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Tractable relations in temporal reasoning: pre-convex relations

A tractable subclass of Allen's algebra, called ORD-Horn relations, has been identified by Nebel and Bürckert [8]. This paper gives an alternative description of this class in terms of the geometry of the set of atomic relations, by defining the subclass of pre-convex relations in the wider context of generalized intervals. We show that in Allen's case, pre-convex relations coincide with ORD-Horn relations. Pre-convex relations have a simple description, resulting in a simple criterium for pre-convexity, and their closure under composition is an easy consequence of the definition. As a consequence of considering pre-convex relations in a general setting, we show that the set of pre-convex relations in the point-and-interval calculus is the maximal tractable subclass containing all atomic relations.

Introduction

Qualitative reasoning in the full algebra of intervals in the sense of Allen [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF] is inherently intractable, as shown by Vilain and Kautz in their 1986 paper [START_REF] Vilain | Constraint propagation algorithms for temporal reasoning[END_REF]. In the same paper, two solutions were proposed to this computational difficulty. One is to use approximate algorithms. Another is to characterize subsets of the full algebra for which the basic problems, such as deciding whether a given network is consistent, or finding the minimal network, are still tractable. Such subsets are the convex relations and more generally the pointizable relations (with subtle differences between the two sets as pointed out by van Beek). Both sets are rather small subsets of the full algebra: there are 83 convex relations and 188 pointizable ones, among 2 13 = 8192 elements.

In a recent paper [START_REF] Nebel | Reasoning about Temporal Relations: A Maximal Tractable Subclass of Allen's Interval Algebra[END_REF], Nebel and Bürkert, using Horn clause reasoning, characterize a subset of Allen's algebra which they call ORD-Horn relations. They show that this set of relations, which contains more than 10 per cent of all relations, has the following properties:

• The set of ORD-Horn relations is closed under intersection, conversion and composition, and contains all atomic relations.

• Consistency of a network labeled with ORD-Horn relations can be decided in polynomial time; in fact, path consistency of such a network implies consistency.

• The set of ORD-Horn relations is the maximal tractable subset of relations which is closed under intersection, conversion and composition, and which contains all atomic relations.

This paper extends the first two results in two ways:

• It gives an alternative, independent characterization of a set of relations in the algebras of generalized intervals, which we call the pre-convex relations. This characterization is in geometric terms, and gives a simple and intuitive way of deciding whether a given relation is in pre-convex.

In the special case of Allen's algebra, this set coincides with the set of ORD-Horn relations.

• It suggests a general proof for the tractability of pre-convex relations, which has an intuitive, geometric content: pre-convex relations appear as small deviations from convex relations, of which pointizable relations are particular cases.

2 Relations in Allen's algebra

Closures

Let y = (y 1 , y 2 ) be a fixed interval in R, i. e. a couple of real numbers y 1 , y 2 with y 1 < y 2 . Then any other interval x = (x 1 , x 2 ) is in one and only 
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The lattice representation

In [START_REF] Ligozat | On generalized interval calculi[END_REF], we introduced a representation of the set of atomic relations in Allen's algebra as a distributive lattice in R 2 . This representation is based on the encoding of each relation as a couple of integers (Fig. 2. Specifically, the reference interval y determines five zones numbered 0, 1, 2, 3, 4. A relation is determined by the numbers of the two zones containing x 1 and x 2 .

For instance, o is encoded as (0, 2) since, for x = (x 1 , x 2 ) to be in relation o with respect to x = (y 1 , y 2 ), x 1 has to be in zone number 0 and x 2 in zone number 2.

The set of atomic relations, with this canonical encoding, is represented in Fig. 3, which gives the canonical encoding and the usual notations.

In this representation, the topological closure has a nice description in terms of the edge relation ∂:

Definition 2 Let α = (i, j) be an atomic relation. Then (k, l) ∈ ∂(α) ((k, l)
belongs to the edge of α) if and only if 1. either i is even and k = i ± 1, or j is even and l = j ± 1, and

2. |i -k| + |j -l| = 1. Fact 1 C(α) = α ∪ ∂(α) ∪ ∂ 2 α.
For example, since o = (0, 2),

∂(o) = (0, 1) + (1, 2) + (0, 3) = m + s + f ⌣ ∂(0, 3) = ∂(1, 2) = (1, 3) = eq .

Convex relations

The canonical representation also provides an easy characterization of the so-called convex relations1 : these are the intervals in the lattice, which may also be characterized as those subsets which are recoverable from their projections:

Definition 3 The interval [α, β]
, where α and β are atomic relations and α ≤ β is the set of atomic relations γ such that α ≤ γ ≤ β.

Fact 2 Let [α, β] be an interval. Then its projections are two intervals

[m 1 , m 2 ], [n 1 , n 2 ] in N, and [α, β] is the intersection of the lattice with the set [m 1 , m 2 ] × [n 1 , n 2 ].
Any relation is contained in a smallest convex relation. This fact motivates:

Definition 4 Let α be any relation. The interval-closure I(α) of α is the smallest convex relation containing α.

By the remark above, I(α) can be computed component wise.

Example If α = {o, s, f ⌣ }, then I(α) = {o, s, f ⌣ , eq}.
An easy consequence of this property is the following

Lemma 1 If α is convex, then its topological closure C(α) is convex.
We prove this result in a general setting in the next section. Moreover, it is a well-known fact that convex relations have a simple characterization in terms of constraints on the end-points of the corresponding intervals. Namely, a relation α is convex if and only if the condition for X = (X 1 , X 2 ) to be in relation α with respect to Y = (Y 1 , Y 2 ) can be expressed as a conjunction of conditions X i πY j where π is one of <, ≤, ¿, ≥, =.

Pointizable relations

Pointizable relations, as their name suggests, are all relations which can be described in a way similar to the definition of convex relations, where π is any relation between points, including =. Pointizable relations were implicitly considered in [START_REF] Vilain | Constraint propagation algorithms for temporal reasoning[END_REF], and explicitly computed in [START_REF] Ladkin | On binary constraint networks[END_REF] and [START_REF] Van Beek | Exact and approximate reasoning about temporal relations[END_REF].

In fact, we prove in [START_REF] Ligozat | Temporal reasoning made simpler[END_REF] the following simple characterization of pointizable relations:

Proposition 1 A relation α is pointizable if and only if it is obtained from I(α) by a finite number of odd cut-outs, i. e. by removing subsets defined by

x i = ̟ i , where i ∈ {1, 2} and ̟ i is an odd integer. Example The relation α = {p, o, f ⌣ , d, f } is pointizable, since I(α) = [p, f ]
and α is obtained by cutting out x 1 = 1 and x 2 = 1 from I(α).

Pre-convex relations

We now come to our main topic of interest, which we call pre-convex relations. Pre-convex relations generalize pointizable relations in the following way:

Definition 5 A pre-convex relation is a relation whose topological closure is convex.
The fact that pointizable relations are pre-convex is not apparent at first sight. However, we have:

Proposition 2
The following conditions are equivalent for a relation α:

1. α is pre-convex. 2. C(α) ⊇ I(α) . Proof. By definition, α is pre-convex if and only if C(α) is convex. If this is the case, then C(α) ⊇ I(α), since I(α) is the smallest convex relation containing α. Conversely, if C(α) ⊇ I(α) holds, then C(α) ⊇ I(α) ⊇ α, hence C(α) ⊇ C(I(α)) ⊇ C(α), which implies that C(α) = C(I(α)). Since the topological closure of a convex relation is convex, C(I(α)) is convex, hence C(α) is convex.
Because of this last result, any pre-convex relation can be obtained in the following way:

1. Choose a convex relation α.

2. Delete from it any number of atomic relations which can be recovered by topological closure.

Counting the number of pre-convex relations by using this characterization is an easy matter. One finds a set containing 868 elements. Remark The set of atomic relations has both a topological structure, as remarked before, and an order structure, which is summarized by its lattice structure. The definition of pre-convex relations involves both the topological closure C and the interval closure I (which is related to the order structure).

Some properties of pre-convex relations

We first notice two simple facts about the composition of relations: Fact 3 Let α•β denote the composition of α and β in Allen's algebra. Then:

C(α • β) ⊇ C(α) • C(β).
This expresses a topological continuity of composition, and can be proven easily, e. g. by using the explicit formulas given in [START_REF] Ligozat | On generalized interval calculi[END_REF] for composition. Remark Equality does not hold in general. For instance, let α = m and

β = d. Then α • β is [o, d] = {o, s, d}, hence C(α • β) is [m, f ]. However, C(α) = m and C(β) = [s, f ], hence C(α) • C(β) = [m, d].
Fact 4 Let α and β be two relations in Allen's algebra. Then:

I(α • β) ⊆ I(α) • I(β) .
Proof. Immediate, because we know that the composition of two convex relations is convex [START_REF] Ligozat | On generalized interval calculi[END_REF]. Since

I(α) • I(β) is convex and contains α • β, it must contain I(α • β).
As a consequence, the set of pre-convex relations, which is obviously stable under intersection and conversion, is also stable by composition: Proposition 3 The set of pre-convex relations is stable by composition.

Proof Let α and β be two pre-convex relations. Then C(α) ⊇ I(α) and

C(β) ⊇ I(β). Hence C(α • β) ⊇ C(α) • C(β) ⊇ I(α) • I(β) ⊇ I(α • β). Hence α • β is pre-convex.

ORD-Horn Relations

In [START_REF] Nebel | Reasoning about temporal relations: A maximal tractable subclass of Allen's interval algebra[END_REF], Nebel and Bürkert defined the set of ORD-Horn Relations as a set of relations which in some sense are definable by a Horn theory inside the whole set of disjunctive relations. However, their definition lacks an intuitive interpretation. We claim that the definition of pre-convex relations provide such an interpretation: Theorem 1 The set of ORD-Horn relations in Allen's algebra coincides with the set of pre-convex relations.

We prove this result in a more general setting in the next section.

Pre-convex relations at large

So far, we have been considering relations in Allen's algebra. However, most of what we have been discussing also holds in the wider context of generalized intervals, as defined and studied in [START_REF] Ligozat | Weak Representations of Interval Algebras[END_REF][START_REF] Ligozat | On generalized interval calculi[END_REF]. We first recall some basic definitions. 
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(p, q)-relations

If n is a positive integer, a n-interval X = (X 1 , . . . , X n ) in a total order T is a strictly increasing sequence X 1 < . . . < X n of elements of T . Let p and q be two positive integers. We consider the set Π p,q of atomic relations between a p-interval X = (X 1 , . . . , X p ) and a q-interval Y = (Y 1 , . . . , Y q ). Again by numbering 0, . . . , 2q the zones defined by Y (Fig. 4), the set of atomic relations we get in this way can be encoded as the set of non-decreasing sequences of p integers between 0 and 2q, which do not contain more than one occurrence of the same odd integer. This encoding gives an embedding of Π p,q in the Euclidean space R p . The product order on this set makes it into a distributive lattice [START_REF] Ligozat | On generalized interval calculi[END_REF]. Examples (Fig. 5) a) Let p = 1 and q = 2. Then Π 1,2 is the set of atomic relations between a point X and an interval Y = (Y 1 , Y 2 ). This set has five elements. The canonical representation encodes it as the set of integers between 0 and 4. b) Let p = 2 and q = 1. Then Π 2,1 is the set of atomic relations between an interval X = (X 1 , X 2 ) and a point X, which is obtained from Π 1,2 by conversion. The canonical representation encodes it as the set of non-decreasing sequences of two integers between 0 and 2, which do not contain more than one occurrence of 1.

Pre-convex relations in Π p,q

The notions of topological closure and interval closure can be defined exactly in the same way as in the case of Allen's relations, which corresponds to the case where p = q = 2. The same is true for the notions of convex, pointizable and pre-convex relations.

We prove in this context the

Lemma 2 If α is a convex relation in Π p,q , then its topological closure C(α) is convex. Proof. More specifically, let α = [m 1 , n 1 ]×. . .×[m p , n p ] be a convex relation in Π p,q .
Define the closure of an integer n as n itself if n is odd, and as the non negative integers in [n -1, n + 1] if n is even (in fact, this defines the topological closure in Π 1,q , for q > n). Let the closure of a set of integers be the union of the closures of its elements. Then the closure of [m i , n i ], for i = 1, . . . , p is an interval [M i , N i ]. We claim that the closure of α is defined by

[M 1 , N 1 ] × . . . × [M p , N p ].
Clearly, by the definition of the topological closure, the closure of an element of α belongs to this convex relation, since taking the closure changes at most once each coordinate of α from an even to an odd value.

Conversely, let z = (z 1 , . . . , z p ) be an element in [M 1 , N 1 ] × . . . × [M p , N p ]. Then for each i, one of the three conditions obtains:

1. z i ∈ [m i , n i ] 2. z i = M i , which is odd, and M i = m i 3. z i = N i ,
which is odd, and N i = n i . Let y i = z i in the first case, y i = M i +1 in the second case, and y i = N i -1 in the third case. It is easily verified that z belongs to the closure of y.

Because of this result and the general properties of the topological and the convex closures, the following result is true, which generalizes the corresponding one in Allen's case:

Theorem 2 If α is a pre-convex relation in Π p,q , and β a pre-convex relation in Π q,r , then α • β is a pre-convex relation in Π p,r .

Pre-convex relations and ORD-Horn relations

Let p and q be two fixed positive integers. The definitions given by Nebel and Bürkert for the set of ORD-Horn relations are easily extended to the case of generalized intervals.

Let atomic formulas be formulas a ≤ b and a = b, where a and b are endpoints of generalized intervals. A literal is an atomic formula or the negation of an atomic formula. A clause is a disjunction of literals.

Relations are defined by finite sets of clauses. These clauses may be assumed to belong to the subset of ORD clauses, which is defined as the set of clauses which do not contain negations of atomic formulas a ≤ b.

In our notations, formulas such as X i ≤ X j and the negation X i = X j of X i = X j , which involve enpoints of the same generalized interval X are implicitly assumed to be true if and only if i ≤ j resp. i = j. The other basic literals define subsets of the set Π p,q in the following way:

1. X i ≤ Y j defines the subset x i < (2j -1).

2. X i = Y j defines the subset x i = (2j -1).

The set of ORD-Horn clauses is defined as the set of ORD clauses with at most one positive literal.

Definition 6

The set of ORD-Horn relations in Π p,q is the set of relations that are definable by a set of ORD-Horn clauses.

The main result of this section is the following: Theorem 3 The set of pre-convex relations contains the set of ORD-Horn relations. If p, q ≤ 2, then the set of pre-convex relations and the set of ORD-Horn relations are the same.

Proof Denote by ̟ i an odd integer between 0 and 2q. Then ORD-Horn clauses are of one of the following four types:

1. (X k 1 = Y l 1 ) ∨ . . . ∨ (X km = Y lm ) 2. (X i = Y j ) ∨ (X k 1 = Y l 1 ) ∨ . . . (X km = Y lm ). 3. (X i ≤ Y j ) ∨ (X k 1 = Y l 1 ) ∨ . . . (X km = Y lm ) 4. (Y i ≤ X j ) ∨ (X k 1 = Y l 1 ) ∨ . . . (X km = Y lm )
Equivalently, the associated subsets in Π p,q are of one of the four types:

1. (x k 1 = ̟ l 1 ) ∨ . . . ∨ (x km = ̟ lm ) 2. (x i = ̟ j ) ∨ (x k 1 = ̟ l 1 ) ∨ . . . ∨ (x km = ̟ lm ). 3. (x i ≤ ̟ j ) ∨ (x k 1 = ̟ l 1 ) ∨ . . . ∨ (x km = ̟ lm ) 4. (̟ i ≤ x j ) ∨ (x k 1 = ̟ l 1 ) ∨ . . . ∨ (x km = ̟ lm ).
We first show that every ORD-Horn relation is a pre-convex relation. Since the set of pre-convex relations is closed under intersection, it will suffice to show that the relation defined by each one of the four types is pre-convex.

Type 1. The complement of ORD-Horn relations of this type is defined by (x k 1 = ̟ l 1 ) ∧ . . . ∧ (x km = ̟ lm ) which is what we called an odd cutout before. Hence the relation itself is obtained from the full set of atomic relations by removing the set defined by this cut-out. All relations in this set clearly belong to the closure of the set of remaining relations, by definition of closure. Indeed, the atomic relation (. . . , ̟ l 1 , . . . , ̟ lm , . . .) belongs to the closure of the corresponding relation (. . . , ̟ l 1 -1, . . . , ̟ lm -1, . . .).

Type 2. The complement of ORD-Horn relations of this type is defined by

(x i = ̟ j ) ∧ (x k 1 = ̟ l 1 ) ∧ . . . ∧ (x km = ̟ lm ).
This means that the corresponding relation can also be obtained by first removing (x

k 1 = ̟ l 1 ) ∧ . . . ∧ (x km = ̟ lm )
which is an odd cut-out, then adding back

(x i = ̟ j ) ∧ (x k 1 = ̟ l 1 ) ∧ . . . ∧ (x km = ̟ lm )
that is, some of the atoms in the hyperplane defined by the odd cut-out are put back into it. Clearly, this does not affect the topological closure of the complement which already contains those atoms. Type 3. The complement of ORD-Horn relations of this type is defined by

(x i > ̟ j ) ∧ (x k 1 = ̟ l 1 ) ∧ . . . ∧ (x km = ̟ lm ).
Again, this means that the corresponding relation can also be obtained by first removing (x k 1 = ̟ l 1 ) ∧ . . . ∧ (x km = ̟ lm ), which is an odd cut-out, then adding back (x i ≤ ̟ j ) ∧ (x k 1 = ̟ l 1 ) ∧ . . . ∧ (x km = ̟ lm ), which is a subset of the odd cut-out. The result is a pre-convex relation for the same reasons as above.

Type 4. This case is analogous to the case of type 3.

Hence every ORD-Horn relation is a pre-convex relation.

Conversely, any pre-convex relation is obtained from a convex relation by removing a finite number of atoms which belong to the topological closure of the remaining set.

A convex relation is clearly a ORD-Horn relation, since it is the intersection of sets defined by conditions (x i ≤ π i ) or (x i ≥ π i ).

Let the dimension of an atomic relation be the dimension of the corresponding region in the plane. Equivalently, it is the number of even integers in its canonical representation. Since any non-atomic relation contains two atoms of distinct dimensions, it is enough to show that removing an atom of dimension 0 or 1 from a ORD-Horn relation gives a ORD-Horn relation. Because this amounts to intersecting the given relation with the complement of the given atom in the set of all atomic relations, we only have to prove: Lemma 3 The complement in Π 2,2 of an atom of dimension 0 or 1 is a ORD-Horn relation.

Proof. An atom of dimension 0 or 1 is either eq, whose complement is defined by (

X 1 = Y 1 ) ∨ (X 2 = Y 2 ), or one of the atoms m, s, f , m ⌣ , s ⌣ , f ⌣ . The complement of m corresponds to (X 2 = Y 1 ). The complement of f , which is (1, 2), by (X 1 = Y 1 ) ∨ (X 2 ≥ Y 2 )
, and similarly for other cases.

The discussion shows that in the general case: 

Proposition 4 A pre-convex relation in Π p,q is ORD-Horn if

Application to the point-and-interval calculus

The point-and-interval calculus [START_REF] Vilain | A system for reasoning about time[END_REF][START_REF] Meiri | Combining qualitative and quantitative constraints in temporal reasoning[END_REF][START_REF] Meiri | Combining qualitative and quantitative constraints in temporal reasoning[END_REF] deals with qualitative constraints between points and intervals. The set of atomic relations is the disjoint union of Π 1,1 = {<, =, >}, Π 1,2 and Π 2,1 (5 elements) and Π 2,2 . This is a particular case of the S-calculus, where S is any non-empty subset of the positive integers, and the set of corresponding atomic relations is the disjoint union of all Π p,q , for all p, q in S.

The set of all relations in Π 1,2 contains 2 5 = 32 elements, 16 of which are convex relations. Any pre-convex relation is pointizable, and the set of convex relations contains 23 elements. The remaining 9 relations are not pre-convex. These relations are {0, 4}, {0, 1, 4}, {0, 3, 4}, {0, 1, 3, 4}, {0, 3}, {0, 1, 3}, {1, 3}, {1, 4}, and {1, 3, 4}.

A consequence of Nebel and Bürckert's results is that the satisfiability problem is tractable for the set of pre-convex relations. In fact, this set is maximal in the following sense: Proposition 5 Let S be a subset of the point-and-interval relations which contains all atoms. Then either S is a subset of the set of pre-convex relations, or the satisfiability problem ISAT (S) is NP-complete.

Proof. Let α be an element in S which is not pre-convex. If it is a subset of Π 2,2 , then the result follows from Nebel and Bürckert's results. If it is not, we may assume that it belongs to Π 1,2 . Checking all cases, it is easily proved that the composition of α with the element (2, 2) in Π 1,2 gives an element of Allen's algebra which is not pre-convex. Again by Nebel and Bürckert's results, this implies intractability.
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In fact, convex relations are more than merely convex in the following sense: α is convex if and only if D(α), when it contains u and v, also contains the intersection of H with the rectangle with (u, v) as a diagonal. Here D(α) notes the union of all D(β) with β atomic contained in α.

Conclusion

We introduced the class of pre-convex relations in the (generalized) interval calculi. We showed that this class coincides with the class of ORD-Horn relations defined by Nebel and Bürckert in the particular case of Allen's algebra. The geometric definition provides simple criteria for pointizability or preconvexity of any given relation, as well as for the closure under composition. Intuitively, pre-convex relations appear as closely related to convex relations. We also considered the case of point-and-interval calculus and showed that in that case too the class of pre-convex relations is the maximal tractable class among classes containing all atomic relations.