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Generalized Intervals: A Guided TourG�erard LigozatLIMSI, Paris-Sud University, FranceAbstractGeneralized intervals are �nite ordered sequences oftime points (Allen's calculus is the special case of or-dered pairs). In this paper, we show why generalizedintervals are good candidates for reasoning about com-plex events (with more than two crucial time points):Binary relations between them can be easily encoded;the conversion and composition operations on disjunc-tive relations provide them with a structure of a re-lation algebra; although the whole calculus is nottractable in general, there exists a subclass of disjunc-tive relations, which is easily characterized in geometricterms, which is tractable (in Allen's cases, this subclasscoincides with the ORD-Horn class); for binary tem-poral networks on this subclass, consistency is decid-able in cubic time by testing path-consistency; more-over, a scenario can be computed in cubic time withoutbacktrack (in quadratic time for consistent networks).Finally, the strong theory of n-intervals (generalizedintervals with n time points) has a unique countablemodel (up to isomorphism), which implies its decid-ability. In a word, most of the pleasant properties ofAllen's calculus hold in this generalized framework.IntroductionIn his 1983 paper (Allen 1983), Allen justi�ed the intro-duction of his calculus about intervals in the followingterms: \the temporal representation described above isnotable in that it is both expressive and computation-ally feasible". Over the years, Allen calculus has indeedproven to be a reference in qualitative temporal reason-ing, in such diverse applications as planning, naturallanguage processing, or qualitative physics.The interrogation about what the right temporal en-tity should be in a given context has been a persistenttopic. Mixing interval-based and point-based calculushas been in practice since at least Vilain's 1982 paper(Vilain 1982), and is represented, in the domain of qual-itative and quantitative reasoning, by Meiri's frame-work (Dechter, Meiri, & Pearl 1991). This considera-tion of temporal entities of many types is also apparentin the strand of work concerned with repeating eventsand their associated non-convex intervals.Time points, intervals, and non-convex intervals areall subsumed by the notion of generalized interval. In

that way, the time-point calculus, Allen's calculus, orthe calculus of relations between non-convex intervalsappear as speci�c instances of generalized interval cal-culus. This fact would not be of much interest if thegood properties of time-point or interval calculus werelost in this generalized context. The good news is thatthis is not the case. Let us list some of those goodproperties of a time calculus:1. The calculus is based on a �nite set of basic binaryrelations between the basic temporal entities.2. There is a notion of composition of two basic rela-tions, yielding a �nite disjunction of possible basic re-lations; composition can be easily tabulated (Allen'scomposition table is an example).3. The set of disjunctions of basic relations, togetherwith suitable operations induced by composition andconversion, is a relation algebra.4. A framework for exploiting the temporal calculus isprovided by binary temporal constraint networks la-beled with disjunctions of basic relations.5. Although the basic problems of determining the con-sistency of a network, computing the minimal net-work, or �nding all scenarios associated to a givennetwork are NP-hard (Vilain, Kautz, & van Beek1989), constraint propagation can be used and al-gorithms for path-consistency provide useful �lteringtechniques.6. The topological properties of the time-axis are re-
ected in the conceptual neighborhood structure ofthe basic relations. Most of the properties of speci�ctractable sub-classes of the calculus can be related togeometric properties of the associated relations: suchis the case, for example, of the maximal tractablesubclass of Allen's algebra discovered by Nebel andB�urckert (Nebel & B�urckert 1995).7. The models of the calculus can be characterized. Inparticular, the strong version of the calculus has com-pleteness properties: up to isomorphism, the onlycountable model is provided by the corresponding en-tities in the �eld of rational numbers.Conceived as a guided tour, this paper will providethe reader with a round-up of all these features. We



DCBAFigure 1: Four medical �lesillustrate the general properties of the formalism on aparticular case: the calculus of 3-intervals.Generalized intervals: Learning theLanguageMotivationConsider an application where medical �les about pa-tients are managed. A basic event corresponds to agiven patient entering the hospital (at date t1), under-going a medical intervention (at date t2), then �nallyleaving the hospital (at date t3). We assume that in allcases t1 < t2 < t3. In the spirit of qualitative temporalreasoning, we are interested in dealing with qualitativeinformation concerning a �nite number of events.For instance, assume we have the following informa-tion about four interventions (see Fig. 1):� Patient A was admitted after patient B, and left thehospital after B did (we do not know anything aboutA or B's days of intervention).� Patient B entered the hospital before C did, and wasoperated and released during C's pre-intervention pe-riod.� Patient C entered the hospital before D, was oper-ated on the same day as D, and also released on thesame day as D.We could represent the situation by using timepoints, and by introducing for each patient A, B, C,D three time points (a1; a2; a3), � � �, (d1; d2; d3).We could also use Allen's formalism, by introducinge.g. two ajoining intervals i (before intervention and j(after intervention) for each patient. Hence we wouldhave, for the relations between A and B for example:iA m jA, iB m jB , and: iA d iB and jA d^ jB , oriA f iB and jA s^ jB, or iA o^ iB and jA o^ jB, andsimilarly for the other pairs of events.Notice however that using Allen's formalism su�ersfrom two drawbacks. First, it leads to disjunctive rep-resentations which cannot be represented in a uniquenetwork. Second, the choice of i and j is somewhat ar-bitrary: we could for instance decide to represent eachdata by its total duration k, and by the initial interval

0 2 2q � 2 2q1 3 2q� 3 2q � 1: : :t1 t2 : : : tq�1 tqFigure 2: Zones de�ned by a q-intervali (before intervention). Then we would have i s k (istarts k), rather than i m j.Our proposal i to consider the most obvious kind ofobjects in this case: Namely, ordered sequences of 3time points. This idea is generalized as follows.Basics: Objects and RelationsWe consider ordered sequences of time points as basictemporal entities. If such a sequence has q points, wecall it a q-interval. Hence an interval in Allen's sense isa 2-interval (t1; t2).For denoting relations between a p-interval and a q-interval, we use the trick of numbering the consecutivezones de�ned in time by each point from 0 to 2q:zone 0 is (�1; t1); zone 1 is ft1g; : : :; zone 2q � 1 isftqg; zone 2q is (tq ;+1).Notice that zones with even numbers are intervals inthe time line, and odd numbered zones are time points(see Fig. 2).Using this numbering, the qualitative relation ofany p-interval (x1; : : : ; xq) with respect to a q-interval(t1; : : : ; tq) is entirely characterized by the numbers ofthe zones x1; : : : ; xp belong to. In this way, we arrive ata notation of relations as sequences of integers between0 and 2q. More speci�cally:De�nition 1 The set of (p; q)-relations between a p-interval and a q-interval is the set of all non-decreasingsequences of integers between 0 and 2q such that no oddinteger appears more than once.Example In the case of sequences of three time points,the corresponding set of relations is a subset of the setof all non-decreasing sequences of integers between 0and 6. Using this notation, we can express the con-straints about the medical �les in the following way(where we use A, B, C,D to denote the four 3-intervalscorresponding to the four patients):The relation from A to B is represented by: (2; [2; 4]; 6)(where (2; [2; 4]; 6) stands for the disjunction of (2; 2; 6),(2; 3; 6), and (2; 4; 6)). The relation from B to C andC to D are represented by (0; 2; 2) and (0; 3; 5) respec-tively.We will need later what we call the symbol of a (p; q)-relation: by de�nition, this will be an abstract sequenceof p points labelled by the integers which encode therelation. The symbol of relation (0; 2; 2) is representedin Fig. 3.Counting the relations In this way we get a set of63 basic relations for 3-intervals. In the general case,



0 2 2Figure 3: The symbol of relation (0; 2; 2)the number of basic relations can be computed in asimple way (see (Ligozat 1990)). We also have a generalcharacterization in terms of integral points in a convexpolytope:Consider inRq the convex closure Lq of the 2q points(�1; 0; : : : ; 0), (0;�1; 0; : : :; 0), � � �, (0; : : : ; 0;�1). Forinstance, for q = 2, L2 is the square with (1; 0), (�1; 0),(0; 1), (0;�1) as vertices. Then:Proposition 1 The number of (p; q)-relations is thenumber of points with integral coordinates in p Lq.The lattice of (p; q)-relationsEncoding the set of basic relations as p-tuples of in-tegers gives it an order structure: for two relationsr = (r1; : : : ; rp) and s = (s1; : : : ; sp), r � s if and onlyif ri � si, for all 1 � i � p. This order structure re
ectsthe order structure of the time line in a natural way. Itis easily veri�ed that the resulting ordered structure isa distributive lattice: every pair of basic relations has agreatest lower bound and a least upper bound, which,incidently, can be computed componentwise.In the case of Allen's calculus, the resulting latticestructure has been known and used by many authors,including N�okel (N�okel 1988) and Freksa (Freksa 1992).The lattice of (3; 3)-relations is represented in Fig. 4.Following the practice in Allen's case, we de�ne arelation as any subset of basic relations. In the gen-eral case, the lattice structure yields natural notions ofneighborhoods which we discuss below. In particular,it gives a general de�nition of convex relations:De�nition 2 A convex relation is an interval in thelattice of basic relations.Hence a non-empty convex relation is the set of all tsuch that r � t � s, for some r � s. We also denotethis relation by [r; s], using the usual interval notationapplied to the lattice.Translating into Other LanguagesAs the preceding section shows, generalized intervalsprovide an \unprejudiced" language for representingcomplex temporal sequences. For example, represent-ing relations between two 3-intervals does not implychoosing any decomposition in terms of intervals. How-ever, the language allows an easy translation from itsown language to other possible languages.For instance, consider again the medical example,and its expression in terms of (3; 3)-relations. It is a
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Figure 4: The lattice of (3; 3)-relationsgeneral fact that, for each (p; q)-relation, we can \for-get" about some of the time points in the reference q-interval. In the case of 3-intervals, we can forget aboutthe middle points. This amounts to keeping only the�rst and third coordinates, and interpreting zones 2,3, and 4 as a unique zone numbered 2, zone 5 as 3,and zone 6 as 4. Hence, (2; [2; 4]; 6) projects to (2; 4),i.e. o^, (0; 2; 2) projects to (0; 2), i.e. o, and (0; 3; 5)projects to (0; 3), i.e. f^.Projections are a general way of representing infor-mation about complex entities in terms of simpler ones.The price to be paid in general is loss of information.Non convex intervalsQualitative reasoning about non convex intervals as�rst class objects was introduced by Ladkin (Ladkin1986).In particular, Ladkin gives a general taxonomy of theset of all relations between two non convex intervals interms of \interesting" relations, such as disjoint-from(two intervals have no point in common), bars (theunion of the two sets of points is convex), always-meets(each convex component of J is met by a component ofI).The language of generalized intervals gives a natturalway of expressing Ladkin's relations. A non convex in-terval with m connected components can be representedby a 2m-interval. Consider the set of (2n; 2m)-relations.Then, for instance:� disjoint-from is the set of � = (�(1); : : : ; �(2n)) suchthat



1. �(1) = �(2), �(3) = �(4),: : :,�(2n� 1) = �(2n),2. �(i) is a multiple of 4, for all 0 � i � 2n.� bars is the set of � = (�(1); : : : ; �(2n)) such that1. �(1) < 4 and �(2n) > 4m � 4;2. no �(i) is congruent to 0 (mod 4) , except for pos-sibly �(1) = 0, �(2n) = 4m.Generalized Intervals: a Language forReasoningOperationsAs promised, there is a �nite set of basic binary re-lations between the basic temporal entities. We alsohave two basic operations on this set, conversion andcomposition.Conversion Conversion corresponds to switchingroles in a binary relation: suppose a p-interval x is in re-lation (r1; : : : ; rq) with respect to a q-interval y. Whatis the relation of y with respect to x? By de�nition, wewill call it the transpose of (r1; : : : ; rq) . Obviously, itis a (q; p)-relation, which is encoded by a sequence ofq-integrers between 0 and 2p. Which one is it? Theanswer is given as follows.Consider the symbol of r. The symbol of r de�nes2p+1 zones which can be numbered from 0 to 2p. Con-sider also the sequence 1; 3; : : : ; 2q� 1 of the �rst q oddintegers (let us call it the standard q-interval).Proposition 2 Let r = (r1; : : : ; rq) be a (p; q)-relation.The converse r^ of r is the (q; p)-relation of the stan-dard q-interval with respect to the symbol of r.Example Consider again the medical example. Thestandard 3-interval in the sequence (1; 3; 5) in N . Con-sider the relation of B with respect to C. Its symbolhas (0; 2; 2) as a sequence of labels. Since 1 is between0 and 2, it is in zone number 2 of the symbol. Since 3and 5 are both greater than 2, they both belong to zonenumber 6. Hence the converse of (0; 2; 2) is (2; 6; 6).Composition Composition corresponds to compos-ing information.We use the following notation: for any pair of integers(m;n) with m � n, let [[m;n]] (the reduced zone) be thelargest integer interval with even endpoints containedin [m;n].Proposition 3 Let r = (r1; : : : ; rp) be a (p; k)-relation, and s = (s1; : : : ; sk) be a (k; q)-relation. Thecomposition r � s of r with s is the set of (p; q)-relationswhose i-th coordinates is in [[sl; sl+1]], where [sl; sl+1]is zone number ri in the symbol of s, for 1 � i � p.Example In the medical example (refer to Fig. 5), weknow that B is (0; 2; 2) to C and that C is (0; 3; 5) to D.To get the relations of B with respect to D, we have tocompute the composition of (0; 2; 2) with (0; 3; 5). Bythe above rule, this composition contains all relationssuch that:

0 3 50 2 26 6 @@@@IFigure 5: Composing (0; 2; 2) with (0; 3; 5)� Their �rst projection in zone number 0 of the symbol(0; 3; 5): this zone contains only zero;� their second projection is in the (reduced) zone num-ber 2 of the symbol (0; 3; 5), that is [[0; 3]];� their third projection in the same range as the secondone.Since [[0; 3]] is [0; 2], we get (0; [0; 2]; [0;2]) as a result.This is the set with relations (0; 0; 0), (0; 0; 1), (0; 0; 2),(0; 1; 2), (0; 2; 2).Coming back to the general case, we notice that thecomposition of two basic relations is a convex relation.Composition can be extended in an obvious way to re-lations: the composition of two relations is by de�ni-tion the union of the pairwise basic relations they con-tain. Then the preceding result is a particular case ofa stronger result (Ligozat 1991):Proposition 4 The composition of two convex rela-tions is itself a convex relation. More speci�cally, let[r; s] and [t; u] be two convex relations. Then the compo-sition [r; s]�[t; u] is the convex relation [inf(r�t); sup(s�u)].This fact has an important consequence for reasoningabout disjunctive knowledge expressed in the subclassof convex relations: independently of the number of ba-sic relations contained in each disjunct, the compositionof two convex relations can be obtained by comput-ing only two compositions. If a table of composition isavailable for all basic relations (the equivalent of Allen'stable), then two lookups are enough.The algebraic structure of (p; q)-relationsSince relations (subsets of basic relations) are subsetsof a given set, they inherit the structure of a Booleanalgebra. The existence of conversion and compositiongives them the ingredients necessary to be a relationalgebra in the sense of J�onsson and Tarski (J�onsson &Tarski 1952). In particular, for any given n, the set of(n; n)-relations is such an algebra.Binary constraint networksA convenient way of expressing knowledge about tem-poral situations uses the framework of temporal con-



-� ?wA wBwCwD (2; [2; 4];6)(0; 2; 2)(0; 3; 5)Figure 6: A network describing the medical examplestraint networks. A temporal constraint network is a�nite directed graph with labeled arcs. Each node Xirepresents a p-interval. The arc from Xi (a p-interval)toXj (a q-interval) is labeled with a (disjunctive) (p; q)-relation �i;j.Example The information in the medical example canbe represented by a 4-node network with nodes A, B, C,and D. The arcs (A;B), (B;C) and (C;D) are labeledby (2; [2; 4]; 6), (0; 2; 2), and (0; 3; 5), respectively. Thecorresponding network is represented in Fig. 6.We assume that �j;i is the converse of �i;j, and that�i;i is equality, for all i.A network is path-consistent if each label �i;j containsat least an atomic relation, and (�i;j � �j;k) � �i;k forall i, j, k, 1 � i; j; k � m.An instantiation of a variable Xi is a pair of realnumbers (ai; bi), with ai < bi. If instantiations aregiven forXi andXj , there is exactly one atomic relationr such that the interval (ai; bi) is in relation r withrespect to (aj ; bj). We say that the two instantiationsof Xi, Xj instantiate r.A network is globally consistent if instantiations canbe found for each Xi such that for each pair (i; j) anelement in �i;j is instantiated on the edge (i; j).Matters of TractabilityThe geometry of (p; q)-relations: dimensionand closuresGeneralized intervals in the time line can be interpretedas points in Euclidean space. For instance, a 3-intervalx= (x1; x2; x3) is an element of the coneC3 in 3D-spacede�ned as the intersection of the half-spaces x1 < x2and x2 < x3.If a 3-interval a = (a1; a2; a3) is �xed, then the con-dition for x = (x1; x2; x3) to be in one of the (3; 3)-relations with respect to x de�nes a region in thiscone. Those regions are connected, pairwise disjoint,and their union is the (open) cone itself.Example x is in the (3; 3)-relation (0; 3; 4) with respect

to a if and only if: x1 < a1, x2 = a2, and a2 < x3 < a3.This de�nes a region of dimension 2 contained in theplane x2 = a2. This region is not closed. Its topologicalclosure inC3 further contains the open segment de�nedby: x1 = a1, x2 = a2, a2 < x3 < a3, the open half-linex2 = a2, x3 = a3, and x1 < a1, and the point x1 = a1,x2 = a2, x3 = a3. In fact, each one of those componentsis associated to a relation: The segment to (1; 3; 4), thehalf-line to (0; 3; 5), and the point to (1; 3; 5) (equality).This is a general fact.1. The set of (p; q)-relations corresponds to a partitioninto connected regions of the cone Cp de�ned in Rpby x1 < x2 : : : xp�1 < xp.2. The dimension of the region in Cp associated to � =(�1; : : : ; �p) is p - #(odd integers in (�i)).3. The topological closure inCp of the region associatedto � is a union of regions associated to a subset of(p; q)-relations.4. The region associated to �0 = (�0i) belongs to theclosure of the region associated to � if and only if,for all i, 1 � i � p, either �0i = �i or �i is even andj�0i � �ij = 1.Example Consider again the relation (0; 3; 4). By theabove result, the topological closure of this relation con-tains (0; 3; 4) itself, as well as (1; 3; 4), (0; 3; 5), and(1; 3; 5), as desired.De�nition 3 The dimension of a relation is the di-mension of its associated region.The topological closure C(�) of � is the set of rela-tions whose associated regions constitute the topologicalclosure of the region associated to �.The subclass of pre-convex relationsThe topological closure of a convex relation is itselfconvex. In fact, the closure of each atom is convex,and we have, for any convex relation [�; �], C([�; �]) =[inf(C(�)); sup(C(�))].De�nition 4 A relation is a pre-convex relation if itstopological closure is convex.An equivalent de�nition uses the notion of convexclosure. Recall that I(�) denotes the convex closure of�. Then a relation � is pre-convex if and only if I(�)is contained in C(�).In Allen's case, pre-convex relations coincide withORD-Horn relations (Ligozat ). By Nebel and B�ur-ckert's results, they constitute a tractable subclass inAllen's algebra (which, moreover, has a maximalityproperty). This is no coincidence: pre-convex relationsin general are tractable. Explaining why this is true isthe purpose of the next subsections.Projecting convex and pre-convex relations Acrucial fact about convex regions is the fact that theyare entirely determined by their projections. For pre-convex relations, this is no longer the case. However, itis almost true, as explained below.



Consider �rst convex relations. The region associ-ated to it in the cone Cp is connected. Its projectionson each component are connected subsets of the timeline (intervals). Let � be a convex relation, R� its asso-ciated region. Project R� on each coordinate, obtainingpri(R�), then \pullback" by considering the product ofall projections pr1(R�)� : : :�prp(R�), and intersect itwith Cp: The resulting set is exactly R�.Now if � is a pre-convex relation which is not convex,we cannot hope for the same fact to hold in general.However, it does hold for the convex closure I(�) of �.Because � is pre-convex, I(�) only di�ers from � by aunion of atoms which belong to the topological closureof �. Hence, playing the project-then-pullback game,and intersecting with Cp, results in a relation which is(in general) bigger than the relation we started with,but not substantially: it only adds smaller-dimensionalatoms to the relation we started with:Proposition 5 If � is a pre-convex relation, then R�n((pr1(R�)� � � � � prp(R�)) \Cp) is a union of regionscorresponding to atoms of dimensions strictly less thandim(�).This is a crucial fact for proving tractability.Pre-convex relations are tractableWe are now in position to describe why tractabilityholds (Ligozat 1996). Consider a path-consistent net-work whose labels are pre-convex relations. If the net-work has three nodes, path-consistency implies that, ifwe are given instantiations for two of the nodes, thenthe third node can be instantiated in a way such that allconstraints are satis�ed. In fact, a slightly more precisefact holds.Lemma 1 Consider a path-consistent, pre-convex net-work with three nodes X1, X2, X3. Choose instanti-ations for X1 and X2 such that the resulting atomicdimension is of maximal dimension in the label on(X1; X2). Then the third node X3 can be instantiatedin such a way that the resulting atoms on (X3; X1) and(X3; X2) are of maximal dimensions.The general proof is by induction on the number ofnodes: it extends the preceding lemma to a networkwith an arbitrary number of nodes. If the network hasm nodes, we show that each instantiation of n nodescorresponding to atoms of maximal dimension in theiredges can be extended to n + 1 nodes, with the sameproperty.The key intuition is the following: Suppose n nodeshave been instantiated. The constraints on the instan-tiation for the new node to be instantiated are in termsof regions associated to pre-convex relations. Becauseof path-consistency, those regions are pairwise inter-secting. Consider �rst the convex closures of the con-straints. Because of the properties of projection, �ndinga common point in the corresponding regions amountsto do it for each projection.

That this can be done is merely the fact that, for a�nite family of intervals in the time line, pairwise inter-section implies having a non empty global intersection1.If this non-empty intersection is an interval, we canchoose an instantiation avoiding any �nite set of val-ues. If it is a point, we have no choice other than takingit. A technical point is to check that this is unharmful:any instantiation meeting the constraints would have toidentify the corresponding projections.Now come back to the initial, pre-convex constraints.From the regions we considered before, some lower di-mensional parts have to be avoided in order to meetthe stronger constraints. But those parts are de�nedby extra identi�cations on some projections, which wecan avoid if the projection considered is an interval. Ifit is not, we can show that the identi�cation it impliesis already implied by all atoms in the correspondingpre-convex relation.Hence we are able to instantiate the new node ina \generic" way. This proves the result. Moreover, italso gives a strategy for �nding scenarios for pre-convexnetworks.Finding scenarios for pre-convex networksBy de�nition, a scenario for a constraint network is aconsistent subnetwork with atomic labels.A direct method The preceding method of proofyields the following stategy for constructing a scenariofor a path-consistent, pre-convex network.1. Choose an arc, and consider the network where thecorresponding label is replaced by an atom of maxi-mal dimension in it.2. Apply path-consistency to the reduced network.3. If the result is not an atomic network, choose an arcwhich has a non atomic label, and repeat the proce-dure.The key point is that the procedure cannot lead to anempty constraint, because each intermediate network ispath-consistent and pre-convex, hence consistent.This strategy can be implemented in O(m3) time (mis the number of nodes), by using the fact that the cal-culations only result in shrinking the original network.Hence a given arc can be changed at most K � 1 times(removing an atom from the label), if K is the numberof atomic (p; q)-relations.Computing a scenario in quadratic time Check-ing path-consistency takes cubic time. However, sup-pose a pre-convex network is given, which is known tobe consistent. Then a scenario can be determined inquadratic time, as follows.1. Replace the network by its convex closure (each labelis replaced by its convex closure).1This is an elementary case of Helly's theorem (Chv�atal1983).



2. Consider the p time point networks obtained by pro-jecting the convex relations.3. For each of the point network, apply van Beek's algo-rithm (van Beek 1990) to get a scenario, i.e. computethe strongly connected components, and apply topo-logical sort.4. The scenario equivalent to the set of point scenariosis a scenario for the original network.This method2 works because of the following remark:If van Beek's algorithm leads to identi�cation of twoendpoints, then these endpoints have to coincide in allmodels of the (looser) convex network. Hence theyhave to coincide in all models of the initial, tighter,pre-convex network: This means that van Beek's con-struction leads to a scenario where the resulting atomsare of maximal dimension. As a consequence, it is ascenario for the pre-convex netwwork itself.Models of the Generalized IntervalCalculusIn this section, we consider (p; p)-relations. What arethe possible models of the calculus of (p; p)-relations?Weak and strong representationsA convenient way of looking at models is in terms of(weak) representations (Ligozat 1990). Intuitively, aweak representation is just a set U of elements, whichstand for p-intervals, together with the assignment toeach atomic (p; p)-relation of a set of pairs (u; v) of el-ements in U (i.e., a binary relation in U ).To be interpreted as a model, these binary relationsshould satisfy the axioms corresponding to the algebraicproperties of (p; p)-relations. In particular:� Each pair (u; v) of elements of U belongs to one andonly one of the binary relations.� If (u;w) belongs to the binary relation interpretinga basic relation �, and (w; v) to the binary relationinterpreting a basic relation �, then (u; v) belongs toone of the binary relations associated to the elementsof (� � �).De�nition 5 A weak representation of the algebra Apof (p; p)-relations is a map � of Ap into the algebra ofsubsets of U � U , where U is a non empty set, suchthat:1. � is an homomorphism of Boolean algebras.2. �(� � �)contains�(�) ��(�).3. �(identity) = identity.4. �(�^) is the transpose of �(�).A stronger notion of a model speci�es that the ax-ioms embodied in the composition table should be inter-preted as necessary and su�cient conditions: namely,if a pair (u; v) belongs to the relation interpreting 
,2This is essentially the method used in (Gerevini &Cristani 1997).

and if 
 can be obtained by composing � and �, thenthere should exist w in U such that (u;w) is in theinterpretation of �, and (w; v) in that of �.This stronger notion corresponds to the standard no-tion of a representation in algebra:A weak representation is a representation if it is one-to-one and condition (2) is replaced by:5. �(� � �) = �(�) ��(�).Example The medical example described by Figure 1is a weak representation of A3 with 4 elements A, B,C, and D. The map � associates to the (3; 3)-relation(2; 4; 6) the pairs (A;B) and (D;A), etc.Models of the (1; 1)-calculusConsider the case of A1. A weak representation is anon empty set U (interpreted as a set of time points),together with a map �. Now the three atoms in A1 areidentity, < and its converse >. The de�nitions implythat a weak representation is determined by a binaryrelation R on U , such that:� U � U is the disjoint union of R, its transpose Rt,and � = f(u; u)ju 2 U .� R = �(< � <) contains R �R.In other words, the de�nition boils down to the factthat R is a total order on U . Hence a weak representa-tion is just a total order R on a set U .A representation of A1 will have to meet strongerrequirements. If fact, it also has to satisfy:� R is contained in R �R.� � is contained in R �Rt and in Rt �R.The �rst condition expresses the fact that the totalorder R is dense. The second conditions mean that theorder is unbounded on the left and on the right.By a theorem of Cantor, there is only one such orderwhich is countable, up to isomorphism: namely, thetotal order of rational numbers.Allen's caseIn Allen's case, a weak representation is a set of ele-ments, interpreted as intervals, together with an assign-ment of one of the 13 atomic relations to each pair ofintervals, in such a way that the structural constraintsare met.The problem of determining all representations ofAllen's algebra was considered by Ladkin (Ladkin 1987)(under a di�erent name). Ladkin proved, by usingquanti�er elimination, that the exists only one count-able representation of Allen's algebra A2, namely, theset of intervals in the rationals.In the next subsection, we indicate why Ladkin's re-sult is a special case of a general result which is true ofp-intervals in general.



The general caseThe following result generalizes Ladkin's rsesult to p-intervals, for any p � 1:Theorem 1 Up to isomorphism, the set of p-intervalsin the rational numbers constitutes the only countablerepresentation of the algebra of (p; p)-relations.The proof (Ligozat 1990) uses a general constructionwhich, given a weak representation (U;�), associates toit a weak representation of A1 (a total order), called itsendpoint structure.Example Consider the medical example described byFigure 1. Its associated endpoint structure has 10 el-ements, corresponding to a1; a2; a3; : : : ; d1; d2; d3 (only10, because c2 = d2, and c3 = d3) ), with b1 < c1 <: : : < c3.Conversely, given a total order, the set of p-intervalsin the total order, together with the (p; q)-relations in-duced on them, is a weak representation of Ap.Example In the medical example described by Fig-ure 1, the weak representation obtained from the totalorder on 10 endpoints includes the initial 3-intervals A,B, C, and D, but it also includes other 3-intervals, suchas (a1; b1; c1), which were not elements in the originalstructure. The weak representation considered is notclosed in the following sense:De�nition 6 A weak representation of Ap is closed ifit is isomorphic to the p-intervals on its associated end-point structure.Two weak representations are said to be equivalentif their associated endpoint structures are isomorphic.This de�nes an equivalence relation.Now the following facts imply the desired result:� Representations are closed.� The endpoint structure of a representation is a rep-resentation.To prove the result, consider a countable represen-tation of Ap. Its associated endpoint structure is acountable representation of A1 (considering the end-point structure introduces at most p endpoints for eachp-interval). Hence, by Cantor's theorem, it is isomor-phic to the rational numbers. Since the original repre-sentation is closed, it is isomorphic to p-intervals in therationals.This expresses the completeness of the theory em-bodied by the relation algebra: given the strong inter-pretation of the axioms, there is essentially no othercountable model other than the set of p-intervals in the�eld of rational numbers.ConclusionsThe language of generalized intervals enjoys most of thenice properties of Allen's calculus; it o�ers a naturallanguage for dealing with complex temporal events; it�ts into a well-known algebraic framework; a substan-tial subset of disjunctive relations, which has a simple

geometric characterization, is tractable and can be pro-cessed by using constraint propagation techniques. Fi-nally, the model theory associated to this language iswell understood (and decidable).These property make it a good candidate for rea-soning about time in many contexts, such as reasoningabout processes with interrupts, diagnosis, and reason-ing about time in natural language processing.ReferencesAllen, J. F. 1983. Maintaining knowledge abouttemporal intervals. Communications of the ACM26(11):832{843.Chv�atal, V. 1983. Linear Programming. W. H. Free-man and Company, New York.Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporalconstraint networks. Arti�cial Intelligence 49.Freksa, C. 1992. Temporal reasoning based on semi-intervals. Arti�cial Intelligence 54:129{227.Gerevini, A., and Cristani, M. 1997. On Finding a So-lution in Temporal Constraint Satisfaction Problems.In Proceedings of IJCAI-97, 1460{1465.J�onsson, B., and Tarski, A. 1952. Boolean algebraswith operators, part II. American J. of Mathematics74:127{162.Ladkin, P. B. 1986. Time representation: A taxonomyof interval relations. In Proc. of AAAI-86, 360{366.Ladkin, P. 1987. Models of axioms for time intervals.In Proc. of AAAI-87.Ligozat, G. In Anger, F. D., and G_, eds., Proc. of theECAI-94 Workshop on Spatial and Temporal Reason-ing.Ligozat, G. 1990. Weak Representations of IntervalAlgebras. In Proceedings of AAAI-90, 715{720.Ligozat, G. 1991. On generalized interval calculi. InProceedings of AAAI-91, 234{240.Ligozat, G. 1996. A New Proof of Tractability forORD-Horn Relations. In Proc. of AAAI-96, 395{401.Nebel, B., and B�urckert, H.-J. 1995. Reasoning abouttemporal relations: A maximal tractable subclass ofAllen's interval algebra. Journal of the ACM 42(1):43{66.N�okel, K. 1988. Convex relations between time inter-vals. Technical Report SR-88-17, Universit�at Kaiser-slautern.van Beek, P. 1990. Reasoning about qualitative tem-poral information. In Proceedings of AAAI-90, 728{734.Vilain, M.; Kautz, H. A.; and van Beek, P. G. 1989.Constraint propagation algorithms for temporal rea-soning: A revised report. In Weld, D., and de Kleer,J., eds., Readings in Qualitative Reasoning about Phys-ical Systems. Morgan Kaufmann.Vilain, M. B. 1982. A system for reasoning abouttime. In Proceedings of AAAI-82, 197{201.


