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Abstract

The class of quasiseparable matrices is defined by the property that any submatrix en-
tirely below or above the main diagonal has small rank, namely below a bound called
the order of quasiseparability. These matrices arise naturally in solving PDE’s for par-
ticle interaction with the Fast Multi-pole Method (FMM), or computing generalized
eigenvalues. From these application fields, structured representations and algorithms
have been designed in numerical linear algebra to compute with these matrices in time
linear in the matrix dimension and either quadratic or cubic in the quasiseparability
order. Motivated by the design of the general purpose exact linear algebra library
LinBox, and by algorithmic applications in algebraic computing, we adapt existing
techniques introduce novel ones to use quasiseparable matrices in exact linear algebra,
where sub-cubic matrix arithmetic is available. In particular, we will show, the con-
nection between the notion of quasiseparability and the rank profile matrix invariant,
that we have introduced in 2015. It results in two new structured representations, one
being a simpler variation on the hierarchically semiseparable storage, and the second
one exploiting the generalized Bruhat decomposition. As a consequence, most basic
operations, such as computing the quasiseparability orders, applying a vector, a block
vector, multiplying two quasiseparable matrices together, inverting a quasiseparable
matrix, can be at least as fast and often faster than previous existing algorithms.
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1. Introduction

We consider the class of quasiseparable matrices, defined by a bounding condition
on the ranks of the submatrices in their lower and upper triangular parts. These struc-
tured matrices originate mainly from two distinct application fields: computing gener-
alized eigenvalues (Gohberg et al., 1985; Vandebril et al., 2005, 2007), and solving par-
tial differential equations for particule simulation with the fast multipole method (Car-
rier et al., 1988). This class also arise naturally, as it includes the closure under in-
version of the class of banded matrices. Among the several definitions used in the
litterature, we will use that of Eidelman and Gohberg (1999) for the class of quasisep-
arable matrices.

Definition 1. An n×n matrix M is (rL, rU)-quasiseparable if its strictly lower and upper
triangular parts satisfy the following low rank structure: for all 1 ≤ k ≤ n − 1,

rank(Mk+1..n,1..k) ≤ rL, (1)
rank(M1..k,k+1..n) ≤ rU . (2)

The values rL and rU are the quasiseparable orders of M.

Other popular classes of structured matrices like Toeplitz, Vandermonde, Cauchy,
Hankel matrices and their block versions, enjoy a unified description through the pow-
erful notion of displacement rank (Kailath et al., 1979). Consequently they benefit from
space efficient representations (linear in the dimension n and in the displacement rank
s), and time efficient algorithms to apply them to a vector, compute their inverse and
solve linear systems: most operations have been reduced to polynomial arithmetic (Pan,
1990; Bini and Pan, 1994), and by incorporating fast matrix algebra, this cost has been
reduced from O˜(s2n) to O˜(sω−1n) by Bostan et al. (2008) (assuming that two n × n
matrices can be mutliplied in O(nω) for 2.3728639 ≤ ω ≤ 3 (Le Gall, 2014)).

However quasiseparable matrices do not fit in the framework of rank displacement
structures. Taking advantage of the low rank properties, mainly two types of struc-
tured representations have been developped together with corresponding dedicated al-
gorithms to perform common linear algebra operations: the quasiseparable generators
of Vandebril et al. (2005, 2007), sometimes referred to as sequentially semiseparable
(SSS) and the hierarchically semiseparable representations (HSS) of Chandrasekaran
et al. (2006); Xia et al. (2010). We refer to (Vandebril et al., 2005) and (Vandebril
et al., 2007) for a broad bibliographic overview on the topic. Note also the alternative
approach of Givens and unitary weights in Delvaux and Van Barel (2007).

Sequentially Semiseparable representation. The sequentially semiseparable represen-
tation used by Eidelman and Gohberg (1999); Vandebril et al. (2005, 2007); Eidelman
et al. (2005); Boito et al. (2016) for a matrix M, consists of (n − 1) pairs of vectors
p(i), q(i) of size rL, (n − 1) pairs of vectors g(i), h(i) of size rU , n − 1 matrices a(i) of
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dimension rL × rL, and n − 1 matrices b(i) of dimension rU × rU such that

Mi, j =


p(i)T a>i jq( j), 1 ≤ j < i ≤ n
d(i), 1 ≤ i = j ≤ n
g(i)T b<i jh( j), 1 ≤ i < j ≤ n

where

a>i j = a(i − 1) . . . a( j + 1) for j > i + 1, a j+1, j = 1,

b<i j = b(i + 1) . . . b(i − 1) for i > j + 1, bi,i+1 = 1.

For s = max(rL, rU), this representation, of size O(n(r2
L + r2

U)) = O(s2n) makes it
possible to apply a vector in O(s2n) field operations, multiply two quasiseparable ma-
trices in time O(s3n) and also compute the inverse of a strongly regular matrix in time
O(s3n) (Eidelman and Gohberg, 1999).

The Hierarchically Semiseparable representation. The Hierarchically Semiseparable
representation was introduced in Chandrasekaran et al. (2006) and is related to the
structure used in the Fast Multipole Method (Carrier et al., 1988). It is based on the
splitting of the matrix in four quadrants, the use of rank revealing factorizations of
its off-diagonal quadrants and applying the same scheme recursively on the diagonal
blocks. A further compression is applied to represent all off-diagonal blocks as linear
combinations (called translation operators) of blocks of a finer recursive order. While
the space and time complexity of the HSS representation is depending on numerous
parameters, the analysis in Chandrasekaran et al. (2006) seem to indicate that the size
of an HSS representation is O(sn), it can be applied to a vector in linear time in its size,
and linear systems can be solved in O(s2n). For the product of two HSS matrices, we
could not find any better estimate than O(s3n) given by Sheng et al. (2007).

Context and motivation. The motivation here is to propose simplified and improved
representations of quasiseparable matrices (in space and time). Our approach does not
focus on numerical stability for the moment. Our first motivation is indeed to use these
structured matrices in computer algebra where computing e.g. over a finite field or
over multiprecision integers and rationals does not lead to any numerical instability.
Hence we will assume throughout the paper that any Gaussian elimination algorithm
mentioned has the ability to reveal ranks. In numerical linear algebra, a special care
need to be taken for the pivoting of LU decompositions (Hwang et al., 1992; Pan, 2000),
and QR or SVD decompositions are often preferred (Chan, 1987; Chandrasekaran and
Ipsen, 1994). Part of the methods presented here, namely that of Section 5, rely on an
arbitrary rank revealing matrix factorization and can therefore be applied to a setting
with numerical instability. In the contrary, Section 6 relies on a class of Gaussian
elimination algorithm that reveal the rank profile matrix, hence applying it to numerical
setting is future work. This study is motivated by the design of new algorithms on
polynomial matrices over a finite field, where quasiseparable matrices naturally occur,
and more generally by the framework of the LinBox library (The LinBox Group, 2016)
for black-box exact linear algebra.
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Contribution. This paper presents in further details and extends the results of Pernet
(2016), while also fixing a mistake 2. It proposes two new structured representations
for quasiseparable matrices, a Recursive Rank Revealing (RRR) representation that can
be viewed as a simplified version of the HSS representation of Chandrasekaran et al.
(2006), and a representation based on the generalized Bruhat decomposition, which we
name Compact Bruhat (CB) representation. The later one, is made possible by the con-
nection that we make between the notion of quasiseparability and a matrix invariant,
the rank profile matrix, that we introduced in Dumas et al. (2015) and applied to the
generalized Bruhat decomposition in Dumas et al. (2016). More precisely, we show
that the lower and upper triangular parts of a quasiseparabile matrix have a General-
ized Bruhat decompositions off of which many coefficients can be shaved. The result-
ing structure of these decompositions allows to handle them within memory footprint
and time complexity that does not depend on the rank but on the quasiseparable order
(which can be arbitrarily lower). These two representations use respectively a space
O(sn log n

s ) (RRR) and O(sn) (CB), hence improving over that of the SSS, O(s2n), and
matching that of the HSS representation, O(sn).

The complexity of applying a vector remains linear in the size of the represen-
tations. The main improvement in these two representations is in the complexity of
applying them to matrices and computing the matrix inverse, where we replace by sω−1

the s3 factor of the SSS or the s2 factor of the HSS representations.3 Table 1 compares

SSS HSS RRR CB

Size O(s2n) O(sn) O(sn log n
s ) O(sn)

Construction O(s2n2) O(sn2) O(sω−2n2) O(sω−2n2)
QSxVec O(s2n) O(sn) O(sn log n

s ) O(sn)
QSxTS O(s3n) O(s2n) O(sω−1n log n

s ) O(sω−1n)
QSxQS O(s3n) O(s3n) O(sω−1n log2 n

s ) O(sω−2n2)
LinSys O(s3n) O(s2n) O(sω−1n log2 n

s )

Table 1: Comparing the size and time complexities for basic operations of the proposed RRR and CB repre-
sentations with the existing one SSS and HSS on an n × n quasiseparable matrix of order s.

the two proposed representations with the SSS and the HSS in their the size, and the
complexity of the main basic operations.

Outline. Section 2 defines and recalls some preliminary notions on left triangular ma-
trices and the rank profile matrix, that will be used in Section 3 and 6. Using the
strong connection between the rank profile matrix and the quasiseparable structure, we
first propose in Section 3 an algorithm to compute the quasiseparability orders (rL, rU)

2Equation (9) in Pernet (2016) is missing the Left operators. The resulting algorithms are incorrect. This
is fixed in section 6.2.

3Note that most complexities for SSS and HSS in the litterature are given in the form O(n2) or O(n),
considering the parameter s as a constant. The estimates given here, with the exponent in s, can be found in
the proofs of the related papers or easily derived from the algorithms.
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of any dense matrix in O(n2sω−2) where s = max(rL, rU). Section 4 then describes
the two proposed structured representations for quasiseparable matrices: the Recursive
Rank Revealing representation (RRR), a simplified HSS representation based on a bi-
nary tree of rank revealing factorizations, and the Compact Bruhat representation (CB),
based on the intermediate Bruhat representation. Section 5 then presents algorithms to
compute an RRR representation, and perform the most common operations with it: ap-
plying a vector, a tall and skinny matrix, multiplying two quasiseparable matrices in
RRR representation, and computing the inverse of a strongly regular RRR matrix. Sec-
tion 6 presents algorithms to compute a Compact Bruhat representation, and multiply
it with a vector, a tall and skinny matrix or a dense matrix.

Notations. Throughout the paper, Ai.. j,k..l will denote the sub-matrix of A of row indices
between i and j and column indices between k and l. The matrix of the canonical basis,
with a one at position (i, j) will be denoted by ∆(i, j). We will denote the identity matrix
of order n by In, the unit antidiagonal of dimension n by Jn and the zero matrix of
dimension m × n by 0m×n.

2. Preliminaries

2.1. Left triangular matrices

We will make intensive use of matrices with non-zero elements only located above
the main anti-diagonal. We will refer to these matrices as left triangular, to avoid any
confusion with upper triangular matrices.

Definition 2. An m × n matrix A is left triangular if Ai, j = 0 for all i > n − j.

The left triangular part of a matrix A, denoted by Left(A) will refer to the left
triangular matrix extracted from it. We will need the following property on the left
triangular part of the product of a matrix by a triangular matrix.

Lemma 3. Let A = BU be an m × n matrix where U is n × n upper triangular. Then
Left(A) = Left(Left(B)U).

Proof. Let Ā = Left(A), B̄ = Left(B). For j ≤ n − i, we have Āi, j =
∑n

k=1 Bi,k · Uk, j =∑ j
k=1 Bi,k ·Uk, j as U is upper triangular. Now for k ≤ j ≤ n− i, Bi,k = B̄i,k, which proves

that the left triangular part of A is that of Left(B)U.

Applying Lemma 3 on AT yields Lemma 4

Lemma 4. Let A = LB be an m × n matrix where L is m × m lower triangular. Then
Left(A) = Left(LLeft(B)).

Lastly, we will extend the notion of order of quasiseparability to left triangular
matrices, in the natural way: the order of left quasiseparability is the maximal rank of
any leading k × (n − k) sub-matrix. When no confusion may occur, we will abuse the
definition and simply call it the order of quasiseparability.
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2.2. PLUQ decomposition

We recall that for any m × n matrix A of rank r, there exist a PLUQ decomposition
A = PLUQ where P is an m ×m permutation matrix, Q is an n × n permutation matrix,
L is an m × r unit lower triangular matrix, and U is an r × n upper triangular matrix.
matrix. It is not unique, but once the permutation matrices P and Q are fixed, the
triangular factors L and U are unique, since the matrix PT AQT has generic rank profile
and therefore has a unique LU decomposition.

2.3. The rank profile matrix

We will use a matrix invariant, introduced in (Dumas et al., 2015, Theorem 1), that
summarizes the information on the ranks of any leading sub-matrices of a given input
matrix.

Definition 5. (Dumas et al., 2015, Theorem 1) The rank profile matrix of an m × n
matrix A of rank r is the unique m × n matrix RA, with only r non-zero coefficients, all
equal to one, located on distinct rows and columns such that any leading sub-matrices
of RA has the same rank as the corresponding leading sub-matrix in A.

This invariant can be computed in just one Gaussian elimination of the matrix A,
at the cost of O(mnrω−2) field operations (Dumas et al., 2015), provided some condi-
tions on the pivoting strategy being used. It is obtained from the corresponding PLUQ
decomposition as the product

RA = P
[
Ir

0(m−r)×(n−r)

]
Q.

We also recall in Theorem 6 an important property of such PLUQ decompositions
revealing the rank profile matrix.

Theorem 6 ((Dumas et al., 2016, Th. 24), (Dumas et al., 2013, Th. 1)). Let A = PLUQ,
a PLUQ decomposition revealing the rank profile matrix of A. Then, P

[
L 0m×(m−r)

]
PT

is lower triangular and QT

[
U

0(n−r)×n

]
Q is upper triangular.

Lemma 7. The rank profile matrix invariant is preserved by multiplication

1. to the left with an invertible lower triangular matrix,
2. to the right with an invertible upper triangular matrix.

Proof. Let B = LA for an invertible lower triangular matrix L. Then for any i ≤ m, j ≤
n, rank(B1..i,1.. j) = rank(L1..i,1..iA1..i,1.. j) = rank(A1..i,1.. j) . Hence RB = RA.

3. Computing the orders of quasiseparability

Let M be an n×n matrix of which one wants to determine the quasiseparable orders
(rL, rU). Let L and U be respectively the lower triangular part and the upper triangular
part of M.

6



Multiplying on the left by Jn, the unit anti-diagonal matrix, inverses the row order
while multiplying on the right by Jn inverses the column order. Hence both JnL and
UJn are left triangular matrices. Remark that conditions (1) and (2) state that all leading
k×(n−k) sub-matrices of JnL and UJn have rank no greater than rL and rU respectively.
We will then use the rank profile matrix of these two left triangular matrices to find
these parameters.

3.1. From a rank profile matrix

First, note that the rank profile matrix of a left triangular matrix is not necessarily

left triangular. For example, the rank profile matrix of
[

1 1 0
1 0 0
0 0 0

]
is

[
1 0 0
0 1 0
0 0 0

]
. However,

only the left triangular part of the rank profile matrix is sufficient to compute the left
quasiseparable orders.

Suppose for the moment that the left-triangular part of the rank profile matrix of
a left triangular matrix is given (returned by a function LT-RPM). It remains to enu-
merate all leading k × (n − k) sub-matrices and find the one with the largest number
of non-zero elements. Algorithm 1 shows how to compute the largest rank of all lead-
ing sub-matrices of such a matrix. Run on JnL and UJn, it returns successively the
quasiseparable orders rL and rU .

Algorithm 1 QS-order
Require: A, an n × n matrix
Ensure: max{rank(A1..k,1..n−k) : 1 ≤ k ≤ n − 1}
R ← LT-RPM(A) . The left triangular part of the rank profile matrix of A
rows← (False,. . . ,False)
cols← (False,. . . ,False)
for all (i, j) such that Ri, j = 1 do

rows[i]← True
cols[j]← True

end for
s, r ← 0
for i = 1 . . . n − 1 do

if rows[i] then r ← r + 1
if cols[n − i + 1] then r ← r − 1
s← max(s, r)

end for
return s

This algorithm runs in O(n) provided that the rank profile matrix R is stored in a
compact way, e.g. using a vector of r pairs of pivot indices ([(i1, j1), . . . , (ir, jr)].

3.2. Computing the rank profile matrix of a left triangular matrix

We now deal with the missing component: computing the left triangular part of the
rank profile matrix of a left triangular matrix.
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3.2.1. From a PLUQ decomposition
A first approach is to run any Gaussian elimination algorithm that can reveal the

rank profile matrix, as described in Dumas et al. (2015). In particular, the PLUQ de-
composition algorithm of Dumas et al. (2013) computes the rank profile matrix of A in
O(n2rω−2) where r = rank(A). However this estimate may be pessimistic as it does not
take into account the left triangular shape of the matrix. Moreover, it does not depend
on the left quasiseparable order s but on the rank r, which could be much higher.

Remark 8. The discrepancy between the rank r of a left triangular matrix and its
quasiseparable order arises from the location of the pivots in its rank profile matrix.
Pivots located near the top left corner of the matrix are shared by many leading sub-
matrices, and are therefore likely to contribute to the quasiseparable order. On the
other hand, pivots near the main anti-diagonal can be numerous, but do not add up to
a large quasiseparable order. As an illustration, consider the two following extreme
cases:

1. a matrix A with generic rank profile. Then the leading r × r sub-matrix of A has
rank r and the quasiseparable order is s = r.

2. the matrix with n−1 ones immediately above the main anti-diagonal. It has rank
r = n − 1 but quasiseparable order 1.

Remark 8 indicates that in the unlucky cases when r � s, the computation should
reduce to instances of smaller sizes, hence a trade-off should exist between, on one
hand, the discrepency between r and s, and on the other hand, the dimension n of the
problems. All contributions presented in the remaining of the paper are based on such
trade-offs.

3.2.2. A dedicated algorithm
In order to reach a complexity depending on s and not r, we adapt in Algorithm 2

the tile recursive algorithm of Dumas et al. (2013), so that the left triangular structure
of the input matrix is preserved and can be used to reduce the amount of computation.

Algorithm 2 does not assume that the input matrix is left triangular, as it will be
called recursively with arbitrary matrices, but guarantees to return the left triangular
part of the rank profile matrix. While the top left quadrant A1 is eliminated using any
PLUQ decomposition algorithm revealing the rank profile matrix, the top right and
bottom left quadrants are handled recursively.

Theorem 9. Given an n×n input matrix A with left quasiseparable order s, Algorithm 2
computes the left triangular part of the rank profile matrix of A in O(n2sω−2) field
operations.

Proof. First remark that

P1

[
D
F

]
= P1

[
L1
−1

−M1L1
−1 In−r1

]
P1

T︸                          ︷︷                          ︸
L

P1

[
B1

B2

]
= LA2.
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Algorithm 2 LT-RPM: Left Triangular part of the Rank Profile Matrix
Require: A: an n × n matrix
Ensure: R: the left triangular part of the RPM of A

1: if n = 1 then return [0]

2: Split A =

[
A1 A2

A3

]
where A3 is b n

2 c × b
n
2 c

3: Compute a PLUQ decomposition A1 = P1

[
L1

M1

] [
U1 V1

]
Q1 revealing the RPM

4: R1 ← P1

[
Ir1

0

]
Q1 where r1 = rank(A1).

5:

[
B1

B2

]
← P1

T A2

6:
[
C1 C2

]
← A3Q1

T . Here A =

 L1\U1 V1 B1

M1 0 B2

C1 C2

.
7: D← L1

−1B1

8: E← C1U1
−1

9: F← B2 −M1D

10: G← C2 − EV1 . Here A =

 L1\U1 V1 D
M1 0 F
E G

.
11: H← P1

[
0r1×

n
2

F

]
12: I←

[
0r1×

n
2

G
]
Q1

13: R2 ← LT-RPM(H)
14: R3 ← LT-RPM(I)

15: return R ←
[
R1 R2
R3

]

Hence

L
[
A1 A2

]
= P1

[ [
U1 V1

]
Q1 D

0 F

]
.

From Theorem 6, the matrix L is lower triangular and by Lemma 7 the rank profile ma-

trix of
[
A1 A2

]
equals that of P1

[ [
U1 V1

]
Q1 D

0 F

]
. Now as U1 is upper triangular

and non-singular, this rank profile matrix is in turn that of P1

[ [
U1 V1

]
Q1 0

0 F

]
and

its left triangular part is
[
R1 R2

]
.

By a similar reasoning,
[
R1 R3

]T
is the left triangular part of the rank profile

matrix of
[
A1 A3

]T
, which shows that the algorithm is correct.

Let s1 be the left quasiseparable order of H and s2 that of I. The number of field
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operations required to run Algorithm 2 is

T (n, s) = αrω−2
1 n2 + TLT-RPM(n/2, s1) + TLT-RPM(n/2, s2)

for a positive constant α. We will prove by induction that T (n, s) ≤ 2αsω−2n2.
Again, since L is lower triangular, the rank profile matrix of LA2 is that of A2

and the quasiseparable orders of the two matrices are the same. Now H is the matrix
LA2 with some rows zeroed out, hence s1, the quasiseparable order of H is no greater
than that of A2 which is less or equal to s. Hence max(r1, s1, s2) ≤ s and we obtain
T (n, s) ≤ αsω−2n2 + 4αsω−2(n/2)2 = 2αsω−2n2.

4. New structured representations for quasiseparable matrices

In order to introduce fast matrix arithmetic in the algorithms computing with qua-
siseparable matrices, we introduce in this section three new structured representations:
the Recursive Rank Revealing (RRR) representation, the Bruhat representation, and
finally its compact version, the Compact Bruhat (CB) representation.

4.1. The Recursive Rank Revealing representation

This a simplified version of the HSS representation. It uses in the same manner
a recursive splitting of the matrix in a quad-tree, and each off-diagonal block at each
recursive level is represented by a rank revealing factorization.

Definition 10 (RR: Rank revealing factorization). A rank revealing factorization (RR)
of an m × n matrix A of rank r is a pair of matrices L and R of dimensions m × r and
r × n respectively, such that A = LR.

For instance, a PLUQ decomposition is a rank revealing factorization. One can
either store explicitely the two factors PL and UQ or only consider the factors L and U
keeping in mind that permutations need to be applied on the left and on the right of the
product.

Definition 11 (RRR: Recursive Rank Revealing representation). A recursive rank re-

vealing (RRR) representation of an n × n quasiseparable matrix A =

[
A11 A12
A21 A22

]
of

order s is formed by a rank revealing factorization of A12 and A21 and applies recur-
sively for the representation of A11 and A22.

A Recursively Rank Revealing representation forms a binary tree where each node
correspond to a diagonal block of the input matrix, and contains the Rank Revealing
factorization of its off-diagonal quadrants.

If A is (rL, rU)-quasiseparable, then all off-diagonal blocks in its lower part have
rank bounded by rL, and their rank revealing factorizations take advantage of this low
rank until a block dimension n/2k ≈ rL where a dense representation is used. The same
applies for the upper triangular part with quasiseparable order rU . This representation
uses O(sn log n

s ) space where s = max(rL, rU).
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4.2. The Bruhat representation

This structured representation is closely related to the notion of the rank profile ma-
trix and the LEU decomposition of Malaschonok (2010). Contrarily to the RRR or the
HSS representations, it is not depending on a specific recursive cutting of the matrix.
For this representation, and its compact version that will be studied in section 4.3, the
lower and the upper triangular parts are represented independently. We will therefore
treat them in a unified way, showing how to represent a left triangular matrix. Recall
that if L is lower triangular and U is upper triangular then both JnL and UJn are left
triangular.

Given a left triangular matrix A of quasiseparable order s and a PLUQ decomposi-
tion of it, revealing its rank profile matrix R, the Bruhat generator consists in the three
matrices

L = Left(P
[
L 0

]
Q), (3)

R = Left(R), (4)

U = Left(P
[
U
0

]
Q). (5)

Lemma 12 shows that these three matrices suffice to recover the initial left triangu-
lar matrix.

Lemma 12. A = Left(LRTU)

Proof. A = P
[
L 0m×(n−r)

]
QQT

[
U

0(n−r)×n

]
Q. From Theorem 6, the matrix QT

[
U
0

]
Q is

upper triangular and the matrix P
[
L 0

]
PT is lower triangular. Applying Lemma 3

yields A = Left(A) = Left(LQT

[
U
0

]
Q) = Left(LRT P

[
U
0

]
Q), where R = P

[
Ir

0

]
Q.

Then, as LRT is the matrix P
[
L 0

]
PT with some coefficients zeroed out, it is lower

triangular, hence applying again Lemma 4 yields

A = Left(LRTU). (6)

Consider any non-zero coefficient e j,i of RT that is not in its the left triangular part, i.e.
j > n − i. Its contribution to the product LRT , is only of the form Lk, je j,i. However
the leading coefficient in column j of P

[
L 0

]
Q is precisely at position (i, j). Since

i > n − j, this means that the j-th column of L is all zero, and therefore ei, j has no
contribution to the product. Hence we finally have A = Left(LRTU).

We now analyze the space required by this generator.

Lemma 13. Consider an n×n left triangular rank profile matrix R with quasiseparable
order s. Then a left triangular matrix L all zero except at the positions of the pivots of
R and below these pivots, does not contain more than s(n − s) non-zero coefficients.

Proof. Let p(k) = rank(R1..k,1..n−k). The value p(k) indicates the number of non zero
columns located in the k×n−k leading sub-matrix of L and is therefore an upper bound
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on the number of non-zero elements in row k of L. Consequently the sum
∑n−1

k=1 p(k)
is an upper bound on the number of non-zero coefficients in L. Since p(k) ≤ s, it is
bounded by sn. More precisely, there is no more than k pivots in the first k columns
and the first k rows, hence p(k) ≤ k and p(n − k) ≤ k for k ≤ s. The bound becomes
s(s + 1) + (n − 2s − 1)s = s(n − s).

Corollary 14. The Bruhat generator (L,R,U) uses 2s(n − s) field coefficients and
O(n) additional indices to represent a left triangular matrix.

Proof. The leading column elements of L are located at the pivot positions of the left
triangular rank profile matrix R. Lemma 13 can therefore be applied to show that this
matrix occupies no more than s(n−s) non-zero coefficients. The same argument applies
to the matrixU.

Figure 1 illustrates this generator on a left triangular matrix of quasiseparable or-
der 5. As the supports of L and U are disjoint, the two matrices can be shown on the

Figure 1: Support of the L (yellow), R (black) and U (red) matrices of the Bruhat generator for a 80 × 80
left triangular matrix of quasiseparable order 5.

same left triangular matrix. The pivots of R (black) are the leading coefficients of every
non-zero row ofU and non-zero column of L.

Corollary 15. Any (rL, rU)-quasiseparable matrix of dimension n × n can be repre-
sented by a generator using no more than 2n(rL + rU) + n − 2(r2

L − 2r2
U) field elements

and 2(rL + rU) indices.

Proof. This estimate is obtained as the space required for the Bruhat representation
of the upper and lower triangular parts of the matrix, with n coefficients for the main
diagonal. The 2(rL + rU) indices correspond to the storge of the pivot positions of the
two rank profile matrices.

12



4.3. The compact Bruhat representation
The scattered structure of the Bruhat generator makes it not amenable to the use

of fast matrix arithmetic. We therefore propose here a compact variation on it, called
the compact Bruhat, that will be used to derive algorithms taking advantage of fast
matrix multiplication. This structured representation relies on the generalized Bruhat
decomposition described in Manthey and Helmke (2007), thanks to the connection with
the rank profile matrix made in Dumas et al. (2016).

Theorem 16 (Generalized Bruhat decomposition (Manthey and Helmke, 2007; Dumas
et al., 2016)). For any m×n matrix A of rank r, there exist an m× r matrix C in column
echelon form, an r × n matrix E in row echelon form, and an r × r permutation matrix
R such that A = CRE.

We will also need an additional structure on the echelon form factors.

Definition 17. Two non-zero columns of matrix are non-overlapping if one has its
leading element below the trailing element of the other.

Definition 18. A matrix is s-overlapping if any sub-set of s + 1 of its non-zero columns
contains at least a pair that are non-overlapping.

The motivation for introducing this structure is that left triangular matrices of qua-
siseparable order s have a generalized Bruhat decomposition with echelon form factors
C and E that are s-overlapping.

Theorem 19. For any n × n left triangular matrix A of quasiseparable order s and of
rank r, there is a generalized Bruhat decomposition of the form A = Left(CRE) where
C and ET are s-overlapping.

Proof. Let (L,R,U) be a Bruhat generator for A. The matrix L is s-overlapping:
otherwise, there would be a subset S of s+1 of columns such that no pair of them is non-
overlapping. Let ((i1, j1), . . . , (is+1, js+1)) be the coordinates of their leading elements
sorted by increasing row index : i1 < i2 < · · · < is+1. Since L is left triangular, js+1 ≤

n−is+1. The trailing elements of every other column of S must be below row is+1, hence,
jk ≤ n − is+1 for all k ≤ s since L is left triangular. Consequently the is+1 × (n − is+1)
leading submatrix of L contains s + 1 pivots, a contradiction. The same reasonning
applies to show that ET is s-overlapping. Consider the permutation matrix Q such that
LQ =

[
C 0m×(n−r)

]
is in column echelon form. Similarly let P be the permutation

matrix such that PU =

[
E

0(m−r)×n

]
, and remark that R =

[
Ir 0

]
QTRTPT

[
Ir
0

]
is a

permutation matrix and verifies A = Left(CRE).

The s-overlapping shape of the echelon form factors in the generalized Bruhat de-
composition allow to further compress it as follows.

Proposition 20. Any s-overlapping m×r matrix A can be written A = (D+ST)P where
P is a permutation matrix, T ∈ {0, 1}r×r has at most one non zero element per row and

D = Diag(D1, . . . ,Dt), S =


0

S2 0

. . .
. . .
St

 where each Di and Si is ki × s, except Dt and St

having possibly fewer columns than s and
∑t

i=1 ki = n.
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Intuitively, the permutation PT sorts the columns of A in increasing order of their
leading row index. Cutting the columns in slices of dimension s makes APT block
lower triangular. The block diagonal is D, and the remaining part can be folded into a
block sub-diagonal matrix S thanks to the s-overlapping property.

Algorithm 3 Compress-to-Block-Bidiagonal
Require: A: an s-overlapping matrix
Ensure: D,S,T,P: such that A = (D + ST)P as in Proposition 20.

1: P ← a permutation sorting the columns of A by increasing row position of their
leading coefficient.

2: C← AP
[

Ir
0

]
where r is the number of non-zero columns in A

3: Split C in column slices of width s. . C =


C11
C21 C22

...
...
. . .

Ct1 Ct2 ... Ctt

 where Cii is ki × s ∀i < t.

4: D← Diag(C11, . . . ,Ctt)

5: C← C − D =


0

C21

...
. . .

. . .
Ct1 ... Ct,t−1 0


6: T← In
7: for i = 3 . . . t do
8: for each non zero column j of

[
Ci,i−2
...

Ct,i−2

]
do

9: Let k be a zero column of
[

Ci,i−1
...

Ct,i−1

]
10: Move column j in

 Ci,i−2

...
Ct,i−2

 to column k in

 Ci,i−1

...
Ct,i−1

.
11: T← (In + ∆(k, j) − ∆(k,k)) × T
12: end for
13: end for

14: S← C =


0

C21 0

. . .
. . .

Ct,t−1 0


15: return (D,S,T,P)

Algorithm 3 is a constructive proof of Proposition 20, computing a compact repre-
sentation of any s-overlapping matrix.

Proof. Since A is s-overlapping, there exists a permutation P such that C = AP is
block lower triangular, with blocks of column dimension s except possibly the last one
of column dimension ≤ s. Note that for every i, the dimensions of the blocks Si and Di

are that of the block Cii: ki × s. We then prove that there always exists a zero column to
pick at step 9. In the first row of

[
Ci1 . . . Cii

]
, there is a non zero element located in

the block Cii. As any non-zero column of
[
Ci1 . . . Ci,i−1

]
has a leading coefficient

in A at a row index stricly lower than i, there can not be more than s−1 of them. These
s − 1 columns of

[
Ci1 . . . Ci,i−1

]
can all be gathered in the block Ci,i−1 of column
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dimension s.
There only remains to show that ST is the matrix C of step 5. For every pair of

indices ( j, k) selected in loop 7, right multiplication by (In + ∆(k, j) − ∆(k,k)) adds up
column k to column j and zeroes out column k. On matrix S, this has the effect of
reverting each operation done at step 10 in the reverse order of the loop 7.

Proposition 21. If an s-overlapping matrix A is in column echelon form, then, the
structured representation (D,S,T,P) is such that P = Ir and ki ≥ s ∀i < t.

Proof. The leading elements of each column are already sorted in a column echelon
form, hence P = Ir. Then, each block Cii contains s pivots, hence ki ≥ s.

We can now define the compact Bruhat representation.

Definition 22. The compact Bruhat representation of an n×n s-quasiseparable left tri-
angular matrix A is given by the tuples (DCA ,SCA ,TCA ), (DEA ,SEA ,TEA ) where DCA ,SCA , (DEA )T

and (SEA )T are n × r block diagonal, with blocks of column dimension s, and TCA and
(TEA )T are lower triangular {0, 1}-matrices with r coefficients equals to 1 placed on
distinct rows, and a permutation matrix RA such that{

CA = DCA + SCA TCA ,
EA = DEA + TEA SEA

and A = Left(CARAEA) is a generalized Bruhat decomposition of A.

Figure 2: Support of the matrices C = LQ (left), E = PU (top right) of the s-overlapping CRE decompo-
sition of Theorem 19 applied to the matrix of Figure 1. The Compression to the block bi-diagonal structure
of the corresponding compact Bruhat generator is shown in the central and bottom right matrices. There, D
is in black and S in magenta and yellow; those rows and columns moved at step 10 of Algorithm 3 are in
yellow.
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5. Computing with RRR representations

In this section, we will keep considering that the RRR representation is based on
any rank revealing factorization (RR), which could originate from various matrix fac-
torizations: PLUQ, CUP, PLE, QR, SVD, etc. We will assume that there exists an
algorithm RRF computing such a rank revealing factorization. For instance, PLUQ,
CUP, PLE decomposition algorithms can be used to compute such a factorization in
time TRRF(m, n, r) = O(mnrω−2) on an m × n matrix of rank r (Jeannerod et al., 2013).

5.1. Construction of the generator

The construction of the RRR representation simply consists in computing rank re-
vealing factorizations of all off-diagonal submatrices in a binary splitting of the main
diagonal. Let TRRR(n, s) denote the cost of the computation of the binary tree generator
for an n × n matrix of order of quasiseparability s. It satisfies the recurrence relation
TRRR(n, s) = 2TRRF(n, n, s) + 2TRRR(n/2, s) which solves in TRRR(n, s) = O(sω−2n2).

5.2. Matrix-vector product

In the RRR representation, the application of a vector to the quasiseparable matrix
takes the same amount of field operations as the number of coefficients used for its
representation. This yields a cost of O(n(rL log n

rL
+ rU log n

rU
)) = O(sn log n

s ) field
operations.

5.3. Auxiliary algorithms

In the following, we present a set of routines that will be used to build multi-
plication and inversion algorithms for RRR representations. Algorithm 4 expands a
matrix from an RRR representation to a dense representation. The recurring relation

Algorithm 4 RRRExpand: expands an RRR representation into a dense representation
Require: A, an n × n s-quasiseparable matrix in an RRR representation,
Ensure: B← A in a dense representation.

1: if n ≤ s then return B← A
2: end if
3: B11 ← RRRExpand(A11)
4: B22 ← RRRExpand(A22)
5: B12 ← LA

12RA
12

6: B21 ← LA
21RA

21

7: return B←
[
B11 B12
B21 B22

]

TRRRExpand(n, s) = 2TRRRExpand(n/2, s) + O(n2sω−2) for n > s yields directly

TRRRExpand(n, s) = O(n2sω−2).

Algorithm 5 multiplies two rank revealing factorizations and outputs the result in a
rank revealing factorization. As LA and LX have full column rank, so is their product.
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Algorithm 5 RRxRR: multiplies two matrices stored as rank revealing factorization
Require: A, an m × k matrix of rank ≤ s in an RR representation LA × RA,
Require: B, an k × n matrix of rank ≤ t in an RR representation LB × RB,
Ensure: C← A × B in an RR representation LC × RC.

1: X← RALB

2: (LX,RX)← RRF(X) . Computes the RR factorization X = LX × RX

3: LC ← LALX

4: RC ← RXRB

Hence the LCRC is a rank revealing factorization of the product. The resulting cost
(assuming s ≤ t without loss of generality) is

TRRxRR(m, k, n, s, t) = O(sω−2tk) + TRRF(s, t) + O(rω−2
X (ms + nt)).

With n = Θ(m) = Θ(k), this is TRRxRR(n, s, t) = O((s + t)ω−1n).
Algorithm 6 adds two rank revealing factorizations. It first stacks together the left

sides and the right sides of the rank revealing factorizations of the two terms. The
resulting factorization may not reveal the rank as the inner dimension may be larger.
Therefore, a rank revealing factorization of each factor is first computed, before invo-
quing RRxRR to obtain an RR representation of their product. Assuming n = Θ(m), the

Algorithm 6 RR+RR: adds two matrices stored as rank revealing factorization
Require: A, an m × n matrix of rank ≤ s in an RR representation LA × RA

Require: B, an m × n matrix of rank ≤ t in an RR representation LB × RB

Ensure: D← A + B in an RR representation LD × RD.

1: X←
[
LA LB

]
; Y←

[
RA

RB

]
2: (LX,RX)← RRF(X) . X = LX × RX, rX = rank(X); LX is m × rX and RX is rX × n
3: (LY,RY)← RRF(Y) . Y = LY × RY, rY = rank(Y); LY is m × rY and RY is rY × n
4: D← RRxRR(X,Y) . Computes an RR representation of the product D = XY

time complexity is

TRR+RR(n, s, t) = 2TRRF(n, s + t) + O((s + t)ω−1n) = O((s + t)ω−1n).

Algorithm 7 adds a quasiseparable matrix in RRR representation with a matrix in
RR representation. The time complexity satisfies the recurring relation

TRRR+RR(n, s, t) = 2TRRR+RR(n/2, s, t) + 2TRR+RR(n/2, s, t) for n > s + t
= 2TRRR+RR(n/2, s, t) + O(n(s + t)ω−1)

TRRR+RR(n, s, t) = TRRRExpand(s + t, s) + O((s + t)2tω−2) for n ≤ s + t

which solves in

TRRR+RR(n, s, t) = O((s + t)ω−1n log
n

s + t
+

n
s + t

(s + t)2(sω−2 + tω−2)

= O((s + t)ω−1n log
n

s + t
).

17



Algorithm 7 RRR+RR: adds a quasiseparable matrix in RRR representation and a rank
revealing factorization
Require: A, an n × n s-quasiseparable matrix in an RRR representation
Require: B, an n × n matrix of rank ≤ t in an RR representation LB × RB

Ensure: C← A + B in an RRR representation.
1: if n ≤ s + t then
2: return C← RRRExpand(A) + LB × RB

3: end if
4: Split the matrices as

[
C11 C12
C21 C22

]
←

[
A11 A12
A21 A22

]
+

[
B11 B12
B21 B22

]
.

5: C11 ← RRR+RR(A11,B11) . C11 ← A11 + B11
6: C22 ← RRR+RR(A22,B22) . C11 ← A22 + B22
7: C12 ← RR+RR(A12,B12) . C12 ← A12 + B12
8: C21 ← RR+RR(A21,B21) . C21 ← A21 + B21

9: return C←
[
C11 C12
C21 C22

]

5.4. Quasiseparable times tall and skinny
Algorithm 8 multiplies an s-quasiseparable matrix of dimension n × n in RRR rep-

resentation by a tall and skinny matrix: an n × t rectangular dense matrix with t ≤ n.
Let TRRRxTS(n, s, t) denote its cost. The recurring relation{

TRRRxTS(n, s, t) = 2TRRRxTS(n/2, s, t) + O(n max(s, t) min(s, t)ω−2) for n > s + t
TRRRxTS(n, s, t) = TRRRExpand(s + t, s) + O((s + t)2tω−2) for n ≤ s + t

yields

TRRRxTS(n, s, t) = O((s + t)ω−1n log
n

s + t
+

n
s + t

(s + t)2(sω−2 + tω−2)

= O((s + t)ω−1n log
n

s + t
).

From this algorithm, follows Algorithm 9, computing the product of an s-quasi-
separable matrix in RRR representation by a rank revealing factorization. Similarly as
for Algorithm 5, RX and RB have full row rank, so has their product, which ensures that
the factors LD,RD form a rank revealing factorization of the result. Its time complexity
is

TRRRxRR(n, s, t) = TRRRxTS(n, s, t) + TRRF(n, t) + O(ntω−1) = O((s + t)ω−1n log
n

s + t
)

5.5. Quasiseparable times Quasiseparable
The product of an s-quasiseparable matrix by a t-quasiseparable matrix is an (s+ t)-

quasiseparable matrix (Eidelman and Gohberg, 1999). Algorithm 10, calling Algo-
rithms 5, 6, 7 and 8, shows how to perform such a multiplication with the RRR repre-
sentations. In steps 9 and 10, a (s + t)-quasiseparable matrix is added to a rank reveal-
ing factorization of rank (s + t). It should in general result in an RRR representation
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Algorithm 8 RRRxTS: multiplies a quasiseparable matrix in RRR representation with
a tall and skinny matrix
Require: A, an n × n s-quasiseparable matrix in RRR representation
Require: B, an n × t matrix
Ensure: C← AB

1: if n ≤ s + t then
2: return C← RRRExpand(A) × B
3: end if
4: Split the matrices as

[
C1
C2

]
←

[
A11 A12
A21 A22

] [
B1
B2

]
.

5: C1 ← RRRxTS(A11,B1) . C1 ← A11B1
6: C2 ← RRRxTS(A22,B2) . C2 ← A22B2
7: X← RA

12B2

8: C1 ← C1 + LA
12X . C1 ← C1 + A12B2

9: Y← RA
21B1

10: C2 ← C2 + LA
21Y . C2 ← C2 + A21B1

11: return C←
[
C1
C2

]

Algorithm 9 RRRxRR: multiplies a quasiseparable matrix in RRR representation with
a rank revealing factorization
Require: A, an n × n s-quasiseparable matrix in RRR representation
Require: B, an n × m matrix of rank ≤ t in an RR representation LB × RB

Ensure: D← AB in a rank revealing factorization LD × RD

1: X← RRRxTS(A, LB) . X← ALB

2: (LX,RX)← RRF(X) . Computes the RR factorization X = LX × RX

3: LD ← LX

4: RD ← RXRB
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Algorithm 10 RRRxRRR

Require: A, an n × n s-quasiseparable matrix in an RRR representation,
Require: B, an n × n t-quasiseparable matrix in an RRR representation,
Ensure: C← A × B in an RRR representation.

1: if n ≤ s + t then
2: return C← RRRExpand(A) × RRRExpand(B)
3: end if
4: Split the matrices as

[
C11 C12
C21 C22

]
←

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
.

5: C11 ← RRRxRRR (A11,B11) . C11 ← A11B11
6: C22 ← RRRxRRR (A22,B22) . C22 ← A22B22
7: X← RRxRR (A12,B21) . X← A12B21
8: Y← RRxRR (A21,B12) . Y← A21B12
9: C11 ← RRR+RR (C11,X) . C11 ← C11 + X

10: C22 ← RRR+RR (C22,Y) . C22 ← C22 + Y
11: LX ← RRRxTS(A11, LB

12); RX ← RB
12 . X← A11B12 in RR representation

12: LY ← LA
12; RY ← TSxRRR(RA

12,B22) . Y← A12B22 in RR representation revealing
factorization

13: C12 ← RR+RR(X,Y) . C12 ← X + Y
14: LX ← RRRxTS(A11, LB

21); RX ← RB
21 . X← A11B21 in RR representation

15: LY ← LA
21; RY ← TSxRRR(RA

21,B22) . Y← A21B22 in RR representation
16: C21 ← RR+RR(X,Y) . C21 ← X + Y

17: return C←
[
C11 C12
C21 C22

]
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of an 2(s + t)-quasiseparable matrix. However, the matrix C is no more than (s + t)-
quasiseparable, hence the rank revealing factorization of the result, will have rank only
s + t. The reductions to RR representation, performed in step 2 of Algorithm 5 and
steps 2 and 3 of Algorithm 6, ensure that this factorization will be reduced to this size.

Let TRRR×RRR(n, s, t) denote the time complexity of this algorithm. If n ≤ s + t, then
TRRRxRRR(n, s, t) = TRRRExpand(n, s)+TRRRExpand(n, t)+O(nω) = O((s+ t)ω). Now consider
the case n > s + t.

TRRRxRRR(n, s, t) = 2TRRRxRRR(n/2, s, t) + 2TRRxRR(n/2, s, t) + 2TRRRxTS(n/2, s, t)
+2TRRR+RR(n/2, s + t, s + t) + 2TRR+RR(n/2, s + t, s + t)

= 2TRRRxRRR(n/2, s, t) + O((s + t)ω−1n log
n

s + t
)

Consequently, TRRRxRRR(n, s, t) = O((s + t)ω−1n log2 n
s+t ).

5.6. Computing the inverse in RRR representation

We consider the case, as in (Eidelman and Gohberg, 1999, § 6), where the matrix
to be inverted has generic rank profile, i.e. all of its leading principal minors are non-
vanishing. Under this assumption, Strassen’s divide and conquer algorithm (Strassen,
1969) reduces the computation of the inverse to matrix multiplication. More precisely,
the inverse is recursively computed using the following block 2 × 2 formula:[

A11 A12
A21 A22

]−1

=

[
A−1

11 + A−1
11 A12D−1A21A−1

11 −A−1
11 A12D−1

−D−1A21A−1
11 D−1

]
,

where D = A22 − A21A−1
11 A12.

This formula leads to a recursive algorithm that we adapt to the case of quasisepa-
rable matrices in RRR representation in algorithm 11. The fact that the inverse ma-
trix X is itself s-quasiseparable, implies that the matrix D is also s-quasiseparable
and not 2s-quasiseparable, as the generic upper bound would say. The compression
happens in the RR+RR routine, at step 10. Hence all operations except the recur-
sive calls take O(sω−1n log n

s ). The overall complexity of Algorithm 11 is therefore
TRRRInverse(n, s) = O(sω−1n log2 n

s ).

6. Computing with a Compact Bruhat representation

6.1. Construction of the generator

We first propose in Algorithm 12 an evolution of Algorithm 2 to compute the factors
of the Bruhat generator (without compression) for a left triangular matrix.

Theorem 23. For any n × n matrix A with a left triangular part of quasiseparable
order s, Algorithm 12 computes the Bruhat generator of the left triangular part of A in
O(sω−2n2) field operations.
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Algorithm 11 RRRinvert: compute the inverse in RRR representation
Require: A, an n × n s-quasiseparable strongly regular matrix in RRR representation,
Ensure: X = A−1, s-quasiseparable in RRR representation.

1: if n ≤ s then
2: Y← RRRExpand(A)
3: return X← Invert(Y)
4: end if
5: Split the matrix as A =

[
A11 A12
A21 A22

]
and X =

[
X11 X12
X21 X22

]
6: Y11 ← RRRinvert(A11) . Y11 = A−1

11
7: Y12 ← RRRxRR(Y11,A12) . Y12 ← A−1

11 A12
8: Y21 ← RRRxRR(A21,Y11) . Y21 ← A21A−1

11
9: Z← −RRxRR(A21Y12) . Z← −A21A−1

11 A12
10: D← RR+RR(A22,Z) . D← A22 − A21A−1

11 A12
11: X22 ← RRRinvert(D) . X22 = D−1

12: X21 ← −RRRxRR(X22,Y21) . X21 ← −D−1A21A−1
11

13: W← −RRxRR(Y12,X21) . W← A−1
11 A12D−1A21A−1

11
14: X12 ← −RRRxRR(Y12,X22) . X12 ← −A−1

11 A12D−1

15: X11 ← RRR+RR(Y11,W) . X11 ← A−1
11 + A−1

11 A12D−1A21A−1
11

16: return X =

[
X11 X12
X21 X22

]
.

Proof. The correctness of R is proven in Theorem 9. We will prove by induction the
correctness ofU, noting that the correctness of L works similarly.

Let H = P2L2U2Q2 and I = P3L3U3Q3 be PLUQ decompositions of H and I reveal-
ing their rank profile matrices. Assume that Algorithm LT-Bruhat is correct in the two
recursive calls 15 and 16, that is

U2 = Left(P2

[
U2
0

]
Q2), U3 = Left(P3

[
U3
0

]
Q3),

L2 = Left(P2

[
L2 0

]
Q2), L3 = Left(P3

[
L3 0

]
Q3).

At step 7, we have[
A1 A2
A3 ∗

]
=

[
P1

I n
2

] 
L1
M1 I n

2−r1

E 0 I n
2


 U1 V1 D

0 F
G


[
Q1

I n
2

]
As the first r1 rows of PT

1 H are zeros, there exists P̄2 a permutation matrix and

L̄2, a lower triangular matrix, such that PT
1 P2L2 =

[
0r1×

n
2

P̄2L̄2

]
. Similarly, there exsist

Q̄3, a permutation matrix and Ū3, an upper triangular matrix, such that U3Q3QT
1 =[

0 n
2×r1 Ū3Q̄3

]
. Hence[

A1 A2
A3 ∗

]
=

[
P1

P3

]  L1
M1 P̄2L̄2

PT
3 E 0 L3


 U1 V1 DQT

2
0 U2

Ū3Q̄3


[
Q1

Q2

]
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Algorithm 12 LT-Bruhat
Require: A: an n × n matrix
Ensure: (L,R,U): a Bruhat generator for the left triangular part of A

1: if n = 1 then return ([0], [0], [0])

2: Split A =

[
A1 A2

A3

]
where A3 is b n

2 c × b
n
2 c

3: Decompose A1 = P1

[
L1

M1

] [
U1 V1

]
Q1

4: R1 ← P1

[
Ir1

0

]
Q1 where r1 = rank(A1).

5:

[
B1

B2

]
← P1

T A2

6:
[
C1 C2

]
← A3Q1

T

7: Here A =

 L1\U1 V1 B1

M1 0 B2

C1 C2

.
8: D← L1

−1B1

9: E← C1U1
−1

10: F← B2 −M1D
11: G← C2 − EV1

12: Here A =

 L1\U1 V1 D
M1 0 F
E G

.
13: H← P1

[
0r1×

n
2

F

]
14: I←

[
0r1×

n
2

G
]
Q1

15: (L2,R2,U2)← LT-Bruhat(H)
16: (L3,R3,U3)← LT-Bruhat(I)

17: L ←

 P1

[
L1 0
M1 0

]
Q1 0

Left(
[
E 0

]
Q1) 0

 +

[
0 L2
L3

]

18: U ←

P1

[
U1 V1
0 0

]
Q1 Left(P1

[
D
0

]
)

0 0

 +

[
0 U2
U3

]
19: R ←

[
R1 R2
R3

]
20: return (L,R,U)
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Setting N1 = P̄T
2 M1 and W1 = V1Q̄T

3 , we have

[
A1 A2
A3 ∗

]
=

P1

[
Ir1

P̄2

]
P3


 L1

N1 L̄2

E 0 L3


 U1 W1 DQT

2
0 U2

Ū3



[
Ir1

Q̄3

]
Q1

Q2

 .
A PLUQ of

[
A1 A2
A3

]
revealing its rank profile matrix is then obtained from this decom-

position by a row block cylic-shift on the second factor and a column block cyclic shift
on the third factor as in (Dumas et al., 2013, Algorithm 1).

Finally,

P
[
U
0

]
Q =

[
P1

I n
2

] 
U1 V1 D

0 P̄2U2Q2
P3Ū3Q̄3

0 0 0


[
Q1

I n
2

]

=

P1

[
U1 V1
0 0

]
Q1 P1

[
D
0

]
0 0

 +


P2

[
U2
0

]
Q2

P3

[
U3
0

]
Q3

 .

Hence Left(PUQ) =

P1

[
U1 V1
0 0

]
Q1 Left(P1

[
D
0

]
)

0 0

 +

[
U2

U3

]
.

The complexity analysis is exactly that of Theorem 9.

The computation of a compact Bruhat generator, as shown in Algorithm 13, is then
directly obtained by combining Algorithm 12 with Algorithm 3.

Algorithm 13 Compact Bruhat generator
Require: A: an n × n left triangular matrix of quasiseparable order s
Ensure: (DCL ,SCL ,TCL ),RL, (DEL ,SEL ,TEL ) : a Compact Bruhat generator for L =

Left(JnA)
Ensure: (DCU ,SCU ,TCU ),RU, (DEU ,SEU ,TEU ) : a Compact Bruhat generator for U =

Left(AJn)
1: L← Left(JnA)
2: U← Left(AJn)
3: (LL,RL,UL)← LT-Bruhat(L)
4: (LU,RU,UU)← LT-Bruhat(U)
5: (DCL ,SCL ,TCL ,PCL )← Compress-to-Block-Bidiagonal(LL)
6: (DEL ,SEL ,TEL ,PEL )← (Compress-to-Block-Bidiagonal(UT

L ))T

7: RL ←
[
Ir 0

]
PCLRT

L PEL

[
Ir
0

]
8: RU ←

[
Ir 0

]
PCURT

UPEU

[
Ir
0

]
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6.2. Multiplication by a tall and skinny matrix
We consider the multiplication of an s-quasiseparable matrix in Compact Bruhat

representation by an n × t dense rectangular matrix (t ≤ s), and show that is can be
performed in O(stω−2n) = O(sω−1n) field operations.

The Compact Bruhat representation stores a representation of two left triangular
matrices, corresponding to the upper and lower triangular parts of the matrix. Hence it
suffices to show how to multiply an s-quasiseparable left triangular matrix in Compact
Bruhat representation with a tall and skinny matrix.

Using the Definition 22, this means computing

C = Left(CARAEA)B

where B is dense n × t. Without the Left operator, the target complexity O(sω−1n)
would be reached by first computing the product EAB and then applying RA and CA

on the left. However because of the Left operator, each row of the result matrix C
involves a distinct partial sum of the product EAB:

Ci,∗ = CA
i,∗R

A

 n−i∑
j=1

EA
∗, jB j,∗

 .
We will therefore avoid computing the accumulation in this product, keeping point-
wise products available in memory. In order to reach the target complexity, the prod-
ucts of dimension s will be computed with accumulation, keeping the terms of the
unevaluated sum available at the level of size s blocks.

Cutting these matrices on a grid of size s, let N = dn/se and C =
[
C1 . . . CN

]T
,

EA =
[
EA

1 . . . EA
N

]
, CA =

[
CA

1 . . . CA
N

]T
and B =

[
B1 . . . BN

]T
. We have

Ci = CA
i RA

N−i∑
j=1

EA
j B j + Left

(
CA

i RAEA
N−i+1

)
BN−i+1.

Each of these blocks Ci are then computed as shown in Algorithm 14.
In the compact Bruhat representation, the row echelon form EA is stored in the form

EA = DE + TESE where D and S are block diagonal with blocks of dimension s × k j

where k j ≥ s.

Step 2 reduces to computing DX
j = DE

j B j and SX
j = SE

j B j such that

X j = DX
j + TESX

j . (7)

Each of these products requires O(k jstω−2) field operations, hence Step 2 costs
O(nstω−2) field operations. After Step 2, the matrix X is stored in a compact
representation, given by equation (7), requiring only O(nt) space.

Step 3 does not involve any field operation as the multiplication on the left by TE and
the final sum act on matrices of non-overlapping support. The overall amount of
data being copied is linear in the number of non-zero elements: O(nt).
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Algorithm 14 LeftCBxTS

Require: A, an n × n s-quasiseparable left triangular matrix: A = Left(CARAEA)
Require: B, an n × t matrix
Ensure: C← AB, an n × t dense tall and skinny matrix

1: for j = 1 . . .N − 1 do
2: X j ← EA

j B j . in a compact representation X j = DX
j + TESX

j

3: Y j ← RAX j . expand DX
j + TESX

j and apply the permutation RA

4: end for
5: compute all partial sums of these blocks: Zi =

∑N−i
j=1 Y j;

6: apply CA
i to the left: Vi = CA

i Zi;
7: add the trailing term, Ci = Vi + Left

(
CA

i RAEA
N−i+1)BN−i+1

)
.

8: return C←


C1
...

CN


Step 5 can be achieved by computing the prefix sum of the Yi’s: Z1 = Y1 and Zi =

Zi−1 + Yi. Each step involves O(st) additions (the number of non zero elements
in Yi), hence Step 5 costs O(nt) field operations.

Step 6 is a sequence of N products of an s × r matrix CA
i = DC

i + SC
i TC by an r × r

matrix Zi. As both DC
i and SC

i have only s continuous non-zero columns, each of
these product costs O(s2tω−2) and the overall cost is O(nstω−2).

Step 7 is achieved by computing the s× s factor Left(CA
i RAEA

N−i+1) explicitly in O(sω),
and then applying it to BN−i+1 in O(s2tω−2).

Overall the cost of algorithm 14 is O(ntsω−2) field operations.

Corollary 24. An s-quasiseparable matrix in Compact Bruhat representation can be
multiplied

a. by a vector in time O(ns)
b. by a dense n × m matrix in time O(sω−2nm).
c. by a another s-quasiseparable matrix matrix in time O(sω−2n2).

Proof.

a. Specializing this LeftCBxTS algorithm with t = 1 yields an algorithm for multiply-
ing by vector in time O(ns).

b. Splitting the dense matrix in dm
s e slices and applying LeftCBxTS on each of them

takes O(sω−1ndm
s e) = O(sω−2nm).

c. Expanding one of the two matrices into a dense representation and multiplying it to
the other one takes O(sω−2n2).
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The last item in the corollary improves over the complexity of multiplying two
dense matrices in O(nω). However, the result being itself a 2s-quasiseparable matrix, it
could be presented in a Compact Bruhat representation. Hence the target cost for this
operation is far below: O(sω−1n) since both input and output have size O(sn). Applying
similar techniques as in Algorithm 14, we could only produce the output as two terms
of the form Left(LR) where L and RT are n× (rank(A) + rank(B)) in time O(sω−1n), but
we were unable to perform the compression to a Compact Bruhat representation wihtin
this target complexity for the moment.
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