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Phase Correlation for Dense Visual Compass from
Omnidirectional Camera-Robot Images

Fabio Morbidi, Guillaume Caron

Abstract—In this paper, we present a new omnidirectional
visual compass for a camera-robot, based on the phase corre-
lation method in the 2-D Fourier domain. The proposed visual
compass is accurate, robust to image noise, and frugal in the
use of computational resources. Moreover, unlike the majority of
existing ego-motion estimators, it does not rely on any geometric
image primitive, and it only requires a minimal knowledge of the
internal camera parameters. Extensive real-world experiments
conducted with a hypercatadioptric camera mounted on the end-
effector of a Stäubli manipulator and on a Pioneer robot, show
the effectiveness of our approach.

Index Terms—Omnidirectional Vision, Visual Compass, Cata-
dioptric Camera.

I. INTRODUCTION

A. Motivation and related work

CAMERAS are being increasingly used in mobile robotics
since they are small, lightweight, inexpensive, and they

provide a richer information about the surrounding environ-
ment than other exteroceptive sensors. Differently from IMUs
or gyroscopes, a single camera can meet all of robot’s needs,
since visual information can be used for high-level semantic
analysis and low-level perception tasks alike. The problem of
estimating the orientation of a camera between a reference
and a query image is well-known in the robotics literature [1].
Visual gyroscopes estimate the attitude (roll, pitch, and yaw
angles) of a camera-robot, while visual compasses limit them-
selves to a single axis (yaw angle). On the other hand, visual
odometers exploit the entire sequence of images between the
reference and query, for determining the camera pose (position
and orientation).

Omnidirectional cameras have gained prominence for robot
localization in unknown environments, since they permit to
enlarge the field of view without losing the image features.
A wealth of omnidirectional gyroscopes has been proposed
in the recent literature [2]–[6]. With the exception of [3], all
these methods assume a calibrated catadioptric camera with a
single effective viewpoint, and rely on image features (e.g. the
image projection of 3-D parallel lines, vanishing points, SIFT
features) to estimate the attitude of a camera-robot. However,
feature extraction and tracking require a nontrivial image-
processing step, and these operations are sensitive to outliers
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and illumination changes. Another limitation of feature-based
methods is that they generally rely on strong assumptions
about the structure of the 3-D environment where the robot
moves: for example, the approaches in [3]–[5] can only be
used in man-made environments rich in straight lines.

To overcome these problems, several authors have proposed
to exploit the pixel intensity of the overall image, interpreted
as a 2-D signal, for estimating the pose of a camera-robot.
This approach is alternatively referred to as dense, direct
or global, depending on the context [7], and it led to the
so-called appearance-based methods [8], [9] in the standard
image domain, and to strategies based on harmonic analysis
(a generalization of Fourier analysis), in the spatial-frequency
domain. The latter approaches have appeared in the literature
in various manifestations. In [10]–[12], by interpreting the
rows of the panoramic cylinder as unidimensional signals,
the Fourier components of the image (or “Fourier signa-
ture”) are computed, and used for visual navigation: the
Fourier signature is indeed crucial to reduce the computa-
tional and memory requirements of the algorithms devel-
oped in [10]–[12]. Other geometric works have exploited the
Fourier transform defined on the two-sphere and on the special
Euclidean/rotation groups, for 2-D [13] and 3-D rigid-motion
estimation [14]–[16].

In the image processing and pattern recognition literatures,
the 2-D Fourier transform is routinely used for registration,
i.e. for the estimation of the translation, rotation and scaling
between two given images [17]. A key tool here is the so-called
phase correlation method (a.k.a. “Phase-Only Matched Filter”
or POMF in short). By relying on the shift property of the
2-D Fourier transform, the phase correlation method computes
the cross-power spectrum of two images and searches for the
location of a peak in its Fourier inverse: the position of the
peak corresponds to the translation vector between the two
images [18]. By using a log-polar representation, the phase
correlation method can be easily extended to estimate the
rotation angle and scaling between a pair of images [19], [20].
Unfortunately, this method is not well known in the robotics
community, and its potential for visual localization has not yet
been fully exploited. The only prior research that we were able
to locate in the robotics literature is [21], where the pose of
a robotic platform is estimated via a calibrated ground-facing
perspective camera, and [22], [23], where the Fourier-Mellin
transform (akin to the polar Fourier transform) is used for
the registration of a sequence of radar images, and for robot
homing via visual-landmark matching, respectively.

B. Original contributions, organization and notation

In this paper, we design a new visual compass based
on the phase correlation method, for a single-viewpoint
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omnidirectional camera mounted on a robot undergoing a
2-D motion. The proposed visual compass has several attrac-
tive features. In fact, it is:

• Correspondence-free. The overall image is used: no need
for segmentation and extraction of geometric features,

• Accurate and robust to image noise,
• Frugal in the use of computational resources,
• Weakly calibrated: it only needs the coordinates of the

estimated principal point of the camera to center the
omnidirectional (catadioptric or fisheye) images.

A new dataset of indoor and outdoor images, called OVMIS,
has been generated with a hypercatadioptric camera mounted
on the end-effector of a Stäubli manipulator and on a Pioneer
robot. Thanks to the precise ground truth provided by these
robotic platforms, we rigorously studied the performance of
the proposed algorithm and compared it with that of competing
approaches. We publicly released the OVMIS dataset on the
Internet for the entire research community.

Note that the visual gyroscope studied in [14] is reminiscent
of our approach. However, differently from [14], in this paper
the shift property is not applied to the Fourier-transformed
omnidirectional image mapped to the unit sphere of equiva-
lence (knowing the full set of internal camera parameters),
but directly to the image in the log-polar Fourier domain.
Moreover, our algorithm is non-iterative, and it does not rely
on nonlinear minimization techniques to estimate the yaw-
angle of the camera-robot.

The rest of this paper is organized as follows. In Sect. II, we
review some basics of 2-D Fourier transform, and introduce
the phase correlation method. In Sect. III, we describe our
omnidirectional visual compass, and in Sect. IV we present
the results of a vast experimental campaign conducted with an
industrial manipulator and a wheeled robot. Finally, in Sect. V,
the main contributions of the paper are summarized, and some
possible directions for future research are outlined.

Notation: Throughout this paper, we use the symbol
i =

√−1 to indicate the imaginary unit, C the set of all
complex numbers, Rn the n-dimensional Euclidean space,
In×n the n × n identity matrix, and δ(x) and δ(x, y) the
unidimensional and bidimensional Dirac deltas, respectively.
SO(2) is the special orthogonal group of the plane, and SIM(2)
the similitude group of the plane, i.e. the set of transformations
consisting of rotations, scalings and translations:

(ψj , σj , xj) : x �→ σj R
T (ψj)x + xj ,

R(ψj) =

ñ
cosψj − sinψj

sinψj cosψj

ô
∈ SO(2), σj > 0, xj ∈ R2.

Given a complex-valued function f(x, y) : R2 → C, f∗(x, y)
indicates its complex conjugate and

∣∣f(x, y)∣∣ its magnitude. �

II. PRELIMINARIES

In this section, we provide relevant background on the 2-D
Fourier transform, and recall how the phase correlation method
can be used to compute the rigid motion and scale factor
between two bivariate functions. The reader is referred to [24,
Ch. 4] for more details on classical Fourier analysis.

Given an integrable function f(x, y) : R2 → C, we denote
its Fourier transform in rectangular coordinates by:

F[f(x, y)] = f̂(u, v)

�
∫ ∞

−∞

∫ ∞

−∞
f(x, y) e−i(ux+ v y) dx dy,

(1)

where (u, v) are the Fourier variables, and F[ · ] is the Fourier
operator. If f(x+x0, y+y0) is a translated replica of f(x, y),
the shift property of the Fourier transform is:

F[f(x+ x0, y + y0)] = f̂(u, v) ei(ux0 + v y0). (2)

Given two functions f1 and f2, satisfying f2(x, y) =
f1(x+ x0, y + y0), from (2) we have that:

f̂2(u, v) f̂
∗
1 (u, v)∣∣f̂2(u, v)∣∣ ∣∣f̂∗
1 (u, v)

∣∣ = ei(ux0 + v y0).

Thus, the translation vector [x0, y0]
T can be determined by

computing the inverse Fourier transform,

Corr(x, y) � F−1[ei(ux0 + v y0)] = δ(x+ x0, y + y0),

and finding the single peak of the normalized phase correlation
function Corr(x, y). By changing to polar coordinates in both
the (x, y) and (u, v) domains, i.e. by defining x = r cos θ,
y = r sin θ and u = ρ cosψ, v = ρ sinψ, the original function
is f(x, y) = f(r, θ), and the Fourier transform in (1) can be
rewritten as [25, Sect. 4.7.1]:

f̂(ρ, ψ) =

∫ ∞

0

∫ 2π

0

f(r, θ) e−i ρ r cos(θ−ψ) r drdθ, (3)

which is referred to as the polar Fourier transform.
Let us now focus on the most general case, and let f2 be a

translated, rotated, and scaled replica of function f1, i.e.

f2(x) = f1(σR
T (ψ0)x + x0), (4)

where x = [x, y]T , x0 = [x0, y0]
T is the translation vector,

R(ψ0) ∈ SO(2), and σ > 0 is the scale factor. By taking
the polar Fourier transform of both sides of (4), and using
again (2) and the scaling property of the Fourier transform [24,
Sect. 4.6.1], we find that:

f̂2(ρ, ψ) =
1

σ2
f̂1

( ρ
σ
, ψ + ψ0

)
ei(ux0 + v y0).

If we now define M1(ρ, ψ) =
∣∣f̂1(ρ, ψ)∣∣ and M2(ρ, ψ) =∣∣f̂2(ρ, ψ)∣∣, we have that:

M2(ρ, ψ) =
1

σ2
M1

( ρ
σ
, ψ + ψ0

)
. (5)

Finally, using log-polar coordinates, we can rewrite (5) as:

M2(ln ρ, ψ) =
1

σ2
M1(ln ρ− lnσ, ψ + ψ0), (6)

where ln(·) denotes the natural logarithm1. By leveraging the
log-polar Fourier transform, rotations and scalings are thus
reduced to translations, and ψ0 and σ can be recovered via

1Note that in terms of energy distribution as a function of frequency,
from (6) we have that Ef1(ln ρ − lnσ, ψ + ψ0) = σ4 Ef2(ln ρ, ψ)
where Ef2 (ln ρ, ψ) = M2

2 (ln ρ, ψ) is the energy spectral density
of f2 [26, Sect. 1.2].



MORBIDI et al.: PHASE CORRELATION FOR DENSE VISUAL COMPASS 3

phase correlation applied to M1 and M2 (irrespective of the
translation vector x0). Using (6) to estimate the rotation angle
ψ0 results in an ambiguity of π [20]. This ambiguity can be
resolved by rotating f1 by the two possible angles, ψ0 and
ψ0 + π, and then recovering the relative translation x0 and
correlation peak for each angle. The parameters corresponding
to the highest correlation peak are selected as the result.

III. OMNIDIRECTIONAL VISUAL COMPASS

In this section, we leverage the phase correlation method de-
scribed in Sect. II to design an omnidirectional visual compass
for a camera-robot undergoing a 2-D motion. For simplicity
of presentation, N × N images are henceforth considered.
The discrete counterpart of (3) will be utilized to compute
the polar Fourier transform of these square images.

Let I1(x) = I1(x, y) be the omnidirectional grayscale
image taken by the camera-robot at the initial (or reference)
pose, and Ij(x), j ∈ {2, . . . ,m}, a grayscale query image
taken along an unknown 2-D trajectory at a successive time
instant. Our goal is to estimate the angle ψj between I1(x)
and Ij(x), j ∈ {2, . . . ,m}, denoted by ψj , with the phase
correlation method. Note that owing to condition (4), that in
the notation of this section reads:

Ij(x) = I1(σj R
T (ψj)x + xj), j ∈ {2, . . . ,m}, (7)

meaning that the only transformations between I1(x) and
Ij(x) which are admitted belong to SIM(2), the phase cor-
relation method will not provide correct angular estimates
unless the camera-robot undergoes a pure rotational motion.
To get around this limitation and deal with general 2-D camera
displacements non-conforming to the similarity-transformation
constraint, an incremental approach can be adopted. In fact,
instead of directly computing the rotation angle between
I1(x) and Ij(x), we can progressively cumulate the angular
increments between subsequent frames k − 1 and k, for k ∈
{2, . . . , j}. Being the difference between Ik−1(x) and Ik(x)
“small”, the following infinitesimal version of condition (7) is
now guaranteed:

Ik(x) = Ik−1

(
(1 + dσ)RT (dψ)x+ dx

)
, k ∈ {2, . . . , j},

(8)
where dψ, dσ, and dx respectively denote infinitesimal incre-
ments of the rotation angle, scale factor, and image translation
vector, and

R(dψ) = dψ

ï
0 −ωψ
ωψ 0

ò
+ I2×2 ,

is a differential rotation, being ωψ the angular velocity of
the camera about the optical axis. The argument of Ik−1 on
the right-hand side of (8) is the (small-angle) four-parameter
Helmert (or Bursa-Wolf ) transformation [27].

For the reader’s convenience, the pseudo-code that allows
to implement our visual compass is reported in Algorithm 1,
where the PhaseCorr function applies the phase correlation
method to the transformed images Mj−1 and Mj , and returns
the estimated incremental angle ψ

j

j−1, scale factor σjj−1, and
image translation vector xjj−1. The angular estimate ψj is
stored in the temporary variable ψtmp, whereas σjj−1 (ideally
equal to zero, being the images of equal size) and xjj−1 are

Algorithm 1: Pseudo-code of the omnidirectional visual
compass (I1(x), . . . , Im(x) are N × N grayscale images)

Input : The omnidirectional image I1(x) at the
reference pose of the camera-robot.

Output: The estimated rotation angles ψ2, . . . , ψm
between the omnidirectional images I1(x)
and Ij(x), j ∈ {2, . . . ,m}.

Initialization;
Compute M1(ρ, ψ) =

∣∣Î1(ρ, ψ)∣∣;
j := 2;
ψtmp := 0;

Begin;
while The camera-robot moves do

Take Ij(x) at the current pose;
Compute Mj(ρ, ψ) =

∣∣Îj(ρ, ψ)∣∣;
[ψ
j

j−1, σ
j
j−1, x

j
j−1] = PhaseCorr(Mj−1, Mj);

ψtmp := ψtmp + ψ
j

j−1;
ψj := ψtmp;
return ψj ;
j := j + 1;

end

computed at each iteration to ensure enhanced flexibility to the
algorithm, but they are not returned as output. Further details
on the computation of the discrete log-polar Fourier transform
of an omnidirectional image are provided in Sect. IV-B.

IV. EXPERIMENTAL VALIDATION

A. Description of the OVMIS dataset

A publicly-available dataset of omnidirectional images,
called OVMIS (“Omnidirectional Vision, MIS laboratory”),
has been created to evaluate the accuracy and robustness of
our visual compass2. The catadioptric system used to generate
the dataset consists of an IDS uEye UI-3370CP-C-HQ color
camera screwed on a VStone VS-C450MR-TK objective. The
resolution of the uEye camera is 620 × 620 pixels (fitted to
mirror border), and the VStone objective (diameter 59 mm,
height 136 mm) includes a hyperboloidal mirror (vertical field
of view, around 70◦; horizontal field of view, 360◦) and
perspective lenses. Two robotic platforms were considered
in the OVMIS dataset: 1) an industrial manipulator, and
2) a wheeled robot.

1) Stäubli manipulator: Since industrial manipulators guar-
antee high positioning accuracy and repeatability, they are
well-suited for simulating the motion of a camera-robot and
obtaining a precise ground truth. We mounted our catadioptric
system on the end-effector of a 6 DOF Stäubli TX60 robot
located in a 10.05 m × 7.03 m × 2.70 m room with neon
lighting (see Figs. 1(a) and 1(b)). To account for the geometric
constraints (maximum arm extension, 670 mm) and kinematic
singularities of the robot, we limited ourselves to camera
poses within a horizontal disk of radius 450 mm around the
first (vertical) axis of the manipulator. To sample this disk,

2 OVMIS dataset (2.72 GB): http://mis.u-picardie.fr/∼g-caron/pub/data/
OVMIS dataset.zip
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located 603.3 mm above the platform where the robot is fixed
(cf. Fig. 1(a)), we chose 25 Collection Points (CPs) on 8 rays
with an angular spacing of 45◦: on each ray, three locations, at
a distance of 100, 250 and 450 mm, were considered (see the
black dots in Fig. 2). At each CP, the camera was rotated
by 360◦ about its optical axis zc with a step size of 2.5◦,
yielding 144 images per CP. For each of the 25 × 144 =
3600 PNG images, we recorded the 3-D coordinates of the
origin of the camera frame {xc, yc, zc} and its orientation
with respect to the base frame of the robot. We positioned
the Stäubli manipulator on the 25 CPs by running a VAL3
program (that behaves as a server) on the CS8C controller.
Neither master gain nor gamma correction was considered for
the camera to reduce image noise. However, to get images with

(a) Stäubli TX60 manipulator
inside its cell.

xc

yc

zc

ye

xe

ze

eTc

(b) Hypercatadioptric camera
mounted on the end-effector
of the manipulator.

(c) One of the images of the checker-
board pattern used for the calibra-
tion of the catadioptric system on the
Stäubli robot. (d) Pioneer 3-AT

robot equipped with
the hypercatadioptric
camera.

Fig. 1. Robotic platforms used for the generation of the OVMIS dataset.
In (b), eTc denotes the 3-D rigid transformation between the camera’s frame
{xc, yc, zc} and the end-effector’s frame {xe, ye, ze}.

45
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Fig. 2. Graphical illustration of the structure of the dataset generated with the
Stäubli manipulator. It consists of 3600 images taken at 25 CPs (black dots)
lying on 8 rays with a regular spacing of 45◦.

enough luminance to be usable by our algorithm, we set the
exposure time to 200 ms, leading to a frame rate of 5 fps. Such
a low frame rate was not an issue in practice, since the camera
was stopped before every acquisition to avoid image blur.

For the intrinsic calibration of our catadioptric system, we
leveraged Barreto’s unified central projection model [28] and
used HYSCAS [29]. Note that only the coordinates of the
principal point, [u0, v0]

T = [304.71, 308.76]T pixels, were
actually exploited for the validation of our visual compass
(see Sect. IV-C). We fed the calibration algorithm with a
set of image points of a checkerboard pattern taken at 6
different camera poses, the first of which is shown in Fig. 1(c).
Let ciTp be the 3-D rigid transformation between the frame
attached to the checkerboard pattern, “p”, and the camera’s
frame at pose “ci”, i ∈ {1, . . . , 6}. Since the camera is
rigidly attached to the robot arm, the end-effector’s pose
corresponding to each of these camera poses should also be
considered. Let then eiTb be the rigid transformation between
the robot’s base frame, “b”, and the end-effector’s frame at
pose “ei”. ciTp and eiTb, i ∈ {1, . . . , 6}, were given as
input to the Tsai and Lenz’s algorithm (in the ViSP-library’s
implementation [30]) for the estimation of the extrinsic camera
parameters. We thus obtained eTc, the transformation between
the camera’s frame {xc, yc, zc}, and the end-effector’s frame
{xe, ye, ze} (see Fig. 1(b)). This transformation was essential
for precisely positioning the camera in the 25 CPs with the
CS8C controller of the Stäubli robot.

2) Pioneer robot: The catadioptric system described in
Sect. IV-A1 was also mounted on an Adept MobileRobots
Pioneer 3-AT robot. In order to have an elevated viewpoint,
it was placed on top of a vertical support, 134 cm above the
ground (110 cm above the robot, see Fig. 1(d)). We used a
two-axis bubble level to orient the optical axis of the camera
perpendicularly to the ground plane. We did not estimate the
rigid transformation between the camera’s and robot’s frames
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(a) (b)
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Fig. 3. Computation of the log-polar Fourier transform of a hypercatadioptric image. (a) Recentered input image (from the Stäubli dataset); (b) Application
of the 2-D Hamming window (9) to image (a) converted to grayscale; (c) High-pass filtered3 version of the magnitude of the log-polar Fourier transform of
the image in (b): note that for easy visualization, the zero-frequency component is shown in the middle of the spectrum.

as with the Stäubli manipulator, but we aligned their vertical
axes by rotating the platform 360◦, and by ensuring that
the omnidirectional images taken at 0◦ and at 360◦ matched
precisely. Although simple, this procedure was adequate for
our experimental validation (see Sect. IV-D). The Pioneer has
an integrated single-axis (yaw) gyroscopic sensor for increased
rotational accuracy, and the robot controller automatically
incorporates the gyroscopic corrections into the odometry-
based estimates (from wheel encoders). In order to obtain
reproducible results, we precisely synchronized the image
acquisition system, and the module that logs the pose estimates
of the robot via the ARIA library (our ground truth). Three
scenarios were considered with the Pioneer robot:

• Scenario 1: Indoor, pure rotation (m = 160, total
time 49.69 s),

• Scenario 2: Outdoor, pure rotation (m = 156, total
time 50.22 s),

• Scenario 3: Outdoor, rotation and translation (m = 318,
total time 160.99 s, length of the trajectory 25.27 m,
average robot speed 0.187 m/s).

In Scenarios 1 and 2, we applied a constant angular velocity
to the skid-steering robot in order to have a regular rotational
step (for a pose estimate to be logged, the step must be
of at least 2◦). The images in Scenario 1 were recorded
in a laboratory setting, while those in Scenarios 2 and 3
in Bois Bonvallet, a 4.5 ha public park in Amiens, France.
Except for a lamppost and a paved footpath, few recognizable
landmarks are present in Scenarios 2 and 3. In Scenario 3, the
robot was manually driven along a figure-of-eight trajectory
(see Fig. 5(b)): its forward and angular velocities were limited
to 0.2 m/s and 12 deg/s, respectively. The camera was re-
calibrated with HYSCAS [29], yielding an estimated principal
point [u0, v0]

T = [319.70, 310.94]T pixels. The exposure time
of the camera was left free but limited to 50 ms, yielding a
frame rate of 20 fps.

B. Computation of the discrete log-polar Fourier transform
In order to implement our visual compass algorithm, we

need to compute the discrete log-polar Fourier transform of
a grayscale omnidirectional image. To this end, we first crop

the images so that their geometric center coincides with the
estimated principal point [u0, v0]T (see Fig. 3(a)). We then
apply a 2-D Hamming window to the images (see Fig. 3(b)):

whm(x, y) = whm(x)whm(y), (9)

where whm(x) = α − (1 − α) cos(2πx/(N − 1)), x ∈
S = {0, . . . ,N − 1}, is the univariate Hamming window
with length N and α = 0.54. Other windows (Kaiser’s,
Hann’s, Blackman’s [31, Sect. 6.3]) were tested: however, we
experimentally observed that the type of window selected had
a minimal impact on the performance of the phase correlation
method. Finally, for the conversion from rectangular to log-
polar coordinates, we used a bicubic interpolation for the
angles and distances, and a nearest-neighbor interpolation for
the scale factor (see Fig. 3(c)). As we will see in the sequel, the
size Nlp of the log-polar image is a tuning parameter, trading
off accuracy and computational complexity.

C. Experimental results: Stäubli manipulator

The omnidirectional visual compass was used to estimate
the yaw angle between the first image, I1(x), and each of the
subsequent images Ij(x), j ∈ {2, . . . ,m}, m = 144, at the
25 CPs of the Stäubli dataset. Note that since pure rotations
are considered in this case, condition (7) is fulfilled and our
visual compass algorithm can be implemented in an “absolute
fashion” (i.e. without cumulating the incremental estimates
of the yaw angles). Our Matlab implementation of the phase
correlation method produces a list of candidate rotation angles
sorted in decreasing order according to the height of the
rotation-scaling correlation peaks and translation correlation
peak. We limited ourselves to 3 candidates trading off speed
for accuracy, and retained the yaw angle ψj corresponding
to the top-ranked value in the list. By considering 256-by-
256 log-polar images, it took an average of 1.53 s (over
ten trials) to compute the 3 candidate angles on a MacBook
Pro with 2.4 GHz Intel Core i7 processor and 8 GB RAM
(note that all the computation times in this paper are wall-
clock times). To gain more insight into the performance of the

3The high-pass filter is H(u, v) = (1 − ηuηv)(2 − ηuηv) where ηu =
cos(π(− 1

2
+ u

Nlp−1
)) with u ∈ {0, . . . ,Nlp − 1}.
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proposed algorithm, we compared |ψj−ψj | with |ψj−ψPHO
j |,

j ∈ {2, . . . ,m}, where the estimate ψ
PHO
j is provided by a

photometric algorithm exploiting the pixel intensity of the
images. ψ

PHO
j is computed by brute-force search, i.e.

ψ
PHO
j = argmin

ψj ∈{0◦, τ, ..., 360◦−τ}

∑
x∈S2

[
I1(R

T(ψj)x)− Ij(x)
]2
,

(10)
where the step size τ = 0.5◦ (obviously, the smaller τ
the smaller the estimation error, but the higher the com-
putational burden). An annular mask centered at the black
hole was used to select those parts of an omnidirectional
image whose intensity is not constant, and which are thus
informative for estimating ψj . Table I(a) reports the mean,
standard deviation, minimum and maximum values of the
magnitude of the estimation errors for the phase correlation
(COR) and photometric (PHO) approach in the 25 CPs of
the Stäubli dataset. The former method guarantees an average
error of 0.46◦± 0.32◦ over the 3600 images of the dataset,
with an average maximum error of 1.44◦ (see the last row of
Table I(a)). The average error of the photometric algorithm is
slightly larger, but the average maximum error is smaller (this
is, however, an artifact imputable to our half-degree angular
quantization τ ). Note that the overall complexity of the phase
correlation approach is dominated by the computation of the
discrete log-polar Fourier transform. Thus, for a fixed j, the
complexity is at least O(N2 logN) (cf. Cooley-Tukey FFT
algorithm [31, Ch. 5]). On the other hand, for a fixed j, the
complexity of the photometric approach is O(360 τ−1N2).
Practically speaking, to solve problem (10) for a fixed j,
it took on average (ten trials) 62.68 s in Matlab, under the
previous conditions. In fact, by searching over 720 images, the
photometric visual compass is about 41 times slower than the

(a) COR PHO

CP Mean Std Min Max Mean Std Min Max

1 0.41 0.29 0.00 1.41 0.46 0.33 0.00 1.00
2 0.37 0.24 0.00 1.09 0.59 0.50 0.00 1.50
3 0.39 0.27 0.00 1.09 0.47 0.43 0.00 1.00
4 0.44 0.31 0.00 1.41 0.49 0.44 0.00 1.00
...

...
...

...
...

...
...

...
...

25 0.68 0.46 0.00 1.88 0.58 0.34 0.00 1.00
0.46 0.32 0.00 1.44 0.48 0.38 0.00 1.06

(b) Bazin et al. [5]

CP Mean Std Min Max

1 1.72 1.23 0.09 11.69
2 1.79 4.54 0.00 37.40
3 2.06 6.02 0.00 48.22
4 5.83 4.25 0.11 37.24

TABLE I
(a) Magnitude of the estimation errors (in degrees) of the phase

correlation (COR) and photometric (PHO) approach in the 25 CPs
of the Stäubli dataset. The last row of the table (boldface) reports the
average values of the eight columns; (b) Magnitude of the estimation

errors (in degrees) of the approach in [5] in the first 4 CPs
of the Stäubli dataset.

phase correlation algorithm. As a final comparison, Table I(b)
reports the statistics of the magnitude of the estimation errors
of the method in [5] in the first 4 CPs. This method detects
3-D parallel lines on the unit sphere of equivalence (it thus
needs a fully-calibrated camera), and it computes the vanishing
points from which the roll and pitch angles are deduced.
We adapted [5] to estimate the yaw-angle of the camera,
and we worked with the same Matlab implementation of the
authors to identify an optimal set of threshold parameters.
It came as no surprise that [5] is less accurate than the dense
visual compasses, since only few parallel lines are present in
the images (two bundles of 6 to 8 straight lines). In addition,
the average computation time for a fixed j is 4.33 s, i.e. 2.83
times longer than that of the phase correlation method.

Remark 1: Note that in order to determine the maximum
translational displacement of the camera allowed by the phase
correlation algorithm for a given level of accuracy, we can
relate the statistics of the magnitude of the estimation error at
CP 2 (see the second row of Table I(a)), with those obtained
by estimating the yaw-angle between the first image at CP 1
and all the images at CP 2. Under a linear growth model, we
can impose, for example, that the mean value in the latter case
(8.04◦), is within 3 sigma of the mean value in the former case
(i.e. 0.37 + 3 × 0.24 = 1.09◦), thus obtaining a maximum
translational displacement of (10 × 1.09)/8.04 = 1.35 cm.
As a comparison, with 1024-by-1024 log-polar images and
with the photometric approach, the maximum translational
displacement becomes (10 × 1.02)/4.19 = 2.43 cm and
(10× 2.09)/1.79 = 11.68 cm, respectively. �
D. Experimental results: Pioneer robot

To further evaluate the robustness of our approach, we ran
Algorithm 1 in the three scenarios described in Sect. IV-A2.
Because of the incremental nature of the algorithm, we in-
creased the sensibility of the phase correlation method by
considering 1024-by-1024 log-polar images. The price to pay
was a slight increase of the average computation time (less
than 9% over ten trials, for Scenario 3). Fig. 4 reports the
results obtained in Scenarios 1 and 2: in particular, Figs. 4(a),
4(d), Figs. 4(b), 4(e), and Figs. 4(c), 4(f), respectively show the
robot setups, the first image of each scenario, and the incre-
mental estimation errors ψjj−1−ψ

j

j−1 (blue) and ψjj−1−ψ
j,PHO
j−1

(red) over the 360◦ angular range, for j ∈ {2, . . . ,m}.
We computed ψ

j,PHO
j−1 as (cf. equation (10)):

ψ
j,PHO
j−1 = argmin

ψj
j−1

∈ Ω

∑
x∈S2

[
Ij−1(R

T (ψjj−1)x) − Ij(x)
]2
,

where Ω = {−6◦ + τ, −6◦ + 2τ, . . . , 6◦ − τ} and τ = 0.1◦.
The first two rows of Table II report the statistics of the magni-
tude of the incremental estimation errors in Scenarios 1 and 2.
The minimum, maximum and end-value (i.e. for j = m), of
|ψj − ψj | and |ψj − ψ

PHO
j | are, instead, 0.06◦, 8.64◦, 8.64◦

and 0.03◦, 2.26◦, 1.96◦ in Scenario 1, and 0.25◦, 6.09◦, 2.97◦

and 0.12◦, 2.91◦, 2.72◦ in Scenario 2. Finally, Fig. 5 refers
to Scenario 3: Fig. 5(a) reports the first image of the dataset,
and Fig. 5(b) the trajectory of the Pioneer. Fig. 5(c) shows
the yaw angles of the robot estimated by the phase correlation
(ψj , blue) and photometric approach (ψ

PHO
j =

∑j
k=2 ψ

k,PHO
k−1 ,

red), against the ground truth (ψj , black). Note that despite
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Fig. 4. Scenario 1 (top row) and Scenario 2 (bottom row). (a), (d) Robot setups; (b), (e) Initial images; (c), (f) Estimation errors ψj
j−1 − ψ

j
j−1 (blue) and

ψj
j−1 − ψ

j,PHO
j−1 (red), in degrees, over the 360◦ angular range.

COR PHO

Scen. Mean Std Min Max Mean Std Min Max

1 0.31 0.39 0.00 2.47 0.17 0.21 0.00 0.78
2 0.32 0.46 0.00 3.74 0.14 0.14 0.00 0.70
3 0.60 0.67 0.00 3.47 0.30 0.26 0.00 1.40

TABLE II
Statistics of |ψj

j−1− ψ
j
j−1| and |ψj

j−1− ψ
j,PHO
j−1 | (degrees) of the phase

correlation (COR) and photometric (PHO) approach in Scenarios 1-3.

the drift at frames 22 and 137, caused by the oscillations
of the catadioptric system when the Pioneer negotiated the
lawn from the footpath (see Fig. 5(c)), small incremental
estimation errors are obtained, as reported in the third row
of Table II. The minimum and end-value of |ψj − ψj | and
|ψj − ψ

PHO
j | are relatively small as well: 0.01◦, 9.63◦ and

0.18◦, 4.47◦, respectively.
Discussion: Note that in Scenarios 2 and 3, challenging

experimental conditions were considered4. The robot traversed
uneven terrain (resulting in a non-planar camera displacement)

4The videos of the experiments are available in the multimedia attachment
accompanying this submission and at the address: http://mis.u-picardie.fr/
∼g-caron/pub/data/OVMIS videos.zip

under variable illumination conditions (moving cast shadows
of the trees). Moreover, in the Stäubli dataset, we experienced
partial image occlusions due to the spatial reconfiguration of
the robot arm (see frames 14, 15 and 70, 71 in CP 1). In spite
of these important sources of error and of being partially
agnostic of the internal camera parameters, our visual compass
turned out to be accurate and robust against unexpected image
changes. Moreover, it was between one and two orders of
magnitude faster than the photometric algorithm, and almost
three times faster than [5]. It is finally worth pointing out
here that the performance of [5] was unsatisfactory in the
non-structured environments of Scenarios 2 and 3, because
of the almost total absence of straight lines in the images.
The methods in [3], [4] rely on line images too, and they are
also expected to perform poorly in these scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, we have designed and experimentally validated
on different robotic platforms, a dense omnidirectional visual
compass based on the phase correlation method in the spectral
domain. We have also described a new publicly-available
dataset of hypercatadioptric images, called OVMIS, which was
instrumental in evaluating our approach and in comparing it
with competing methods.
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Fig. 5. Scenario 3. (a) Initial image; (b) Figure-of-eight trajectory of the Pioneer robot (in order to have a time reference, we marked the robot with a triangle
every 10 frames or about every 5 s); (c) Yaw angles estimated by the phase correlation (blue) and photometric approach (red), against the ground truth (black).

This work opens several directions for further research.
Although our results are encouraging, an effort is still required
to achieve real-time performance via machine-specific opti-
mized implementations of Algorithm 1. Working towards
a more sophisticated robot-localization unit, we also aim at
incorporating a vision-based loop-detection module into our
algorithm. Finally, we plan to extend our approach to 3-D cam-
era motions for estimating the attitude of an aerial robot
(e.g. a quadrotor). To this end, we are currently considering
the possibility to adapt the volume registration method based
on the 3-D pseudo-polar Fourier transform presented in [32],
to a visual gyroscope.
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