Kamel Aouiche
email: kaouiche@eric.univ-lyon2.fr

Jérôme Darmont
email: jerome.darmont@univ-lyon2.fr

Data Mining-based Materialized View and Index Selection in Data Warehouses

Keywords: Data warehouses, Performance optimization, Materialized views, Indexes, Data mining, Cost models

scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Large-scale usage of databases in general and data warehouses in particular requires an administrator whose principal role is data management, both at the logical level (schema definition) and physical level (files and disk storage), as well as performance optimization. With the wide development of Database Management Systems (DBMSs), minimizing the administration function has become crucial [START_REF] Chaudhuri | An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server[END_REF]. One important administration task is the selection of suitable physical structures to improve system performance by minimizing data access time [START_REF] Finkelstein | Physical database design for relational databases[END_REF].

Among techniques adopted in data warehouse relational implementations for improving query performance, view materialization and indexing are presumably the most effective [START_REF] Rizzi | View materialization vs. indexing: Balancing space constraints in data warehouse design[END_REF].

Materialized views are physical structures that improve data access time by precomputing intermediary results. Therefore, end-user queries can be efficiently processed through data stored in views and do not need to access the original data. Indexes are also physical structures that allow direct data access. They avoid sequential scans and thereby reduce query response time.

Nevertheless, exploiting either materialized views or indexes requires additional storage space and entails maintenance overhead when refreshing the data warehouse. The issue is thus to select an appropriate configuration (set) of materialized views and indexes that minimizes query response time and the selected data structures' maintenance cost, given a limited storage space.

The literature regarding materialized view and index selection in relational databases and data warehouses is quite abundant. However, we have identified two key issues requiring enhancements. First, the actual selection of suitable candidate materialized views and indexes is rarely addressed in existing approaches. Most of them indeed present scaling problems at this level. Second, none of these approaches dynamically takes into account the interactions that may exist between materialized views, between indexes, and between indexes and materialized views (including the approaches that simultaneously select both materialized views and indexes).

In this paper, we present a novel strategy for optimizing data warehouse performance that aims at addressing both these issues. We have indeed designed a generic approach whose objective is to automatically propose solutions to data warehouse administrators for optimizing data access time. The principle of this approach is to apply data mining techniques on a workload (set of queries) that is representative of data warehouse usage in order to deduce a quasi-optimal configuration of materialized views and/or indexes. Data mining actually helps reduce the selection problem's complexity and improves scalability. Then, cost models help select among the selected materialized views and indexes the most efficient in terms of performance gain/overhead ratio. We have applied our approach on three related problems: isolated materialized view selection, isolated index selection and joint materialized view and index selection. In the last case, we included index-view interactions in our cost models.

The remainder of this paper is organized as follows. Section 2 presents and discusses the state of the art regarding materialized view and index selection. Section 3 motivates and presents the principle of our performance optimization approach. Section 4 further details how we apply this approach to isolated materialized view selection, isolated index selection and joint materialized view and index selection, respectively. We particularly focus on joint materialized view and index selection, which is our latest development. Section 5 presents the experimental results we achieved to illustrate our approach's relevance. Finally, we conclude this paper and provide research perspectives in Section 6.

Related work

In this section, we first formalize the materialized view and index selection problem, and then detail and discuss the state of the art regarding materialized view selection, index selection and joint index and materialized view selection, respectively.

Materialized view and index selection: formal problem definition

The materialized view and index selection problem consists in building a set of materialized views and indexes that optimizes the execution cost of a given workload. This optimization may be realized under constraints, typically the storage space available for storing these physical data structures.

Let VC and IC be two sets of materialized views and indexes, respectively, that are termed candidate and are susceptible to reduce the execution cost of a given query set Q (generally supposed representative of system workload). Let OC = VC ∪ IC. Let S be the storage space allotted by the data warehouse administrator to build objects (materialized views or indexes) from set OC . The joint materialized view and index selection problem consists of building an object configuration O ⊆ OC that minimizes the execution cost of Q, under storage space constraint. This NP-hard problem [Comer, 1978, Gupta, 1999] may be formalized as follows:

• cost(Q, O) = min(cost(Q, ϑ)) ∀ ϑ ⊆ OC ;

• o∈O size(o) ≤ S, where size(o) is the disk space occupied by object o.

Materialized view selection

The materialized view selection problem has received significant attention in the literature. Related researches differ in several points:

1. the way the set of candidate views VC is determined; 2. the framework used to capture relationships between candidate views; 3. the use of mathematical cost models vs. calls to the system's query optimizer; 4. view selection in the relational or multidimensional context; 5. multiple or simple query optimization; 6. theoretical or technical solutions.

Classical papers in materialized view selection introduce a lattice framework that models and captures dependency (ancestor or descendant) among aggregate views in a multidimensional context [START_REF] Harinarayan | Implementing data cubes efficiently[END_REF], Baralis et al., 1997, Kotidis and Roussopoulos, 1999, Uchiyama et al., 1999]. This lattice is greedily browsed with the help of cost models to select the best views to materialize. This problem has first been addressed in one data cube and then extended to multiple cubes [START_REF] Shukla | Materialized view selection for multi-cube data models[END_REF]. Another theoretical framework, the AND-OR view graph, may also be used to capture the relationships between views [START_REF] Chan | Design and selection of materialized views in a data warehousing environment: a case study[END_REF], Nadeau and Teorey, 2002, Valluri et al., 2002, Gupta and Mumick, 2005]. Unfortunately, the majority of these solutions are theoretical and are not truly scalable.

A wavelet framework for adaptively representing multidimensional data cubes has also been proposed [START_REF] Smith | A wavelet framework for adapting data cube views for OLAP[END_REF]. This method decomposes data cubes into an indexed hierarchy of wavelet view elements that correspond to partial and residual aggregations of data cubes.

An algorithm greedily selects a non-expensive set of wavelet view elements that minimizes the average processing cost of data cube queries. In the same spirit, [START_REF] Sismanis | Dwarf: shrinking the petacube[END_REF] proposed the Dwarf structure, which compresses data cubes. Dwarf identifies prefix and suffix redundancies within cube cells and factors them out by coalescing their storage. Suppressing redundancy improves the maintenance and interrogation costs of data cubes. These approaches are very interesting, but they are mainly focused on computing efficient data cubes by changing their physical design.

Other approaches detect common sub-expressions within workload queries in the relational context [Goldstein and Åke Larson, 2001, Baril and Bellahsene, 2003, Rizzi and Saltarelli, 2003].

The view selection problem then consists of finding common subexpressions corresponding to intermediary results that are suitable to materialize. However, scanning through numerous intermediary results is very costly and these methods are not truly scalable with respect to the number of queries.

Finally, the most recent approaches are workload-driven. They syntactically analyze a workload to enumerate relevant candidate views [Agrawal et al., 2000]. By exploiting the system's query optimizer, they greedily build a configuration of the most pertinent views. A workload is indeed a good starting point to predict future queries because these queries are probably within or syntactically close to a previous query workload. In addition, extracting candidate views from the workload ensures that future materialized views will probably be used when processing queries.

Index selection

The index selection problem has been studied for many years in databases [START_REF] Finkelstein | Physical database design for relational databases[END_REF], Frank et al., 1992, Agrawal et al., 2000, Valentin et al., 2000, Feldman and Reouven, 2003, Kratica et al., 2003, Chaudhuri et al., 2004]. In the more specific context of data warehouses, existing research studies may be clustered into two families: algorithms that optimize maintenance cost [START_REF] Labio | Physical database design for data warehouses[END_REF] and algorithms that optimize query response time [START_REF] Gupta | Index selection for OLAP[END_REF], Agrawal et al., 2001, Golfarelli et al., 2002]. In both cases, optimization is realized under storage space constraint.

In this paper, we focus on the second family of solutions, which is relevant in our context. Studies falling in this category may be further categorized depending on how the set of candidate indexes IC and the final configuration of indexes I are built.

Selecting a set of candidate indexes may be automatic or manual. Warehouse administrators may indeed appeal to their expertise and manually provide, from a given workload, a set of candidate indexes [START_REF] Frank | Adaptive and Automated Index Selection in RDBMS[END_REF], Choenni et al., 1993a[START_REF] Choenni | On the selection of secondary indices in relational databases[END_REF]. Such a choice is however subjective. Moreover, the task may be very hard to achieve when the number of queries is very high. In opposition, candidate indexes can also be extracted automatically, through a syntactic analysis of queries [START_REF] Chaudhuri | An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server[END_REF], Valentin et al., 2000, Golfarelli et al., 2002]. Such an analysis depends on the DBMS, since each DBMS is queried through a specific syntax derived from the SQL standard.

The methods for building a final index configuration from candidate indexes may be categorized into:

1. ascending or descending greedy methods; 2. methods derived from genetic algorithms; 3. methods assimilating the selection problem to the well-known knapsack optimization problem.

Ascending greedy methods start from an empty set of candidate indexes [Kyu-Young, 1987, Frank et al., 1992[START_REF] Choenni | On the selection of secondary indices in relational databases[END_REF], Chaudhuri and Narasayya, 1997]. They incrementally add in indexes minimizing cost. This process stops when cost ceases decreasing. Contrarily, descending greedy methods consider the whole set of candidate indexes as a starting point. Then, at each iteration, indexes are pruned [Kyu-Young, 1987, Choenni et al., 1993a].

If workload cost before pruning is lower (respectively, greater) than workload cost after pruning, the pruned indexes are useless (respectively, useful) for reducing cost. The pruning process stops when cost increases after pruning.

Genetic algorithms are commonly used to resolve optimization problems. They have been adapted to the index selection problem [START_REF] Kratica | A genetic algorithm for the index selection problem[END_REF]. The initial population is a set of input indexes (an index is assimilated to an individual). The objective function to optimize is the workload cost corresponding to an index configuration. The combinatory construction of an index configuration is realized through the crossover, mutation and selection genetic operators. Eventually, the index selection problem has also been formulated in several studies as a knapsack problem [START_REF] Ip | On the selection of an optimal set of indexes[END_REF], Gundem, 1999, Valentin et al., 2000, Feldman and Reouven, 2003] where indexes are objects, index storage costs represent object weights, workload cost is the benefit function, and storage space is knapsack size.

Joint materialized view and index selection

Few research studies deal with simultaneous index and materialized view selection. [Agrawal et al., 2000] have proposed three strategies. The first one, MVFIRST, selects materialized views first, and then indexes, taking the presence of selected views into account. The second alternative, INDFIRST, selects indexes first, and then materialized views. The third alternative, joint enumeration, processes indexes, materialized views and indexes over these views at the same time. According to the authors, this approach is more efficient than MVFIRST and IND-FIRST, but no further details are provided.

[[START_REF] Bellatreche | On efficient storage space distribution among materialized views and indices in data warehousing environments[END_REF] studied storage space distribution among materialized views and indexes. First, a set of materialized views and indexes is designed as an initial solution. Then, the approach iteratively reconsiders the solution to further reduce execution cost, by redistributing storage space between indexes and materialized views. Two agents are in perpetual competition: the index spy (respectively, view spy) steals some space allotted to materialized views (respectively, indexes), and vice versa. The recovered space is used to create new indexes (respectively, materialized views) and prune views (respectively, indexes), according to predefined replacement policies.

Another approach a priori determines a trade-off between storage space allotted to indexes and materialized views, depending on query definition [START_REF] Rizzi | View materialization vs. indexing: Balancing space constraints in data warehouse design[END_REF]. According to the authors, the key factors to leverage query optimization is aggregation level, defined by the attribute list of Group by clauses in SQL queries, and the selectivity of attributes present in Where and Having clauses. View materialization indeed provides a great benefit for queries involving coarse granularity aggregations (few attributes in the Group by clause) because they produce few groups among a large number of tuples. On the other hand, indexes provide their best benefit with queries containing high selectivity attributes. Thus, queries with fine aggregations and high selectivity stimulate indexing, while queries with coarse aggregations and weak selectivity encourage view materialization.

Finally, [START_REF] Bruno | Physical Design Refinement: The "Merge-Reduce" Approach[END_REF] have recently worked on refining the physical design of relational databases. Their objective was to automatically improve an expert's physical design, to take into account primordial constraints it might violate. Hence, they proposed a transformation architecture base on two fusion and reduction primitives that helps process indexes and materialized views in a unified way.

Discussion

Existing studies related to index and materialized view selection are numerous and diverse in the field of databases, and quite developed in the field of data warehouses as well. However, we have identified two main points that could be improved in these approaches.

Candidate object selection

Selecting candidate objects (materialized views and indexes) is rarely the focus of existing approaches, most of which do not scale up well at this level. Many index selection strategies indeed rest on human expertise (the warehouse administrator's) to propose an initial candidate index configuration. Given the size and complexity of most data warehouses, an automatic approach is mandatory to apply these methods on a real-life scale. The most recent studies actually take this option, by building the initial index configuration from system workload.

With respect to materialized views, various data structures have been proposed (lattices, graphs, wavelets...) to model inter-view relationships. None of them scale up very well. For instance, browsing a candidate view lattice is very costly when the input data cube is very large. Similarly, building view graphs is as complex as the input workload is large. Hence, it is necessary to carefully evaluate a strategy's complexity before adopting it, and to optimize any data structure used.

Inter-object interaction management

To the best of our knowledge, none of the approaches we have presented in this section dynamically takes into account the interactions that may exist between indexes, between materialized views, and between index and views, including joint selection methods. Existing studies, especially those assimilating the selection problem to the knapsack problem or exploiting genetic algorithms, indeed compute the cost or benefit of an object (index or materialized view) once only, before injecting it in their algorithm. Since no details are provided by [Agrawal et al., 2000] about joint enumeration index and view selection, we cannot know exactly how it takes interactions between materialized views and indexes into account. We suspect costs/benefits are also computed once before the selection phase. However, the relevance of selecting a given object may vary from one iteration to the other if another, previously selected object interacts with the first one. It is thus primordial to recompute costs or benefits dynamically before object selection.

The nearest solution is the one by [START_REF] Bellatreche | On efficient storage space distribution among materialized views and indices in data warehousing environments[END_REF]. However, its object replacement policies in the disk spaces allotted to indexes and materialized views do not truly reflect index-view interactions. They indeed only consider joint usage frequency in queries, and not the benefit an object brings with respect to other objects.

Data mining-based warehouse performance optimization approach

In this section, we first motivate our performance optimization approach. Then, we present its general principle, detail how candidate objects are selected and how a final object (materialized view and index) configuration is generated.

Motivation

In this paper, our objective is to address the issues identified in Section 2.5. First, to ensure that candidate object (materialized view or index) selection scales up, it is necessary to devise an automatic approach. Generally, this is achieved by syntactically analyzing the system's query workload, which helps identify query attributes that might support indexes or materialized views. These attributes are then systematically combined to propose multi-attribute indexes or exhaustive view graphs. However, this strategy later leads, in the selection phase, to consider irrelevant objets, i.e., objects that do belong to the workload, but are not interesting in the scope of indexing or view materialization.

To a priori eliminate these irrelevant objects, we propose to exploit data mining techniques to directly extract from the workload a configuration of pertinent candidate objects. Our idea is to discover co-occurencies and similarities between workload objects. For indexing, we base our approach on the intuition that the importance of an attribute to index is strongly correlated with its appearance frequency in the workload. For view materialization, devising similar classes of queries also helps build views that are likely to answer all the queries from a given class.

From the smallest possible set of relevant candidate objects, we must then exploit an optimization algorithm (typically a greedy, knapsack or genetic algorithm) to build a quasi-optimal object configuration. However, to take index-view interactions into account, these algorithms must be modified. In a given iteration, an object's cost indeed depends on previously selected objects. Thus, it must be recomputed at each step. For simplicity reasons, we implemented this approach with a greedy algorithm.

General principle of our approach

Our automatic warehouse performance optimization approach (Figure 1) is not only based on information extracted from the warehouse's data (statistics such as attribute selectivity, for instance) or workload, but also on knowledge. This knowledge includes classical warehouse metadata (we notably exploit the database schema), as well as administration expertise, formalized in cost models (benefit induced by an index and maintenance cost, for instance) or rules. Our approach proceeds in two main steps, which are both piloted by knowledge. The first step is building a candidate object configuration OC . It consists in syntactically analyzing the input workload, which helps identify attributes that might be useful for view materialization or indexing. Applying rules issued from administration-related knowledge can already reduce the size of this attribute set. For instance, a low selectivity attribute such as gender, which has only two values, is not a good candidate index. This set of attributes is then structured as an attribute-value table that can be processed by a data mining algorithm.

The output of such an algorithm is directly the candidate object configuration.

Since disk space is constrained, it would be impossible to exploit all the candidate objects from OC . Thus, the second step in our process is greedily selecting a final object configuration O from OC . This algorithm exploits cost models we have developed to express, e.g., the benefit brought by a materialized view or an index, as well as their storage and maintenance costs (Section 4). Eventually, the last step in our approach consists of implementing the final object configuration in the data warehouse.

Note that we have designed this approach in a modular fashion, so that it is as generic as possible. Completing the two main steps indeed brought us to perform choices, but other options would be easy to consider. For instance, the data mining technique we selected for building a candidate index configuration is frequent itemset mining, but another study explored clustering instead [START_REF] Zaman | An Auto-Indexing Technique for Databases Based on Clustering[END_REF]. Besides, we have also used clustering for materialized view selection. Similarly, other optimization algorithms could be substituted to the greedy strategy we adopted to build the final object configuration. Our cost models might also be easily replaced with others if necessary, or by calls to a query optimizer, if it is accessible on the host DBMS.

Candidate object selection

System workload is typically accessible from the host DBMS' transaction log. A given workload is supposed representative if it has been measured during a time period the warehouse administrator judges sufficient to anticipate upcoming transactions.

Since we are more particularly interested in decision-support query performance and not warehouse maintenance, we only consider interrogation query workloads in this paper. These queries are typically composed of join operations between the fact table and dimensions, restriction predicates and aggregation and grouping operations. More formally, an analytic query q may be expressed as follows in relational algebra:

q = ΠG,M (σR(F ⊲⊳ D1 ⊲⊳ D2 ⊲⊳ ... ⊲⊳ D d)),
where G is the set of attributes from dimensions Di that are present in q's grouping clause, M is a set of aggregate measures from fact table F and R a conjunction of predicates over dimension attributes.

Attributes that may support materialized views or indexes belong to sets G and R [START_REF] Chaudhuri | An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server[END_REF], Golfarelli et al., 2002, Valentin et al., 2000, Feldman and Reouven, 2003]. We reference them in a so-called "query-attribute" binary matrix whose rows represent workload queries qi and whose columns are representative attributes aj. The general term mij of this matrix is equal to one if attribute aj is present in query qi, and to zero otherwise. A simple example of queryattribute matrix based on the workload excerpt from Figure 2 is featured in Table 1. Note that attributes a2 and a6 are not present in this matrix. They are indeed used in aggregation operations, and are thus not good candidates for indexing. Hence, they are not considered representative.

q 1 SELECT F .a1, SUM(F .

a 1 a 3 a 4 a 5 a 7 a 8 a 9 a 10 q 1 1 1 1 0 0 0 0 0 q 2 1 1 0 1 1 1 0 0 q 3 1 1 0 0 0 0 1 1

Final object configuration construction

Our final materialized view and index configuration construction algorithm (Figure 3) is based

O = ∅ sO = 0 Repeat omax = ∅ fmax = 0 For each o ∈ OC do If fO(o) > fmax then omax = o fmax = fO(o) End if End for If fO(omax) > 0 then O = O ∪ {omax} sO = sO + size(omax) OC = OC \ {omax} End if Until fO(omax) ≤ 0 or OC = ∅ or sO ≥ S
(o) = αo benef itO(o) -βo maintenance(o). Generally, benef itO(o) = cost(Q,O)-cost(Q,O∪{o}) size(o)
. However, taking view-index interactions into account complicates this function's computation (Section 4.3.3).

Cost models help compute the cost and maintenance functions. Since they depend on the considered data structure (materialized view or index), they are detailed in Section 4's corresponding subsections. Coefficient αo helps ponder benefit. It is generally equal to one, but may also help favor index that avoid join operations (Section 4.

Applications

This section presents three instances of our automatic data warehouse performance optimization approach: automatic materialized view selection, automatic index selection, and automatic, joint materialized view and index selection. We particularly detail this last, newest application. Moreover, we particularly insist, for each application, on its specificities in terms of candidate object selection (e.g., the data mining technique we exploited) and cost models used in building the final object configuration.

Clustering-based materialized view selection

In this application, we propose to select materialized views by clustering queries from workload Q. Several syntactically similar queries have indeed a high probability of being resolved by one single materialized view. Then, we must build classes of similar queries from Q. Since the number of classes is a priori unknown, we have selected an unsupervised clustering method.

Our approach's principle is similar to SQL workload compression [START_REF] Chaudhuri | Compressing SQL workloads[END_REF],

a technique proposed in the relational database context to optimize, for instance, index selection or approximate answer to aggregation queries. We adapted this idea to the context of relational (with an SQL decision-support workload) and XML (with an XQuery decisionsupport workload) data warehouses [START_REF] Aouiche | Clustering-Based Materialized View Selection in Data Warehouses[END_REF], Mahboubi et al., 2006].

The main improvement brought by our approach lies at the candidate view selection level.

Most anterior methods indeed build a lattice or graph of all syntactically correct views for a given workload. However, in practice, such data structures are complex to build and browse.

Using a clustering algorithm helps drastically reduce the number of candidate materialized views by proposing only a couple of views per class (only one in the best case -Section 4.1.1) instead of one view per workload query. This dimensionality reduction helps improve the whole process' efficiency and offers true scaling up capability.

Candidate materialized view selection

Query similarity and dissimilarity. To perform clustering and check out whether query classes are homogeneous, we must define query similarity and dissimilarity measures.

Let M be a query-attribute matrix of general term mij , defined on query set Q = {qi, i = 1..n} and attribute set A = {aj , j = 1..l}. We define the elementary similarity and dissimilarity between two queries qi and q i ′ , regarding attribute aj, as follows.

∂ sim/a j (qi,

q i ′) =    1 if mij = m i ′ j = 1 0 otherwise ∂ dissim/a j (qi, q i ′) =    1 if mij = m i ′ j 0 otherwise
Note that these definitions are not symmetric. The absence of a given attribute in two queries does indeed not constitute an element of similarity, unlike its presence. We now extend these definitions onto attribute set A to obtain global similarity and dissimilarity between queries qi and q i ′ .

sim(qi, q i ′) = l j=1 ∂ sim/a j (qi, q i ′) dissim(qi, q i ′) = l j=1 ∂ dissim/a j (qi, q i ′)
Query clustering. The objective of clustering is to build a natural partition of queries that reflects their internal structure. Objects in the same class must be strongly similar, while objects from different classes must be strongly dissimilar. Let P = {C k , k = 1..p} be a partition of p classes (query sets). We define interclass similarity between two distinct classes Ca and C b from P , as well as intraclass dissimilarity within class Ca from P , as follows.

Sim(Ca, C b) = q i ∈Ca,q i ′ ∈C b , sim(qi, q i ′) Dissim(Ca) = q i ∈Ca,q i ′ ∈Ca,i<i ′ dissim(qi, q i ′)
Eventually, we define on P a measure of clustering quality Q(P) that helps capture the partition's natural aspect. Q(P) indeed possesses low values for partitions that have a strong intraclass homogeneity and a strong interclass disparity. Q(P) must be minimized.

Q(P) = a=1..p,b=1..p,a<b Sim(Ca, C b) + p a=1 Dissim(Ca)
Any algorithm would be suitable to actually perform clustering. However, we selected the Kerouac algorithm [Jouve and Nicoloyannis, 2003a] that bears interesting features in our context. Kerouac indeed natively features a clustering quality measure we can easily replace by Q(P). Furthermore, Kerouac can also integrate constraints in the clustering process, which is useful to exploit knowledge (warehouse administration-related knowledge, in our case) in the clustering process. This feature also allows to satisfy a precondition in the materialized view fusion process (see next paragraph): queries from one given class must share the same joining conditions. Kerouac also determines the number of clusters automatically. Finally, Kerouac's computational complexity is relatively low (log linear regarding the number of queries and linear regarding the number of attributes) ; it can deal with a high number of objects (queries) ;

and it can also deal with distributed data [START_REF] Jouve | A new method for combining partitions, applications for distributed clustering[END_REF].

Kerouac exploits the notion of partition neighborhood.

Cost models

In most of the (relational) data warehouse cost models from the literature, the cost of a query q is supposed proportional to the size (in tuples) of the materialized view exploited by q [Golfarelli and [START_REF] Golfarelli | [END_REF]]. The same assumption is made for view maintenance cost. Hence, we reuse a model that estimates the size of a given materialized view. It has been proposed by [START_REF] Golfarelli | A methodological framework for data warehouse design[END_REF]] and exploits [Yao, 1977]

: |V | = max size(V)× 1 - |F | i=1 max size(F) × (1 - 1 max size(V)) -i + 1 max size(F) -i + 1 ,
where max size(V) = When ratio max size(F) max size(V) is high enough, [Cardenas, 1975]'s formula helps obtain a good approximation:

|V | = max size(V) × 1 -1 - 1 max size(V) |F | . V 's size in bytes is then size(V) = |V | × n i=1
size(di), where size(di) is the size in bytes of dimension di from V (which can be directly obtained from the warehouse metadata) and n the number of dimensions in V . Yao and Cardenas' formulas assume data are uniformly distributed and tend to overestimate view size. However, they are easy to implement and fast to compute. Other, more precise methods exploit data sampling and statistical laws [START_REF] Shukla | Storage estimation for multidimensional aggregates in the presence of hierarchies[END_REF], Chaudhuri and Motwani, 1999, Nadeau and Teorey, 2001], but they are much harder to implement.

Eventually, this cost model is very easy to adapt to the XML context by establishing equivalences between relations and XML documents on one hand, and tuples and XML elements on the other hand. The only true difference lies in size(di)'s computation, but it is also obtained from warehouse metadata in the XML context.

Frequent itemset mining-based index selection

In this application, we work on optimizing the execution of join operations in a decisionsupport query workload. We propose an index selection method based on the extraction from the workload of frequent attributes that may support indexes.

We have first worked on classical, B-tree-like indexes [START_REF] Aouiche | Frequent itemsets mining for database auto-administration[END_REF]. We focus in this paper on bitmap index selection [START_REF] Aouiche | Automatic selection of bitmap join indexes in data warehouses[END_REF]. These data structures [O' Neil and Graefe, 1995] are particularly adapted to the data warehouse context. They indeed render logical and counting operations efficient (they operate directly on bitmaps stored in the main memory), and help precompute join operations at index creation time. Moreover, bitmap storage space is small, especially when the indexed attributes' cardinality is low, which is usually the case in a warehouse's dimensions. Our approach's originality mainly lies in the use of frequent itemset mining for selecting the most pertinent candidate indexes. However, it also has another advantage. The few approaches that help select multi-attribute indexes exploit an iterative process to build them: mono-attribute indexes in the first iteration, 2-attribute indexes in the second, and so on [START_REF] Chaudhuri | An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server[END_REF]]. In our approach, frequent itemsets, which are attribute sets of variable size, help directly propose multi-attribute candidate indexes. Furthermore, these candidate indexes are a priori pertinent, while combinations generated from smaller candidate indexes are not necessarily all pertinent. Thus, our approach avoids pruning them by providing a smaller set of pertinent candidates.

Eventually, most existing index selection techniques (Section 2.3) only exploit B-tree indexes. Though this type of index is widely used in DBMSs, it is not the best adapted to index voluminous data and low cardinality attributes. In the data warehouse context, bitmap join indexes have indeed been demonstrated to be more efficient [Sarawagi, 1997, Wu, 1999].

Candidate index selection

When building the extraction context (query-attribute matrix) that is exploited by a data mining algorithm to select candidate indexes, we use knowledge relative to database administration and performance optimization, much like [START_REF] Feldman | A knowledge-based approach for index selection in relational databases[END_REF]. Such an attribute preselection helps reduce the mining algorithm search space and, mechanically, improves its response time.

Knowledge is formalized under the form of "if-then" rules, e.g., "if a predicate is like attribute = value, then attribute must not be selected". Such a predicate would indeed not exploit an index defined on attribute, all its values being scanned but value.

We base the final selection of candidate indexes on the intuition that the importance of an attribute to index is strongly correlated to its appearance frequency in the workload.

Frequent itemset mining [START_REF] Agrawal | Fast algorithms for mining association rules[END_REF] appears as a natural solution to extract these attributes. Many frequent itemset mining algorithms are available in the literature. We selected Close [START_REF] Pasquier | Discovering frequent closed itemsets for association rules[END_REF], which presents several advantages in our context.

First, Close helps process voluminous workloads. It indeed exploits Galois closure operators, which reduce the number of accesses to the extraction context when searching for frequent itemsets. Close is also efficient when the extraction context is dense, which is our case, since query sets often form logical suites. Eventually, frequent closed itemsets1 extracted by this algorithm are fewer than all frequent itemsets (which can nonetheless be generated from the frequent closed itemsets). This helps reduce computing time and avoid multiplying useless candidate indexes.

Cost models

Data access cost through a bitmap join index. Data access is performed in two steps: scanning the index' bitmaps, and then reading the tuples. If access to the bitmaps is direct and data are uniformly distributed, which is a reasonable assumption according to [Choenni et al., 1993a], index traversal cost is d |A||F | 8Sp . d is the number of predicates applied on indexed attribute A. F is the fact table. Sp is the size of a disk page. |A||F | 8 represents the size of the bitmap index [START_REF] Wu | Encoded bitmap indexing for data warehouses[END_REF]].

The number of tuples read by a query using d bitmaps is d |F | |A| if data are uniformly distributed. The number of corresponding input/output is then equal to pF (1e 'Neil and Quass, 1997], where pF is the number of disk pages that are necessary to store F .

- d|F | p F |A|) [O
Finally, cost = d |A||F | 8Sp + pF (1 -e - d|F | p F |A|).
If bitmap access is performed through a B-tree, as is the case in the Oracle DBMS, for instance, B-tree descent cost must be taken into account: logm|A| -1, where m is the B-tree order. Leaf nodes traversal cost is then |A| m-1 at worst. However, bitmap index traversal cost is reduced to

d |F | 8Sp . Then, cost = logm|A| -1 + d |F | 8Sp + pF (1 -e - d|F | p F |A|).
Bitmap join index maintenance cost. Let a bitmap join index be defined on attribute

A from dimension D. When inserting a tuple into fact table F , D must be traversed to find the tuple that must be joined to the one inserted in F : pD pages are read. Then, the index' bitmaps must be updated. At worst, they are all traversed and |A||F | 8Sp pages are read. Hence, maintenanceF = pD + |A||F | 8Sp . When inserting a tuple into dimension D, update may be without domain expansion, then a bit corresponding to the inserted tuple must be added to each bitmap; or with domain expansion, then a new bitmap must be created. Then, maintenanceD = pF + (1 + ξ) |A||F | 8Sp , where ξ = 1 when expanding the domain and ξ = 0 otherwise.

Joint materialized view and index selection

In this eventual application, we seek to select a configuration of materialized views and indexes that are mutually beneficial, in order to further optimize the response time of decision-support queries. More precisely, we aim at truly taking view-index interactions into account and at optimizing storage space sharing between materialized views and indexes. Existing approaches indeed consider indexes and materialized views as distinct objects, whose benefit and maintenance cost are invariant and independent from already-selected objects. Moreover, few consider indexing materialized views.

[[START_REF] Bellatreche | On efficient storage space distribution among materialized views and indices in data warehousing environments[END_REF]'s approach, which is closest to ours, starts from an initial solution composed of indexes and materialized views separately selected under storage space constraint.

Taking this constraint into account a priori might eliminate solutions that are susceptible to become pertinent in the next iterations of the selection process. Hence, we only introduce the storage space constraint a posteriori, within the selection algorithm. Furthermore, object replacement policies in storage spaces respectively allotted to indexes and materialized views exploit these objects' usage frequency, and not the benefit brought by their simultaneous usage.

Candidate object selection

First, let us detail and specialize the automatic performance optimization strategy presented in Section 3.2 for joint materialized view and index selection. Here, we exploit the modular structure of our approach: our input is a set of candidate objects (materialized views and indexes) obtained with any existing selection algorithm, such as the ones we propose. Then, we exploit specific data structures and cost models to recommend a pertinent configuration of materialized views and indexes through the following steps (Figure 4):

1. extract a representative query set Q from system workload; 2. select a set of candidate materialized views VC using the approach described in Section 4.1.1, with Q as input; 3. select a set of candidate indexes IC using the approach described in Section 4.

Specific data structures

After building the set of candidate materialized views, indexes and indexes on views OC , we aim at combining them to recommend a pertinent configuration of materialized views and indexes O. To consider the relationships between these objects in this process, we need to materialize them. For this purpose, we use three binary matrices: the "query-view" matrix, the "query-index" matrix and the "view-index" matrix that we detail in the following paragraphs.

To better illustrate how these data structures are designed, let us consider the workload sample from Figure 5. Candidate materialized views and indexes obtained from this workload by applying our strategy are featured in Figures 6 and7, respectively. q 1 select sales.time id, sum(amount sold) q 5 select promotions.promo name, from sales, times sum(amount sold) where sales.time id = times.time id from sales, promotions and times.time fiscal year = 2000

where sales.promo id = promotions.promo id group by sales.time id and promotions.promo begin date='30/01/2000' and promotions.promo end date='30/03/2000' group by promotions.promo name q 2 select sales.prod id, q 6 select customers.cust marital status, sum(amount sold) sum(quantity sold) from sales, products, promotions from sales, customers, products where sales.prod id = products.prod id where sales.cust id = customers.cust id and sales.promo id = promotions.promo id and sales.prod id = products.prod id and promotions.promo category = 'news paper' and customers.cust gender = 'woman' group by sales.prod id and products.prod name = 'shampooing' group by customers.cust first name q 3 select customers.cust gender, sum(amount sold) q 7 select products.prod name, sum(amount sold) from sales, customers, products, from sales, products, promotions where sales.cust id = customers.cust id where sales.prod id = products. prod id and sales.prod id = products.prod id and sales.promo id =promotions.promo id and customers.cust marital status ='single' and products.prod category='tee shirt' and products.prod category = 'women' and promotions.promo end date='30/04/2000' group by customers.cust gender group by products.prod name q 4 select products.prod name, sum(amount sold) q 8 select channels.channel desc, sum(quantity sold) from sales, products, promotions from sales, channels where sales.prod id = products.prod id where sales.channel id = channels.channel id and sales.promo id = promotions.prom id and channels.channel class = 'Internet' and promotions.promo category = 'TV' group by channels.channel desc group by products.prod name Query-view matrix. The query-view matrix (QV) captures existing relationships between workload queries and the materialized views extracted from these queries, i.e., views that are exploited by at least one workload query. This matrix may be viewed as the result of rewriting queries with respect to candidate materialized views. The query-view matrix' rows and columns are workload queries and candidate materialized views, respectively. Its general term QVqv is equal to one if a given query q exploits the corresponding view v, and to zero otherwise. Table 2 presents the query-view matrix corresponding to the example from Figures 5 and6. Query-index matrix. The query-index matrix (QI) stores the indexes built on base tables. This matrix may be viewed as the result of rewriting queries with respect to candidate indexes. The query-index matrix' rows and columns are workload queries and candidate indexes, respectively. Its general term QIqi is equal to one if a given query q exploits the corresponding index i, and to zero otherwise. Table 3 presents the query-index matrix corresponding to the example from Figures 5 and7.

v 1 v 2 v 3 v 4 v 5 v 6 v 7 q 1 1 0 0 0 0 0 0 q 2 0 0 0 1 0 0 0 q 3 0 0 1 0 0 0 0 q 4 0 0 0 1 0 0 0 q 5 0 0 0 0 0 0 1 q 6 0 0 1 0 0 0 0 q 7 0 0 0 0 0 0 1 q 8 0 1 0 0 0 1 0
View-index matrix. i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 q 1 0 0 0 0 0 0 0 1 0 0 0 0 q 2 1 0 0 0 0 0 0 0 0 0 0 0 q 3 0 0 0 1 1 0 0 0 0 1 0 0 q 4 1 0 0 0 0 0 0 0 1 0 0 0 q 5 0 0 0 0 1 1 0 0 0 0 1 0 q 6 0 0 0 0 1 0 0 0 1 0 0 1 q 7 0 0 0 0 0 0 1 0 1 1 0 0 q 8 0 1 1 0 0 0 0 0 0 0 0 0 i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 v 1 0 0 0 0 0 0 0 1 0 0 0 0 v 2 0 1 0 0 0 0 0 0 0 0 0 0 v 3 0 0 0 1 1 0 0 0 1 1 0 1 v 4 1 0 0 0 0 0 0 0 1 1 0 0 v 5 1 0 0 0 0 0 0 0 0 1 0 0 v 6 0 1 1 0 0 0 0 0 1 1 0 0 v 7 0 1 0 0 0 1 1 0 1 1 1 0

Cost models

We have already presented in Sections 4.1.2 and 4.2.2 cost models relative to materialized views and bitmap join indexes, respectively. Since indexes defined on materialized views are generally B-trees or derivatives, we first recall here the cost models that relate to these indexes.

Then, we discuss the benefit of view materialization vs. indexing.

Data access cost through a B-tree index. Data access through an index is subdivided into to steps: index traversal to find key values corresponding to the query (C traversal cost), and then searching for these identifiers in the database (C search cost). Let q be a query, ζ a set of indexes, SN Aq the set of attributes that are present in query q's restriction clause (the Where clause in SQL), BFa the bloc factor of the index built on attribute a (the average number of (key, identif ier) couples per disk page), SFa the selectivity factor of attribute a, and finally v the accessed materialized view. Then:

C traversal = a∈(ζ∩SNAq) ⌈logBF a |v|⌉ + SFa|v| BFa -1.
The number of identifiers to search for is then N = |v| a∈(ζ∩SNAq)

SFa. According, to [Cardenas, 1975]'s formula, the number of disk pages to access is: View materialization and indexing benefit. In the general case (Section 3.4), the benefit brought by selecting an object o is defined as the difference between the execution cost of query workload Q before and after inserting o into the final object configuration O. Taking view-index relationships into account implies redefining the benefit function. Let i ∈ OC and v ∈ OC be a candidate index and a candidate materialized view, respectively. Adding i or v into O may lead to the benefit cases enumerated in Tables 5 and6, respectively, depending on interactions between i and v.

C search = Sp 1 -(1 -1 Sp) N ,
V I vi = 1 V I vi = 0 v ∈ O min(materialization, indexing v) indexing v ∈ O - indexing Table 5: Benefit brought by index i V I vi = 1 V I vi = 0 i ∈ O - materialization i ∈ O min(indexing v, materialization) materialization
(i) =          cost(Q,O)-cost(Q,O∪{i}) size(i) if V Ivi = 0 ∀ v ∈ V (V ⊆ O) cost(Q,O)-cost(Q,O∪{i}∪V ′) size(i)+ v ′ ∈V ′ size(v ′) if V ′ = {v ∈ V, V Ivi = 1} = ∅ 0 otherwise benef itO(v) =          cost(Q,O)-cost(Q,O∪{v}) size(v) if V Ivi = 0 ∀ i ∈ I (I ⊆ O) cost(Q,O)-cost(Q,O∪{v}∪I ′) size(v)+ i ′ ∈I ′ size(i ′) if I ′ = {i ∈ I, V Ivi = 1} = ∅ 0 otherwise

Experiments

In order to experimentally validate our generic approach for optimizing data warehouse performance, we have run several series of tests. We summarize the main results in the following sections. Regarding isolated materialized view index selection, the interested reader can refer to [START_REF] Aouiche | Frequent itemsets mining for database auto-administration[END_REF], Aouiche et al., 2005, Aouiche et al., 2006, Mahboubi et al., 2006] for more complete results. Note that our experiments are based on an ad-hoc benchmark because, at the time we performed them, there was no standard benchmark for data warehouses. TPC-H [START_REF] Tpc | TPC Benchmark H Standard Specification revision 2.3.0[END_REF] does indeed not feature a true multidimensional schema and thus does not qualify, and TPC-DS' [START_REF] Tpc | TPC Benchmark DS Standard Specification[END_REF] draft specifications had not been issued yet.

Experimental conditions

2 http://eric.univ-lyon2.fr/ ~kaouiche/adbis.pdf

Materialized view selection results

We plotted in Figure 8 the variation of workload execution time with respect to the storage space allotted for materialized views. This figure shows that the views we select significantly improve query execution time. Moreover, execution time decreases when storage space occupation increases. This is predictable because we create more materialized views when storage space S is large and thereby better improve execution time. Let SV be the disk space that is necessary to store all the candidate materialized views. The average gain in performance is indeed 68.9% when S = 35.4% × SV . It is equal to 94.9% when S = 100% × SV (when the storage space constraint is relaxed).

Figure 8: Views materialization experiment results

Moreover, we have demonstrated the relevance of the materialized views that are selected with our approach by computing query cover rate, i.e., the proportion of queries resolved by using views. When the storage space constraint is hard (S = 0.05% × SV), average cover rate is already 23%. It reaches 100% when the storage space constraint is relaxed.

Index selection results

In these experiments, we have fixed the minimal support parameterized in the Close frequent itemset mining algorithm to 1%. We empirically selected this value, basing on our experimental results, as a good trade-off in number of frequent itemsets (and thus, of candidate indexes):

enough to allow good quality index selection, but not too many to preserve scalability. It is completely dependent on the workload, though, and would require further investigation in another test environment. In these experiments, we can vary storage space S within a wide interval. We have measured query execution time according to the percentage of storage space allotted for indexes. This percentage is computed from the space SI occupied by all indexes.

Figure 9 shows that execution time decreases when storage space occupation increases. This is predictable because we create more indexes and thus better improve execution time. We also observe that the maximal time gain is about 30% and it is reached for space occupation S = 59.64% × SI . Finally, these experiments also showed that our index selection strategy helped select a portion of candidate indexes that allows to achieve roughly the same performances than the whole set of candidate indexes. This guarantees substantial gains in storage space (40% on an average) and decreases index maintenance cost.

Joint index and materialized view selection results

Eventually, we have compared the efficiency of isolated materialized view selection, isolated index selection and joint materialized view and index selection. We have measured query execution time in the following cases: without materialized views nor indexes (reference plot), with materialized views only, with indexes only and with both materialized views and indexes (simultaneously selected). Figure 10 represents the variation of response time with respect to the storage space S allotted to materialized views and indexes, for isolated materialized view selection (with materialized views plot), isolated index selection (with indexes plot), joint materialized view and index selection (with materialized views and indexes plot), and without materialized views nor indexes (for reference), respectively. S is expressed in percentage of total space SV I occupied by all indexes and materialized views, achieved when we apply our strategy without any storage space constraint. Note that we used a logarithmic scale on the X axis to better visualize the results.

Figure 10 shows that jointly selecting materialized views and indexes allows better performance than selecting indexes or views separately when storage space is large. However, when it is small, isolated index selection is more competitive than the other solutions. This may be explained by the fact that index size is generally significantly smaller than materialized view size. Then, we can store many more indexes than materialized views in a small space and achieve a better performance. In conclusion, indexes should thus be privileged when storage space is strongly constrained.

Discussion

In this section, we experimentally demonstrated the efficiency of our approach against a "no index -no view" policy. Though it would be much more interesting to compare it to similar works from the literature, especially the one by [Agrawal et al., 2000], which is the most closely related to ours, we could not do so.

One problem is that [Agrawal et al., 2000] recommend B-tree-like indexes for OLTP (On-Line Transaction Processing) databases. Data warehouse multidimensional models, which are aimed at OLAP (On-Line Analytical Processing), are fundamentally different. They require specific indexes such as the bitmap join indexes we focus on (Section 4.2). In consequence, the underlying cost models used by [Agrawal et al., 2000] and us are different, making the comparison partly irrelevant.

A second problem relates to implementing the solution of [Agrawal et al., 2000] to achieve this comparison anyway. Although the published algorithms clearly illustrate the approach's principle, we encountered many problems with implementation details and found it quite difficult to faithfully reproduce. Some of these problems came from the solution being so closely tied to Microsoft SQL Server (while we worked on Oracle, but system is actually unimportant since our solution is DBMS-independent). Finally, we failed to contact the authors to get hints at how to solve all these problems.

Conclusion and perspectives

We have presented in this paper an approach for automatic data warehouse performance optimization. Our main contribution in this field mainly relates to exploiting knowledge about the data warehouse and its usage. Knowledge may either be formalized expertise, or automatically extracted with the help of data mining techniques. This approach allowed us to reduce the dimensionality of the materialized view and index selection problem, by proposing a reduced and pertinent candidate object configuration. We also have explicitly taken view-index interactions into account, to propose a final object configuration that is as close as possible to the optimum.

We have designed our approach to be generic. Data mining techniques and cost models we exploit are indeed not related to any system in particular. They may be applied on any host DBMS. Our materialized view and index strategies are also modular: each step (candidate object selection, cost computation...) exploits interchangeable tools. The data mining techniques and cost models we used could easily be replaced by others. Moreover, we could also extend our approach to other performance optimization techniques, such as buffering, physical clustering or partitioning [START_REF] Agrawal | Database Tuning Advisor for Microsoft SQL Server[END_REF], Zilio et al., 2004, Bellatreche et al., 2005].

Though we have systematically tried to demonstrate the efficiency of our proposals by experimenting on real-life systems such as Oracle, up to now, we have not been able to compare our proposals to existing approaches in situ. Those that are developed by DBMS vendors are not always published for obvious industrial property issues. They are also tied to a given system, and necessitate its acquisition. Furthermore, they are implemented as "black boxes" that are often hard to trigger and tinker with. On the other hand, research proposals from the literature are not always available as source or executable code and, when it is the case, they operate in one given environment and must often be reimplemented. Finally, both research and industrial solutions are hard to implement from the published sources that, due to space constraints, generally focus on their principle and not on implementation details. However, we shall have to get over these true difficulties to complete our solutions' experimental validation. In particular, we aim at demonstrating our solution's scalability with respect to existing approaches.

Finally, the main possible evolution for our work resides in improving our solutions' automaticity. We indeed perform static performance optimization. If the input query workload significantly evolves, we must rerun the whole process to preserve performance. Dynamic materialized view selection approaches that have been proposed to optimize refreshing times [START_REF] Kotidis | [END_REF]Roussopoulos, 1999, Shah et al., 2006] are more efficient than static approaches.

We must work in this direction for optimizing query response time.

Our main lead is to exploit our approach's modularity by replacing the data mining techniques we used by incremental frequent itemset mining [START_REF] Leung | CanTree: A Tree Structure for Efficient Incremental Mining of Frequent Patterns[END_REF] or clustering [Jain et al., 1999] techniques. Studies related to session detection that are based on entropy computation [START_REF] Yao | Machine learning approach to identify database sessions using unlabeled data[END_REF] could also be exploited to detect when to rerun the (incremental) selection of materialized views and indexes.

Figure 1 :

 1 Figure 1: Principle of our automatic performance optimization approach

 a2) FROM F , D1 WHERE F .a1 = D1.a3 AND D1.a4 < 2000 GROUP BY F .a1 q 2 SELECT F .a1, F .a5, AVG(F .a6) FROM F , D1, D2 WHERE F .a1 = D1.a3 AND F .a5 = D2.a7 AND D2.a8 = 'ABC' GROUP BY F .a1, F .a5 q 3 SELECT F .a1, F .a9, SUM(F .a2) FROM F , D1, D3 WHERE F .a1 = D1.a3 AND F .a9 = D3.a10 GROUP BY F .a1, F .a9

Figure 2 :

 2 Figure 2: Workload excerpt

Figure 3 :

 3 Figure 3: Final object configuration construction algorithm

 2). Finally, coefficient βo = |Q|p(o) is an estimator for the number of updates of object o. The update probability of object o, p(o), is equal to 1 |O| %ref reshment %interrogation , where %ref reshment %interrogation represents the proportion of warehouse updates with respect to interrogations.

 2.1, with Q ∪ VC as input; 4. simultaneously select materialized views and indexes from OC = VC ∪ IC with the algorithm from Figure 3; 5. build the final configuration of materialized views and indexes O ⊆ OC under storage space constraint S.

Figure 4 :

 4 Figure 4: Joint materialized view and index selection approach

Figure 5 :

 5 Figure 5: Sample workload

Figure 6 :

 6 Figure 6: Candidate materialized views

Figure 7 :

 7 Figure 7: Candidate indexes

 where Sp represents disk page size. Finally, data access cost through a B-tree index is cost = C traversal + C search . B-tree index maintenance cost. Classically, this cost is expressed as follows: maintenance = op∈{ins,del,upd} fop a∈Aop Cop(a); where fins, f del and f upd are insert, delete and update frequencies, respectively; and Cins(a), C del (a) and C upd (a) are maintenance costs related to an insert, delete or update operation on attribute a, respectively. Aop is the set of considered attributes. Ains = A del = ζ, where ζ is the set of indexes to maintain. A upd = ζ ∩ SN A upd , where SN A upd is the set of attributes to update. Finally, maintenance costs are the following [Whang, 1985]: Cins(a) = C del (a) = ⌈logBF a |v|⌉ and C upd (a) = ⌈logBF a |v|⌉ + |v|SFa 2BFa -1.

Figure 9 :

 9 Figure 9: Indexing experiment results

Figure 10 :

 10 Figure 10: Joint view materialization and indexing experiment results

Table 1 :

 1 Sample query-attribute matrix

This data structure directly corresponds to attribute-value statistical tables that are exploited by data mining algorithms. Here, attributes are the workload queries, and values are all the warehouse's table attributes that are used in queries. Applying a data mining technique onto the query-attribute matrix helps obtain a set of candidate objects (materialized views and indexes) Oc.

 on an ascending greedy search within the input candidate object set OC . It starts from an empty final object configuration O, and then adds in it object o from OC that maximizes objective function fO, at each iteration. For each object o ∈ OC , the value of fO(o) depends on objects already selected in O. Thus, it must be recomputed at each iteration, which helps

take view-index interactions into account. The algorithm ends when objective function fO cannot be improved any more, when there are no more candidate objects in OC , or when storage space S allocated by the warehouse administrator to materialized views and index is full.

 Partition Pg belongs to partition P h 's neighborhood if Pg may be obtained from P h by segmenting a class from P h , Pg may be obtained from P h by merging two classes of P h , or Pg = P h . Actual clustering is a greedy heuristic similar to induction graph building. Partition classes are iteratively segmented and/or merged. At each step i, a new partition Pi+1 is selected from Pi's neighborhood such as it minimizes quality measure Q(Pi+1). This process is initialized with a raw query partition Candidate view fusion. The output of clustering is a set of similar query classes. Our objective is to associate to each class the smallest possible number of materialized views that cover all the class' queries. To achieve this goal, we consider each query as a potential view and run a fusion process to decrease their number. The algorithm we use follows the principle introduced by by[Agrawal et al., 2000]. However, in our context, it is much more efficient since it is applied onto a limited number of views in each class instead of the whole set of candidate views derived from the workload. The output of fusion applied on classes obtained in the previous step is the set of candidate materialized views.The fusion vij of two candidate materialized views vi and vj must satisfy two conditions: all queries resolved by vi and vj must be resolved by vij , and the scan cost of (vi, vj) must not be significantly greater than that of vij . The actual fusion algorithm proceeds in four steps:

P0 and ends up when Pi+1 = Pi. It outputs a partition P∼nat that is the closest to natural partition Pnat, according to Kerouac's authors. 1. aggregation operations from vi and vj are reproduced in vij ; 2. all projection and group by attributes from vi and vj become both projection and group by attributes in vij ; 3. all attributes in selection predicates that are present in vi but not in vj , and vice versa, are added into vij 's group by clause; 4. selection predicates that are common to vi and vj are reproduced in vij 's selection predicates. Finally, fusion is actually performed if cost(vij) ≥ (cost(vi)+cost(vj))×x, with x's value being empirically set up by the administrator (small values of x favor materialized view fusion).

Table 2 :

 2 Sample query-view matrix v 1 create materialized view v 1 as select sales.time id, times.time fiscal year, sum(amount sold) from sales, times where sales.time id = times.time id group by sales.time id, times.times fiscal year

	v 2	create materialized view v 2 as select sales.prod id, sales.cust id, channels.channel desc,
		channels.channel class, sum(quantity sold)
		from sales, channels, products, customers
		where sales.prod id = products.prod id
		and sales.channel id = channels.channel id
		and sales.cust id = customers.cust id
		group by sales.prod id, sales.cust id, channels.channel desc,
		channels.channel class
	v 3	create materialized view v 3 as select customers.cust first name, products.prod name,
		products.prod category, customers.cust gender,
		customers.cust marital status, sum(sales.quantity sold)
		from sales, customers, products
		where sales.cust id = customers.cust id
		and sales.prod id = products.prod id
		group by customers.cust first name, products.prod name,
		products.prod category, customers.cust gender,
		customers.cust marital status
	v 4	create materialized view v 4 as select products.prod name, products.prod category,
		promotions.promo category, sum(amount sold)
		from sales, products, promotions
		where sales.prod id = products.prod id
		and sales.promo id = promotions.promo id
		group by products.prod name, products.prod category,
		promotions.promo category
	v 5	create materialized view v 5 as select sales.prod id, products.prod category,

promotions.promo category, sum(amount sold) from sales, products, promotions where sales.prod id = = products.prod id and sales.promo id = promotions.promo id v 6 create materialized view v 6 as select channels.channel class, products.prod name, channels.channel desc, products.prod category, sum(sales.quantity sold), sum(sales.amount sold) from sales, channels, products where sales.prod id = products.prod id and sales.channel id = channels.channel id group by channels.channel class, products.prod name, products.prod category, channels.channel desc v 7 create materialized view v 7 as select sales.prod id, products.prod category, channels.channel desc, promotions.promo name, promotions.promo begin date, promotions.promo end date, products.prod name, sum(sales.quantity sold), sum(sales.amount sold) from sales, products, promotions where sales.prod id = products.prod id and sales.promo id = promotions.promo id and sales.channel id = channels.channel id group by sales.prod id, products.prod category, channels.channel desc, promotions.promo name, promotions.promo begin date, promotions.promo end date, products.prod name

 The view-index matrix (V I) identifies candidate indexes that are recommended for candidate materialized views returned by our view selection algorithm. The query-index matrix' rows and columns are candidate views and candidate indexes on these views, respectively. Its general term V Ivi is equal to one if a given materialized view v is susceptible to exploit index i (i.e., if the attributes indexed by i are also present in v), and to zero otherwise. Table4presents the view-index matrix corresponding to the example from

	Indexes Indexed attributes
	i1	promotions.promo category
	i2	channels.channel desc
	i3	channels.channel class
	i4	customers.cust marital status
	i5	customers.cust gender
	i6	times.time begin date
	i7	times.time end date
	i8	times.fiscal year
	i9	products.prod name
	i10	products.prod category
	i11	promotions.promo name
	i12	customers.cust first name

Table 3 :

 3 Sample query-index matrix

	Figures 6 and 7.

Table 4 :

 4 Sample view-index matrix

Table 6 :

 6 Benefit brought by materialized view vIndexing and view materialization benefits for Q, brought by adding index i or view v into O, respectively, may hence be expressed as follows.

	benef itO

Table 7 :

 7 Test data warehouse's characteristics

	Table	Number of tuples Size (MB)
	Sales	16,260,336	372.17
	Customers	50,000	6.67
	Products	10,000	2.28
	Times	1,461	0.20
	Promotions	501	0.04
	Channels	5	0.0001

An itemset I is closed with respect to the Galois connection (f, g) iff g • f (I) = I[START_REF] Pasquier | Discovering frequent closed itemsets for association rules[END_REF].

Acknowledgments

The authors would like to thank the anonymous reviewers for their detailed and constructive feedback, as well as the JIIS editors, who greatly helped improve this paper.