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Abstract This paper proposes an approach for pixel unmixing based on possibilis-
tic similarity. The approach exploits possibilistic concepts to provide flexibility in
the integration of both contextual information and a priori knowledge. Possibility
distributions are first obtained using a priori knowledge given in the form of learning
areas delimitated by an expert. These areas serve for the estimation of the probability
density functions of different thematic classes also called endmembers. The resulting
probability density functions are then transformed into possibility distributions using
Dubois-Prade’s probability-possibility transformation. The pixel unmixing is then
performed based on the possibilistic similarity between a local possibility distribu-
tion estimated around the considered pixel and the obtained possibility distributions
representing the predefined endmembers in the analyzed image. Several possibilistic
similarity measures have been tested to improve the discrimination between endmem-
bers. Results show that the proposed approach represents an efficient estimator of the
proportion of each endmember present in the pixel (abundances) and achieves higher
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classification accuracy. Performance analysis has been conducted using synthetic and
real images.

Keywords Spatial unmixing - Endmembers - Possibilistic similarity - Contextual
information
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1. Introduction

An accurate and reliable image classification is a crucial task in many applications
such as content based image retrieval, medical and remote-sensing image analysis,
computer vision and robotics, web image search, visual tracking, and scene inter-
pretation. An important difficulty related to this task stems from the existence of
mixed pixels usually called ‘mixels’. These mixels contain a mixture of more than
one class of different thematic classes also called endmembers contained in the ana-
lyzed scene. Endmembers, as illustrated in Fig.1, correspond to macroscopic objects
in the scene, such as water, soil, metal, vegetation, etc. Unmixing is critical for image
analysis. In [1], they describe unmixing in the following way: “Spectral unmixing
is the procedure by which the measured spectrum of a mixed pixel is decomposed
into a collection of constituent spectra, or endmembers, and a set of corresponding
fractions, or abundances, that indicate the proportion of each endmember present in
the pixel.”
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Fig. 1 a) Linear and non-linear pixel mixtures;
b) Concept of hyperspectral imaging [2]

Mixels arise mainly due to the limitation in spatial and spectral resolving capacity
of the sensor being used. Spectral measurement might be the result of some com-
posite of the individual spectra, a mixel, if the sensor spatial resolution is low enough
that disparate materials can jointly occupy a single pixel, for instance, in remote sens-
ing performing wide-area surveillance at high altitude. Mixels might also result from
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distinct materials combined into a homogeneous mixture that is independent of the
spatial resolution of the sensor (e.g. sand grains on a beach).

There is a vast and rich literature on methods of unmixing for image processing.
Amongst it, from time to time, appear papers that present surveys covering in whole
or in parts that large field. For instance, in [1], they present an important review on
linear models and non-linear modelling approaches. In [3], they define also a taxon-
omy of algorithms for hyperspectral unmixing. They consider ‘unmixing’ as a special
case of the generalized inverse problem that estimates parameters describing an object
using an observation(s) of a signal that has interacted with the object before reaching
the sensor. More recently, in [4], they present a quite elaborated discussion on the
mixture problem through techniques named spectral mixture analysis (SMA). SMA
models a mixed spectrum as a linear or nonlinear combination (see Fig.1) of its spec-
tral endmembers weighted by their subpixel fractional cover where SMA provides
abundances by model inversion. The reader can benefit from the following papers to
get a more complete survey on spectral unmixing [5-10]. This is beyond the scope of
this paper to present a throughout analysis of unmixing approaches.

In the majority of the hyperspectral literature, unmixing algorithms are rather
based on the spectral signatures of each individual pixel and do not incorporate the
spatial information. However, some studies, not a lot, present methods to integrate
spatial information found in a hyperspectral data cube [9, 10, 12, 13]. The two types
of resolution, spatial and spectral, have an inextricable relationship to one another
[14] where the higher spectral variability of local areas of the analyzed scene be-
comes apparent as the spatial resolution becomes finer. Therefore, using advanced
sensors with higher spatial resolving power may not necessarily enable improved
classifications when the pixel-based images classification systems are used.

The originality of our proposed approach resides in it can work on very few images
even on a single image. There are situations with limited means where one does not
have access to the richness of data provided by hyperspectral or multispectral imagers
but we rather have only few images. The development of methods of pixel unmixing
by endmembers becomes very important for image analysis where subpixel detail is
valuable and more accurate classification results are needed. Especially in situations
where no spectral information is available (i.e., monochromatic sensor with limited
capacity) as pointed by the dashed rectangle of Fig.2.
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Fig. 2 Tabling features to compare monochrome, RGB, spectroscopy, multispectral,
and hyperspectral data, adapted from [11]

This paper is organized as follows. In the next section, a brief review of basic con-
cepts of possibility theory is introduced along with different possibilistic similarity
functions to quantify the similarity between classes or endmembers. Our proposed
approach is detailed in the subsequent section followed by Section 4 that is devoted
to experimental results obtained using synthetic and real images.

2. A Review of Possibility Theory

Possibility theory is a relatively new theory devoted to handle epistemic uncertainty,
i.e., uncertainty in the context where the available knowledge is only expressed in
an ambiguous form (ex. knowledge expressed by an expert). This theory was in-
troduced by Zadeh in 1978 as an extension of fuzzy sets and fuzzy logic theory to
express the intrinsic fuzziness of natural languages as well as uncertain information
[15] and further developed by Dubois and Prade [16, 17]. It is well established that
probabilistic reasoning, based on the use of a probability measure, constitutes the op-
timal approach dealing with uncertainty. In the case where the available knowledge
is ambiguous and encoded as a membership function into a fuzzy set defined over
the decision set, the possibility theory transforms each membership value into a pos-
sibilistic interval of possibility and necessity measures [18]. The use of these two
dual measures in possibility theory makes the main difference from the probability
theory. Besides, possibility theory is not additive in terms of beliefs combination and
makes sense on ordinal structures [19]. In the following subsections, the basic con-
cepts of a possibility distribution, the dual possibilistic measures (i.e., possibility and
necessity measures), the probability-possibility transformation and the possibilistic
decision rules are briefly recalled.

2.1. Possibilistic Knowledge Representation

Let us consider an exclusive and exhaustive universe of discourse Q = {C,Cp, - - ,

Cy} formed by M mutually exclusive elementary decisions (e.g., decisions, thematic
classes, endmembers, hypothesis, etc), and let {n¢,},m = 1,---, M be a set of M
possibility distributions defined on Q. Exclusiveness means that one and only one
decision may occur at one time, whereas exhaustiveness states that the occurring
decision certainly belongs to Q. Possibility theory is based on the notion of possibility
distribution denoted by &, which maps elementary decisions from Q to the interval
[0, 1], thus encoding “our” state of knowledge or belief, on the possible occurrence of
each element C,, € Q. The value n(C,,) represents to what extent it is possible for C,,
to be the unique occurring decision. This value 7(C,,) encodes our state of knowledge,
or belief, about the real world and represents the possibility degree for C,, to be the
unique occurring element. In this context, two extreme cases of knowledge are given:

¢ Complete knowledge: ' C,, € Q, n(C,,,) = land n(C,) =0,V C, € Q, C, #
Cp.

* Complete ignorance: ¥ C,, € Q, n(C,,) = 1 (all elements from Q are consid-
ered as totally possible).
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n(-) is called a normal possibility distribution if at least one element C,,, from Q
such that 7(C,,,) = 1.

2.2. Possibility Distributions Estimation Based on Pr — 7 Transformation

A crucial step in possibility theory applications is the determination of possibility dis-
tributions. Recall that a possibility distribution encodes our state of knowledge about
the real world. Nevertheless, the appropriate estimation of the possibility distribu-
tion shape and shape’s parameters is a difficult task. Two approaches are generally
used for the estimation of a possibility distribution. The first approach consists on
using standard forms predefined in the framework of fuzzy set theory for member-
ship functions (i.e., triangular, Gaussian, trapezoidal, S-Shape, etc.), and tuning the
shape-parameters using a manual or an automatic tuning method. The second esti-
mation approach of possibility distributions is based on the use of statistical data and
is conducted in the following two consecutive steps:

 Using statistical data, an uncertainty function describing the uncertainty inher-
ent to the statistical data is estimated first (e.g. histogram, probability density
function, basic belief function, etc.).

 The estimated uncertainty function is then transformed into a possibility distri-
bution. In the framework of possibility theory, the probability-possibility trans-
formations (Pr — & transformations) are frequently used for the implementation
of this step.

In this study, the available expert’s knowledge is expressed through the definition
of small learning areas representing different endmembers, i.e., statistical data. The
second estimation approach will then be used. Several Pr—n transformations are pro-
posed in the literature. Dubois et al. [20] suggested that any Pr — & transformation of
a probability density function, Pr, into a possibility distribution, 7, should be guided
by the two following principles:

» The probability-possibility consistency principle. This principle is expressed
by Zadeh [15] as: “what is probable is possible”. Dubois and Prade formu-
lated this principle by indicating that the induced possibility measure IT should
encode upper probabilities:

I1(A) = Pr(A),VA C Q. (1)

* The preference preservation principle ensuring that any Pr — & transformation
should satisfy the relation:

Pr(A) <Pr(B) ©I1(A) <II(B),YA,BC Q. 2)

Verifying these two principles, a Pr — & transformation turning a probability dis-
tribution Pr, defined by probability values Pr({C,}), C,, € Q, m = 1,2,--- M,
into a possibility distribution n, defined by II({C,,}), C,, € Q, m = 1,2,--- , M has
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been suggested by Dubois et al. [20]. This transformation, called symmetric Pr — z
transformation, is defined by:

M=

7 (Cp) =TLAC,) = ) min [Pr(iC, ). Pr({C)))]- 3)

~.
11

This transformation is being used in our study to transform the probability distribu-
tions into possibility distributions. The reason standing behind this choice is due to
good performance of that symmetric transformation (3) provides in pattern recogni-
tion and classification [21, 22].

2.3. Possibilistic Similarity

The concept of similarity is a very important topic for many applications. Any system
that needs to analyze or organize automatically a set of data or knowledge must use
a similarity operator to estimate relations and resemblances that exist in data [23].
The issue of comparing imperfect pieces of information depends on the way they are
represented. In the case of possibility theory, comparing uncertain pieces of infor-
mation is to compare their possibility distributions. Hence, a similarity measure is a
quantification of the amount of similarity between two possibility distributions.

Considering the expert’s predefined set of M endmembers contained in the ana-
lyzed image, Q = {C;,C», - - , Cy}, a set of M possibility distributions can be defined
as follows:

7TC,W : Dm - [O, 1] 5 (4)

x(P) - nc, (x(P)), %)

where D refers to the definition domain of the observed feature x(P) of the pixel P.
For each class C,,, ¢, (x(P)) associates each pixel P € J, of an image J observed
through a feature x(P) € D, with a possibility degree of belonging to the class
Cpn, m = 1,--- , M. Different possibilistic similarity and distance functions “Sim”
can be defined between the two possibility distributions 7¢,, and 7¢, of two endmem-
bers C,, and C, of the set Q. The behavior of these functions can be studied in order
to obtain a better discrimination between classes C,, and C,. To this end, calculating
a similarity matrix S informs on such inter-classes behavior and help in the choice of
a suitable measure in a given context:

(6)

2.3.1. Possibilistic Similarity Functions

This subsection reviews some existing possibilistic similarity and distance functions
that are the most frequently used in literature. Recall that one considers an exclusive
and exhaustive universe of discourse QQ = {C},C», - ,Cy} formed by M mutually
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exclusive elementary decisions, and let {r¢,}, m = 1,---, M be a set of M possibility
distributions defined on Q.

* Information closeness: This similarity measure was proposed by Higashi and
Klir [24] based on the information variation measure G:

G (nc,,nc,) = g (nc,, 7c, V 7c,) + g (nc, 7, V 7c,) s @)

where g(nc,, n¢,) = U(nc,) — U(nc, ). The operator V is taken as maximum
operator and U is the non-specificity measure defined as in (8). Given an or-
dered possibility distribution 7 such that 1 =71 > 7, > -+ >y, the U of 7

is formulated as:

M
Um=|> —7T,~+1)10g2i] +(1 - m)log, M, ®)

i=1

where m),; = 0 by convention. Hence, the similarity measure based on the
Information closeness is given by:

G (nc,, 7c,)

Simg (7¢, ,7c,) =1—
G (¢, 7c,) G

®

Minkowski distance: Since possibility distributions are often represented as
vectors, the most popular metrics for possibility distributions are induced by
the Minkowski norm (Lp) which is used in vector spaces.

|D|
L, (nc,.mc,) = J > e, () = 7, G (10)

i=1

Two particular cases of (10) are often investigated: L;-norm (Manhattan dis-
tance), and L,-norm (Euclidean distance). They are given by the following

expressions:
|D|
L (nc,.7c,) = Z |7Tcm (x;) = 7, (Xz)|, 11
i=1
|D| )
La (e, 7c,) = | D e, (6) = 7, (- (12)
i=1
These cases of Minkowski distance can be transformed into similarity measure
by the following:
. L,
Sim,, (n¢,,, 7ic,) = 1 - . (13)

{IDi
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* Information affinity: This similarity measure was proposed by Jenhani et al.
[25].

kL, (7¢c,,mc,) + Alnc (¢,
Simy, (nc,,.7c,) = 1 - o e 70 ny) e, C")v (14)
K

where k > 0 and 2 > 0, Inc(nc,,nc,) represents the inconsistency degree
between 7¢, and 7c, defined as follows:

Inc (¢, mc,) = 1 — max (min (7c,,, 7c,)) - (15)

* Similarity index [25]:
Simgl (7TC,,,’7TC,,) = min {Q’ (ﬂcm,ﬂcn) , (1 —7tc,,» 1- ﬂcn)} N (16)

where:

1D|
> e, (x) X 7, (x;)

i=1

a(ne,,mc,) = 7 17)

Zl {max (rc, (x)),7c, (x))

It is worth noticing that this list should not be considered as complete depending
on the application or the type of images that have to be analyzed. In the following

subsection, a process allowing the selection of the most “suitable” similarity measure
is proposed and evaluated using synthetic images.

2.3.2. Evaluation of the Similarity between Two Classes

A 100x 100 synthetic image composed of two thematic classes has been generated in
order to evaluate the similarity between two classes. The intensity of the pixels from
C; and C; are generated as two Gaussian distributions G(m; = 110, oy = 10) and
G(my = 120, oy = 10). Fig.3 illustrates the obtained synthetic image. The evaluation
principle of the similarity between the two classes selects the possibilistic similarity
function for which similarity matrix is the closest to the identity matrix /, in terms of
the Euclidean distance. In the considered case, where only two classes are involved,
this distance D is summarized by the following measure (i, j € {0, 1}):

D= 18 Gp)-LG)l. (18)

ij

Lower is the distance value D, better is the discrimination power (between classes) of
that similarity function. The distance value D is computed for each similarity func-
tion by first varying the mean value of the generated pixels of class C, and then the
standard deviation, while maintaining a fixed value for mean and standard deviation
of class C;. Fig.3 shows the evolution of the measured D with respect to means or
standard deviations. From Fig.3, the similarity function called “Similarity Index”
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Simg;(nc,,, mc,) function [25] sounds like the most suitable to describe the similarity
between two classes. Indeed, the possibilistic similarity function Simg; tends to the
identity matrix faster than the others when the values m, — m; and o, — 0y increase.

g & Manhattan < Manhattan

L) B Euclidean 14 B - Euclidean
\ °<;,O + 4 Similariy Index » A\ Simiariy Index
e # 4| @ Information Afinity V & N & Information Affinty
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Fig. 3 Estimating the power of discrimination D between classes of different sim-
ilarity functions: (a) Evolution of the measure D as a function of the difference of
deviations between classes C| and C5; (b) Synthetic image; (c) Evolution of the mea-
sure D as a function of the mean difference between classes C; and C;

3. A Possibilistic Approach of Pixel Unmixing by Endmembers

In this paper, an approach based on possibilistic similarity is proposed for pixel un-
mixing by endmembers. This approach exploits possibilistic concepts to provide flex-
ibility, on one side, in representing limited information (contextual information and
a priori knowledge), and on the other side, in the integration of both contextual in-
formation and a priori knowledge. For instance, in pixel-based image segmentation
context, several methods have been proposed in the literature to cope with limited
initial a priori knowledge. The method of image segmentation by region growing
[26] consists on selecting, manually, few “seeds” designating anchor points for the
initialization for the segmentation of regions contained in the image. According to a
criterion of similarity measure, a region grows iteratively in merging pixels similar
and adjacent to starting seeds. Fan et al. [27] presented an extensive and comparative
study on seeded region growing approaches. These semantic image segmentation ap-
proaches, according to [27], suffer from two main problems: pixel sorting orders for
labeling and automatic seed selection.

These approaches are called ‘semantic’ because they involve high-level knowledge
of image components in the seeds selection procedure as in our proposed approach.
One of the methods which has also been used to compensate the limitation of initial
prior knowledge is the semisupervised fuzzy pattern matching method [21] based
on transforming different class histograms (established using the small size learning
sets) into possibility distributions using the Dubois-Prade Pr — r transformation. The
use of reference class patterns (serving for the decision of attributing a new pattern to
the different predefined classes) is applied on each new pattern. When a new pattern
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is “accepted” as one of the predefined classes, then, this pattern is used to adjust the
class histogram, and hence, the class possibility distribution. This method does not
exploit the spatial context in the classification process.

Alsahwa et al. [22] also presented a method to enrich the limited initial prior
knowledge. This method is based on transforming different class probability density
functions into possibility distributions using the Dubois-Prade Pr — & transformation
and on using spatial context to evaluate the decision of attributing a new pattern to
the different predefined classes and hence, updating their possibility distributions.
Possibility distributions are first obtained using a prior knowledge given in the form
of learning areas delimitated by an expert. These areas serve for the estimation of
the probability density functions of different endmembers. The resulting probability
density functions are then transformed into possibility distributions using Dubois-
Prade’s probability-possibility transformation [20, 28].

“Spatial Context constitutes a potential source of information to be R, : Homogeneous Region
used in order to UNMIX the considered pixel’ (pixels composing Ry have very close abundance rates)
Scene = U Ry
(X - (X T, (X
k=12,.K i 1( ) T ) on®)

m=1,.M = Tm=1,.M

‘Each pixel belongs to a homogencous region

m(x)

Q

Fig. 4 A possibilistic approach of pixel unmixing

The estimation of these M possibility distributions forms the first step in the pro-
posed approach (Fig.4). The second step consists in determining the pixels’ similar-
ity to the M predefined classes of the analyzed image J by first estimating the local
possibility distribution around the pixel of interest Py. Secondly, by measuring the
similarity Simg; between this local possibility distribution and each of the M esti-
mated possibility distributions. Fig.5 shows the proposed approach in the case of the
synthetic image composed of two classes.

All the measured similarity values are transformed into percentages as the follow-
ing:

; M
a, = Simg; (ﬂCks”Po)/Z Simg; (¢, 7p,)’ (19)

m=1

where a; is supposed to be the “abundance” of k" predefined thematic class in the
considered pixel Py and ) Simg; serves as a normalizing factor. It is worth noticing
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that high overlapping case (high discrimination complexity) between the predefined
thematic classes can be treated with our proposed approach. In the case of low over-
lapping (low discrimination complexity), the “abundance” of a predefined thematic
class in the considered pixel Py is roughly inversely proportional to the distance be-
tween the pixel vector and the mean of that class [29].

C, Learning zone C, Learning zone

€1:G(my, Ey) \

‘ C3:G(my, Ep) ‘

- Subzone around P,

Poss.dist.(C,)
Poss dist (C,)
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Fig. 5 Synthetic image, possibility distributions of classes Cy, C, and the local possi-
bility distribution in a subzone around the pixel of interest Py

The simplest and most widely used approach, the linear mixture model [30] is
used in the proposed unmixing approach. This model is based on the assumption
that a linear combination exists between the pixel brightness and the M predefined
thematic class. The spectral reflectance of a pixel is the sum of the spectral reflectance
from the predefined endmembers weighted by their relative “abundances”:

M
B= Z a; X B, (20
i=1

where B is the brightness value (i.e., the realization of the random variable measured
by the sensor) of the considered pixel Py, B; is the brightness value of the i prede-
fined thematic class, and g; is its abundance in the considered pixel Py. There are
two constraints on the abundances that should be satisfied: the abundances must all
be non-negative to be meaningful in a physical sense ¢; > 0 [31], and must sum up
to one (3, a; = 1). In the case of multispectral or hyperspectral images composed
of N bands, (20) is calculated in each band. If N > M (number of the predefined
endmembers), a least squares procedure can be used to obtain the best abundances’
estimation.
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A classification step is conducted at the end of the proposed approach. This step
consists in the process of assigning a class to the considered pixel Py by determin-
ing the nearest class via the similarity function Simg; used to measure the similarity
between this pixel’s local possibility distribution and the possibility distributions of
each of the M classes.

4. Experimental Results
4.1. Performance on Synthetic Data

In many applications, collecting mixed pixels and determining their exact abundances
of the predefined thematic classes is a very difficult task. Therefore, a 550 x 550
pixels synthetic image, given in Fig.6, is generated. This image is composed of
eleven sectors. The first and second sectors are assumed to contain two “pure” the-
matic classes generated by two Gaussian distributions G(m; = 100, oy = 15) and
G(mp = 150, o, = 15). Pixels of sectors from three to eleven are generated as a
linear mixture of the first and second pure classes.

The abundances of class C; and class C, in these mixed pixels is varying incre-
mentally by 10%. For instance, the abundance of class C; in the third sector is 10%
(resp. abundance of class C, is 90%) and in the fourth sector 20% (resp. abundance
of class C, is 80%), etc. 20 x 20 pixel learning zones positioned by the expert (as be-
ing representative areas of the considered thematic classes) are also illustrated on the
generated image. The effectiveness evaluation of the proposed approach is studied
through two perspectives (next two sections): an estimation of classes’ abundances
in the mixed pixels and the evaluation of the improvement in overall classification
accuracy.

C, Learning zone

SECTOR 1 (CLASS Cy) {
SECTOR 2 (CLASS C;) {

C, Learning zone

SECTORS 3-11
(LINEAR MIXTURE OF
C,AND Cy)

Fig. 6 Synthetic image composed of two classes and their learning zones

4.2. Estimation of Classes’s Abundances in the Mixed Pixels

Using the learning zones, the initial estimation of the class probability density func-
tions are established based on the kernel density estimation (KDE) approach. The ap-
plication of the Pr—m Dubois-Prade’s transformation allows obtaining the possibility
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distributions for each class in the analyzed image. A 3 X 3 pixel window centred on
each pixel (see Fig.4) is considered as the local spatial possibilistic context and then
local probability density functions are established based on the KDE approach. The
application of the Pr — m Dubois-Prade’s transformation allows obtaining the local
possibility distributions.

Abundances of the predefined endmembers in each sector, from three to eleven,
can be estimated from the possibilistic similarity values. In each of these sectors,
the proposed approach, using the possibilistic similarity measure Simg,, is applied
on all its pixels and their possibilistic similarity values of each endmember are calcu-
lated. The results obtained, in terms of abundance maps, are given in Fig.7. A visual
inspection of the abundance maps shows a linear variation in the abundance values
corresponding to both classes. A quantitative analysis step of abundances maps is
conducted to confirm the visual inspection. The mean and the standard deviation of
the possibilistic similarity values for each class are given in Table 1.

100%

0%

Fig. 7(a) Synthetic image composed of two classes; (b) abundance map of class C;
and (c) abundance map of class C;

Table 1: Abundances of the predefined endmembers in each sector.

C1(10%) | C1(20%) | C1(30%) | C1(40%) | C1(50%) C1(60%) | C1(70%)| C(80%)| C1(90%)
C2(90%) | C2(80%) | Ca(70%) | C2(60%) | C2(50%) C2(40%) | Ca(30%) | C2(20%) | Ca(10%)

mean(cy) 0.14 | 020 | 0.28 | 0.39 | 0.50 | 0.61 | 0.72 | 0.79 | 0.87

sd(cy) | 0.07 | 0.08 | 0.09 | 0.10 | 0.10 | 0.09 | 0.08 | 0.08 | 0.06

mean(C;) 0.86 | 0.80 | 0.72 | 0.61 | 0.50 | 039 | 028 | 021 | 0.13

sid(cy) | 0.06 | 0.07 | 009 | 010 | 0.10 | 0.10 | 0.09 | 0.07 | 0.06

Results show that the abundances of the predefined endmembers in the mixed pix-
els can be estimated with a reasonable accuracy from possibilistic similarity values.
This estimation is in conformity with the values used in synthetic image generation.
For instance, it can be estimated that the fifth sector contains about 28% of class C;
and 72% of class C, (Fig.7) while the used values in synthetic image generation are
30% of class C; and 70% of class C,. The small values of standard deviation consti-
tute another indication confirming that this estimation is quite consistent to the values
used in synthetic image generation.
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Fig. 8 Abundances of the predefined endmembers in the mixed pixels of the fifth
sector
4.3. Evaluation of the Improvement in Overall Classification Accuracy

The above synthetic image (Fig.6) is classified using the proposed approach and the
conventional Bayesian approach, respectively. The classification recognition rate is
then calculated in order to compare the classification results of the two approaches.

Table 2: Classification recognition rate of the predefined thematic classes in each sec-
tor calculating first by the proposed approach and second by the Bayesian approach.

Recognition rate (%)
C1(10%) | €1 0%) | C1(30%) | Cj(0%) | C1(50%) | C[(60%) | C1(70%) | C{(80%) | C;1(90%)
C(90%) | Ca(80%) | Cp(10%) | Ca(60%) | Cp(50%) | Co(40%) | Cp(30%) | Co(20%) | Cp(10%)
Our approach(Cy) 0 1 1 11 49 93 99 100 100
Our approach(C,) 100 99 99 89 51 7 1 0 0
Bayesian approach(C) 2 4 12 27 51 28 88 95 99
Bayesian approach(C) 98 96 88 73 49 72 12 5 1

Results show an overall improvement in classification accuracy using the proposed
approach. This improvement has reached 17% in some cases (e.g. C{(40%) and
C»(60%)). In addition to this improvement in terms of the classification accuracy,
the estimation of the classes’ abundances in the mixed pixels (Sec. 4.2) enables the
assessing of the classification accuracy which, in turns, may contribute to the inter-
pretation of the analyzed scene. For instance, the classification of the third sector is
100% class C; with a small deviation of the assignment to its pixels (about 14% of the
class C,) while the classification result of the fourth sector is also about 100% class
C; but with a bigger deviation of the assignment to its pixels (about 20% of class C5).
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It is important to note that this assessment of accuracy cannot be obtained using the
conventional pixel-based images classification systems.

4.4. Experimental Results Using Real Medical Images

This section presents results on the application of our proposed approach on real im-
ages. In certain types of images, the description of thematic classes by an expert is
a difficult task. Consequently, it makes the interpretation process more difficult. For
example, in the case of mammography, the difficulty of interpreting these images is
mainly due to the variety of tissues density, complicated structures of the breast, the
great diversity existing in tumor areas in terms of type, shape, contours, etc. Thus,
the expert often needs an interpretation support system to perform a preliminary seg-
mentation of these images. Unfortunately, no segmentation method can ensure a fully
reliable segmentation that gives a clear idea on tumor areas [32].

The performance of our proposed approach for highlighting the content of regions
of interest (i.e., over-density areas in the mammary gland) is evaluated using mam-
mographic images. Fig.9 illustrates the difficulty of interpreting such images with
low contrast and highly textured. The image is first segmented using our proposed
approach to have a first idea of regions of interest (Fig.10).

Learning areas '

oot| — Tumoral Tissue
— Normal Tissue
ol

Possibility

0 50 100 150 200 250
Gray level
@) ()

Fig. 9 (a) Mammographic test image (with learning areas) (b) possibility distributions

The abundance map corresponding to the class of tumor tissue obtained by our
approach is given in Fig.10. The image is superimposed on the original image. Each
region identified in the segmentation process can be described by a vector which
components are the abundance rates histograms of thematic classes (present in the
analyzed scene) and calculated on the set of pixels of the region (see Fig.11).

A visual analysis of the obtained results shows the spatial distribution of abundance
values of tumor tissue while highlighting areas with high abundance values. Such
analysis allows the expert to provide a better idea about the content and location of
the tumor specially and that is a very important result: the small regions of interest as
well as the extent of tumor tissues. This is very valuable information to the clinician
from a finer interpretation of the analyzed images.
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Fig. 10 (a) Mammographic test image segmented by the proposed approach (b) abun-
dance map of Tumor and (c) superimposition of abundance map on the original image
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Fig. 11 (a) and (b) abundances histogram of the tumor tissue class in the suspected
region

4.5. Experimental Results Using Real Remote Sensing Images

In this section, the performance of the proposed approach is evaluated using a remote
sensing image (SPOT: Earth Observation Satellite). This image is a multi-spectral
image with three spectral bands (Fig.12) and is composed of four thematic classes
(Fig.13) [33].
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Fig. 12 (a) SPOT image composed of four classes (b) first band (c) second band and
(d) third band

. C1: Covered field

. C2: Wooded area

l:l Cs : Bare soil

. Ca : senescence of vegetation

Fig. 13 SPOT image composed of four classes (with learning areas)

For each source of information (i.e., spectral band in this case), the possibility
distributions (estimated from the learning areas) produce the abundance maps for all
thematic classes. For each thematic class, the final abundance map is obtained as
the average of abundance maps obtained from different sources of information. The
results obtained by applying the proposed approach on the SPOT image, in terms of
abundance maps are given in Fig.14.

@ ) © @ © 0%

Fig. 14 (a) SPOT image (b) abundance map of class C; (c) abundance map of class
C; (d) abundance map of class C3 and (e) abundance map of class Cy4

A visual analysis of these abundance maps shows an overlap, on one side, between
the classes C; (covered field), C, (wooded area) and Cy4 (senescence of vegetation),
and on the other side, between the C5 class (bare soil) and class C4 (senescence of
vegetation). On the other hand, little overlap is found between the class C; (bare soil)
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and two classes C; and C,. Fig.15 shows a selected region and the four histograms
representing the statistical distributions of abundance rates of different classes in this
region.
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Fig. 15 (a) SPOT image (with selected region) and (b) abundances histograms of the
four classes in the selected region

These histograms can confirm/deny the pure aspect of an identified region and
provide essential information on its qualitative (i.e., thematic classes) and quantitative
(i.e., abundance rates of thematic classes) content. Note that the visual inspection of
the region shown in Fig.15, suggesting that it is a mixed region with only the thematic
content: C3 and Cy4, however, we note the presence of significant abundance rate of
the other two thematic classes Cy and C».

5. Conclusion

In this study, a pixel-based unmixing approach is developed based on a possibility the-
ory that enables the integration of contextual information and a priori knowledge. In-
deed, one of the key points of the proposed approach is to characterize the pixel taking
into account its neighborhood. This is done through the creation of local possibility
distributions. Another key point of our approach has been to propose a classification
method based on the similarity between class possibility distribution and local possi-
bility distribution and not on the membership degrees of parameters extracted from
the local window. Results obtained on a synthetic image compared to the results ob-
tained using a Bayesian approach are promising. Information about pixel’s content of
the predefined endmembers are made available and increased classification accuracy
has been achieved. Preliminary results of real images seems promising. Future work
will generalize and validate these results on various types of images (synthetic and
real) and study the sensibility to learning (e.g. number of predetermined endmem-
bers).
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