dirac deltas, respectively. SO(2) is the special orthogonal group of the plane, and SIM(2) the similitude group of the plane, i.e. the set of transformations consisting of rotations, scalings and translations:

(ψ j , σ j , x j ) : x → σ j R T (ψ j ) x + x j , R(ψ j ) = ñ cos ψ j -sin ψ j sin ψ j cos ψ j ô ∈ SO(2), σ j > 0, x j ∈ R 2 .
Given a complex-valued function f (x, y) : R2 → C, f * (x, y) indicates its complex conjugate and f (x, y) its magnitude.

II. PRELIMINARIES

In this section, we provide relevant background on the 2-D Fourier transform, and recall how the phase correlation method can be used to compute the rigid motion and scale factor between two bivariate functions. The reader is referred to [START_REF] Gonzalez | Digital Image Processing[END_REF]Ch. 4] for more details on classical Fourier analysis.

Given an integrable function f (x, y) : R 2 → C, we denote its Fourier transform in rectangular coordinates by:

F[f (x, y)] = f (u, v) ∞ -∞ ∞ -∞ f (x, y) e -i(u x + v y) dx dy, (1) 
where (u, v) are the Fourier variables, and F[ • ] is the Fourier operator. If f (x+x 0 , y+y 0 ) is a translated replica of f (x, y), the shift property of the Fourier transform is:

F[f (x + x 0 , y + y 0 )] = f (u, v) e i(u x0 + v y0) . ( 2 
)
Given two functions f 1 and f 2 , satisfying f 2 (x, y) = f 1 (x + x 0 , y + y 0 ), from (2) we have that:

f 2 (u, v) f * 1 (u, v) f 2 (u, v) f * 1 (u, v) = e i(u x0 + v y0) .
Thus, the translation vector [x 0 , y 0 ] T can be determined by computing the inverse Fourier transform, Corr(x, y)

F -1 [e i(u x0 + v y0) ] = δ(x + x 0 , y + y 0 ),
and finding the single peak of the normalized phase correlation function Corr(x, y). By changing to polar coordinates in both the (x, y) and (u, v) domains, i.e. by defining x = r cos θ, y = r sin θ and u = ρ cos ψ, v = ρ sin ψ, the original function is f (x, y) = f (r, θ), and the Fourier transform in (1) can be rewritten as [START_REF] Chirikjian | Engineering Applications of Noncommutative Harmonic Analysis: with Emphasis on Rotation and Motion Groups[END_REF]Sect. 4.7.1]:

f (ρ, ψ) = ∞ 0 2π 0 f (r, θ) e -i ρ r cos(θ -ψ) r drdθ, (3) 
which is referred to as the polar Fourier transform.

Let us now focus on the most general case, and let f 2 be a translated, rotated, and scaled replica of function f 1 , i.e.

f 2 (x) = f 1 (σ R T (ψ 0 ) x + x 0 ), (4) 
where x = [x, y] T , x 0 = [x 0 , y 0 ] T is the translation vector, R(ψ 0 ) ∈ SO(2), and σ > 0 is the scale factor. By taking the polar Fourier transform of both sides of (4), and using again (2) and the scaling property of the Fourier transform [24, Sect. 4.6.1], we find that:

f 2 (ρ, ψ) = 1 σ 2 f 1 ρ σ , ψ + ψ 0 e i(u x0 + v y0) . If we now define M 1 (ρ, ψ) = f 1 (ρ, ψ) and M 2 (ρ, ψ) = f 2 (ρ, ψ)
, we have that:

M 2 (ρ, ψ) = 1 σ 2 M 1 ρ σ , ψ + ψ 0 . ( 5 
)
Finally, using log-polar coordinates, we can rewrite (5) as:

M 2 (ln ρ, ψ) = 1 σ 2 M 1 (ln ρ -ln σ, ψ + ψ 0 ), (6) 
where ln(•) denotes the natural logarithm 1 . By leveraging the log-polar Fourier transform, rotations and scalings are thus reduced to translations, and ψ 0 and σ can be recovered via phase correlation applied to M 1 and M 2 (irrespective of the translation vector x 0 ). Using [START_REF] Churchill | An Orientation Invariant Visual Homing Algorithm[END_REF] to estimate the rotation angle ψ 0 results in an ambiguity of π [START_REF] Keller | The Angular Difference Function and its Application to Image Registration[END_REF]. This ambiguity can be resolved by rotating f 1 by the two possible angles, ψ 0 and ψ 0 + π, and then recovering the relative translation x 0 and correlation peak for each angle. The parameters corresponding to the highest correlation peak are selected as the result.

III. OMNIDIRECTIONAL VISUAL COMPASS

In this section, we leverage the phase correlation method described in Sect. II to design an omnidirectional visual compass for a camera-robot undergoing a 2-D motion. For simplicity of presentation, N × N images are henceforth considered. The discrete counterpart of (3) will be utilized to compute the polar Fourier transform of these square images.

Let I 1 (x) = I 1 (x, y) be the omnidirectional grayscale image taken by the camera-robot at the initial (or reference) pose, and I j (x), j ∈ {2, . . . , m}, a grayscale query image taken along an unknown 2-D trajectory at a successive time instant. Our goal is to estimate the angle ψ j between I 1 (x) and I j (x), j ∈ {2, . . . , m}, denoted by ψ j , with the phase correlation method. Note that owing to condition [START_REF] Bermudez-Cameo | Hypercatadioptric line images for 3D orientation and image rectification[END_REF], that in the notation of this section reads:

I j (x) = I 1 (σ j R T (ψ j ) x + x j ), j ∈ {2, . . . , m}, (7) 
meaning that the only transformations between I 1 (x) and I j (x) which are admitted belong to SIM(2), the phase correlation method will not provide correct angular estimates unless the camera-robot undergoes a pure rotational motion.

To get around this limitation and deal with general 2-D camera displacements non-conforming to the similarity-transformation constraint, an incremental approach can be adopted. In fact, instead of directly computing the rotation angle between I 1 (x) and I j (x), we can progressively cumulate the angular increments between subsequent frames k -1 and k, for k ∈ {2, . . . , j}. Being the difference between I k-1 (x) and I k (x) "small", the following infinitesimal version of condition ( 7) is now guaranteed:

I k (x) = I k-1 (1 + dσ) R T (dψ) x + dx , k ∈ {2, . . . , j}, (8) 
where dψ, dσ, and dx respectively denote infinitesimal increments of the rotation angle, scale factor, and image translation vector, and

R(dψ) = dψ ï 0 -ω ψ ω ψ 0 ò + I 2×2 ,
is a differential rotation, being ω ψ the angular velocity of the camera about the optical axis. The argument of I k-1 on the right-hand side of ( 8) is the (small-angle) four-parameter Helmert (or Bursa-Wolf ) transformation [START_REF] Watson | Computing Helmert transformations[END_REF].

For the reader's convenience, the pseudo-code that allows to implement our visual compass is reported in Algorithm 1, where the PhaseCorr function applies the phase correlation method to the transformed images M j-1 and M j , and returns the estimated incremental angle ψ j j-1 , scale factor σ j j-1 , and image translation vector x j j-1 . The angular estimate ψ j is stored in the temporary variable ψ tmp , whereas σ j j-1 (ideally equal to zero, being the images of equal size) and x j j-1 are Algorithm 1: Pseudo-code of the omnidirectional visual compass (I 1 (x), . . . , I m (x) are N × N grayscale images) Input : The omnidirectional image I 1 (x) at the reference pose of the camera-robot. Output: The estimated rotation angles ψ 2 , . . . , ψ m between the omnidirectional images I 1 (x) and I j (x), j ∈ {2, . . . , m}.

Initialization;

Compute M 1 (ρ, ψ) = I 1 (ρ, ψ) ; j := 2; ψ tmp := 0;

Begin; while The camera-robot moves do Take I j (x) at the current pose;

Compute M j (ρ, ψ) = I j (ρ, ψ) ; [ψ j j-1 , σ j j-1 , x j j-1 ] = PhaseCorr(M j-1 , M j ); ψ tmp := ψ tmp + ψ j j-1 ;
ψ j := ψ tmp ; return ψ j ; j := j + 1; end computed at each iteration to ensure enhanced flexibility to the algorithm, but they are not returned as output. Further details on the computation of the discrete log-polar Fourier transform of an omnidirectional image are provided in Sect. IV-B.

IV. EXPERIMENTAL VALIDATION

A. Description of the OVMIS dataset

A publicly-available dataset of omnidirectional images, called OVMIS ("Omnidirectional Vision, MIS laboratory"), has been created to evaluate the accuracy and robustness of our visual compass2 . The catadioptric system used to generate the dataset consists of an IDS uEye UI-3370CP-C-HQ color camera screwed on a VStone VS-C450MR-TK objective. The resolution of the uEye camera is 620 × 620 pixels (fitted to mirror border), and the VStone objective (diameter 59 mm, height 136 mm) includes a hyperboloidal mirror (vertical field of view, around 70 • ; horizontal field of view, 360 • ) and perspective lenses. Two robotic platforms were considered in the OVMIS dataset: 1) an industrial manipulator, and 2) a wheeled robot.

1) Stäubli manipulator: Since industrial manipulators guarantee high positioning accuracy and repeatability, they are well-suited for simulating the motion of a camera-robot and obtaining a precise ground truth. We mounted our catadioptric system on the end-effector of a 6 DOF Stäubli TX60 robot located in a 10.05 m × 7.03 m × 2.70 m room with neon lighting (see Figs. 1(a) and 1(b)). To account for the geometric constraints (maximum arm extension, 670 mm) and kinematic singularities of the robot, we limited ourselves to camera poses within a horizontal disk of radius 450 mm around the first (vertical) axis of the manipulator. To sample this disk, located 603.3 mm above the platform where the robot is fixed (cf. Fig. 1(a)), we chose 25 Collection Points (CPs) on 8 rays with an angular spacing of 45 • : on each ray, three locations, at a distance of 100, 250 and 450 mm, were considered (see the black dots in Fig. 2). At each CP, the camera was rotated by 360 • about its optical axis z c with a step size of 2.5 • , yielding 144 images per CP. For each of the 25 × 144 = 3600 PNG images, we recorded the 3-D coordinates of the origin of the camera frame {x c , y c , z c } and its orientation with respect to the base frame of the robot. We positioned the Stäubli manipulator on the 25 CPs by running a VAL3 program (that behaves as a server) on the CS8C controller. Neither master gain nor gamma correction was considered for the camera to reduce image noise. However, to get images with enough luminance to be usable by our algorithm, we set the exposure time to 200 ms, leading to a frame rate of 5 fps. Such a low frame rate was not an issue in practice, since the camera was stopped before every acquisition to avoid image blur.

For the intrinsic calibration of our catadioptric system, we leveraged Barreto's unified central projection model [START_REF] Barreto | A unifying geometric representation for central projection systems[END_REF] and used HYSCAS [START_REF] Caron | Multiple Camera Types Simultaneous Stereo Calibration[END_REF]. Note that only the coordinates of the principal point, [u 0 , v 0 ] T = [304.71, 308.76] T pixels, were actually exploited for the validation of our visual compass (see Sect. IV-C). We fed the calibration algorithm with a set of image points of a checkerboard pattern taken at 6 different camera poses, the first of which is shown in Fig. 1(c). Let ci T p be the 3-D rigid transformation between the frame attached to the checkerboard pattern, "p", and the camera's frame at pose "c i ", i ∈ {1, . . . , 6}. Since the camera is rigidly attached to the robot arm, the end-effector's pose corresponding to each of these camera poses should also be considered. Let then ei T b be the rigid transformation between the robot's base frame, "b", and the end-effector's frame at pose "e i ". ci T p and ei T b , i ∈ {1, . . . , 6}, were given as input to the Tsai and Lenz's algorithm (in the ViSP-library's implementation [START_REF] Marchand | ViSP for Visual Servoing: A Generic Software Platform with a Wide Class of Robot Control Skills[END_REF]) for the estimation of the extrinsic camera parameters. We thus obtained e T c , the transformation between the camera's frame {x c , y c , z c }, and the end-effector's frame {x e , y e , z e } (see Fig. 1(b)). This transformation was essential for precisely positioning the camera in the 25 CPs with the CS8C controller of the Stäubli robot.

2) Pioneer robot: The catadioptric system described in Sect. IV-A1 was also mounted on an Adept MobileRobots Pioneer 3-AT robot. In order to have an elevated viewpoint, it was placed on top of a vertical support, 134 cm above the ground (110 cm above the robot, see Fig. 1(d)). We used a two-axis bubble level to orient the optical axis of the camera perpendicularly to the ground plane. We did not estimate the rigid transformation between the camera's and robot's frames as with the Stäubli manipulator, but we aligned their vertical axes by rotating the platform 360 • , and by ensuring that the omnidirectional images taken at 0 • and at 360 • matched precisely. Although simple, this procedure was adequate for our experimental validation (see Sect. IV-D). The Pioneer has an integrated single-axis (yaw) gyroscopic sensor for increased rotational accuracy, and the robot controller automatically incorporates the gyroscopic corrections into the odometrybased estimates (from wheel encoders). In order to obtain reproducible results, we precisely synchronized the image acquisition system, and the module that logs the pose estimates of the robot via the ARIA library (our ground truth). Three scenarios were considered with the Pioneer robot:

• Scenario 1: Indoor, pure rotation (m = 160, total time 49.69 s),

• Scenario 2: Outdoor, pure rotation (m = 156, total time 50.22 s),

• Scenario 3: Outdoor, rotation and translation (m = 318, total time 160.99 s, length of the trajectory 25.27 m, average robot speed 0.187 m/s). In Scenarios 1 and 2, we applied a constant angular velocity to the skid-steering robot in order to have a regular rotational step (for a pose estimate to be logged, the step must be of at least 2 • ). The images in Scenario 1 were recorded in a laboratory setting, while those in Scenarios 2 and 3 in Bois Bonvallet, a 4.5 ha public park in Amiens, France. Except for a lamppost and a paved footpath, few recognizable landmarks are present in Scenarios 2 and 3. In Scenario 3, the robot was manually driven along a figure-of-eight trajectory (see Fig. 5(b)): its forward and angular velocities were limited to 0.2 m/s and 12 deg/s, respectively. The camera was recalibrated with HYSCAS [START_REF] Caron | Multiple Camera Types Simultaneous Stereo Calibration[END_REF], yielding an estimated principal point [u 0 , v 0 ] T = [319.70, 310.94] T pixels. The exposure time of the camera was left free but limited to 50 ms, yielding a frame rate of 20 fps.

B. Computation of the discrete log-polar Fourier transform

In order to implement our visual compass algorithm, we need to compute the discrete log-polar Fourier transform of a grayscale omnidirectional image. To this end, we first crop the images so that their geometric center coincides with the estimated principal point [u 0 , v 0 ] T (see Fig. 3(a)). We then apply a 2-D Hamming window to the images (see Fig. 3(b)):

w hm (x, y) = w hm (x) w hm (y), (9) 
where w hm (x) = α -(1α) cos(2πx/(N -1)), x ∈ S = {0, . . . , N -1}, is the univariate Hamming window with length N and α = 0.54. Other windows (Kaiser's, Hann's, Blackman's [31, Sect. 6.3]) were tested: however, we experimentally observed that the type of window selected had a minimal impact on the performance of the phase correlation method. Finally, for the conversion from rectangular to logpolar coordinates, we used a bicubic interpolation for the angles and distances, and a nearest-neighbor interpolation for the scale factor (see Fig. 3(c)). As we will see in the sequel, the size N lp of the log-polar image is a tuning parameter, trading off accuracy and computational complexity.

C. Experimental results: Stäubli manipulator

The omnidirectional visual compass was used to estimate the yaw angle between the first image, I 1 (x), and each of the subsequent images I j (x), j ∈ {2, . . . , m}, m = 144, at the 25 CPs of the Stäubli dataset. Note that since pure rotations are considered in this case, condition ( 7) is fulfilled and our visual compass algorithm can be implemented in an "absolute fashion" (i.e. without cumulating the incremental estimates of the yaw angles). Our Matlab implementation of the phase correlation method produces a list of candidate rotation angles sorted in decreasing order according to the height of the rotation-scaling correlation peaks and translation correlation peak. We limited ourselves to 3 candidates trading off speed for accuracy, and retained the yaw angle ψ j corresponding to the top-ranked value in the list. By considering 256-by-256 log-polar images, it took an average of 1.53 s (over ten trials) to compute the 3 candidate angles on a MacBook Pro with 2.4 GHz Intel Core i7 processor and 8 GB RAM (note that all the computation times in this paper are wallclock times). To gain more insight into the performance of the proposed algorithm, we compared |ψ jψ j | with |ψ jψ PHO j |, j ∈ {2, . . . , m}, where the estimate ψ PHO j is provided by a photometric algorithm exploiting the pixel intensity of the images. ψ PHO j is computed by brute-force search, i.e.

ψ PHO j = argmin ψj ∈ {0 • , τ, ..., 360 • -τ } x ∈ S 2 I 1 (R T (ψ j )x) -I j (x) 2 , ( 10 
) where the step size τ = 0.5 • (obviously, the smaller τ the smaller the estimation error, but the higher the computational burden). An annular mask centered at the black hole was used to select those parts of an omnidirectional image whose intensity is not constant, and which are thus informative for estimating ψ j . Table I(a) reports the mean, standard deviation, minimum and maximum values of the magnitude of the estimation errors for the phase correlation (COR) and photometric (PHO) approach in the 25 CPs of the Stäubli dataset. The former method guarantees an average error of 0.46 • ± 0.32 • over the 3600 images of the dataset, with an average maximum error of 1.44 • (see the last row of Table I(a)). The average error of the photometric algorithm is slightly larger, but the average maximum error is smaller (this is, however, an artifact imputable to our half-degree angular quantization τ ). Note that the overall complexity of the phase correlation approach is dominated by the computation of the discrete log-polar Fourier transform. Thus, for a fixed j, the complexity is at least O(N 2 log N ) (cf. Cooley-Tukey FFT algorithm [START_REF] Porat | A Course in Digital Signal Processing[END_REF]Ch. 5]). On the other hand, for a fixed j, the complexity of the photometric approach is O(360 τ -1 N 2 ). Practically speaking, to solve problem [START_REF] Pajdla | Zero Phase Representation of Panoramic Images for Image Based Localization[END_REF] for a fixed j, it took on average (ten trials) 62.68 s in Matlab, under the previous conditions. In fact, by searching over 720 images, the photometric visual compass is about 41 times slower than the phase correlation algorithm. As a final comparison, Table I(b) reports the statistics of the magnitude of the estimation errors of the method in [START_REF] Bazin | Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment[END_REF] in the first 4 CPs. This method detects 3-D parallel lines on the unit sphere of equivalence (it thus needs a fully-calibrated camera), and it computes the vanishing points from which the roll and pitch angles are deduced.

(
We adapted [START_REF] Bazin | Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment[END_REF] to estimate the yaw-angle of the camera, and we worked with the same Matlab implementation of the authors to identify an optimal set of threshold parameters. It came as no surprise that [START_REF] Bazin | Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment[END_REF] is less accurate than the dense visual compasses, since only few parallel lines are present in the images (two bundles of 6 to 8 straight lines). In addition, the average computation time for a fixed j is 4.33 s, i.e. 2.83 times longer than that of the phase correlation method.

Remark 1: Note that in order to determine the maximum translational displacement of the camera allowed by the phase correlation algorithm for a given level of accuracy, we can relate the statistics of the magnitude of the estimation error at CP 2 (see the second row of Table I(a)), with those obtained by estimating the yaw-angle between the first image at CP 1 and all the images at CP 2. Under a linear growth model, we can impose, for example, that the mean value in the latter case (8.04 • ), is within 3 sigma of the mean value in the former case (i.e. 0.37 + 3 × 0.24 = 1.09 • ), thus obtaining a maximum translational displacement of (10 × 1.09)/8.04 = 1.35 cm. As a comparison, with 1024-by-1024 log-polar images and with the photometric approach, the maximum translational displacement becomes (10 × 1.02)/4.19 = 2.43 cm and (10 × 2.09)/1.79 = 11.68 cm, respectively.

D. Experimental results: Pioneer robot

To further evaluate the robustness of our approach, we ran Algorithm 1 in the three scenarios described in Sect. IV-A2. Because of the incremental nature of the algorithm, we increased the sensibility of the phase correlation method by considering 1024-by-1024 log-polar images. The price to pay was a slight increase of the average computation time (less than 9% over ten trials, for Scenario 3). Fig. 4 (red) over the 360 • angular range, for j ∈ {2, . . . , m}. We computed ψ j,PHO j-1 as (cf. equation ( 10)):

ψ j,PHO j-1 = argmin ψ j j-1 ∈ Ω x ∈ S 2 I j-1 (R T (ψ j j-1 ) x) -I j (x) 2 ,
where Ω = {-6 the drift at frames 22 and 137, caused by the oscillations of the catadioptric system when the Pioneer negotiated the lawn from the footpath (see Fig. 5(c)), small incremental estimation errors are obtained, as reported in the third row of Table II. The minimum and end-value of |ψ jψ j | and |ψ jψ PHO j | are relatively small as well: 0.01 • , 9.63 • and 0.18 • , 4.47 • , respectively.

ψ j j-1 -ψ j j-1 ψ j j-1 -ψ j,PHO j-1 (c) (d) (e) 
ψ j j-1 -ψ j j-1 ψ j j-1 -ψ j,PHO j-1 (f)
Discussion: Note that in Scenarios 2 and 3, challenging experimental conditions were considered 4 . The robot traversed uneven terrain (resulting in a non-planar camera displacement) under variable illumination conditions (moving cast shadows of the trees). Moreover, in the Stäubli dataset, we experienced partial image occlusions due to the spatial reconfiguration of the robot arm (see frames 14, 15 and 70, 71 in CP 1). In spite of these important sources of error and of being partially agnostic of the internal camera parameters, our visual compass turned out to be accurate and robust against unexpected image changes. Moreover, it was between one and two orders of magnitude faster than the photometric algorithm, and almost three times faster than [START_REF] Bazin | Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment[END_REF]. It is finally worth pointing out here that the performance of [START_REF] Bazin | Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment[END_REF] was unsatisfactory in the non-structured environments of Scenarios 2 and 3, because of the almost total absence of straight lines in the images. The methods in [START_REF] Mariottini | An accurate and robust visual-compass algorithm for robot-mounted omnidirectional cameras[END_REF], [START_REF] Bermudez-Cameo | Hypercatadioptric line images for 3D orientation and image rectification[END_REF] rely on line images too, and they are also expected to perform poorly in these scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, we have designed and experimentally validated on different robotic platforms, a dense omnidirectional visual compass based on the phase correlation method in the spectral domain. We have also described a new publicly-available dataset of hypercatadioptric images, called OVMIS, which was instrumental in evaluating our approach and in comparing it with competing methods. This work opens several directions for further research. Although our results are encouraging, an effort is still required to achieve real-time performance via machine-specific optimized implementations of Algorithm 1. Working towards a more sophisticated robot-localization unit, we also aim at incorporating a vision-based loop-detection module into our algorithm. Finally, we plan to extend our approach to 3-D camera motions for estimating the attitude of an aerial robot (e.g. a quadrotor). To this end, we are currently considering the possibility to adapt the volume registration method based on the 3-D pseudo-polar Fourier transform presented in [START_REF] Keller | Volume registration using the 3-D pseudopolar Fourier transform[END_REF], to a visual gyroscope.

  camera mounted on the end-effector of the manipulator. (c) One of the images of the checkerboard pattern used for the calibration of the catadioptric system on the Stäubli robot. (d) Pioneer 3-AT robot equipped with the hypercatadioptric camera.

Fig. 1 .

 1 Fig. 1. Robotic platforms used for the generation of the OVMIS dataset. In (b), e Tc denotes the 3-D rigid transformation between the camera's frame {xc, y c , zc} and the end-effector's frame {xe, y e , ze}.

Fig. 2 .

 2 Fig. 2. Graphical illustration of the structure of the dataset generated with the Stäubli manipulator. It consists of 3600 images taken at 25 CPs (black dots) lying on 8 rays with a regular spacing of 45 • .

Fig. 3 .

 3 Fig. 3. Computation of the log-polar Fourier transform of a hypercatadioptric image. (a) Recentered input image (from the Stäubli dataset); (b) Application of the 2-D Hamming window (9) to image (a) converted to grayscale; (c) High-pass filtered 3 version of the magnitude of the log-polar Fourier transform of the image in (b): note that for easy visualization, the zero-frequency component is shown in the middle of the spectrum.

  reports the results obtained in Scenarios 1 and 2: in particular, Figs. 4(a), 4(d), Figs. 4(b), 4(e), and Figs. 4(c), 4(f), respectively show the robot setups, the first image of each scenario, and the incremental estimation errors ψ j j

  Fig. 5 refers to Scenario 3: Fig. 5(a) reports the first image of the dataset, and Fig. 5(b) the trajectory of the Pioneer. Fig. 5(c) shows the yaw angles of the robot estimated by the phase correlation (ψ j , blue) and photometric approach (ψ PHO j = j k=2 ψ k,PHO k-1 , red), against the ground truth (ψ j , black). Note that despite

Fig. 4 .

 4 Fig. 4. Scenario 1 (top row) and Scenario 2 (bottom row). (a), (d) Robot setups; (b), (e) Initial images; (c), (f) Estimation errors ψ j j-1 -ψ j j-1 (blue) and ψ j j-1 -ψ j,PHO j-1 (red), in degrees, over the 360 • angular range.

Fig. 5 .

 5 Fig. 5. Scenario 3. (a) Initial image; (b) Figure-of-eight trajectory of the Pioneer robot (in order to have a time reference, we marked the robot with a triangle every 10 frames or about every 5 s); (c) Yaw angles estimated by the phase correlation (blue) and photometric approach (red), against the ground truth (black).

TABLE I (

 I a) Magnitude of the estimation errors (in degrees) of the phase correlation (COR) and photometric (PHO) approach in the 25 CPs of the Stäubli dataset. The last row of the table (boldface) reports the average values of the eight columns; (b) Magnitude of the estimation errors (in degrees) of the approach in [5] in the first 4 CPs of the Stäubli dataset.

  • + τ, -6 • + 2τ, . . . , 6 •τ } and τ = 0.1 • . The first two rows of Table II report the statistics of the magnitude of the incremental estimation errors in Scenarios 1 and 2. The minimum, maximum and end-value (i.e. for j = m), of |ψ jψ j | and |ψ jψ PHO j | are, instead, 0.06 • , 8.64 • , 8.64 • and 0.03 • , 2.26 • , 1.96 • in Scenario 1, and 0.25 • , 6.09 • , 2.97 • and 0.12 • , 2.91 • , 2.72 • in Scenario 2. Finally,

Note that in terms of energy distribution as a function of frequency, from[START_REF] Churchill | An Orientation Invariant Visual Homing Algorithm[END_REF] we have that E f 1 (ln ρ -ln σ, ψ + ψ 0 ) = σ 4 E f

(ln ρ, ψ) whereE f 2 (ln ρ, ψ) = M 2 2 (ln ρ, ψ) is the energy spectral density of f 2 [26, Sect. 1.2].

OVMIS dataset (2.72 GB): http://mis.u-picardie.fr/ ∼ g-caron/pub/data/ OVMIS dataset.zip

The high-pass filter isH(u, v) = (1 -ηuηv )(2 -ηuηv) where ηu = cos(π(-1 2 + u N lp -1)) with u ∈ {0, . . . , N lp -1}.

The videos of the experiments are available in the multimedia attachment accompanying this submission and at the address: http://mis.u-picardie.fr/ ∼ g-caron/pub/data/OVMIS videos.zip
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