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Abstract—With MIMO, Wi-Fi led the way to the adoption of
antenna array signal processing techniques for fine-grained local-
ization using commodity hardware. These techniques, previously
exclusive to specific domains of applications, will spur interest to
reach beyond localization, and now allow to consider estimating
the device’s orientation in space, that once required other sources
of information. Wi-Fi’s popularity and the availability of metrics
related to channel propagation (CSI), makes it a candidate
readily available for experimentation. Accordingly, we propose
the ORION system to estimate the orientation (heading and yaw)
of a MIMO Wi-Fi equipped object, relying on a joint estimation
of the angle of arrival and the angle of departure. Although the
CSI’s phase data is plagued by several phase inconsistencies, we
demonstrate that an appropriate phase compensation strategy
significantly improves estimation accuracy. Our technique allows
estimating orientations within millimeter-level precision.

Keywords—Localization, Orientation estimation, Wi-Fi, Chan-
nel State Information (CSI).

I. INTRODUCTION

With the popularity of Wi-Fi, it is thought that indoor
localization would be better integrated in the existing in-
frastructure and would thus avoid the deployment of a new
dedicated system. This idea was further reinforced by the shift
to MIMO techniques through the adoption of the 802.11n
standard. Fingerprinting [1] and other power-based ranging
techniques [2] cleared the way for more sophisticated localiza-
tion approaches based on radar tracking techniques [3]. Hence,
MIMO naturally extended the set of localization techniques
a SISO Wi-Fi infrastructure can propose. The infrastructure
is now capable of locating a terminal with decimeter level
precision, either by using time-of-flight based ranging [4],
[5], or angle of arrival (AoA) estimation techniques [6], [7].
With MIMO-OFDM Wi-Fi chipsets, we are set to unlock
more potential than simply localization, knowing that radar
tracking techniques allow the estimation for instance of the
orientation of a given target [8], [9]. Inertial measurement units
(IMUs) were used for robust estimation of a terminal’s position
based on Wi-Fi signals by identifying the physical orientation
and compensating the localization estimation error [10], [11],
[12]. Although IMUs, which consist of a combination of
accelerometers, gyroscopes and lately also magnetometers,
provide orientation information for devices, the gyroscope will
only provide the derivative of the yaw and magnetometers tend
to suffer from perturbation in measuring the heading in indoor
environments [13]. Finally, Wi-Fi signals were used to estimate
the position and orientation of devices by building a radio
map using RSS. However, this estimation was limited to 4
possible orientations only [14], [15]. An important question

to answer is therefore: can we propose an accurate alternative
to fingerprinting and IMU-based orientation estimation, using
radar tracking techniques on commodity Wi-Fi infrastructure?

In this paper, we allow off-the-shelf MIMO Wi-Fi access
points to estimate the orientation of a MIMO-enabled terminal
using antenna array signal processing, by jointly estimating
both the AoA and the angle of departure (AoD). The idea
is to propose a deployable system in every Wi-Fi platform
without modifying the equipment. The benefit would range
from providing a reference for IMU calibration, to indoor
clients orientation tracking, as they will all have the same
heading reference unlike magnetometers measurements, and
enabling simultaneous localization and mapping (SLAM) [16]
techniques, which require position and orientation measure-
ments.

Designing such a system in commodity Wi-Fi equipments
implies tackling several design challenges:

1) Channel state information (CSI), i.e., the output matrix
used for antenna array signal processing, suffers from
phase shifts. These errors should be compensated in order
to achieve higher accuracy, as well as reproducibility of
AoA estimation results.

2) Estimating a signal’s AoD relies on the measurement of
the phase difference between transmitted synchronized
signals. The targeted system should provide an approach
for estimating the AoD by both allowing a synchronized
transmission on multiple RF chains, and being robust to
phase inconsistencies associated to the chosen transmis-
sion scheme.

3) Tracking orientation requires a series of AoAs and AoDs
estimations. These measurements usually suffer from sta-
tistical noise and could translate in a jerky observation of
actual monitored orientation. The system should be robust
to such estimation uncertainty.

Thus, our system design pays special attention to detecting
and correcting phase inconsistencies, and to reducing measure-
ment noise. Hence, our contributions are along the same lines:
i) we propose a signal processing phase correction technique
for calibrating the system based on a single initial measurement
reference, so as to provide meaningful, accurate and repro-
ducible estimation of the angle of arrival; ii) we present a novel
mechanism for estimating the angle of departure of the signal
by a Wi-Fi access point, using a common MIMO technique
called spatial multiplexing (SM); using SM introduces some
phase inconsistencies that we correct before launching the
estimation; to the best of our knowledge ORION is the first to



propose angle of departure estimation on commodity Wi-Fi;
and iii) we propose an approach for tracking the orientation
of the terminal; for that matter, we apply a joint estimation
of AoA and AoD so as to enhance estimation accuracy. Then,
we employ noise reduction and outlier detection techniques
to smooth our estimations. ORION essentially relies on signal
processing done in a remote server to avoid hardware modifi-
cations of the access points. This facilitates seamless adoption.

The paper is organized as follows. Section II presents the
adopted system model for the joint AoA and AoD estimation.
Then in Section III, we present different techniques necessary
for accurate and reproducible AoA and AoD estimations Sec-
tion IV focuses on tracking terminal orientation. In Section V,
we give a brief presentation of the implementation and assess
our system performance in two distinct environments, an office
room and the R2lab anechoic chamber [17]. Finally, we lay
down the conclusion in Section VI.

II. THE SYSTEM MODEL

In a MIMO system with N -element send and M -element
receive coplanar uniform linear arrays (ULA) with omnidi-
rectional antennas as the one depicted in Fig. 1, a joint
estimation of azimuth AoA and azimuth AoD is possible.
At the transmitter side, N signals are emitted with identical
bandwidth and center frequency. The steering vector of an M -
antenna array representing the relative phases at each antenna
of a signal received at direction θ, can be written as follows:

a(θ) = [1 a2(θ) · · · al(θ) · · · aM (θ)]T (1)

with al(θ) = e−j
2π
λ (l−1)d sin(θ), where l is the antenna index, λ

the wavelength and d the half-wavelength inter-antenna spac-
ing. In a multipath environment, the i-th path is represented
by θi and φi, which are respectively the AoA and AoD of this
path. Hence, the received signal vector is in the form:

x = [ar(θ0)⊗ at(φ0), ar(θ1)⊗ at(φ1), · · · ,
ar(θp−1)⊗ at(φp−1)] · s + n (2)

where x is the MN × 1 received signal vector, at(φ) is
the transmit steering vector, ar(θ) is the receive steering
vector, s = [s1 s2 · · · sp]

T is the vector representing the
complex gain of the p paths with si = αie

jωi , αi being
the reflection coefficient of the i-th path and ejωi its phase
component mainly due to Doppler effect. As the Doppler
shift has almost no effect on the orthogonality of the signals,
we chose to ignore it in the remaining of the article. n is
assumed to be a white noise Gaussian vector with zero mean.
Here, ⊗ represents the Kronecker product and (.)T denotes the
vector/matrix transpose. Lowercase, bold uppercase and bold
lowercase denote respectively scalars, vectors and matrices.

In order to estimate the AoA and AoD, we adopted a
subspace method that consists in computing the covariance
matrix of the received signal x, Rxx = E[xxH ]. As the
covariance matrix Rxx is not perfectly known, we need to
estimate it. The classical approach would be to take k CSI
matrices from k consecutive frames and compute the sample
covariance matrix. Taking into account time delay constraints,
we choose instead to use frequency domain samples for our
estimation.

Fig. 1: Coplanar N -element ULA sender and M -element ULA receiver.

In order to estimate the channel between each receiving
chain and the spatial stream transmitter, the 802.11n amend-
ment adopted the high-throughput long training field (HT-
LTF). The transmitter sends an 802.11n “greenfield” packet
with the HT-LTF training symbols known by the transmitter
and receiver for each one of the subcarriers. HT-LTF symbols
are encoded over time and space with spatial streams orthog-
onal between each other. As the sequence is known at the
reception, the CSI matrix is estimated for instance by a least
square method. Therefore, we can make use of CSI values of
each subcarrier as estimation samples.

After applying the phase correction proposed in Section III,
we compute the sample covariance matrix from the CSI values
corresponding to L subcarriers R̂xx = 1

L

∑L
i=1 xx

H . Then,
we compute the eigenvectors and eigenvalues of the Rxx by
an eigen-decomposition, where Rxx = QDQH . Based on the
assumption that the signal and noise vectors are uncorrelated,
we partition the Q matrix containing the eigenvectors into two
subspaces, one spanned by the signal eigenvectors Qs corre-
sponding to the largest eigenvalues and the other by the noise
eigenvectors Qn. This is done using the Akaike information
criterion (AIC). Then we use the MUSIC algorithm [18], to
estimate the parameters by launching a search over all the
possible values of steering vectors to identify the ones related
to the signal. This is possible because, as mentioned earlier, the
signal and noise are uncorrelated and thus the signal steering
vectors are orthogonal to the noise eigenvectors and ultimately
the noise subspace. In practice, we compute what we call the
pseudospectrum from the quadratic function,

P(θi, φi) =
1

(ar(θi)⊗ at(φi))H Qn QH
n (ar(θi)⊗ at(φi))

where (.)H denotes the Hermitian operation. The estimated
AoA and AoD correspond therefore to peaks in the computed
spectrum.

III. AOA AND AOD ESTIMATION

Let us first focus on phase corrections required for AoA
estimation. As described above, modern Wi-Fi NICs provide a
CSI matrix for each sub-carrier. The CSI’s phase and amplitude
information capture the channel conditions (reflection, fading,
path loss, scattering) necessary for computing the angle of
arrival. The channel gain matrix Y corresponding to one



transmitted stream is therefore in the form:

Y1 =


h1,1 h1,2 · · · h1,M

h2,1 h2,2 · · · h2,M

...
...

. . .
...

hL,1 hL,2 · · · hL,M

 (3)

This matrix representation with a numbering subscript
(Yi=1,2) will showcase the adopted phase corrections for the
AoA estimation. Here, L is the number of subcarriers or
frequencies, M is the number of receiving antennas, and hL,M
is the channel complex gain for the L-th subcarrier and the M -
th antenna.

However, exploiting phase information provided by com-
mercial off-the-shelf (COTS) wireless cards is rather challeng-
ing. In fact, some of wireless cards design choices are at
the origin of several distortions in the phase information. RF
oscillator offset, carrier frequency offset (CFO) and sampling
frequency offset (SFO) are among the most prominent ones.

RF oscillator phase offset occurs when, upon starting up
a wireless card, RF chains are locked at different instants.
Therefore, each RF chain will have a different constant value ψ
added to the measured phase. These phase values are constant
for a given wireless card till the next recalibration or reset, and
thus we only need to correct the phase offset once for each
session. Correcting the phase at the hardware level is neither
practical nor feasible, so we alternatively opt for software
preprocessing. As the phase offset is constant during the entire
session, tuning on a reference signal arriving at a known
direction θref helps in compensating the undesired hardware-
induced phase shift ψ. This implies applying a phase rotation
on the measured target signal phase taking into account the
reference signal phase. Thus, the new CSI matrix will be:

Y2 =


h1,1 h1,2∆2 · · · h1,M∆M

h2,1 h2,2∆2 · · · h2,M∆M

...
...

. . .
...

hL,1 hL,2∆2 · · · hL,M∆M

 (4)

where ∆j = ψ1 ·ψj is the relative phase between the first and
j-th RF chain for the reference signal coming at θref . Here
(.) denotes the conjugate.

Carrier frequency offset (CFO) occurs when the transmit-
ting oscillator and the receiver are not synchronized: when the
baseband downconversion is done, the signal phase will be
rotated by a constant value function to the frequency offset.
However, as the CFO is applied equally over all the RF chains,
it does not affect the angle of arrival estimation.

Sampling frequency offset (SFO) is due to the fact that
the sender and the receiver sample the signal at different
times. The offset δt is the same for all the subcarriers and
all RF chains. In Wi-Fi OFDM, the subcarriers have equally
spaced frequencies with ∆f = 312.5 kHz. However, the phase
rotation is not the same for all the subcarriers and is equal to
e−j2πk∆fδt for the k-th subcarrier. The peculiar feature of this
phase offset is that it varies linearly across subcarriers in all RF
chains. This linearity is not visible at first since the phase wraps
around every 2π. Therefore, phase unwrapping is the only way
to observe phase trends across subcarriers and particularly the
aforementioned linearity. This phase shift does not affect our

Fig. 2: Signal radiation from an N -element uniform linear antenna array: The
k-th antenna transmits a signal with a phase shift of e−j2π(k−1)d′ sin(φ) f

c

relatively to the reference antenna.

Fig. 3: Partial view of the MIMO Transmission Block as described and
specified in the IEEE 802.11n standard.

estimation, as we only focus on phase shifts sanitation between
different RF chains while estimating the angle of arrival. Thus,
an SFO phase correction that allows consistent inter-subcarrier
phase shift information is not needed.

Now let us focus on AoD estimation. The angle of depar-
ture (AoD) is the angle between the transmit array normal and
a given target. We are interested in estimating the orientation
of the receiver in a line-of-sight (LoS) scenario. Therefore,
the receiver plays the role of the target in our study. The
idea behind AoD measurement is to send a signal from each
element of an antenna array and measure the relative phase
between the signals at the receiver antenna, see Fig. 2.

The varying nature of the wireless medium imposes that
measurements are performed in respect to a certain time delay
constraint. In fact, in order to collect accurate measurements,
we need to make sure that the frame transmission time is
lower than the channel coherence time, in order to avoid phase
changes due to channel variation. Otherwise, the phase shift
measured between the streams wouldn’t be consistent with the
phase shift relative to the angle of departure. In the case of
measurements on the 5.32 GHz band using 802.11 OFDM
with an environment speed (walking speed) of 0.33m/s, we
typically have 5.85 Hz of Doppler frequency according to
Clarke’s model, which is equivalent to a coherence time of
Tc = 72.3 ms [19] and which is much bigger than the time
symbol of Ts = 3.2µs and the transmission time of 10ms.

The angle of departure estimation is based on the mea-
surement of the phase difference between signals coming to
one antenna from the same origin. The idea is to transmit
temporally-delayed signals on different antennas and estimate
the phase shift between the received signals. This measurement
is difficult to perform when no fine grain synchronization
between the signals is available. This criteria is critical know-
ing that the phase measurement is done on the basis of the
wrapped phase, and thus if one does not fine track the phase



delays, it will be difficult to retrieve the phase difference
between the aforementioned signals. Thus, a strategy that
consists in sending signals at different time delays with coarse
time coordination is not suitable. In summary, we need a
solution that respects a specific time coherence constraint, as
well as it maintains a fine-grained synchronization between the
transmitter’s RF chains. Recent wireless NICs are supporting
more advanced MIMO techniques such as spatial multiplexing
(SM). SM is one of the most common features, it was mainly
adopted for achieving higher data rates and it consists of
transmitting independent data streams over different RF chains
in parallel. Thus, when enabling SM at the transmitter wireless
NIC, we can have access at the receiver to CSI values for
up to N transmitted streams accounting that we have less
transmitting antennas than receiving ones.

Using SM for estimating AoD on COTS Wi-Fi cards
imposes to apply RF oscillator phase correction as explained
in Section III. The implementation of SM in Wi-Fi cards is
usually paired with two other mechanisms that are spatial
mapping and cyclic shift diversity (CSD), see Fig. 3.

Spatial mapping is used for matching streams to RF chains.
It consists of multiplying the stream matrix by the spatial map-
ping matrix V(k) whose columns are orthonormal. Hence, the
transmitted signal corresponding to subcarrier k is represented
as:

s̃(k) = V(k) s(k) (5)

where s(k) is the original signal before spatial spreading. Thus,
the channel matrix as seen at the reception is:

H̃(k) = H(k)V(k) (6)

Then we need to retrieve the original CSI matrix that is related
to the channel, by multiplying the received CSI matrix with the
inverse of the spatial spread matrix. Different types of spatial
spreading are available among them: direct mapping that
consists in sending each stream to an independent RF chain
and Walsh Hadamard that relies on using the Walsh matrix
to mix the space-time streams. According to the standard,
wireless NIC manufacturers have the option of specifying their
own custom spatial mapping matrix. We have found that the
adopted spatial mapping matrix in our scenarios with two
streams is Walsh Hadamard.

CSD is a mechanism adopted by the wireless NICs for
delaying the streams (signals) in the time domain in order
to avoid unintentional beamforming. However, this scheme
introduces for each stream a phase rotation of ξk = e−j2πk∆fδt

in the phase data of the streams , with δt, a constant delay
applied to all subcarriers of the stream. Thus, the channel
matrix as seen at the receiver for a subcarrier k and N streams
is in the form:

H̃(k) = H(k)U(k)V(k) (7)

where U(k) = diag(1, e−j2πk∆fδt1 , . . . , e−j2πk∆fδtN−1). We
compensate in the same manner as for the spatial mapping
the CSD applied by the wireless NIC according to IEEE
802.11n standard, which specifies the applied time delay. We
also noticed while processing the collected phase data, that
the delays specified in the standard are not strictly respected,
which imposes a fine tuning of the CSD correction. Fig. 4
shows the effect of phase correction enabling the use of the

Fig. 4: Signal phase of each spatial stream as seen by the first receiving antenna
with and without phase correction for CSD.

Fig. 5: ORION System Design for orientation tracking.

phase difference between the streams for all the subcarriers
in order to estimate the AoD. Knowing that the CSD induced
delay is in the hundreds of nanoseconds, it does not affect our
condition regarding the coherence time.

IV. TRACKING TERMINAL ORIENTATION

The simultaneous estimation of direction of arrival and
direction of departure opens the opportunity to estimate the
orientation of a target terminal. In fact, rather than relying
on a RSSI-based fingerprinting, we propose an approach that
exploits the phase information provided while the terminals are
engaged in a MIMO communication process. There have been
multiple works [8], [9] especially in the radar signal processing
for aircraft attitude estimation based on the phase difference
estimation between the antennas of a particular antenna array
geometry.

1) Terminal Rotation and Angle estimation: Our approach
illustrated in Fig. 5 is similar in substance to the aircraft
attitude estimation. However, it differs in that the terminal
in question is not required to be equipped with a GPS chip.



We alternatively exploit the presence of an antenna array
at the sender as well as at the receiver, which respectively
provides the AoD and the AoA. Intuitively, when the antenna
arrays are parallel to each other and on the sample plane,
the direction of arrival would be equal to the direction of
departure, and thus any rotation of the terminal would be
accounted for as the difference between the estimated AoA and
AoD. In summary, the difference between the AoD and AoA
gives back the rotation applied to the transmitting terminal.
Orientation tracking, could be achieved through an inertial
module unit (IMU) installed on the transmitting terminal.
However, it imposes more technical constraints in order to
share these measurements with the AP. Alternatively, in our
method all the signal processing is done at a central server.
Only measurements are done at the AP level and no requests
whatsoever are made for the terminal’s IMU readings, which
is much more convenient as the AP usually does not provide
these type of services.

2) Parameter Estimation: When tracking orientation, we
are usually confronted with jittery measurements provided
by the instrument be it IMU or other. Usually, in order to
reduce noise and inaccuracies that are unavoidable in any
measurement, a recursive algorithm such as the Kalman filter is
used. Kalman filters are adopted in radar systems for tracking
targets because they provide an appropriate way to extract
the best estimate of the parameter in question out of noisy
measurement data. This algorithm is very efficient for real
time applications, which is essential in our case. The Kalman
filter evolves in two steps: (1) a prediction based on a state
equation describing the system, which is used to compute the
estimation at time t+ 1 from the value measured at t, and (2)
an update step called innovation, where the predicted values
are compared with the actual measurements in order to update
the state estimate. Besides the fact that we are confronted with
noisy measurements, we are also bound to have some outliers
that are unfortunately uncompensated by the Kalman filter. So,
to avoid estimation errors, we need to make the Kalman filter
more robust to outliers, hence we carry out preprocessing of
the data collected from the joint estimation of AoA and AoD.
This preprocessing is mainly focused on reducing the number
of outliers usually responsible for driving off the estimations
taken as an output from the Kalman filter. In fact, we apply
the Hampel identifier, which is a computationally inexpensive
outlier detector. It relies on a sliding window, during which the
standard deviation and the median are computed. For example,
if the inequality |xi−m| > α.MAD is statisfied for a measured
value xi, where MAD is the median absolute deviation, α a
threshold, and m is the median, then xi is deemed to be an
outlier and replaced by the median.

V. IMPLEMENTATION AND EVALUATION

We have implemented the system using the Intel WiFi Link
5300 AGN NICs. The firmware of this COTS Wi-Fi card was
modified in order to extract the CSI matrices through the Intel
CSI tool for 802.11n HT packets [20]. As mentioned before,
in case of Wi-Fi OFDM systems, we are able to extract a
CSI matrix for each sub-carrier. In our case the Wireless NIC
offers up to 30 subcarriers. Knowing that the wireless card’s
CSI suffers from phase instabilities on one of the ports in the
2.4 GHz band, we use instead the 5 GHz band with 20MHz of
bandwidth which does not suffer from the same issue. We set

(a) R2lab anechoic chamber. (b) Anechoic chamber plan.

Fig. 6: Inria Sophia Antipolis’ faradized anechoic chamber (R2lab) with
37 Wi-Fi nodes equipped with 3-elements ULA and Intel 5300 cards. The
antennas are placed under the nodes (blue boxes) to have clear line-of-sight
(LoS) communication between nodes.

up our wireless cards in the injection mode, which avoids the
need of association with an AP and allows raw Wi-Fi packets
transmission. All the packets are processed at a central server
where the necessary phase corrections are conducted. The
transmission is controlled by disabling the antenna selection
algorithm and by specifying the desired number of antennas,
streams and transmission technique (SM). The rotation of the
antenna was made possible by using extension cables that
connect the coplanar transmitter and receiver antenna arrays
to the access points.

We conducted our experiments in two environments: an
office room and the R2lab anechoic chamber [17]. The latter
is a remotely accessible testbed equipped with 37 Wi-Fi nodes
that offers a controlled environment with a limited number
of reflectors consisting of other nodes in the vicinity. On the
other side, the office room contains a large number of scatters,
reflectors and other multi-path sources. It also suffers from
co-channel and near-channel interference.

A. Joint AoA and AoD and phase correction

a) AoA and AoD estimation and phase correction:
We showcase the efficacy of phase correction by comparing
angle estimations for the direction of arrival and departure
(experiment conducted in R2lab). In Fig. 7a, we can observe
clear reduction of estimation error of the true bearing for the
angle of arrival after applying the RF oscillator phase offset
correction (the red curve). In Fig. 7b, we can observe that the
compensation of the aforementioned phase shifts also reduces
the angle of departure estimation error.

b) LoS scenario in R2lab anechoic chamber and Office
room: We showcase measured data from a communication
scenario in a controlled and non-controlled environment. It
consists into a 2-antenna transmitter and a 3-antenna receiver
in clear line of sight with distances within 3m. Fig. 8 represents
the error CDF for AoA and AoD in both environments
after applying the calibration and phase correction steps. As
expected from the controlled environment (R2lab) we observe
better accuracy, fewer errors mainly due to the limited number
of multipath clusters and obstructions. The errors are limited
in both cases to at most 2.5◦. In Fig. 8, we can observe that the
90th percentile of AoA and AoD error are respectively 0.4◦

and 0.7◦ in R2lab and 1.4◦ and 1.2◦ in the office.

c) Obstructions and estimation accuracy: In order to
study the effect of obstruction on the accuracy of AoA and



(a) Pseudospectrum for AoA estima-
tion before and after phase correction.

(b) Pseudospectrum for AoD estima-
tion before and after phase correction.

Fig. 7: AoA and AoD before and after phase correction.

Fig. 8: AoA and AoD error CDF.

Fig. 9: AoA and AoD boxplot error due to obstruction and human activity.

Fig. 10: Rotation angle and distance error CDF to a reference IMU.

AoD, we conduct an experiment in the office by applying 2
types of obstructions (1) cardboard and polyester objects and
(2) human activity near the transmitter and receiver. Fig. 9
shows that these types of obstructions slightly impact the AoA
and AoD estimations.

d) Rotation estimation: For verifying the accuracy of
rotation estimation, we conducted experiments with a maxi-
mum distance of 3m between the transmitter and the receiver
in the office area. Fig. 10 shows a 90-th percentile arc distance
error of 4mm when taking an IMU as a reference. Knowing
that IMUs suffer from heading estimation errors, we expect to
have less errors in rotation angle estimates than what is shown
in Fig. 10 if absolute reference is available. Distance error is
at the millimeter level.

VI. CONCLUSION

We described ORION, a system that can jointly estimate
the angle of arrival and the orientation of a Wi-Fi terminal

using unmodified off-the-shelf Wi-Fi devices. We proposed a
series of phase correction techniques for both AoA and AoD
estimations, and we applied a joint estimation of both param-
eters to enhance the accuracy. As measurements usually suffer
from statistical noise and other inconsistencies, we propose the
use of correction mechanisms for outlier removal and noise
reduction. ORION exploits MIMO techniques widely adopted
in Wi-Fi equipments such as spatial multiplexing which makes
it deployable in practice. We evaluated our system to be
accurate for a joint AoA and orientation estimation in both
controlled and uncontrolled environments. We plan to enhance
ORION for estimating the pitch and the roll using 2D antenna
arrays, and by using estimation algorithms robust to multipath
environment for instance EM and SAGE. Detailed information
and scripts useful to reproduce the experiments made on
the R2lab anechoic chamber are available at URL https:
//www-sop.inria.fr/teams/diana/orion/.
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