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Abstract

We are interested in the numerical approximation of the discontinuous
solutions of non conservative hyperbolic systems. We more precisely con-
sider a non conservative formulation of the usual gas dynamics equations
and show how to slightly modify the so-called Roe-type path-conservative
schemes to properly capture the underlying shock discontinuities. Numer-
ical evidences are proposed. The present note follows a first comment on
the computation of non conservative products in [1].

1 Introduction

We are interested in hyperbolic equations of the form

{

∂tu+A(u)∂xu = 0, x ∈ R, t ∈ R
+,⋆,

u(x, 0) = u0(x),
(1)

where u(x, t) ∈ R
p is the unknown and u0 represents the initial data, and

supplemented with the validity of an entropy inequality

∂tU(u) + ∂xF(u) ≤ 0, (2)

where (U ,F) is an entropy-entropy flux pair (meaning T∇UA = T∇F with U
strictly convex). From a theoretical point of view, it is well known that the
solutions can develop discontinuities in finite time even if u0 is smooth. It is
therefore necessary to understand (1)-(2) in a weak sense in order to define a
notion of discontinuous weak solution which makes sense mathematically and
physically. If (1) is a system of conservation laws, that is if there exists a flux
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function f : Rp → R
p such that A = ∇f , the notion of weak solution in the

sense of distributions is used to define the solutions of (1)-(2). Assuming in
addition that the characteristic fields are linearly degenerate or genuinely non
linear, existence and uniqueness results have been obtained for initial data with
bounded variation and close enough to a constant state (see for instance [27]).
From a numerical point of view, there exists in this situation a large number of
finite volume methods to approximate the smooth and discontinuous solutions of
(1)-(2). The most famous of them are certainly the Godunov and Godunov-type
methods whose fundamental ingredient is the (exact or approximate) Riemann
solution, namely the solution with an initial data made of two constant states
separated by a discontinuity (see for instance [21], [28]). The situation is much
more intricate when the matrix A is not the Jacobian matrix of a flux function
since the theory of distributions does not apply. The non conservative product
A(u)∂xu has indeed a loose sense at a point of discontinuity of the solution u.
To overcome this difficulty, Dal Maso, LeFloch and Murat [19] introduced for
functions with bounded total variation a notion of weak solution that allows to
define the non conservative product A(u)∂xu and that generalizes the notion of
weak solution in the sense of distributions for conservative systems. It is based
on the theoretical notion of ”path”. Importantly, a path acts as a new degree
of freedom of the model and a first difficulty consists in choosing the family of
paths. Similarly to the conservative setting, this definition leads to existence and
uniqueness results of weak solutions to (1)-(2) under certain assumptions (see
for instance [23]). At the numerical level, imposing the path in the numerical
method is still an open and very ambitious problem because of the sensitiveness
of the traditional methods with respect to the choice of the path and the usual
discretisation parameters, see for instance [22] and the more recent review [24].
Several attempts to impose the so-called ”path” within the numerical scheme
have been tried. Without any attempt to be exhaustive, they proved to be
very successfull in [3, 4, 5], [12, 13] (see also the references therein) but the
strategy unfortunately highly relies on the structure of the models studied in
the papers and generalizing the approach is not clear at all. More recently,
C. Parés and collaborators developped in [26] and later works the so-called
”path-conservative” schemes. Since then, it has been proved that this approach
generally fails in converging to the right solutions, see [1], [10]. Actually, such
a failure happens for any numerical method in which the small scale effects
are not controlled, either if it is path-conservative or not. At last, a different
strategy from the one proposed in the present contribution and that significantly
reduces these convergence errors for the same problem has been introduced in
[20] and generalized to general nonconservative systems within the framework
of path-conservative methods in [11].

In [1], the authors more precisely consider the usual gas dynamics equations
in Lagrangian coordinates and show that path-conservative schemes are not
convergent when applied to a non conservative version of these equations. In
the present paper, which structure follows closely Abgrall and Karni’s [1], we
consider the same equations and show how to slightly modifiy the usual ”path-
conservative” schemes to compute correctly the solutions of the non conservative
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formulation of the gas dynamics equations. It is based on a slight modification
of the underlying averaging procedure by introducing modified cells as already
introduced in several quite recent contributions, see for instance [30], [17], [14],
[15], [8], for a non exhaustive list. We also refer the reader to [2] for a hybrid
Roe-Glimm scheme which spirit is similar in some sense to the strategy we derive
here.

The content of the first four sections is well-known but necessary to set up
the problem and the notations for the sake of clarity. The main contribution is
thus contained in Sections 5 and 6 where the method is described and numerical
experiments are proposed. At last, Section 7 contains some concluding remarks.

2 The model under consideration

We consider the following gas dynamics equations in Lagrangian coordinates :






∂tτ − ∂xu = 0,
∂tu+ ∂xp = 0,
∂tE + ∂xpu = 0,

(3)

where t is the time, x the spatial coordinate, τ > 0 represents the inverse of a
density, u is the velocity and p = p(τ, e) > 0 is the pressure of the fluid. Here
e > 0 denotes the internal specific energy and satisfies E = e + u2/2. In order
to illustrate our purpose, it will be sufficient to focus on the case of a perfect
gas equation of state. It will much simplify the forthcoming calculations but
more general equations of state could be considered as well. Therefore we set
p(τ, e) = (γ − 1)e/τ where γ > 1 is the so-called adiabatic coefficient.
From a mathematical point of view, it is well known that (3) is strictly hy-
perbolic with eigenvalues λ0 = 0 and λ± = ±c, c =

√

γp/τ . Moreover, the
characteristic field associated with λ0 is linearly degenerate and the character-
istic fields associated with λ± are genuinely nonlinear [21]. For the sake of
conciseness, we introduce the following short form

∂tu(x, t) + ∂xf(u(x, t)) = 0, (4)

where the flux function f finds a natural definition with respect to the conser-
vative unknowns u = (τ, u, E). At last, we supplement (4) with an initial data
u0 at time t = 0, that is to say u(x, t = 0) = u0(x).
A particular initial data is given by a Riemann initial data connecting two
constant states uL and uR in the phase space (τ and p are positive) as follows

u0(x) =

{

uL if x < 0,
uR if x > 0.

(5)

Non conservative formulation. Easy calculations show that for smooth solutions
system (3) can be equivalently recast under the following non conservation form







∂tτ − ∂xu = 0,
∂tu+ ∂xp = 0,
∂te+ p∂xu = 0,

(6)
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where only the last equation has been changed. Using a chain rule argument,
we also introduce a short form for (6), namely

∂tv(x, t) +A(v)(x, t)∂xv(x, t) = 0, (7)

where v = (τ, u, e) and

A(v) =





0 −1 0
∂τp(τ, e) 0 ∂ep(τ, e)

0 p(τ, e) 0



 .

Note that the mapping u → v is one-to-one so that the proposed change of
variable is admissible. In particular, one can naturally define v0 at time t = 0
from u0, and thus v(x, t = 0) = v0(x).

3 Jump relations and admissible shock solutions

It is well-known that the solutions of hyperbolic systems generally develop dis-
continuities in finite time. Considering system (4), a discontinuity

u(x, t) =

{

u− if x < σt
u+ if x > σt

between two states u− and u+ and propagating with velocity σ is a weak solution
if and only if it satisfies the Rankine-Hugoniot jump relations

−σ(u+ − u−) + f(u+)− f(u−) = 0.

After some calculations, these relations write equivalently







σ(τ+ − τ−) + (u+ − u−) = 0,
−σ(u+ − u−) + (p+ − p−) = 0,
−σ(e+ − e−) +

1

2
(p+ + p−)(u+ − u−) = 0,

(8)

while usual admissibility criteria based on entropy consideration or related Lax
criterion impose the following compatibility condition σ(τ+− τ−) > 0, for shock
discontinuities (σ 6= 0). We refer for instance the reader to [21] for these more
than classical considerations. Note however that the former criterion will be a
key ingredient in the definition of our numerical strategy.

Non conservative formulation. If one now considers the non conservative for-
mulation (7), the theory of distributions to define weak solutions does not make
sense. To overcome this difficulty, Dal Maso, LeFloch and Murat [19] introduced
a generalization of the notion of weak solution in the sense of distributions that
allows to define the non conservative products. More precisely, it is based on
the theoretical notion of path. A path φ : [0, 1] × R

3 × R
3 → R

3 associated
with (7) satisfies the properties φ(0,v−,v+) = v− and φ(1,v−,v+) = v+ and
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serves to define the generalized Rankine-Hugoniot relations associated with a
discontinuity

v(x, t) =

{

v− if x < σt
v+ if x > σt

between two states v− and v+ and propagating with velocity σ by setting

−σ(v+ − v−) +

∫ 1

0

A(φ(s,v−,v+))∂sφ(s,v−,v+)ds = 0. (9)

As expected, this definition does not depend on the path when the matrix A is
the Jacobian matrix of a flux function like in formulation (4) and leads to the
previous and usual Rankine-Hugoniot relations in such a situation.
A very simple choice of path which will be considered in the following is defined
for all v− and v+ such that σ(τ+ − τ−) > 0 and is linear with respect to τ , u
and p, namely







τ(s) = τ− + s(τ+ − τ−),
u(s) = u− + s(u+ − u−),
p(s) = p− + s(p+ − p−),

for all s ∈ [0, 1]. Easy calculations then show that the generalized jump relations
(9) boil down to (8) so that both conservative and non conservative formulas
are equivalent for such a choice of path, see [1].

4 Original Roe-type path conservative schemes

We briefly recall in this section the Roe-type path conservative schemes proposed
in [26] to approximate the solutions of non conservative systems. It was shown
in [1] that such a strategy fails in producing good approximations of admissible
shock solutions when applied to system (7). The next section shows how to
slightly modify this approach to make the numerical solutions perfectly match
the exact ones. Let us first introduce some notations.
We denote by ∆x and ∆t the space and time steps, respectively. We define the
mesh interfaces xj+1/2 = j∆x for j ∈ Z and the intermediate times tn = n∆t
for n ∈ N. We also define the mid-points xj = (xj−1/2 + xj+1/2)/2 for j ∈ Z.
At each time tn, vn

j represents an approximation of the exact solution on the
interval [xj−1/2, xj+1/2), j ∈ Z, and we look for an approximation of the solution
at time tn+1. At time t = 0 we set

v0
j =

1

∆x

∫ xj+1/2

xj−1/2

v0(x)dx, for all j ∈ Z.

According to [29] and [26], Roe-type path conservative schemes associated with
(7) and a given path φ are based on a Roe linearization Aφ satisfying the
properties

1. for all vL and vR, Aφ(vL,vR) has 3 distinct eigenvalues,
2. for all v, Aφ(v,v) = A(v),
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3. for all vL and vR,

Aφ(vL,vR)(vR − vL) =

∫ 1

0

A(φ(s,vL,vR))∂sφ(s,vL,vR)ds.

In the sequel, we will follow [25] and set

Aφ(vL,vR) = A(v), v = v(vL,vR) = (τ , u, e)

with

τ =
τL + τR

2
, u =

uL + uR

2
, e =

p τ

γ − 1
and p =

pL + pR
2

,

which is easily seen to satisfy the three properties. The approximate Riemann
solution constructed from the Roe linearization, namely the exact solution to
the linear Riemann problem







∂tv(x, t) +Aφ(vL,vR)∂xv(x, t) = 0,

v(x, t = 0) =

{

vL if x < 0,
vR if x > 0,

is then given by

v(x/t;vL,vR) =















vL if x/t < −σ(vL,vR),
v∗
L if −σ(vL,vR) < x/t < 0,

v∗
R if 0 < x/t < σ(vL,vR),

vR if x/t > σ(vL,vR),

(10)

where the left and right intermediate states are easily obtained from the left
and right eigenvectors lk and rk, k = 1, 2, 3 of Aφ(vL,vR), respectively, namely

v∗
L = (vR, l1)r1 +

3
∑

k=2

(vL, lk)rk, v∗
R =

2
∑

k=1

(vR, lk)rk + (vL, l3)r3,

and σ(vL,vR) = c(v(vL,vR)) =
√

γp/τ(vL,vR). For the sake of clarity, it will
be useful to have in mind the wave pattern of this solution, which is recalled on
the next figure.

−σ(vL,vR) σ(vL,vR)0
v∗
L v∗

RvL vR

x = 0

Once the solution is defined, we denote by x → ṽ(x, t) the piecewise constant
approximate solution obtained by glueing together the Roe-type approximate
solutions at each interface, that is to say

ṽ(x, t) = v((x − xj+1/2)/t;v
n
j ,v

n
j+1)
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for all (x, t) ∈ [xj , xj+1) × [0,∆t), j ∈ Z, n ∈ N. The Roe-type path conserva-
tive scheme is then defined according to [26] as any Godunov-type scheme by
averaging the solution on each cell [xj−1/2, xj+1/2), namely

vn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

ṽ(x,∆t)dx, (11)

under the CFL restriction

∆tmax
j∈Z

|σ(vn
j ,v

n
j+1)| ≤

∆x

2
. (12)

Easy calculations give the following form for the update formula,

vn+1
j = vn

j − ∆t

∆x

(

D+

j−1/2 +D−

j+1/2

)

, D±

j+1/2 = A±

φ (v
n
j ,v

n
j+1)(v

n
j+1 − vn

j ),

where ± refers to the positive and negative part of the matrices. In the sequel,
we will also use the notation σn

j+1/2 = σ(vn
j ,v

n
j+1).

5 Modified Roe-type path conservative schemes

In this section, we present a slight modification of the original Roe-type path
conservative scheme in order to compute the admissible shocks properly. By
slight, it is meant that only the average step of the method will be changed.
The proposed strategy was already introduced in several quite recent contri-
butions, see for instance [30], [17], [14], [15], [8], for a non exhaustive list. It
involves modified cells and random sampling, which objective is to get sharp
discontinuities, i.e. without numerical diffusion. Controlling the numerical dif-
fusion associated with the average step of Roe-type path conservative schemes,
and more generally of any Godunov-type scheme, is a key point to approximate
shocks in non conservative systems. We refer for instance the reader to [3], [4],
[5], [7], [12], [13] for more details.

As already underlined in the previous section, the Roe-type path conserva-
tive scheme defines the update value at the new time step by simply averaging
on each fixed cells (xj−1/2, xj+1/2) and at time t = ∆t the solution made of the
juxtaposition of the Roe-type approximate Riemann solutions defined by (9),
according to (11). Instead, we propose to average the solution at time t = ∆t
on modified cells (x̄j−1/2, x̄j+1/2) defined by x̄j+1/2 = xj+1/2 + sj+1/2∆t, where
sj+1/2 has to be defined. Note that sj+1/2 is expected to represent an approx-
imation of the speed of propagation of an admissible shock in the Riemann
problem set at interface xj+1/2, so that we will have snj+1/2 = −σn

j+1/2 or
snj+1/2 = +σn

j+1/2. More precisely, we propose to set

vn+1
j =

1

∆xj

∫ xj+1/2

xj−1/2

ṽ(x,∆t)dx, (13)
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with ∆xj = x̄j+1/2 − x̄j−1/2, as illustrated on the figure below.

tn

tn+1
x̄j−1/2 x̄j+1/2 x̄j+3/2

vn+1
j vn+1

j+1

xj−3/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2

In order to recover the initial mesh and define vn+1
j without introducing nu-

merical diffusion, we then proceed with a random sampling procedure similar
to the one proposed in the random choice method [18]. More precisely, let be
given (an)n a well-distributed random sequence within (0, 1) (e.g. the van der
Corput sequence), we simply set

vn+1
j =











vn+1
j−1 if an+1 ∈ (0, ∆t

∆xs
n,+
j−1/2)

vn+1
j if an+1 ∈ [∆t

∆xs
n,+
j−1/2, 1 +

∆t
∆xs

n,−
j+1/2)

vn+1
j+1 if an+1 ∈ [1 + ∆t

∆xs
n,−
j+1/2, 1)

(14)

where we have set sn,+j+1/2 = max(snj+1/2, 0) and sn,−j+1/2 = min(snj+1/2, 0).

Definition of snj+1/2. In agreement with the selection principle σ(τ+ − τ−) > 0
introduced in Section 3, we simply set

snj+1/2 =

{

−σn
j+1/2 if (τnj+1 − τnj ) ≤ 0,

σn
j+1/2 if (τnj+1 − τnj ) > 0.

On the other hand, if the Riemann solution at interface xj+1/2 consists in a
stationary contact discontinuity (uj = uj+1 and pj = pj+1), which we write
here

|uj − uj+1| ≤ ǫ and |pj − pj+1| ≤ ǫ (15)

for a given threshold ǫ, we naturally set snj+1/2 = 0. In practice, we set ǫ = 1e−8.

We thus have the following result.

Theorem 5.1 Under the CFL restriction (12), the scheme defined by (13)-(14)
is consistent with (7) in the following sense :
(i) Constant state : Assume that v := vn

j−1 = vn
j = vn

j+1, then vn+1
j = v.

(ii) Isolated shock discontinuity : Let v− and v+ be two constant states that
can be connected by an admissible discontinuity in the sense of Section 3. We
denote by σ the speed of propagation. Assume that v0

j = v− if j ≤ 0 and

v0
j = v+ if j > 0. Then the scheme defined by (13)-(14) is equivalent to

Glimm’s random choice scheme and then converges to the exact solution of (7)
given by v(x, t) = v− if x < σt and v(x, t) = v+ if x > σt. In particular,
we have vn

j ∈ {v−,v+} ∀ j ∈ Z and ∀ n ∈ N so that no spurious state is
introduced in the numerical solution.
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Proof. The proof of the first point is trivial. Regarding the second point, it
suffices to recall that the Roe linearization leads to an exact solution when it
corresponds to an isolated shock wave. The rest of the proof is immediate and
the convergence result of Glimm’s scheme can be found for instance in [27].

The second point of the theorem shows in particular that the proposed scheme is
able to compute properly and without numerical diffusion isolated shock waves
associated with the non conservative system (7). Actually, it coincides with
the random choice method in such a specific case. The next section devoted
to numerical experiments shows that the numerical solutions perfectly match
the exact ones also for more general initial data still guaranteeing no numerical
diffusion.

6 Numerical experiments in Lagrangian and Eu-

lerian coordinates

Several test cases are proposed in this section to illustrate the behavior of the
proposed numerical scheme. The adiabatic coefficient is set to be equal to
γ = 1.4. We compare the solutions given by two numerical schemes, namely
the original path-conservative scheme and the proposed numerical scheme. We
use a mesh with 300 cells per unit of length and a CFL restriction of 0.45. The
results are displayed with the x coordinate on the horizontal axis, and the un-
knowns specified in the figure captions on the vertical axis. The results are first
given in Lagrangian coordinates, see Figures 1, 2, 3 and 4, but also in Eulerian
coordinates, see Figures 7, and 8, following the direct extension of the proposed
method described in appendix A. Note that the first two test cases below have
been cooked up in such a way that exact solutions are either an isolated discon-
tinuity or two shock discontinuities starting from the same right state, which
explains the very specific values. In addition, these values can be understood in
dimensionless form. The last test case in Eulerian coordinates is more realistic,
it is inspired from the first test case of [2] and involves a very large pressure
jump across the shock.

Test 1. The first test case consists in an isolated shock discontinuity :

(τ, u, p)0(x) =

{

(2.09836065573770281, 2.3046638387921279, 1.0) if x < 0,
(8.0, 0.0, 0.1) if x > 0.

The speed of propagation equals 0.3905124837953326544238. The final time of
simulation is t = 0.5. As expected, we observe on Figure 1 that the original
path-conservative scheme fails in producing good numerical results and creates
spurious additional waves. On the contrary, Figures 1 and 2 show that the pro-
posed numerical scheme captures the discontinuity without numerical diffusion
since again, it coincides with the random choice method in this case. It is thus
convergent and first-order accurate as proved in [27].

9



1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Figure 1: Test 1 in Lagrangian coordinates : τ (Left), p (Right) and u
(Bottom). Exact solution (solid line), our scheme (cross), path-conservative
scheme (square)
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Test 2. The second test case is a given Riemann problem leading to three simple
waves :

(τ, u, p)0(x) =

{

(5.0, 3.323013993227, 0.481481481481) if x < 0,
(8.0, 0.0, 0.1) if x > 0.

The 3-shock is the same as in the previous test case. The density of the 1-
shock jumps from 5.0 to 3.0 and the discontinuity propagates with velocity
−0.509175077217. The final time of simulation is t = 0.5. Again, we ob-
serve on Figure 3 that the original path-conservative scheme fails in producing
good numerical results (the constant states are not properly restored), while
the proposed numerical scheme provides the right states and captures the shock
discontinuities without numerical diffusion. We also observe on Figure 3 that
the position of the 2-shock is shifted with respect to the real position, which
comes from the proposed random sampling. Actually, the position gets closer
and closer to the right position when the mesh is refined as observed on Figure
4 for a 800-point mesh. Regarding the intermediate constant states in the so-
lutions, Figure 5 proposes a zoom of the plateau by giving the errors between
the exact and approximate values at given space positions. It shows that both
values are extremely close for the three components τ , u and p. At last, Figure
6 gives the L1-errors for different meshes and for the three variables τ , u and
p. The rate of convergence appears to be less than one and we postulate that it
comes from the numerical diffusion introduced across the contact discontinuity.

We follow this section by giving the results of the same two test cases but
in Eulerian coordinates, see appendix A for more details. We plot ρ, u and p
and the final times are t = 0.1 for both test cases. Note that the final time is
shorter than in Lagrangian coordinates in order for the waves to remain in the
computational domain. The meshes are made of 300 points and the solutions
given by our scheme are now compared to the ones given by the usual method
of Roe applied to the conservative equations. The latter allows for a proper
computation of the left and right states of the shocks with the usual numerical
diffusion in between. The objective is indeed to compare the numerical diffusion
of both strategies. As it can be clearly seen, these numerical results again
indicate that the non conservative shocks are properly computed by our scheme
and with no numerical diffusion, compared to the usual (conservative) Roe’s
method. Note also that on Figure 7, the usual method of Roe applied to the
conservative equations suffers from startup errors, leading to little wiggles.

At last, we conclude this section with a more realistic test case (Test 3)
inspired from the first test case of [2] and involving a very large pressure jump
in the initial data and across the shock wave. More precisely, we take

(ρ, u, p)0(x) =

{

(1185, 0, 2.0e11) if x < 0,
(1185, 0, 1.0e5) if x > 0,

where the density, velocity and pressure units are respectively kg/m3, m/s, and
Pa. The final time of simulation is t = 2e−5 and the mesh is made of 500
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Figure 3: Test 2 in Lagrangian coordinates : τ (Left), p (Right) and u
(Bottom). Exact solution (solid line), our scheme (cross), path-conservative
scheme (square)
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Figure 4: Test 2 in Lagrangian coordinates : τ (Left), p (Right) and u
(Bottom). Exact solution (solid line), our scheme with 300 points (cross), our
scheme with 800 points (square)

|τ − τe|(x = 0.38, t = 0.5) |τ − τe|(x = 0.6, t = 0.5)
300 points 5.57e-04 9.12e-04
800 points 1.18e-04 3.46e-05

|u− ue|(x = 0.5, t = 0.5) |p− pe|(x = 0.5, t = 0.5)
300 points 8.24e-05 2.45e-05
800 points 1.16e-05 2.10e-06

Figure 5: Test 2 : Zoom on the plateau errors for Figure 4

||τ − τe||L1 ||u− ue||L1 ||p− pe||L1

100 points 0.11547288 0.03454186 0.01494763
200 points 0.08453120 0.02339142 0.00920177
400 points 0.06201163 0.01734427 0.00678331
800 points 0.02879795 0.00704321 0.00290254
1600 points 0.01742338 0.00432291 0.00168837

Figure 6: Test 2 : L1-errors
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points. As expected, we observe on Figure 9 that the proposed method gives
similar results compared to the usual method of Roe applied to the conservative
system, but with less numerical diffusion across the shock.
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Figure 7: Test 1 in Eulerian coordinates : ρ (Left), p (Right) and u (Bot-
tom). Conservative Roe’s scheme (solid line) and our scheme (with lines points)
with 300 points

7 Concluding remarks

A key property in the proof of Theorem 5.1 lies in the fact that the Roe scheme
is able to provide an exact solution in the case of an isolated shock discontinuity.
Note however that Roe’s scheme is not entropic without correction for general
systems. This therefore emphasizes the need for the development of such ap-
proximate Riemann solvers which are entropic and able to exactly reproduce
isolated discontinuities. We refer the reader to [9], [16] for contributions on this
topic.
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Figure 8: Test 2 in Eulerian coordinates : ρ (Left), p (Right) and u (Bot-
tom). Conservative Roe’s scheme (solid line) and our scheme (with lines points)
with 300 points

16



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  0.2  0.4  0.6  0.8  1
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  0.2  0.4  0.6  0.8  1

 0

 500

 1000

 1500

 2000

 0  0.2  0.4  0.6  0.8  1

 0

 500

 1000

 1500

 2000

 0  0.2  0.4  0.6  0.8  1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  0.2  0.4  0.6  0.8  1
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  0.2  0.4  0.6  0.8  1

Figure 9: Test 3 in Eulerian coordinates : ρ (Left), p × 10−8 (Right) and
u (Bottom). Conservative Roe’s scheme (solid line) and our scheme (with lines
points) with 500 points
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The proposed numerical scheme is only statistically conservative on the con-
servative variables τ and u because of the random sampling, but it does not
prevent the method from converging, numerically, to the right solution.

In one space dimension, the random sampling strategy is not mandatory. It
could be easily replaced by considering moving meshes with non constant space
steps, see for instance [30], which would give a conservative scheme on a moving
mesh. In several space dimensions, it is well-known from the work by Colella
[18] that the random sampling strategy cannot be used as it stands if one sim-
ply considers directional splitting methods. An alternative is currently under
preparation.

At last, the proposed method is currently being applied to more general systems,
in particular really non conservative systems (by really it is meant that they do
not admit a natural conservative form) of interest for various applications.

A The non conservative formulation in Eulerian

coordinates

We briefly give in this section the basic material used in the previous section
to obtain the numerical results in Eulerian coordinates. As we will see, the
approach followed is a direct extension of the Lagrangian framework.
First of all, the conservative form of the gas dynamics equations in Eulerian
coordinates writes







∂tρ+ ∂xρu = 0,
∂tρu+ ∂x(ρu

2 + p) = 0,
∂tρE + ∂x(ρEu+ pu) = 0,

where ρ is the density and the other quantities have already been defined before.
The non conservative formulation under consideration in this section is the
following natural extension of the Lagrangian framework, namely







∂tρ+ ∂xρu = 0,
∂tρu+ ∂x(ρu

2 + p) = 0,
∂tρe+ ∂xρeu+ p∂xu = 0,

where only the last equation has been changed. It can be given the following
short form

∂tw(x, t) + B(w)(x, t)∂xw(x, t) = 0,

where w = (ρ, ρu, ρe) and

B(w) =





0 1 0
−u2 2u γ − 1
−γeu γe u



 .
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If we denote by w− and w+ the left and right states of a shock discontinuity,
and σ its speed of propagation, the Rankine-Hugoniot relations associated with
the conservative formulation are (see for instance [21])











−σ(ρ+ − ρ−) + (ρ+u+ − ρ−u−) = 0,
−σ(ρ+u+ − ρ−u−) + (ρ+u

2
+ − ρ−u

2
−) + (p+ − p−) = 0,

−σ(ρ+e+ − ρ−e−) + (ρ+e+u+ − ρ−e−u−) +
1

2
(p+ + p−)(u+ − u−) = 0,

while the entropy criteria imposes in particular that (ρ+ − ρ−) > 0 for a 1-
shock discontinuity associated with the first eigenvalue u −

√

γ(γ − 1)e and
(ρ+ − ρ−) < 0 for a 3-shock discontinuity associated with the third eigenvalue
u+

√

γ(γ − 1)e. Recall that the second eigenvalue λ2 = u is associated with a
linearly degenerate characteristic field giving rise to contact discontinuities only.
Like in the Lagrangian framework, the theory of Dal Maso, LeFloch and Murat
[19] applies and leads to the generalized Rankine-Hugoniot relations

−σ(w+ −w−) +

∫ 1

0

B(φ(s,w−,w+))∂sφ(s,w−,w+)ds = 0

and the very simple choice of path given by






ρ(s) = ρ− + s(ρ+ − ρ−),
u(s) = u− + s(u+ − u−),
p(s) = p− + s(p+ − p−),

for all s ∈ [0, 1] allows to recover the original conservative Rankine-Hugoniot
relations.
As a Roe linearization Bφ, we take

Bφ(wL,wR) =





0 1 0

−−→u 2 2−→u γ − 1
−γẽu γẽ u



 .

where

ρ =
ρL + ρR

2
, u =

uL + uR

2
, ρe =

ρLeL + ρReR
2

, ẽ =
ρe

ρ
,

and
−→u = αuL + (1− α)uR, α =

√
ρL√

ρL +
√
ρR

.

It is interesting to note that Bφ(wL,wR) is not the matrix B applied to an
average state since the averages involved in its second and third rows are not
the same. However, such a choice is natural in order to get the third required
property (which can be easily checked) of a Roe linearization, namely
3. for all wL and wR,

Bφ(wL,wR)(wR −wL) =

∫ 1

0

B(φ(s,wL,wR))∂sφ(s,wL,wR)ds.
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Since the proposed averages are clearly consistant, it is also easy to ckeck that
the second property holds true, namely that
2. for all w, Bφ(w,w) = B(w).
In regards to the first property
1. for all wL and wR, Bφ(wL,wR) has 3 distinct eigenvalues,
it is not always satisfied since the eigenvalues of Bφ(wL,wR) are shown to be

µ1 = −→u −
√

γ(γ − 1)ẽ, µ2 = u, µ3 = −→u +
√

γ(γ − 1)ẽ.

As a consequence, while clearly µ1 < µ3, it might happen that µ1 = µ2 or
µ2 = µ3 since −→u 6= u in general. Property 1. is thus satisfied under the condi-
tion µ1 < µ2 < µ3. In practice, this condition turned out to be satisfied for the
test cases proposed in the numerical section.
To conclude, let us underline that the objective of this section, and more gen-
erally of this paper, was to show that a relevant projection step might give a
numerical strategy to be able to properly compute the non conservative shocks
and that, it can be considered in both Lagrangian or Eulerian coordinates. How-
ever and considering the present section in Eulerian coordinates, the proposed
approach is certainly not the best one since Property 1. is only conditionnally
satisfied. Considering a Lagrange-Projection strategy [21] (based on the Roe
linearization introduced in the Lagrangian framework and followed by a trans-
port step) or the development of a new approximate Riemann solver which is
entropic and exact for isolated shock waves, might be more relevant. Going
further into the details of this strategy will be the purpose of a forthcoming
contribution, see the concluding section above.
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