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Generalized Intervals: A Guided Tour

Gérard Ligozat
LIMSI, Paris-Sud University, France

Abstract

Generalized intervals are finite ordered sequences of
time points (Allen’s calculus is the special case of or-
dered pairs). In this paper, we show why generalized
intervals are good candidates for reasoning about com-
plex events (with more than two crucial time points):
Binary relations between them can be easily encoded;
the conversion and composition operations on disjunc-
tive relations provide them with a structure of a re-
lation algebra; although the whole calculus is not
tractable in general, there exists a subclass of disjunc-
tive relations, which is easily characterized in geometric
terms, which is tractable (in Allen’s cases, this subclass
coincides with the ORD-Horn class); for binary tem-
poral networks on this subclass, consistency is decid-
able in cubic time by testing path-consistency; more-
over, a scenario can be computed in cubic time without
backtrack (in quadratic time for consistent networks).
Finally, the strong theory of n-intervals (generalized
intervals with n time points) has a unique countable
model (up to isomorphism), which implies its decid-
ability. In a word, most of the pleasant properties of
Allen’s calculus hold in this generalized framework.

Introduction
In his 1983 paper (Allen 1983), Allen justified the intro-

duction of his calculus about intervals in the following
terms: “the temporal representation described above 1s
notable in that it 1s both expressive and computation-
ally feasible”. Over the years, Allen calculus has indeed
proven to be a reference in qualitative temporal reason-
ing, in such diverse applications as planning, natural
language processing, or qualitative physics.

The interrogation about what the right temporal en-
tity should be in a given context has been a persistent
topic. Mixing interval-based and point-based calculus
has been in practice since at least Vilain’s 1982 paper
(Vilain 1982), and is represented, in the domain of qual-
itative and quantitative reasoning, by Meiri’s frame-
work (Dechter, Meiri, & Pearl 1991). This considera-
tion of temporal entities of many types is also apparent
in the strand of work concerned with repeating events
and their associated non-convex intervals.

Time points, intervals, and non-convex intervals are
all subsumed by the notion of generalized interval. In

that way, the time-point calculus, Allen’s calculus, or
the calculus of relations between non-convex intervals
appear as specific instances of generalized interval cal-
culus. This fact would not be of much interest if the
good properties of time-point or interval calculus were
lost in this generalized context. The good news is that
this is not the case. Let us list some of those good
properties of a time calculus:

1. The calculus is based on a finite set of basic binary
relations between the basic temporal entities.

2. There is a notion of composition of two basic rela-
tions, yielding a finite disjunction of possible basic re-
lations; composition can be easily tabulated (Allen’s
composition table is an example).

3. The set of disjunctions of basic relations, together
with suitable operations induced by composition and
conversion, 1s a relation algebra.

4. A framework for exploiting the temporal calculus is
provided by binary temporal constraint networks la-
beled with disjunctions of basic relations.

5. Although the basic problems of determining the con-
sistency of a network, computing the minimal net-
work, or finding all scenarios associated to a given
network are NP-hard (Vilain, Kautz, & van Beek
1989), constraint propagation can be used and al-
gorithms for path-consistency provide useful filtering
techniques.

6. The topological properties of the time-axis are re-
flected in the conceptual neighborhood structure of
the basic relations. Most of the properties of specific
tractable sub-classes of the calculus can be related to
geometric properties of the associated relations: such
i1s the case, for example, of the maximal tractable
subclass of Allen’s algebra discovered by Nebel and
Biirckert (Nebel & Biirckert 1995).

7. The models of the calculus can be characterized. In
particular, the strong version of the calculus has com-
pleteness properties: up to isomorphism, the only
countable model is provided by the corresponding en-
tities in the field of rational numbers.

Conceived as a guided tour, this paper will provide
the reader with a round-up of all these features. We



Figure 1: Four medical files

illustrate the general properties of the formalism on a
particular case: the calculus of 3-intervals.

Generalized intervals: Learning the
Language
Motivation

Consider an application where medical files about pa-
tients are managed. A basic event corresponds to a
given patient entering the hospital (at date ¢1), under-
going a medical intervention (at date ¢2), then finally
leaving the hospital (at date t3). We assume that in all
cases t1 < ts < t3. In the spirit of qualitative temporal
reasoning, we are interested in dealing with qualitative
information concerning a finite number of events.

For instance, assume we have the following informa-
tion about four interventions (see Fig. 1):

e Patient A was admitted after patient B, and left the
hospital after B did (we do not know anything about
A or B’s days of intervention).

e Patient B entered the hospital before €' did, and was
operated and released during C’s pre-intervention pe-
riod.

e Patient (' entered the hospital before D, was oper-
ated on the same day as D, and also released on the
same day as D.

We could represent the situation by using time
points, and by introducing for each patient A, B, C,
D three time points (a1, az, as), - - -, (d1, da, ds).

We could also use Allen’s formalism, by introducing
e.g. two ajoining intervals ¢ (before intervention and j
(after intervention) for each patient. Hence we would
have, for the relations between A and B for example:
g M ja, it mjg,and: 14 d ig and j4 d~ jg, or
tg fipand j4 s jp,oriy o7 ig and j4 07 jp, and
similarly for the other pairs of events.

Notice however that using Allen’s formalism suffers
from two drawbacks. First, it leads to disjunctive rep-
resentations which cannot be represented in a unique
network. Second, the choice of ¢ and j is somewhat ar-
bitrary: we could for instance decide to represent each
data by its total duration k, and by the initial interval
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Figure 2: Zones defined by a g-interval

i (before intervention). Then we would have i s k (¢
starts k), rather than ¢ m j.

Our proposal 1 to consider the most obvious kind of
objects in this case: Namely, ordered sequences of 3
time points. This idea is generalized as follows.

Basics: Objects and Relations

We consider ordered sequences of time points as basic
temporal entities. If such a sequence has ¢ points, we
call it a g-interval. Hence an interval in Allen’s sense 1s
a 2-interval (¢1,12).

For denoting relations between a p-interval and a ¢-
interval, we use the trick of numbering the consecutive
zones defined in time by each point from 0 to 2¢:
zone 0 is (—oo,t1); zone 1 is {t1}; .. .; zone 2¢ — 1 is
{tq}; zone 2q is (t4, +00).

Notice that zones with even numbers are intervals in
the time line, and odd numbered zones are time points
(see Fig. 2).

Using this numbering, the qualitative relation of
any p-interval (z1,...,2,) with respect to a g-interval
(t1,...,tq) s entirely characterized by the numbers of
the zones z1, ..., xp belong to. In this way, we arrive at
a notation of relations as sequences of integers between
0 and 2q. More specifically:

Definition 1 The set of (p, q)-relations between a p-
winterval and a g-interval ts the set of all non-decreasing
sequences of integers between 0 and 2q such that no odd
integer appears more than once.

Example In the case of sequences of three time points,
the corresponding set of relations is a subset of the set
of all non-decreasing sequences of integers between 0
and 6. Using this notation, we can express the con-
straints about the medical files in the following way
(where we use A, B, C',D to denote the four 3-intervals
corresponding to the four patients):

The relation from A to B is represented by: (2,[2,4], 6)
(where (2,[2, 4], 6) stands for the disjunction of (2,2, 6),
(2,3,6), and (2,4,6)). The relation from B to C' and
C' to D are represented by (0,2,2) and (0, 3,5) respec-
tively.

We will need later what we call the symbol of a (p, q)-
relation: by definition, this will be an abstract sequence
of p points labelled by the integers which encode the
relation. The symbol of relation (0, 2, 2) is represented
in Fig. 3.

Counting the relations In this way we get a set of
63 basic relations for 3-intervals. In the general case,



Figure 3: The symbol of relation (0, 2, 2)

the number of basic relations can be computed in a
simple way (see (Ligozat 1990)). We also have a general
characterization in terms of integral points in a convex
polytope:

Consider in R the convex closure Lg of the 2¢ points
(£1,0,...,0), (0,£1,0,...,0), ---, (0,...,0,%1). For
instance, for ¢ = 2, Ly is the square with (1,0), (—1,0),
(0,1), (0,—1) as vertices. Then:

Proposition 1 The number of (p,q)-relations is the
number of points with integral coordinates in p Lq.

The lattice of (p, ¢)-relations

Encoding the set of basic relations as p-tuples of in-
tegers gives it an order structure: for two relations
r=(r1,...,7p) and s = (s1,...,8p), r < s if and only
if r; < s;, for all 1 < ¢ < p. This order structure reflects
the order structure of the time line in a natural way. It
is easily verified that the resulting ordered structure is
a distributive lattice: every pair of basic relations has a
greatest lower bound and a least upper bound, which,
incidently, can be computed componentwise.

In the case of Allen’s calculus, the resulting lattice
structure has been known and used by many authors,
including Nokel (Nokel 1988) and Freksa (Freksa 1992).

The lattice of (3, 3)-relations is represented in Fig. 4.

Following the practice in Allen’s case, we define a
relation as any subset of basic relations. In the gen-
eral case, the lattice structure yields natural notions of
neighborhoods which we discuss below. In particular,
it gives a general definition of convez relations:

Definition 2 A convex relation is an interval in the
lattice of basic relations.

Hence a non-empty convex relation is the set of all ¢
such that » <t < s, for some r < s. We also denote
this relation by [r, s], using the usual interval notation
applied to the lattice.

Translating into Other Languages

As the preceding section shows, generalized intervals
provide an “unprejudiced” language for representing
complex temporal sequences. For example, represent-
ing relations between two 3-intervals does not imply
choosing any decomposition in terms of intervals. How-
ever, the language allows an easy translation from its
own language to other possible languages.

For instance, consider again the medical example,
and its expression in terms of (3,3)-relations. It is a

(0,0,6)

(0,6,6)

(0,0,0)
(6,6,6)

Figure 4: The lattice of (3, 3)-relations

general fact that, for each (p, ¢)-relation, we can “for-
get” about some of the time points in the reference ¢-
interval. In the case of 3-intervals, we can forget about
the middle points. This amounts to keeping only the
first and third coordinates, and interpreting zones 2,
3, and 4 as a unique zone numbered 2, zone 5 as 3,
and zone 6 as 4. Hence, (2,[2,4],6) projects to (2,4),
ie. 07, (0,2,2) projects to (0,2), i.e. o, and (0,3,5)
projects to (0,3), i.e. f~.

Projections are a general way of representing infor-
mation about complex entities in terms of simpler ones.
The price to be paid in general is loss of information.

Non convex intervals

Qualitative reasoning about non convex intervals as
first class objects was introduced by Ladkin (Ladkin
1986).

In particular, Ladkin gives a general taxonomy of the
set of all relations between two non convex intervals in
terms of “interesting” relations, such as disjoint-from
(two intervals have no point in common), bars (the
union of the two sets of points is convex), always-meets
(each convex component of .J is met by a component of
I).

The language of generalized intervals gives a nattural
way of expressing Ladkin’s relations. A non convex in-
terval with m connected components can be represented
by a 2m-interval. Consider the set of (2n, 2m)-relations.
Then, for instance:

o disjoint-from is the set of 7 = (w(1),...,7(2n)) such
that



1. n(1) = m(2), n(3) = w(4),...,7(2n — 1) = 7 (2n),
2. (%) is a multiple of 4, for all 0 < i < 2n.

o barsis the set of 7 = (n(1),...,7(2n)) such that
1. 7(1) < 4 and 7(2n) > 4m — 4;

2. no m(¢) is congruent to 0 (mod 4) , except for pos-
sibly 7(1) = 0, n(2n) = 4m.

Generalized Intervals: a Language for
Reasoning

Operations

As promised, there is a finite set of basic binary re-
lations between the basic temporal entities. We also
have two basic operations on this set, conversion and
composition.

Conversion Conversion corresponds to switching
roles in a binary relation: suppose a p-interval x is in re-
lation (r1,...,ry) with respect to a g-interval y. What
is the relation of y with respect to 7 By definition, we
will call it the transpose of (rq,...,74) . Obviously, it
is a (g, p)-relation, which is encoded by a sequence of
g-integrers between 0 and 2p. Which one 1s it?7 The
answer 1s given as follows.

Consider the symbol of . The symbol of r defines
2p+ 1 zones which can be numbered from 0 to 2p. Con-
sider also the sequence 1,3, ... ,2¢ — 1 of the first ¢ odd
integers (let us call it the standard ¢-interval).

Proposition 2 Letr = (r1,...,rq) be a (p, q)-relation.
The converse v~ of r is the (g, p)-relation of the stan-
dard gq-interval with respect to the symbol of r.

Example Consider again the medical example. The
standard 3-interval in the sequence (1,3,5) in N. Con-
sider the relation of B with respect to C'. Its symbol
has (0,2, 2) as a sequence of labels. Since 1 is between
0 and 2, it 1s in zone number 2 of the symbol. Since 3
and b are both greater than 2, they both belong to zone
number 6. Hence the converse of (0,2,2) is (2,6, 6).

Composition Composition corresponds to compos-
ing information.

We use the following notation: for any pair of integers
(m, n) with m < n, let [[m, n]] (the reduced zone) be the
largest integer interval with even endpoints contained
in [m, n].

Proposition 3 Let r = (r1,...,7p) be a (pk)-
relation, and s = (s1,...,s;) be a (k,q)-relation. The
composition ros of r with s is the set of (p, q)-relations
whose i-th coordinates is in [[si, si+1]], where [s;, s;+1]
1s zone number r; in the symbol of s, for 1 <i < p.

Example In the medical example (refer to Fig. 5), we
know that B is (0,2,2) to C' and that C'is (0, 3,5) to D.
To get the relations of B with respect to D, we have to
compute the composition of (0,2,2) with (0,3,5). By
the above rule, this composition contains all relations
such that:

Figure 5: Composing (0, 2,2) with (0,3,5)

e Their first projection in zone number 0 of the symbol
(0,3,5): this zone contains only zero;

e their second projection is in the (reduced) zone num-

ber 2 of the symbol (0, 3, 5), that is [[0, 3]];

e their third projection in the same range as the second
one.

Since [[0, 3]] is [0, 2], we get (0, [0, 2], [0, 2]) as a result.
This is the set with relations (0,0, 0), (0,0, 1), (0,0, 2),
(0,1,2), (0,2,2).

Coming back to the general case, we notice that the
composition of two basic relations is a convex relation.
Composition can be extended in an obvious way to re-
lations: the composition of two relations is by defini-
tion the union of the pairwise basic relations they con-
tain. Then the preceding result is a particular case of
a stronger result (Ligozat 1991):

Proposition 4 The composition of two conver rela-
tions is itself a convexr relation. More specifically, let
[r, s] and [t, u] be two convex relations. Then the compo-
sition [r, s]o[t, u] is the conver relation [inf(rot), sup(so
)]

This fact has an important consequence for reasoning
about disjunctive knowledge expressed in the subclass
of convex relations: independently of the number of ba-
sic relations contained in each disjunct, the composition
of two convex relations can be obtained by comput-
ing only two compositions. If a table of composition is
available for all basic relations (the equivalent of Allen’s
table), then two lookups are enough.

The algebraic structure of (p, ¢)-relations

Since relations (subsets of basic relations) are subsets
of a given set, they inherit the structure of a Boolean
algebra. The existence of conversion and composition
gives them the ingredients necessary to be a relation
algebra in the sense of Jénsson and Tarski (Jénsson &
Tarski 1952). In particular, for any given n, the set of
(n,n)-relations is such an algebra.

Binary constraint networks

A convenient way of expressing knowledge about tem-
poral situations uses the framework of temporal con-
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Figure 6: A network describing the medical example

straint networks. A temporal constraint network is a
finite directed graph with labeled arcs. Each node X;
represents a p-interval. The arc from X; (a p-interval)
to X; (a ¢g-interval) is labeled with a (disjunctive) (p, ¢)-
relation oy ;.

Example The information in the medical example can
be represented by a 4-node network with nodes A, B, C|
and D. The arcs (A4, B), (B,C) and (C, D) are labeled
by (2,[2,4],6), (0,2,2), and (0, 3,5), respectively. The
corresponding network is represented in Fig. 6.

We assume that o ; is the converse of «; ;, and that
a; ; 1s equality, for all 2.

A network is path-consistent if each label o; ; contains
at least an atomic relation, and (a; j o ;) O ayy for
all 4, 7, k, 1 < 4,5,k <m.

An nstantiation of a variable X; is a pair of real
numbers (a;,b;), with a; < b;. If instantiations are
given for X; and X, there is exactly one atomic relation
7 such that the interval (a;,b;) is in relation r with
respect to (a;,b;). We say that the two instantiations
of X;, X; instantiate r.

A network 1s globally consistent if instantiations can
be found for each X; such that for each pair (¢, j) an
element in «; ; is instantiated on the edge (7, j).

Matters of Tractability

The geometry of (p, ¢)-relations: dimension
and closures

Generalized intervals in the time line can be interpreted
as points in Euclidean space. For instance; a 3-interval
& = (1, Za, #3) is an element of the cone C3 in 3D-space
defined as the intersection of the half-spaces xy < -
and x9 < 3.

If a 3-interval @ = (a1, aq, az) is fixed, then the con-
dition for # = (%1, 2, 23) to be in one of the (3,3)-
relations with respect to z defines a region in this
cone. Those regions are connected, pairwise disjoint,
and their union is the (open) cone itself.

Example z is in the (3, 3)-relation (0, 3, 4) with respect

to a if and only if: x1 < a1, £2 = as, and as < x3 < as.
This defines a region of dimension 2 contained in the
plane 2 = a». This region is not closed. Its topological
closure in Cg3 further contains the open segment defined
by: 1 = a1, 2 = as, as < x3 < as, the open half-line
s = as, r3 = a3, and x1 < a1, and the point 1 = ay,
XTs = a9, x3 = as. In fact, each one of those components
is associated to a relation: The segment to (1,3,4), the
half-line to (0, 3, 5), and the point to (1, 3,5) (equality).
This is a general fact.
1. The set of (p, q)-relations corresponds to a partition

into connected regions of the cone Cy, defined in RP
by 1 < ®a...2p_1 < Zp.

2. The dimension of the region in Cy, associated to m =

(m1,...,mp) is p - #(odd integers in (m1;)).

3. The topological closure in Cy, of the region associated

to m is a union of regions associated to a subset of
(p, q)-relations.

4. The region associated to @' = (7}) belongs to the

closure of the region associated to 7 if and only if,
for all ¢, 1 < i < p, either 7} = m; or m; is even and
|7l — | = 1.

Example Consider again the relation (0,3,4). By the
above result, the topological closure of this relation con-
tains (0,3,4) itself, as well as (1,3,4), (0,3,5), and
(1,3,5), as desired.

Definition 3 The dimension of a relation is the di-
mension of its associated region.

The topological closure C'(«) of « is the set of rela-
tions whose associated regions constitute the topological
closure of the region associated to o.

The subclass of pre-convex relations

The topological closure of a convex relation is itself
convex. In fact, the closure of each atom is convex,
and we have, for any convex relation [a, 3], C([a, 8]) =

[inf(C(a)), sup(C(B))]-
Definition 4 A relation is a pre-convex relation if its
topological closure is conver.

An equivalent definition uses the notion of convex
closure. Recall that I(«) denotes the convex closure of
«. Then a relation « is pre-convex if and only if I(«)
is contained in C'(«).

In Allen’s case, pre-convex relations coincide with
ORD-Horn relations (Ligozat ). By Nebel and Biir-
ckert’s results, they constitute a tractable subclass in
Allen’s algebra (which, moreover, has a maximality
property). This is no coincidence: pre-convex relations
in general are tractable. Explaining why this is true is
the purpose of the next subsections.

Projecting convex and pre-convex relations A
crucial fact about convex regions is the fact that they
are entirely determined by their projections. For pre-
convex relations, this is no longer the case. However, it
is almost true, as explained below.



Consider first convex relations. The region associ-
ated to it in the cone Cy is connected. Its projections
on each component are connected subsets of the time
line (intervals). Let o be a convex relation, R, its asso-
ciated region. Project R, on each coordinate, obtaining
pri(Ry), then “pullback” by considering the product of
all projections pri(Ra) X ... X prp(Ry), and intersect it
with Cp: The resulting set is exactly R,.

Now if «r is a pre-convex relation which is not convex,
we cannot hope for the same fact to hold in general.
However, it does hold for the convex closure I(«) of a.
Because « is pre-convex, I(a) only differs from « by a
union of atoms which belong to the topological closure
of . Hence, playing the project-then-pullback game,
and intersecting with Cp, results in a relation which is
(in general) bigger than the relation we started with,
but not substantially: it only adds smaller-dimensional
atoms to the relation we started with:

Proposition 5 If a is a pre-conver relation, then R, \
((pr1(Ra) X - X prp(Ra)) N Cp) ts a union of regions
corresponding to atoms of dimensions strictly less than

dim(e).

This is a crucial fact for proving tractability.

Pre-convex relations are tractable

We are now in position to describe why tractability
holds (Ligozat 1996). Consider a path-consistent net-
work whose labels are pre-convex relations. If the net-
work has three nodes, path-consistency implies that, if
we are given instantiations for two of the nodes, then
the third node can be instantiated in a way such that all
constraints are satisfied. In fact, a slightly more precise

fact holds.

Lemma 1 Consider a path-consistent, pre-conver net-
work with three nodes Xy, Xa, X3. Choose instanti-
ations for Xy and X5 such that the resulting atomic
dimension is of maximal dimenston in the label on
(X1, X2). Then the third node X3 can be instantiated

in such a way that the resulting atoms on (X3, X1) and
(X3, X2) are of maximal dimensions.

The general proof is by induction on the number of
nodes: 1t extends the preceding lemma to a network
with an arbitrary number of nodes. If the network has
m nodes, we show that each instantiation of n nodes
corresponding to atoms of maximal dimension in their
edges can be extended to n 4+ 1 nodes, with the same
property.

The key intuition is the following: Suppose n nodes
have been instantiated. The constraints on the instan-
tiation for the new node to be instantiated are in terms
of regions associated to pre-convex relations. Because
of path-consistency, those regions are pairwise inter-
secting. Consider first the convex closures of the con-
straints. Because of the properties of projection, finding
a common point in the corresponding regions amounts
to do it for each projection.

That this can be done is merely the fact that, for a
finite family of intervals in the time line, pairwise inter-
section implies having a non empty global intersection®.
If this non-empty intersection is an interval, we can
choose an instantiation avoiding any finite set of val-
ues. If it is a point, we have no choice other than taking
it. A technical point is to check that this is unharmful:
any instantiation meeting the constraints would have to
identify the corresponding projections.

Now come back to the initial, pre-convex constraints.
From the regions we considered before, some lower di-
mensional parts have to be avoided in order to meet
the stronger constraints. But those parts are defined
by extra identifications on some projections, which we
can avoid if the projection considered is an interval. If
it 1s not, we can show that the identification it implies
is already implied by all atoms in the corresponding
pre-convex relation.

Hence we are able to instantiate the new node in
a “generic” way. This proves the result. Moreover, it
also gives a strategy for finding scenarios for pre-convex
networks.

Finding scenarios for pre-convex networks

By definition, a scenario for a constraint network is a
consistent subnetwork with atomic labels.

A direct method The preceding method of proof
yields the following stategy for constructing a scenario
for a path-consistent, pre-convex network.

1. Choose an arc, and consider the network where the
corresponding label is replaced by an atom of maxi-
mal dimension in it.

2. Apply path-consistency to the reduced network.

3. If the result is not an atomic network, choose an arc

which has a non atomic label, and repeat the proce-
dure.

The key point is that the procedure cannot lead to an
empty constraint, because each intermediate network 1s
path-consistent and pre-convex, hence consistent.

This strategy can be implemented in O(m?) time (m
is the number of nodes), by using the fact that the cal-
culations only result in shrinking the original network.
Hence a given arc can be changed at most K — 1 times
(removing an atom from the label), if K is the number
of atomic (p, ¢)-relations.

Computing a scenario in quadratic time Check-
ing path-consistency takes cubic time. However, sup-
pose a pre-convex network is given, which is known to
be consistent. Then a scenario can be determined in
quadratic time, as follows.

1. Replace the network by its convex closure (each label
is replaced by its convex closure).

'This is an elementary case of Helly’s theorem (Chvétal
1983).



2. Consider the p time point networks obtained by pro-
jecting the convex relations.

3. For each of the point network, apply van Beek’s algo-
rithm (van Beek 1990) to get a scenario, i.e. compute
the strongly connected components, and apply topo-
logical sort.

4. The scenario equivalent to the set of point scenarios
is a scenario for the original network.

This method? works because of the following remark:
If van Beek’s algorithm leads to identification of two
endpoints, then these endpoints have to coincide in all
models of the (looser) convex network. Hence they
have to coincide in all models of the initial, tighter,
pre-convex network: This means that van Beek’s con-
struction leads to a scenario where the resulting atoms
are of maximal dimension. As a consequence, 1t is a
scenario for the pre-convex netwwork itself.

Models of the Generalized Interval
Calculus

In this section, we consider (p,p)-relations. What are
the possible models of the calculus of (p, p)-relations?

Weak and strong representations

A convenient way of looking at models is in terms of
(weak) representations (Ligozat 1990). Intuitively, a
weak representation is just a set U of elements, which
stand for p-intervals, together with the assignment to
each atomic (p, p)-relation of a set of pairs (u,v) of el-
ements in U (i.e., a binary relation in U).

To be interpreted as a model, these binary relations
should satisfy the axioms corresponding to the algebraic
properties of (p, p)-relations. In particular:

e Each pair (u,v) of elements of U belongs to one and
only one of the binary relations.

o If (u,w) belongs to the binary relation interpreting
a basic relation «, and (w,v) to the binary relation
interpreting a basic relation f, then (u, v) belongs to
one of the binary relations associated to the elements
of (awo ).

Definition 5 A weak representation of the algebra A,

of (p, p)-relations is a map ® of A, into the algebra of

subsets of U x U, where U 1s a non empty set, such
that:

1. ® is an homomorphism of Boolean algebras.

P(a o f)contains® (o) o B(5).

S (identity) = identity.

S(a) is the transpose of («).

A stronger notion of a model specifies that the ax-
ioms embodied in the composition table should be inter-

preted as necessary and sufficient conditions: namely,
if a pair (u,v) belongs to the relation interpreting =,

e e

2This is essentially the method used in (Gerevini &
Cristani 1997).

and 1if v can be obtained by composing « and 3, then
there should exist w in U such that (w,w) is in the
interpretation of o, and (w, v) in that of 5.

This stronger notion corresponds to the standard no-
tion of a representation in algebra:

A weak representation is a representation if it is one-
to-one and condition (2) is replaced by:

5. P(a o f) = B(a) o B(5).

Example The medical example described by Figure 1
1s a weak representation of As with 4 elements A, B,
C, and D. The map ® associates to the (3, 3)-relation
(2,4,6) the pairs (4, B) and (D, A), etc.

Models of the (1, 1)-calculus

Consider the case of A;. A weak representation 1s a
non empty set U (interpreted as a set of time points),
together with a map ®. Now the three atomsin A; are
identity, < and its converse >. The definitions imply
that a weak representation is determined by a binary
relation R on U, such that:

e U x U is the disjoint union of R, its transpose R!,
and A = {(u,u)|u e U.

e R=®(< o <) contains Ro R.

In other words, the definition boils down to the fact
that R is a total order on U. Hence a weak representa-
tion is just a total order R on a set U.

A representation of A; will have to meet stronger
requirements. If fact, it also has to satisfy:

e R is contained in Ro R.

e A is contained in Ro R! and in Rt o R.

The first condition expresses the fact that the total
order R is dense. The second conditions mean that the
order is unbounded on the left and on the right.

By a theorem of Cantor, there is only one such order
which is countable, up to isomorphism: namely, the
total order of rational numbers.

Allen’s case

In Allen’s case, a weak representation 1s a set of ele-
ments, interpreted as intervals, together with an assign-
ment of one of the 13 atomic relations to each pair of
intervals, in such a way that the structural constraints
are met.

The problem of determining all representations of
Allen’s algebra was considered by Ladkin (Ladkin 1987)
(under a different name). Ladkin proved, by using
quantifier elimination, that the exists only one count-
able representation of Allen’s algebra A;, namely, the
set of intervals in the rationals.

In the next subsection, we indicate why Ladkin’s re-
sult is a special case of a general result which is true of
p-intervals in general.



The general case

The following result generalizes Ladkin’s rsesult to p-
intervals, for any p > 1:

Theorem 1 Up to isomorphism, the set of p-intervals
i the rational numbers constitutes the only countable
representation of the algebra of (p, p)-relations.

The proof (Ligozat 1990) uses a general construction

which, given a weak representation (U, ®), associates to
it a weak representation of A; (a total order), called its
endpoint structure.
Example Consider the medical example described by
Figure 1. Its associated endpoint structure has 10 el-
ements, corresponding to ay,as,as,...,d;, ds, ds (only
10, because ¢z = da, and ¢z = ds) ), with b1 < ¢1 <
... < cs3.

Conversely, given a total order, the set of p-intervals
in the total order, together with the (p, ¢)-relations in-
duced on them, is a weak representation of A,.
Example In the medical example described by Fig-
ure 1, the weak representation obtained from the total
order on 10 endpoints includes the initial 3-intervals A,
B, C,and D, but it also includes other 3-intervals, such
as (ay,b1,c1), which were not elements in the original
structure. The weak representation considered is not
closed in the following sense:

Definition 6 A weak representation of A, s closed if
it is 1somorphic to the p-intervals on its associated end-
point structure.

Two weak representations are said to be equivalent
if their associated endpoint structures are isomorphic.
This defines an equivalence relation.

Now the following facts imply the desired result:

e Representations are closed.

e The endpoint structure of a representation is a rep-
resentation.

To prove the result, consider a countable represen-
tation of A,. Its associated endpoint structure is a
countable representation of A; (considering the end-
point structure introduces at most p endpoints for each
p-interval). Hence, by Cantor’s theorem, it is isomor-
phic to the rational numbers. Since the original repre-
sentation is closed, 1t is isomorphic to p-intervals in the
rationals.

This expresses the completeness of the theory em-
bodied by the relation algebra: given the strong inter-
pretation of the axioms, there is essentially no other
countable model other than the set of p-intervals in the
field of rational numbers.

Conclusions

The language of generalized intervals enjoys most of the
nice properties of Allen’s calculus; it offers a natural
language for dealing with complex temporal events; it
fits into a well-known algebraic framework; a substan-
tial subset of disjunctive relations, which has a simple

geometric characterization, is tractable and can be pro-
cessed by using constraint propagation techniques. Fi-
nally, the model theory associated to this language is
well understood (and decidable).

These property make it a good candidate for rea-
soning about time in many contexts, such as reasoning
about processes with interrupts, diagnosis, and reason-
ing about time in natural language processing.
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