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ABSTRACT: We report a theoretical description and numerical tests
of the extended-system adaptive biasing force method (eABF),
together with an unbiased estimator of the free energy surface from
eABF dynamics. Whereas the original ABF approach uses its running
estimate of the free energy gradient as the adaptive biasing force, eABF
is built on the idea that the exact free energy gradient is not necessary
for efficient exploration, and that it is still possible to recover the exact
free energy separately with an appropriate estimator. eABF does not
directly bias the collective coordinates of interest, but rather fictitious
variables that are harmonically coupled to them; therefore is does not
require second derivative estimates, making it easily applicable to a
wider range of problems than ABF. Furthermore, the extended variables present a smoother, coarse-grain-like sampling problem
on a mollified free energy surface, leading to faster exploration and convergence. We also introduce CZAR, a simple, unbiased
free energy estimator from eABF trajectories. eABF/CZAR converges to the physical free energy surface faster than standard
ABF for a wide range of parameters.

■ INTRODUCTION

Coordinate-based free energy simulation methods accomplish
two tasks: sample a reduced-dimension space of generalized
coordinates, and estimate the associated free energy landscape.
Among these, the adaptive biasing force method (ABF)1−3 is an
adaptive application of unconstrained thermodynamic integra-
tion (TI). In ABF, the running estimate of the free energy
gradient from TI is used as the biasing force, hence combining
the importance sampling and free energy estimation problems.
Here we investigate a combination of ABF with extended-

system dynamics as in the Car−Parrinello metadynamics
method.4,5 This combination was introduced by Leliev̀re et
al.,6,7 and is a part of the double-integration orthogonal space
tempering method of Yang and co-workers, under the name
Dynamic Reference Restraining.8 This extended-system ABF
algorithm will henceforth be referred to as eABF. Instead of
applying the ABF scheme to generalized variables that depend
directly on atomic coordinates, eABF dynamics proceeds in a
separate, explicit collective coordinate space with its own
equations of motion, and these extended degrees of freedom
are harmonically coupled to the collective variables in atomic
coordinate space. As eABF does not rely on the free energy
surface of interest for importance sampling, a separate estimator
of the free energy is needed.
There are two possible benefits from the eABF approach.

One is a gain in flexibility and efficiency due to separating the
problems of sampling and free energy estimation, as has been
investigated in recent studies.9,10 We investigate and discuss
this question in detail in this work. The second benefit is

bypassing the stringent technical requirements for collective
variables to be usable for ABF. The multidimensional TI
formalism11 used by our implementation of ABF12 entails some
practical limitations: collective variables are required to be
mutually orthogonal, and orthogonal to constraints; further-
more, a Jacobian term, which depends on second derivatives of
the coordinates, must be calculated. While defining an effective,
low-dimension collective coordinate space for molecular
processes is often daunting to begin with, additional restrictions
on the coordinates that can be used for ABF reduce the
applicability of the method in the most challenging cases. eABF
relaxes these requirements, making the method applicable to
any set of variables whose individual values and gradients can
be readily computed.
Below, we present the principles of eABF dynamics in one

and multiple dimensions, as well its combination with standard
ABF in what we term “semi-eABF”. We derive some properties
of eABF-biased distributions of the coordinates, which are
useful for understanding the sampling efficiency of the method.
We then describe numerical tests and explain the effects of its
parameters on convergence, most notably the strength of
coupling between the geometric coordinate and the fictitious
variable. We investigate the role of noise reduction through
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mollification of the measured forces by fluctuations of the
coupling spring. We introduce the corrected z-averaged
restraint (CZAR) estimator of the “true” free energy based
on eABF trajectories. Finally, we test the convergence and
accuracy of eABF/CZAR and compare it to ABF as well as an
Umbrella-Integration-based estimator.

■ THEORY
Theory of eABF. Standard ABF. Let us recall the principles

and notations of the ABF method,1 the direct parent of eABF.
Consider a set of particles of coordinates ∈ ⊂ q N3 ,
subject to constraints of the form σk(q) = 0, and whose physical
distribution is the canonical ensemble associated with the
potential V(q) at temperature T. Within that ensemble, we wish
to sample a vector generalized coordinate (collective variable)
of physical interest, z = ξ(q). ABF is an adaptively biased
dynamics that produces, in the long-time limit, a uniform
distribution of ξ.1,3,7 ABF also yields an unbiased estimate of
the free energy profile (or potential of mean force, PMF) A(z),
which is defined by

ρ≡ −A z k T z( ) ln( ( ))B (1)

where ρ is the equilibrium probability distribution of ξ. The
time-dependent biasing force in ABF is the running estimate of
the free energy gradient.
Our implementation of ABF12 relies on multidimensional

thermodynamic integration as expressed by Ciccotti et al.11 For
each coordinate ξi, let vi be any vector field on atomic
coordinates ( → N N3 3 , where N is the number of atoms)
satisfying, for all j and k,

ξ δ·∇ =vi j ij (2)

σ·∇ =v 0i k (3)

We call vi the inverse gradient of ξi.
12 A possible choice is vi =∑j

Gi,j
−1 ∇ξi, provided that the matrix G ≡ (∇ξi·∇ξj)i,j is invertible.6

This, however, is not often practical: in simpler cases intuition
is sufficient to exhibit valid choices of v, whereas in more
complex cases, obtaining v in closed form from this expression
is difficult, if at all possible.
The ith partial derivative of the free energy surface A may

then be calculated as the ξ-conditioned ensemble average of the
instantaneous collective force Fi

ξ:11

∂ = ⟨ ⟩ ≡ ⟨∇ · − ∇· ⟩ξ
ξ ξ= =A z F V v k T v( )i i q z i i q z( ) B ( ) (4)

Depending on the function ξ, calculation of the divergence ∇·
vi, which typically implies second derivatives of ξi, may be
onerous or impossible to express in closed form. It then
becomes desirable to replace ABF dynamics on coordinate ξ
with a dynamics that approximates it at a lower cost (including
the cost of developing algorithms and production-quality code).
eABF consists in performing ABF dynamics on a fictitious

coordinate that fluctuates around ξ(q). We shall now present
eABF in detail, first on a scalar variable ξ for simplicity, then in
higher dimension.
eABF on a scalar variable. In eABF, we consider the

extended system (q, λ), where λ is a fictitious, nonphysical
degree of freedom with mass mλ. λ evolves in time according to
Langevin dynamics at the same temperature as the rest of the
system. To ensure that λ approximates ξ, we couple these
quantities with the harmonic potential (k/2) (ξ(q) − λ)2. eABF
can therefore be seen as a multiscale simulation method, where

λt represents a coarse-grained dynamics coupled to the atomic
dynamics (Figure 1). We then define eABF on coordinate ξ as
standard ABF dynamics on the extended coordinate ξext, where
ξext (q, λ) ≡ λ.

The obvious choice of inverse gradient v is equal to the
gradient ∇ξext, that is, a vector with null components for all q,
and 1 for λ. This satisfies eq 2 and eq 3 because v has no
support on coordinates q involved in constraints. The
instantaneous force of eq 4 then reduces to the harmonic
force from the coupling potential, which can be calculated
regardless of the geometry of ξ, and without using the physical
forces −∇V(q), in contrast to standard ABF.
The main convergence property of ABF applies, that is, the

biased dynamics of λ is less metastable than the unbiased one,
and its limiting probability distribution is uniform, yielding a
form of “optimal” sampling. The key intuition behind eABF is
that efficient sampling of λ will result in efficient sampling of ξ,
given sufficient coupling between those two variables. We will
show numerically that this is verified, and examine the
requirement on the coupling strength.
In the absence of adaptive bias, the extended potential is

λ ξ λ= + −V q V q
k

q( , ) ( )
2

( ( ) )ext 2
(5)

and the equilibrium marginal distribution of λ depends on k:

∫ρ λ β β ξ λ∝ − − −⎜ ⎟⎛
⎝

⎞
⎠V q

k
q q( ) exp( ( )) exp

2
( ( ) ) dk 2

(6)

The corresponding PMF in λ is defined by

λ ρ λ≡ −A kT( ) ln( ( ))k k (7)

In the following, probability distributions are expressed up to a
normalization constant, and free energy profiles up to an
implicit additive constant, without loss of precision or
generality.
The integral in (6) may be recast by inserting ∫ δ(ξ(q) − z)

dz = 1:

Figure 1. Time trajectories of the collective variable ξ(xt) (black) and
the fictitious coordinate λt (blue) for the deca-alanine system (see
Computational Details for details).
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∫

∫

ρ λ β β ξ λ δ ξ

ρ β λ

∝ − − − −

= − −

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

V q
k

q q z z q

z
k

z z

( ) exp( ( )) exp
2

( ( ) ) ( ( ) ) d d

( ) exp
2

( ) d

k 2

2

(8)

That is, the marginal distribution of the extended variable λ is
that of ξ(q) convolved with a Gaussian kernel of variance σ2 ≡
(βk)−1. Therefore, in the tight-coupling limit (large k, small σ),
ρk becomes arbitrarily close to ρ, and the extended PMF Ak, to
the physical PMF A. A numerical example comparing these two
quantities (Figure 2) illustrates Ak as a smoothed or mollified
version of A.

Under eABF dynamics, the applied bias on λ is the running
estimate of the average spring force:

λ λ λ* = * = ⟨ − ⟩ = λ* − ⟨ ⟩λ λ
′

* *F A k z k z( ) ( ) ( ) ( )kbias

(9)

where the angle brackets indicate a canonical average
conditioned by λ = λ*. The system is driven by a time-
dependent biased potential Ṽt(q, λ) that converges toward

λ ξ λ λ̃ = + − −V q V q
k

q A( , ) ( )
2

( ( ) ) ( )k2
(10)

which generates the following biased Boltzmann distribution:

ρ λ β ξ λ λ̃ ∝ − + − −⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥q V q

k
q A( , ) exp ( )

2
( ( ) ) ( )k k2

(11)

Integrating over q and inserting eq 6 shows that this results in a
uniform marginal distribution of λ, ρ̃k(λ) = constant, which is
the ABF result for the extended variable λ.
Integrating eq 11 over the conditional measure δξ(q)−z yields

the joint distribution of (z, λ):

ρ λ ρ λ
σ

β λ̃ ∝ − −⎛
⎝⎜

⎞
⎠⎟z z

z
A( , ) ( ) exp

( )
2

exp( ( ))k k
2

2
(12)

Integrating over λ gives the biased marginal in z:

∫ρ ρ λ
σ

ρ λ λ̃ ∝ − − −
⎛
⎝⎜

⎞
⎠⎟z z

z
( ) ( ) exp

( )
2

[ ( )] dk
2

2
1

(13)

where we have substituted Ak with its definition (eq 7). Finally,
substituting eq 8 into eq 13, we obtain an explicit relationship
between the unbiased and biased z-distributions:

∫ ∫ρ ρ λ
σ

λ
σ

ρ λ̃ ∝ − − − − ′ ′ ′
−⎛

⎝⎜
⎞
⎠⎟
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥z z

z z
z z( ) ( ) exp

( )
2

exp
( )

2
( ) d d

2

2

2

2

1

(14)

which can be summarized as

ρ ρ ρ̃ ∝ × * *σ σ
−G G[ ( ) ]1

(15)

where Gσ stands for the Gaussian kernel of variance σ2, and *
for convolution. In the high-k, low-σ limit, convolution by the
kernel becomes the identity operator, and the correction factor
becomes ρ(z)−1. Thus, the biased limiting distribution ρ̃(z)
becomes uniform, and eABF in the high-k limit recovers the
behavior of standard ABF on coordinate z = ξ(q).

Vector eABF. The approach outlined above may be extended
to higher-dimension variables, following the principles of
multidimensional ABF.12 Given a d-dimensional vector
collective variable ξ(q) = (ξi(q))i, we augment the system
with a vector of d extended variables λ = (λi)i, coupled through
as many harmonic potentials (1/2) ki (ξ(q) − λi)

2. Because the
components ξi may have different physical dimensions, the
spring constants ki are not generally commensurable.
To recover the multidimensional thermodynamic integration

formalism recalled above, we define the inverse gradient vector
vi as equal to the gradient ∇(q, λ) ξi

ext, that is, the vector with
component 1 on coordinate λi and zero elsewhere. This satisfies
the conditions of eqs 2 and 3. Components of the adaptive
biasing force are then

λ λ
λ

λ ξ* = ∂ *
∂

= − ⟨ ⟩λ*F
A

k q( )
( )

( ( ) )i

k

i
i i

bias

(16)

where the angle brackets indicate an average with respect to the
canonical distribution of (q, λ) conditioned by λ = λ*. The case
of a two-dimensional coordinate is illustrated in numerical tests
below.

Semi-eABF. Consider the special case of two collective
variables ξ1 and ξ2. One may then run a semi-eABF simulation,
that is, a simulation in extended space (q, λ) with a harmonic
potential coupling λ and ξ2(q), and an ABF bias on the two-
dimensional coordinate ξext(q, λ) ≡ (ξ1(q), λ).
A vector field v1 needs to be defined, verifying v1(q) ·∇ξ1(q)

= 1 for all q (eq 2), and orthogonal to constraints (eq 3). The
mutual orthogonality condition of eq 2 is trivially fulfilled
because the second coordinate is independent of q. The biasing
forces may then be calculated based on

λ
λ

* =
∂ *

∂
= ⟨−∇ · + ∇· ⟩ λ*F z

A z
z

V v k T v( , )
( , )k

z1
bias

1
1

1
1 B 1 ,1

(17)

λ
λ

λ
λ ξ* =

∂ *
∂

= * − ⟨ ⟩ λ*F z
A z

k q( , )
( , )

( ( ) )
k

z2
bias

1
1

2 ,1 (18)

where the angle brackets indicate averages with respect to the
canonical distribution of (q, λ) conditioned by (ξ1(q) = z1, λ =
λ*).
More generally, one may run ABF dynamics on a vector

variable involving any combination of geometric coordinates
and fictitious variables. Numerical tests of the semi-eABF

Figure 2. Comparison of the physical free energy profile A(z) (black)
and that of the extended variable, Ak(λ) (blue) for the deca-alanine
system with loose coupling (σ = 0.5 Å).
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approach in two dimensions are presented below, together with
an appropriate free-energy estimator.
Estimators of the Original Free Energy Gradient. The

eABF free energy gradient estimator converges in the long-time
limit to Ak ′(λ), which is not the “true”, physical free energy
gradient A′(z). Here we discuss how to estimate the physical
free energy gradient from an eABF simulation.
Naive Estimator. The simplest estimator uses Ak as an

approximation to the physical PMF, A(z). This, however, is not
asymptotically unbiased in the long-time limit, because of the
convolution in eq 8, as can be seen in Figure 2. Ak does
converge to A only in the high-k limit. Below, we describe and
test two other estimators, one of which is asymptotically
unbiased regardless of k. Another option, since Ak is related to
A by convolution, is to apply a generic deconvolution
algorithm;13 however, that approach again yields a biased
estimator.
Zheng and Yang Estimator. Zheng and Yang proposed a

free energy estimator in the context of the orthogonal space
tempering method,8 but it is applicable more generally to any
eABF-like simulation. Considering that each λ-value is a state
wherein z is sampled under a harmonic restraint, the free
energy derivative can be written based on umbrella
integration.14 The final estimate of the free energy derivative
is a weighted average of the umbrella integration values from
different “restraining ensembles” (λ-states):8

∫ ρ λ
β

ρ λ λ λ′ = | − ̃ | + −
⎡
⎣⎢

⎤
⎦⎥A z z

z
z

k z( ) ( )
1 d ln ( )

d
( ) d

(19)

where ρ̃ (z|λ) is the observed, bias distribution of ξ(q)
conditioned by λ. Umbrella integration further assumes that
this distribution is nearly Gaussian, hence its log-derivative may
be approximated based on its mean ⟨z ⟩λ and variance (σλ

z)2:

∫ ρ λ
β σ

λ λ′ ≈ | −
− ⟨ ⟩

+ −λ

λ

⎡
⎣⎢

⎤
⎦⎥A z z

z z
k z( ) ( )

1
( )

( ) dz 2
(20)

This assumption reduces the variance of the estimator, but
introduces a bias that formally vanishes only in the high-k
regime, when ρ(z|λ) becomes peaked and tends toward a
Gaussian.
In the past years, we informally provided the community

with an implementation of the Zheng/Yang estimator as a post-
treatment of eABF trajectories, which was inefficient for large
amounts of data. This was improved by an on-the-fly
implementation that was published recently.15

Corrected z-averaged restraint (CZAR). We propose here
an asymptotically unbiased estimator of A, named corrected z-
averaged restraint (CZAR). Below, we introduce this estimator
based on physical intuition (see Supporting Information for a
formal derivation).
Consider the eABF-biased dynamics of coordinate z = ξ(q).

This coordinate only feels the eABF bias through the spring
force k(λ − z). Thus, at a given value of z, the biasing force on
coordinate λ results in an effective average biasing force on z
equal to k(⟨λ⟩z − z) (where ⟨λ⟩z is the conditional average of λ
at a given value of z). The free energy gradient is the log-
derivative of the unbiased distribution ρ:

β
ρ′ = −A z

z
z

( )
1 d ln ( )

d (21)

from which we can derive a relationship with the eABF-biased
distribution ρ̃:

β
ρ λ′ = − ̃ + ⟨ ⟩ −A z

z
z

k z( )
1 d ln ( )

d
( )z

(22)

The right-hand side can be estimated numerically from the time
trajectory of (z, λ).
We note that eq 22 is related to eq 19 by swapping the

integration with respect to λ and differentiation with respect to
z. Thus, the main difference between the CZAR and Zheng/
Yang approaches is that the latter relies on a Gaussian
approximation for the conditional distributions of z. A practical
benefit of CZAR is that it does not require defining discrete λ-
states, which makes implementation simpler and removes a
tunable parameter.

Multidimensional CZAR. The CZAR estimator generalizes
to eABF on a vector variable of arbitrary dimension, z = (zi)i =
(ξi(q))i. Each component of the free energy gradient may be
estimated as

β
ρ λ∂

∂
= − ∂ ̃

∂
+ ⟨ ⟩ −A

z
z

z
z

k z( )
1 ln ( )

( )
k k

k z k
(23)

The derivation is provided in the Supporting Information, in
dimension 2 for the sake of simplicity. It extends to arbitrary
dimension in a straightforward way.
The CZAR estimator is valid for standard ABF as well, if the

z-averaged force is replaced with the average force of ABF for
“non-extended” coordinates. The log-derivative of the ABF-
biased distribution vanishes for long times as the distribution
becomes uniform. Thus, CZAR may be used transparently in
the semi-eABF case, as it provides unbiased estimates of the
free energy gradient along both extended and nonextended
variables. This is used in the numerical tests of semi-eABF
below.

Implementation. Implementation of eABF Dynamics.
Our eABF implementation in the Collective Variables Module
(Colvars)16 is essentially a combination of two pre-existing
features: extended-system coordinates, and multidimensional
ABF.12 The extended Lagrangian functionality of the colvars
module includes separate velocity-Verlet or Langevin integra-
tors, independent from that of the underlying MD engine, as
well as harmonic restraints coupling each extended degree of
freedom to its counterpart collective variable.
Activating extended dynamics introduces two tunable

parameters for each extended coordinate: integrating the
Langevin equation of motion requires that the coordinate be
assigned a fictitious mass, and the harmonic spring is defined by
an arbitrary force constant. Rather than choosing those
parameters directly, the Colvars implementation relies on an
equivalent pair of quantities whose choice is more intuitive: the
“thermal width” of the coupling, σ, which is also the standard
deviation of the Gaussian kernel in eq 8, and its time constant τ
(the period of the oscillator). They are determined from the
following expressions:

σ =
k T

k
B

(24)

τ π= m
k

2
(25)

where m is the fictitious mass and k is the harmonic force
constant. Broadly speaking, if λ is to approximate ξ(q), then a
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small value of the tolerance σ is desirable. Conversely, the
oscillator period should be much larger than the MD time step
for stability of the integrator. More refined criteria for choosing
these parameters will emerge from the numerical tests
described below.
One practical benefit of implementing eABF over standard

ABF, besides doing away with geometric complexity, is
estimating the free energy gradient without needing the values
of atomic forces. In large-scale parallel applications where
NAMD17 and LAMMPS18 are often used, this removes the
need to gather these atomic forces on the computing node
tasked with executing the ABF algorithm. The decrease in
interprocess communications should yield scaling improve-
ments when many particles are involved in the definition of the
collective variable.
Implementation of the CZAR Free Energy Estimator. We

provide an implementation of the new CZAR estimator within
the Colvars Module.16 It is de facto available for any
combination of MD engine and platform supported by the
Colvars, most notably, NAMD17 and LAMMPS.18 The
algorithm is lightweight and relies on two accumulators that
are updated at every time step: the z-conditioned average forces
k⟨zk − λ⟩z, and the biased z marginal distribution, ρ̃(z). These
two quantities are only combined at output time, to yield the
free energy gradient estimate according to eq 22. The
implementation, as with most Colvars functionality, supports
an arbitrary number of variables. In one-dimensional cases, the
gradient is integrated automatically using the trapezoidal rule.
In multidimensional cases, the gradient must be integrated in a
postprocessing step to yield the free energy surface. To this
end, we use our discrete Markov chain Monte Carlo
algorithm12 in this work for practical reasons, but in principle
any Poisson solver with adequate boundary conditions could be
used.19

Computational Details. The test systems considered here
were two small peptides in vacuum that were used in many
studies before. The helical peptide deca-alanine was associated
with its end-to-end distance (using the first and last α carbon
atoms, in the absence of bond constraints). For two-
dimensional tests, conformation of the dipeptide mimic N-
acetyl-N-methyl-L-alanylamide (NANMA) was described by its
central Ramachandran angles φ and ψ.
Simulations were run with the development version of

NAMD 2.12,17 together with the Collective Variables Module16

version 2016-09-03, which will be included in NAMD 2.12. In
vacuo systems were modeled by the CHARMM22 force field,
and simulated with a time step of 0.5 fs with Langevin dynamics
at 300 K and a damping coefficient of 5 ps−1. The Zheng and
Yang umbrella integration estimator8,14 was used in its NAMD/
Colvars implementation by Fu et al.15

Convergence of free energy gradient estimators was assessed
as follows. For each set of parameters, 10 simulations were
started using different random seeds and stochastic initial
velocities, and run for 10 ns each. For assessing the
convergence of true free energy estimators, sampling was
increased to 20 simulations of 20 ns each to account for their
higher variance. Values of the estimators to be tested were
saved every nanosecond. The average of the final estimates of
the free energy gradient from those replicas was the target for
measuring “relative” convergence toward the limiting value of a
given estimator under a given set of parameters. Reference ABF
simulations were run under the same conditions except for the
extended variables. The average ABF gradient from those

reference simulations was the target to test for “absolute”
convergence toward the true free energy gradient. For each
individual test simulation, the root-mean-square distance from
the estimated gradient to the target was calculated as a function
of sampling time. The average and standard deviations of these
distances over sets of simulations were used for comparing the
accuracy and rate of convergence of estimators, and are plotted
in Figures in the Results section.

■ RESULTS AND DISCUSSION
Convergence of eABF. When estimating the free energy

profile A(z) in an eABF simulation, convergence occurs at two
levels. At the level of eABF itself, the free energy gradient
estimator converges toward Ak′(λ), and the observed
distribution of λ becomes uniform. This depends on tunable
eABF parameters σ and τ, and on the delay parameter
fullSamples. The second level is convergence of the estimators
of A(z) based on the eABF trajectory (zt, λt). The latter
depends on the choice of estimator, and in the case of the
Zheng/Yang and CZAR estimators described above, on good
sampling of the joint distribution of z and λ.
Because the methods are intended for large-scale molecular

simulations where sampling time is necessarily limited, we test
the estimators and parameter sets based on their rate of
convergence at short and moderate times (10 ns for the fast
deca-alanine system).
The fullSamples parameter controls when enough sampling

has been collected in one given bin for the adaptive biasing
force to be introduced. To ensure continuity of the force as a
function of time, the force is scaled by a linear ramp that goes
from zero to one as the local sample count evolves between half
the value of fullSamples and its full value.12 The top panel in
Figure 3 shows convergence rates of test simulations as a
function of fullSamples. While the deviation at the end of the 10
ns simulations is equivalent, it can be seen to affect the initial
convergence rate. A value of zero leads to transient over-
compensation of the underlying free-energy, with strong
dispersion of the results in the initial 4 ns for this particular
case. This relaxation time could be much longer for more
slowly relaxing systems, however, which is why larger values are
advisable. Even for this toy system, a value of 2000 samples
gives the fastest short-time convergence, as well as nearly
optimal accuracy in the intermediate regime (4−8 ns) until the
accuracies of all simulation sets converge at 10 ns. The
fullSamples parameter is not specific of eABF, yet its role is not
necessarily identical in eABF as in standard ABF. Tests of ABF
on the same system showed that a value of 0 for fullSamples did
not impair convergence.20 This confirms that short-time scale
relaxation properties of ABF and eABF are substantially
different, as eABF dynamics is dominated by the relatively
slow oscillations of the fictitious degree of freedom (Figures 1
and 4). On longer time scales, however, the limiting factor
becomes orthogonal relaxation of slow degrees of freedom that
are not captured by the chosen transition coordinate. That slow
phenomenon occurs under similar circumstances in ABF and
eABF. It is not well-captured by a small gas-phase system such
as this one, yet slower systems would not lend themselves to
precise statistical characterization.
Like fullSamples, the fluctuation period τ of the oscillator

(defined in Equation 25) has no measurable influence on the
deviation after 10 ns of simulation (Figure 3, middle).
However, it does slightly influence the rate of convergence
for shorter times. For this system, we find 100 fs to give the
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fastest convergence. A shorter time of 50 fs gives similarly fast
convergence, yet this is only possible because we use a short
MD integration time step of 0.5 fs in these gas-phase
simulations. For condensed-phase simulations with longer
timesteps, larger values of τ may be required to guarantee the
accuracy of the extended-system trajectory: we recommend
scaling it with the integration time step of the extended
variable. Unless otherwise stated, other eABF simulations of the

deca-alanine system are performed with fullSamples set to 2000
and a τ of 100 fs.
The key parameter of an eABF simulation is the coupling

width σ, whose effect on convergence is illustrated by the lower
panel of Figure 3. In the σ →0 limit, eABF is equivalent to
standard ABF. The initial rate of convergence is simply an
increasing function of σ: broader fluctuations of the fictitious
degree of freedom appear to accelerate convergence. The
slowest initial rate is obtained for standard ABF. This order is
still valid at the end of the 10 ns interval, although error values
have come closer together. Standard ABF and eABF at σ = 0.1
still have the highest variance. This result is surprising in the
sense that higher values of σ make the simulation more
“approximate” or “blurry”. However, this expected loss of
accuracy leads to a gain in precision.
In ABF, fluctuations of the instantaneous force Fξ are

dominated by high-frequency terms due to bonded interactions
(Figure 4). In eABF, the mean square fluctuation of the spring
force σF

2 is of the order of k/β, which implies:

σ
βσ

∝ 1
F

(26)

Thus, the choice of σ is a trade-off between fluctuations of the
extended variable (bias of Ak as an estimator of A) and
fluctuations of the extended force (variance of Ak): a high σ,
low k will yield a limiting value of Ak that is very different from
A but is estimated with low variance. However, the bias on Ak

can be corrected by the estimators described below, which
displaces the optimal compromise toward a soft (low k) rather
than a stiff spring (high k). As evidenced numerically in Figure
4, even a moderately soft spring results in considerable noise
reduction with respect to ABF.
The upper panel of Figure 5 shows the joint biased

distribution ρ̃(z, λ) observed for four different values of σ.
These distributions observed numerically agree well with the
prediction of eq 12 based on numerical estimates of A and Ak

(data not shown). The common feature is that the marginal
distribution in λ is nearly uniform, thanks to the eABF bias.
Setting σ = 0.1 Å enforces near equality of the two variables,
leading to a very narrow joint distribution and a nearly uniform
z-marginal as well (lower panel of Figure 5). For looser
coupling, the distribution broadens. At σ = 0.5, the high-

Figure 3. Convergence rate of eABF simulations as a function of the
fullSamples parameter (upper panel), coupling time scale τ defined in
eq 25 (middle panel), and coupling width σ defined in eq 24 (lower
panel). The graphs show the RMS deviation of the eABF free energy
gradient from an estimate of its limiting value, as a function of
sampling time, averaged over ten 10-ns trajectories (error bars indicate
standard deviation over the 10-fold average). Dotted line is from
standard (non-extended-system) ABF simulations.

Figure 4. Time trajectories of the spring force in eABF (red) and the
instantaneous collective force in ABF (black) for the deca-alanine
system with σ = 0.2 Å. Data points are shown for every MD time step,
here, every 0.5 fs.
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probability region deviates visibly from the equality line, leading
to undersampling of low values of z. At σ = 1, sampling along z
becomes strongly nonuniform, with variations across 3 orders
of magnitude. In this example, eABF sampling is most effective
for σ between 0.2 and 0.5 Å, that is, where the mollification is
significant but not sufficient to impede sampling along z.
Therefore, the drawback of a softer spring does not directly

reside in the greater difference between A and Ak, but rather in
the greater deviation of the limiting biased distribution of z
from uniformity, eventually yielding poor sampling as high-free-
energy regions in z may be missed despite complete sampling
over λ.
Since the eABF bias differs from the optimal bias by Gaussian

convolution (eq 13), deviations of ρ̃(z) from uniformity are
related to the difference between ρ and its convolution.
Considering the convolved of ρ by a Gaussian of variance σ2 as
an approximation to ρ(z) in the small-σ limit, it can be shown

(see Supporting Information) that the error is bounded by
∥ρ″∥L∞σ2/2. That is, deviation from uniform sampling depends
on the curvature of ρ(z). One may see from Figure 5 that
sampling of z is reduced in concave regions of the PMF (hence
of ρ) and increased in convex regions. As a result, the optimal
value of σ for a given application depends on the curvature of ρ.

Convergence of Free Energy Estimators. Figure 6
shows the convergence toward the “true” free energy derivative
A′(z) of the naive, Zheng/Yang (ZY), and CZAR estimators
compared to standard ABF for different values of σ. The long-
time bias of the naive estimator is clearly apparent for larger
values of σ, but this estimator still proves faster-converging than
standard ABF, and as accurate at t = 20 ns, for σ equal to 0.1 Å.
On this time scale, the asymptotic bias of the ZY estimator at

finite σ is only visible for σ of 0.5 or 1 Å: on those conditions,
the Gaussian assumption (20) for the conditional distribution is
not verified. For lower values of σ, the bias is masked by the
error due to variance: the mean error at 20 ns is equivalent to
that of CZAR or standard ABF. Still, the convergence rate is
slightly slower at 0.2 Å and at 0.1 Å, with a greater dispersion.
Since the CZAR and ZY estimators share their mean force
term, this could be ascribed to noise in the two-dimensional (z,
λ) histogram, which the Gaussian approximation may not erase
at short times in less-populated regions of the histogram.
Another contributing factor could be the error due to
discretization along λ.
The defining feature of CZAR is its robustness with respect

to σ, directly deriving from its asymptotically unbiased nature.
Its rate of convergence, however, depends on efficient sampling
along z. For too large values of σ (here, 1 Å), enhanced
sampling along λ leaves some metastability or unsampled
regions along ξ (Figure 5), leading to slower convergence of
the PMF estimator (blue line).
In constrast with convergence of the mollified eABF free

energy (Figure 3), all estimators seem more accurate at small σ
(0.1 Å), but the CZAR estimator shows much more robustness
with respect to σ.

Two-Dimensional Case. On the two-dimensional coordi-
nate describing the NANMA peptide, the PMF estimates from
eABF/CZAR and standard ABF are visually indistinguishable
after 100 ns of sampling (Figure 7). A more quantitative view of
the convergence is given by the upper panel of Figure 8. The
optimal value of σ here is 5°. σ = 1° produces a high initial
error, certainly due to the high variance of the 2D (φ, ψ)
histogram at short sampling times. At 100 ns, this estimate has
reached the error of standard ABF. Conversely, the σ = 10°
simulation shows a high initial convergence rate, but at later
times, its convergence is impeded by poor sampling along (φ,
ψ) due to insufficient coupling to (λφ, λψ), similar to the σ = 1
Å case for deca-alanine (Figure 5).
The semi-eABF case is a form of 2D-ABF dynamics where

one of the variables is biased directly, while the other is coupled
to a fictitious degree of freedom that is biased. The results are
largely similar to the 2D-eABF case, demonstrating the practical
effectiveness of the approach. There is one interesting
exception: the loose coupling case (σ = 10°), which shows
slower convergence in 2D: eABF converges well when only the
angle ψ is treated with an extended variable. This results from
the anisotropic shape of the 2D PMF, where the barriers are
more pronounced along φ than along ψ (Figure 7).

Figure 5. Upper: Observed joint distribution of (z, λ), the physical and
extended coordinates, in eABF sampling of the deca-alanine system,
for different values of σ. The scale is logarithmic, with red isovalue
lines separated by a factor of 10 in probability density. Lower:
Observed marginal distribution of z = ξ(q) from eABF sampling at
different values of the coupling width σ for the deca-alanine system,
plotted on a logarithmic scale.
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■ CONCLUSION
The eABF approach is a generalization of ABF, when applied to
fictitious degrees of freedom coupled to generalized coordinates
of interest. In contrast to ABF, it imposes no requirements as to
what combinations of coordinates may be used, and only their
gradients, not their second derivatives, are needed. eABF
sampling is more effective than ABF due to the noise reduction

effect of the fluctuations of the extended variable, as well as the
nonlocal effect of the biasing force. We introduce CZAR, a
conceptually simple, asymptotically unbiased estimator of the
free energy that converges faster than ABF for a broad range of
coupling strengths.
Thus, we have shown that the deviation of Ak from A is not

damaging, as long as sampling of the actual geometric
coordinate is efficacious. This stems from the essential
difference between eABF and ABF, that is, separating the
force used for sampling from the free energy gradient estimator.
In ABF, the free energy that is being estimated is used exactly
to accelerate the dynamics. eABF decouples the sampling bias
and free energy estimate, leaving some flexibility to use a biased
estimator with reduced variance and fast convergence for
sampling, while still ultimately benefiting from an unbiased free
energy estimator. In this sense, eABF is similar in spirit to a
recently proposed approach, combining metadynamics for
exploration and a separate free energy estimator.10 Indeed, the
convergence rate of eABF/CZAR as a free energy estimator
compares favorably to that of standard ABF, essentially because

Figure 6. Convergence of the naive (top), Zheng/Yang (middle), and
CZAR (bottom) free energy estimators, as a function of the coupling
parameter σ. The graphs show the RMS deviation from the converged,
true free energy gradient of each free energy gradient estimator as a
function of sampling time, averaged over 20 20 ns trajectories (error
bars indicate standard deviation over the 20-fold average). The dotted
line is from a set of standard (nonextended system) ABF simulations.

Figure 7. Two-dimensional free energy surface for the Ramachandran
angles of NANMA in vacuum, reconstructed by standard ABF (A) and
eABF with the CZAR estimator (B). Red isovalue lines are separated
by 2 kcal/mol. Each simulation is 100 ns long.
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it combines efficient exploration on a smoothed free energy
surface with an unbiased estimator of the actual free energy.
eABF is applicable where ABF is not, in particular for

elaborate generalized coordinates where calculation of second
derivatives is cumbersome, and for sets of coordinates where
orthogonality of the inverse gradient (eq 2) is difficult to satisfy.
Its added algorithmic complexity (integrator for the extended
equations of motion and free energy estimator) is offset by the
reduced geometric calculations. There are two additional
tunable parameters in eABF. However, we have shown that
one of them, the oscillation time, has limited impact on
convergence, and the other, the coupling width, has a range of
safe values, particularly if a robust, asymptotically unbiased free
energy estimator is used.
Based on these results, it may be argued that eABF/CZAR is

always preferable to ABF for its rate of convergence, regardless
of practical implementation considerations. This may become
clearer when several large-scale, numerically challenging
applications are documented.
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