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Abstract. — We investigate the Cauchy problem for the f(R) theory of modified gravity,
which is a generalization of Einstein’s classical theory of gravitation. The integrand of the
Einstein-Hilbert functional is the scalar curvature R of the spacetime, while, in modified
gravity, it is a nonlinear function f(R) so that, in turn, the field equations of the modified
theory involve up to fourth-order derivatives of the unknown spacetime metric. We introduce
here a formulation of the initial value problem in modified gravity when initial data are
prescribed on a spacelike hypersurface. We establish that, in addition to the induced metric
and second fundamental form (together with the initial matter content, if any), an initial data
set for modified gravity must also provide one with the spacetime scalar curvature and its
first-order time-derivative. We propose an augmented conformal formulation (as we call it), in
which the spacetime scalar curvature is regarded as an independent variable. In particular, in
the so-called wave gauge, we prove that the field equations of modified gravity are equivalent
to a coupled system of nonlinear wave–Klein-Gordon equations with defocusing potential.
We establish the consistency of the proposed formulation, whose main unknowns are the
conformally-transformed metric and the scalar curvature (together with the matter fields) and
we establish the existence of a maximal globally hyperbolic Cauchy development associated
with any initial data set with sufficient Sobolev regularity when, for definiteness, the matter
is represented by a massless scalar field. We analyze the so-called Jordan coupling and work
with the so-called Einstein metric, which is conformally equivalent to the physical metric
—the conformal factor depending upon the unknown scalar curvature. A main result in this
paper is the derivation of quantitative estimates in suitably defined functional spaces, which
are uniform in term of the nonlinearity f(R) and show that spacetimes of modified gravity
are ‘close’ to Einstein spacetimes, when the defining function f(R) is ‘close’ to the Einstein-
Hilbert integrand R. We emphasize that this is a highly singular limit problem, since the field
equations under consideration are fourth-order in the metric, while the Einstein equations are
second-order only. In turn, our analysis provides the first mathematically rigorous validation
of the theory of modified gravity.
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1. Introduction

In recent years, new observational data have suggested that alternative theories of grav-
ity, based on extensions of Einstein’s field equations of general relativity, may be relevant
in order to explain the accelerated expansion of the Universe as well as certain instabil-
ities observed in galaxies —without explicitly introducing notions such as ’dark energy’
or ’dark matter’. Among these theories, the so-called f(R)–theory of modified grav-
ity (associated with a prescribed function f(R) of the scalar curvature R) was recognized
as a physically viable alternative to Einstein’s theory. Despite the important role played
by this theory in physics, the corresponding field equations have not been investigated
by mathematicians yet. This is due to the fact that the modified gravity equations are
significantly more involved than the Einstein equations: they contain up to fourth-order
derivatives of the unknown metric, rather than solely second-order derivatives. Extensive
works are available in the physical and numerical literature [3, 4, 8, 7, 13, 23, 24, 25].
The study of the well-posedness for this theory was also investigated earlier for instance in
[9] by taking advantage of an equivalence with the Brans-Dicke theory. Furthermore, the
function f is sometimes taken to be singular (and this leads to a further difficulty [5]), but
here we assume this function to be regular.

Our purpose in this article is to initiate a rigorous mathematical study of the modified
gravity equations and, specifically,

– to introduce a notion of initial data set in modified gravity,
– to describe an initial value formulation from an arbitrary spacelike hypersurface,
– to establish the existence of a globally hyperbolic maximal development as-

sociated with a given initial data set,
– and, importantly, to provide a rigorous validation that the modified gravity the-

ory is an ‘approximation’ of Einstein’s theory, in sense that we will make precise with
quantitative estimates. For definiteness, we will deal with asymptotically flat solu-
tions, although our arguments are purely local and could be formulated in a domain
of dependence of any initial data set. Our setting is appropriate in order to address
the global nonlinear stability of Minkowski spacetime which we establish in the series
of papers [18]–[22].

As already mentioned, in addition to the (second-order) Ricci curvature terms arising in
the Einstein equations, the field equations of the f(R)-theory involve fourth-order deriva-
tives of the metric and, more precisely, second-order derivatives of the scalar curvature.
The corresponding system of partial differential equations (after a suitable choice of gauge)
consists of a system of nonlinear wave equations, which is significantly more involved than



THE VALIDITY OF THE THEORY OF MODIFIED GRAVITY 5

the corresponding system derived from Einstein’s equations. Yet, a remarkable mathe-
matical structure is uncovered in the present work, which we refer to as the augmented
conformal formulation:

– we introduce a conformally equivalent metric based on a conformal factor that depends
upon the (unknown) scalar curvature,

– we proceed by introducing an extended system in which the metric and its scalar
curvature are regarded as independent unknowns,

– we then establish the well-posedness of the initial value problem for this augmented
formulation,

– and we finally explain how to recover the solutions to the original system of modified
gravity.

Before we present our results in further details, let us first to recall that Einstein’s theory
is based on Hilbert-Einstein’s action

(1.1) AHE[φ, g] :=

∫
M

( Rg

16π
+ L[φ, g]

)
dVg

associated with a (3 + 1)–dimensional spacetime (M, g) with Lorentzian signature
(−,+,+,+) whose canonical volume form is denoted by dV = dVg. Here, and thereafter,
we denote by Rm = Rmg, Ric = Ricg, and R = Rg the Riemann, Ricci, and scalar curva-
ture of the metric g, respectively. Observe that the above functional AEH[g] is determined
from the scalar curvature Rg and a Lagrangian L[φ, g], the latter term describing the
matter content represented by one or several fields φ defined on M .

It is well-known that critical metrics for the action AEH[g] (at least formally) satisfy
Einstein’s equation

(1.2) Gg := Ricg −
Rg

2
g = 8π T [φ, g],

in which the right-hand side(1)

(1.3) Tαβ[φ, g] := −2
δL

δgαβ
[φ, g] + gαβ L[φ, g]

is referred to as the stress-energy tensor of the matter model. In the vacuum, for instance,
these equations are equivalent to the Ricci-flat condition

(1.4) Ricg = 0.

The ‘higher-order’ gravity theory of interest is defined as follows. A smooth function
f : R→ R being prescribed, the action of the f(R)-modified gravity theory reads(2)

(1.5) ANG[φ, g] =:

∫
M

(f(Rg)

16π
+ L[φ, g]

)
dVg,

(1)Greek indices α, β = 0, . . . , 3 represent spacetime indices.
(2)See Buchdahl [6], as well as the earlier proposal by Brans and Dicke [4].
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whose critical points satisfy the field equations of modified gravity

(1.6)
Ng : = f ′(Rg)Gg −

1

2

(
f(Rg)−Rgf

′(Rg)
)
g +

(
g�g −∇d

)(
f ′(Rg)

)
= 8π T [φ, g].

The modified gravity tensor Ng thus “replaces” Einstein’s tensor Gg, while the right-hand
side(1) is still given by the same expression (1.3). Observe that, by taking the trace of
(1.6), we deduce the scalar equation

(1.7) tr Ng = f ′(Rg)Rg − 2f ′(Rg) + 3�gf
′(Rg) = 8πtr (T ),

which can be regarded as an evolution equation for the spacetime curvature and will play
an important role.

Concerning the matter content, we point out (cf. Section 2 below for the derivation) that
the modified gravity tensor Ng is divergence free, that is,

(1.8) ∇αNαβ = 0,

so that the matter field satisfies the matter evolution equation

(1.9) ∇αTαβ = 0.

Furthermore, in order for the nonlinear theory to be a formal extension of the classical
theory, we assume that f(R) ' R in the zero curvature limit R→ 0. Since we will see later
that the (positive) sign of the coefficient κ := f ′′(0) > 0 is critical for nonlinear stability,
it is convenient to set

(1.10) f ′(R) = 1 + κ
(
R + κO(R2)

)
,

which after integration yields

(1.11) f(R) = R + κ
(R2

2
+ κO(R3)

)
.

By definition, the remainder O(z2)/z2 remains bounded when z → 0 (uniformly in κ, if
this parameter is taken to vary). In particular, the function f is increasing and strictly
convex in a neighborhood of the origin and, therefore, one-to-one. In particular, the term
κO(R3) in (1.11) could be taken to vanish identically, which corresponds to the quadratic

action
∫
M

(
Rg + κ

2
(Rg)

2 + 16πL[φ, g]
)
dVg often treated in the physical literature.

As we will see, in local coordinates, the field equations (1.6) take the form of a nonlinear
system of fourth-order partial differential equations (PDE’s), while the Einstein equation
(1.2) leads to only second-order equations. Our challenge in the present work is investigat-
ing the role of these fourth-order terms and generalizing the mathematical methods that
were originally developed for Einstein’s equations. Furthermore, one formally would expect
to recover Einstein’s theory by letting the coefficient κ tend to zero. However, this limit
is very singular, since this involves analyzing the convergence of a fourth-order system (of
no well-defined type) to a system of second-order (hyperbolic-elliptic) PDE’s.

(1)further discussed shortly below
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Before we can proceed further, we need to make an important observation concerning
the modeling of the matter content of the spacetime. In the physics literature, the choice of
the frame(1) in which measurements are made is still somewhat controversial as explained
in [8, 7, 23]. Yet, this issue is essential in order for properly formulating the coupling
between the gravity equations and the matter fields. Two standpoints were proposed by
physicists. In the so-called “Jordan frame”, the original metric gαβ is considered to be the
physically relevant metric, while in the “Einstein frame”, the conformally-transformed
metric

(1.12) g†αβ := f ′(Rg)gαβ

is considered to be the physically relevant metric. In the present work, these two approaches
will be referred to as the “Jordan coupling” and “Einstein coupling” for the matter. Hence,
the “Jordan coupling” refers to the minimal coupling of the matter field to the geometry
of the spacetime (represented by the tensor Ng) described by the “Jordan metric” (i.e. the
original metric) gαβ. On the other hand, the “Einstein coupling” refers to the minimal
coupling of the matter field to the geometry of the spacetime described by the metric g†αβ.

It is important to observe that different matter couplings lead to different physical the-
ories, which may or may not be equivalent to each other. Of course, a given physical
theory can also be expressed in various choices of metrics, that is, for the problem under
consideration, the “Jordan coupling” could also be expressed with the “Einstein metric”
g†αβ, while the “Einstein coupling” could also be stated in the “Jordan metric” gαβ. A
coupling which is minimal (in the sense that the action takes the decoupled form (1.5)),
in general, will no longer be minimal in another choice of metric. This suggests that the
Einstein metric is not the physical metric in the Jordan coupling theory, while the Jordan
metric is not the physical metric in the Einstein coupling. This has apparently led to great
confusion and controversies in the physical literature, until some clarification was brought
in the most recent contributions [8, 7]. Observe that our notion of Einstein coupling is
equivalent to the notion of Einstein frame adopted in [23].

In this work, we will treat the Jordan coupling but expressed in the (conformal) Einstein
metric g†. This coupling has the minimal form (1.5), but only in the original metric g. If
one would insist on stating the problem in terms of the Einstein metric, then the coupling
would not be minimal. This presentation appears to be optimal from the standpoint of
establishing a well-posed theory for the initial value problem.

Throughout this article, the matter model of interest is a massless scalar field, defined
by its standard stress-energy tensor, and we consider the following two possible couplings:

(1.13)
Tαβ := ∇αφ∇βφ−

1

2
gαβg

δλ∇δφ∇λφ,

T †αβ := f ′(Rg)
(
∇αφ∇βφ−

1

2
gαβg

δλ∇δφ∇λφ
)
,

and, for convenience, the Einstein coupling is stated in the Jordan metric. As should be
expected from the above discussion, different choices of coupling lead to systems of PDE’s

(1)From a mathematical standpoint, all frames are of course equivalent.
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of rather different nature. In fact, we will show that the Einstein coupling leads to an
ill-defined Cauchy problem. Therefore, in the rest of this section, we restrict attention to
the Jordan coupling.

We are now in a position to state our existence theory, at least in a preliminary form.
We recall that the initial value problem for the Einstein equations is classically formulated
as follows. (We refer to the textbook by Choquet-Bruhat [10] for the terminology and
historical references.) Given a Riemannian 3–manifold (M, g) together with a 2-covariant
tensor field K (plus suitable matter data) satisfying certain constraint equations, one
seeks for a (globally hyperbolic) development of this initial data set. By definition, such a
development consists of a Lorentzian manifold (M, g) satisfying the Einstein equations such
that M is embedded in M as a spacelike hypersurface with induced metric g and second
fundamental form K. The maximal (globally hyperbolic) development, by definition, is
the unique development of the initial data set in which any such development can be
isometrically embedded.

In short, our formulation of the initial value problem for the theory of modified gravity is
as follows. Since the field equations (1.6) are fourth-order in the metric, additional initial
data are required, which are denoted by R0, R1 and are specified on the initial slice M :
they represent the scalar curvature and the time derivative of the scalar curvature of the
(to-be-constructed) spacetime. They must of course also satisfy certain Gauss-Codazzi-
type constraints. In addition, since the matter is modeled by a scalar field, say φ, we
also prescribe some initial data denoted by φ0, φ1, and representing the initial values of
the scalar field and its time derivative, respectively. The prelimary statement above will
be made more precise in the course of our analysis and all necessary terminology will be
introduced. For definiteness, the results are stated with asymptotically flat data, but this
is unessential.

Theorem 1.1 (Cauchy developments in the theory of modified gravity)
Consider the field equations (1.6) for the theory of modified gravity based on a

function f = f(R), satisfying (1.10), and assume that the matter is described by a
scalar field with Jordan coupling (1.13). Given an asymptotically flat initial data set(1)

(M, g,K,R0, R1, φ0, φ1), there exists a unique maximal globally hyperbolic development
(M, g) of these data, which satisfies(2) the modified gravity equations (1.6). Furthermore,
if an initial data set (M, g,K,R0, R1, φ0, φ1) for modified gravity is “close” (in a sense
that will be made precise later on) to an initial data set (M, g′, K ′, φ′0, φ

′
1) for the classical

Einstein theory, then the corresponding development of modified gravity is also close to
the corresponding Einstein development. This statement is uniform in term of the gravity
parameter κ and modified gravity developments converge to Einstein developments when
κ→ 0.

(1)in the sense of Definition 6.2, below
(2)in the sense of Definition 2.6, below
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Our results provide the first mathematically rigorous proof that the theory of modified
gravity admits a well-posed Cauchy formulation and, furthermore, can be regarded as a
“correction” to Einstein’s classical theory, as indicated by physicists.

A key contribution of the present work is a re-formulation of the field equations of
modified gravity as a system of second-order hyperbolic equations and, more precisely, a
coupled system of wave-Klein-Gordon equations. Note that wave-Klein-Gordon systems
have brought a lot of attention in mathematical analysis: see, for instance, Bachelot [1, 2],
Delort et al. [11, 12], Holzegel and Warnick [15], Katayama [16], Lannes [17], and LeFloch
and Ma [18]–[22] and the references therein. For further results on the mathematical as-
pects of the f(R) theory, we refer to [19]. We advocate here the use of wave coordinates
associated with the Einstein metric and our formulation in such a gauge leads us to pro-
pose the following definition. Importantly, our formulation below contains an augmented
variable denoted by ρ, which represents the scalar curvature of the spacetime(1).

Definition 1.2. — The augmented conformal formulation of the field equations of
modified gravity (with Jordan coupling and in wave coordinates associated with the Einstein
metric) reads:

(1.14)

g†
α′β′

∂α′∂β′g
†
αβ = Fαβ(g†; ∂g†, ∂g†)− 12∂αρ∂βρ+ V (ρ)g†αβ − 16π∂αφ∂βφ,

g†
α′β′

∂α′∂β′φ = −2g†
αβ
∂αφ∂βρ,

g†
α′β′

∂α′∂β′ρ−
ρ

3κ
= W (ρ)− 4π

3e2ρ
g†
αβ
∂αφ∂βφ,

g†
αβ

Γ†
λ

αβ = 0,

in which Fαβ(g†; ∂g†, ∂g†) are quadratic expressions (defined in Section 3 below), ∂g† is
determined by the Ricci curvature, and the function V = V (ρ) and W = W (ρ) are of
quadratic order as ρ→ 0.

Clearly, we recover Einstein equations by letting κ→ 0 and thus f(R)→ R. Namely, we
will show that ρ→ 0 so that (1.14) reduces to the standard formulation in wave coordinates
[10]. In particular, in this limit, we do recover the expression R = 8π∇αφ∇αφ of the scalar
curvature in terms of the norm of the scalar field.

An outline of the rest of this article is as follows. In Sections 2 and 3, we formulate the
initial value problem first in the Jordan metric and then in the Einstein metric. We find that
the second formulation is simpler, since the Hessian of the scalar curvature is eliminated
by the conformal transformation. Furthermore, we demonstrate that the Einstein coupling
is ill-posed. The conformal formulation is analyzed in Section 4, where the wave gauge
is introduced and the wave-Klein-Gordon structure of the field equations is exhibited.
Section 5 contains one of our main result and proposes an augmented formulation of the
conformal system of modified gravity. The local existence theory with bounds that are

(1)specifically ρ = 1
2 ln f ′(Rg)
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uniform in κ is developed in Sections 6 to 8 and leads us in Section 9 to our main statement
concerning the comparison between the modified and the classical theories.

2. Formulation of the Cauchy problem in the Jordan
metric

2.1. The 3 + 1 decomposition of spacetimes

In this section, we formulate the initial value problem for the modified gravity system, by
prescribing suitable initial data on a spacelike hypersurface. We follow the presentation in
the textbook [10] where the classical gravity is studied. We are interested in a time-oriented
spacetime (M, g) endowed with a Lorentzian metric g with signature (−,+,+,+), which
is homeomorphic to [0, tmax)×Mt and admits a global foliation by spacelike hypersurfaces
Mt ' {t} ×M . The foliation is determined by a time function t : M → [0, tmax) and a
three-dimensional manifold M and, throughout, we assume that

(2.1) M is globally hyperbolic and every Mt is a Cauchy surface.

This ensures that a wave equation with initial data posed on any such Cauchy surface
enjoys the local existence and uniqueness property. (See [10, 14] for the definitions.)

We introduce local coordinates adapted to the above product structure, that is, (xα) =
(x0, xi) = (t, xi), and we call the basis of vectors (∂i) the natural frame defined on each
slice Mt. This also provides us with a ’natural frame’ (∂t, ∂i) on the spacetime M . By
definition, the Cauchy adapted frame is given by the vectors ei = ∂i and e0 = ∂t−βi∂i,
where β = βi∂i a time-dependent field, tangent to Mt, called the shift vector. We impose
the restriction that e0 is orthogonal to each Mt.

We also introduce the dual frame (θα) of the Cauchy adapted frame (eα) by setting

(2.2) θ0 := dt, θi := dxi + βidt,

so that the spacetime metric reads

(2.3) g = −N2θ0θ0 + gijθ
iθj,

where the function N > 0 is referred to as the lapse function of the foliation. The Levi-
Civita connection ∇ associated with g is represented by the set of connection coefficients
ωβγα, defined by

(2.4) ∇eα = ωβγαθ
γ ⊗ eβ

and, consequently,

(2.5) ∇θα = −ωαγβθγ ⊗ θβ.

We denote by g = gt the induced Riemannian metric associated with the slices Mt and
by ∇ the Levi-Civita connection of g, whose Christoffel symbols (in the natural frame)
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are denoted by Γ
c

ab. We can also introduce the extrinsic curvature of the slices or second
fundamental form K = Kt, defined by

(2.6) K(X, Y ) := g(∇Xn, Y )

for all vectors X, Y tangent to the slices Mt, where n denotes the future-oriented, unit
normal to the slices. In the Cauchy adapted frame, it reads

(2.7) Kij = − 1

2N

(
< e0, gij > −glj∂iβl − gil∂jβl

)
.

Here, and throughout this article, we use the notation < e0, gij > for the action of the

vector field e0 on the function gij. Next, we define the time-operator ∂0 acting on a
two-tensor defined on the slice Mt by

(2.8) ∂0Tij =< e0, Tij > −Tlj∂iβl − Til∂jβl,
which, by definition, is a two-tensor on Mt. With this notation, we thus have

(2.9) Kij = − 1

2N
∂0gij.

Elementary calculations (see, for instance, [10, Section VI.3]) yield us the connection
coefficients in terms of the (3 + 1)-decomposition:

(2.10)

ω0
00 = N−1 < e0, N >,

ωi00 = Ngij∂jN, ω0
0i = ω0

i0 = N−1∂iN,

ω0
ij =

1

2
N−2

(
< e0, gij > −ghj∂iβh − gih∂jβk

)
= −N−1Kij,

ωi0j = −NKi
j + ∂jβ

i, ωij0 = −NK i
j,

ωijk = Γ
i

jk.

Here, Γ
i

jk denotes the Christoffel symbol of the connection ∇ in the coordinates {xi}.
It is also a standard matter to derive the Gauss–Codazzi equations for each slice:

(2.11)

Rij,kl = Rij,kl +Kikklj −KilKkj,

R0i,jk = N(∇jKki −∇kKji),

R0i,0j = N(∂0Kij +NKikK
k
j +∇i∂jN).

In addition by suitable contractions of these identities, we arrive at

(2.12a) Rij = Rij −
∂0Kij

N
+KijK

l
l − 2KilK

l
j −
∇i∂jN

N
,

(2.12b) R0j = N
(
∂jK

l
l −∇lK

l
j

)
,

and, for the (0, 0)-component of the Einstein curvature,

(2.12c) G00 =
N2

2

(
R−KijK

ij + (K l
l )

2
)
.
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These equations clarify the relations between the geometric objects of the spacetime M
and the ones of the slices Mt.

The equation (2.12a) yields the evolution of the tensor K and together with the definition
∂0g = −2NK, we thus find the following first-order system satisfied by the metric and the
second fundamental form:

(2.13)
∂0gij = −2NKij.

∂0Kij = N
(
Rij −Rij

)
+NKijK

l
l − 2NKilK

l
j −∇i∂jN.

2.2. Evolution and constraint equations

Our objective is to combine the equations (2.12) and the field equations (1.6) in order
to derive the fundamental equations of modified gravity. We recall first some elementary
identities about the Hessian of a function expressed in the Cauchy adapted frame. Given
any smooth function f : M → R, we can write

∇df = ∇
(
< eγ, f > θγ

)
=< eβ, < eα, f >> θβ ⊗ θα− < eγ, f > ωγβαθ

β ⊗ θα.
First of all, we compute the components

(2.14)

∇i∇jf = ∂i∂jf− < eγ, f > ωγij = ∂i∂jf − Γ
k

ij∂kf − ω0
ij < e0, f >

= ∇i∇jf +KijN
−1(∂t − βl∂l)f

= ∇i∇jf +KijLnf,

where Ln is the Lie derivative associated with the normal unit vector of the slice Mt. Then,
for the other components, we find

∇j∇0f = ∇0∇jf =< e0, ∂jf > − < e0, f > ω0
0j − ∂ifωi0j

= (∂t − βi∂i)∂jf − (∂t − βi∂i)f N−1∂jN +N∂ifK
i
j − ∂if∂jβi

= (∂t − βi∂i)∂jf − (∂t − βi∂i)f ∂j lnN +N∂ifK
i
j − ∂if∂jβi

= ∂j(∂t − βi∂i)f − (∂t − βi∂i)f ∂j lnN +N∂ifK
i
j

= N∂j
(
N−1(∂t − βi∂i)f

)
+NK i

j∂if

and

∇0∇0f = (∂t − βi∂i)(∂t − βi∂i)f − (∂t − βi∂i)f ω0
00 − ∂if ωi00

= (∂t − βi∂i)(∂t − βi∂i)f − (∂t − βi∂i)f (N−1∂jN)− ∂if (N−1(∂t − βi∂i)N)

= (∂t − βi∂i)(∂t − βi∂i)f − (∂t − βi∂i)f · ∂j lnN − ∂if (∂t − βi∂i) lnN.

In particular, the trace of the Hessian of a function is the so-called wave operator,
expressed in the Cauchy adapted frame as

�gf = gαβ∇α∇βf = −N2∇0∇0f + gij∇i∇jf

= −N−2∇0∇0f + gij∇i∇jf + gijKijN
−1(∂t − βl∂l)f

= −N−2∇0∇0f + ∆gf + gijKijLnf,



THE VALIDITY OF THE THEORY OF MODIFIED GRAVITY 13

where ∆gf is the Laplace operator associated with the metric g.
To proceed with the formulation of the field equation (1.6), we need first to rewrite it in

a slightly different form, by defining the tensor:

(2.15) Egαβ := Ngαβ −
1

2
tr (Ng)gαβ,

where tr (·) is the trace with respect to the metric g. Then, we have the following relation
in terms of the Ricci tensor:

(2.16) Egαβ = f ′(Rg)Rαβ +
1

2
f ′(R)W1(Rg)gαβ −

(
1

2
gαβ�g +∇α∇β

)
f ′(Rg),

where we have introduced the function W1 by

(2.17) W1(r) :=
f(r)− rf ′(r)

f ′(r)
, r ∈ R.

In view of (1.6), we know that Eg satisfies the field equations

(2.18) Egαβ = 8π
(
Tαβ −

1

2
tr (T )gαβ

)
=: 8πHαβ,

where we have introduce the new matter tensor Hαβ. More precisely, it will be most
convenient to introduce, for different components, a different form of the equations, that
is, we write the field equations as:

(2.19)

Egij = 8πHij,

Eg0j = 8πH0j,

Ng00 = 8πT00,

or, equivalently,
(2.20a)

f ′(Rg)Rij +
1

2
f ′(R)W1(Rg)gij −

(1

2
gij�g +∇i∇j

)
f ′(Rg) = 8π

(
Tij −

1

2
tr (T )gij

)
,

(2.20b) f ′(Rg)R0j −∇0∇jf
′(Rg) = 8πT0j,

(2.20c) f ′(Rg)Gg00 −
1

2
f ′(Rg)W1(Rg)g00 +

(
g00�g −∇0∇0

)(
f ′(Rg)

)
= 8πT00.

For completeness we check the following equivalence.

Lemma 2.1. — If a metric gαβ and a matter tensor Tαβ satisfy the field equations (1.6),
then they also satisfy (2.19). The converse is also true.

Proof. — The equations (2.19) are clearly equivalent to(
Ng − 8πT

)
ij

= −1

2
gijtr (8πT −Ng),(

Ng − 8πT
)
0j

= 0,

Ng00 − 8πT00 = 0.
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By taking the trace of the tensor (Ng − 8πT ), we find tr (Ng − 8πT ) = −3
2
tr (8πT −Ng)

and thus tr (8πT −Ng) = 0, which proves the result.

Hence, in view of (2.20a) and by using (2.14), we have arrived at the field equations of
modified gravity in a preliminary form. First of all, we have

(2.21a)

Rij =
1

f ′(Rg)

(
Egij −

1

2
f ′(Rg)W1(Rg)gij +

1

2

(
gij�g + 2∇i∇j

)
f ′(Rg)

)
=

Eij
f ′(Rg)

− 1

2
W1(Rg)gij +

(
gij∆g + 2∇i∇j

)
f ′(Rg)

2f ′(Rg)

−
gij∇0∇0f

′(Rg)

2N2f ′(Rg)
+
(
Kij +

1

2
gijK

)
Ln ln(f ′(Rg)),

where K := gijKij is the trace of K with respect to g. We also have

(2.21b)

R0j =
1

f ′(Rg)

(
Ng0j +∇0∇jf

′(Rg)

)
=

Ng0j

f ′(Rg)
+
N∂j

(
N−1(∂t − βi∂i)f ′(Rg)

)
f ′(Rg)

+NKi
j∂i
(

ln(f ′(Rg))
)

=
Ng0j

f ′(Rg)
+
N∂j

(
f ′′(Rg)LnRg

)
f ′(Rg)

+NKi
j∂i
(

ln(f ′(Rg))
)
,

and, finally,

(2.21c)

G00 =
1

f ′(Rg)

(
Ng00 +

1

2
f ′(Rg)W1(Rg)g00 − (g00�g −∇0∇0)f

′(Rg)
)

=
Ng00

f ′(Rg)
+

1

2
g00W1(Rg)−

g00
f ′(Rg)

(
∆g + gijKijLn

)
f ′(Rg).

Next, by combining (2.21a) with (2.12a), (2.21b) with (2.12b), and (2.21c) with (2.12c),
the evolution equations and constraint equations for the system of modified gravity read

(2.22)

∂0Kij = NRij −NRij +NKijK
l
l − 2NKilK

l
j −∇i∂jN

= NRij +NKijK
l
l − 2NKilK

l
j −∇i∂jN

− NEij
f ′(Rg)

+
N

2
W1(Rg)gij −

N
(
gij∆g + 2∇i∇j

)
f ′(Rg)

2f ′(Rg)

+
Ngij∇0∇0f

′(Rg)

2N2f ′(Rg)
−N

(
Kij +

1

2
gijK

)
Ln ln(f ′(Rg)),

∂0gij = −2NKij,
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and

(2.23)
R−KijK

ij + (Kj
j )

2 =
2Ng00

N2f ′(Rg)
+

2∆gf
′(Rg)

f ′(Rg)

+ 2gijKijLn

(
ln f ′(Rg)

)
−W1(Rg),

where

(2.24) ∂jK
i
i −∇iK

i
j =

Ng0j

Nf ′(Rg)
+
∂j
(
f ′′(Rg)LnRg

)
f ′(Rg)

+Ki
j∂i
(

ln(f ′(Rg))
)
.

It remains to consider the coupling with the matter field, described by the stress-energy
tensor Tαβ. Recall that the equations read Ngαβ = 8πTαβ, where different expressions for
Tαβ are provided for the Jordan coupling and for the Einstein coupling. We also define the
mass density σ and the momentum vector J (measured by an observer moving orthogonally
to the slices) by the relations

(2.25) σ := N−2T00, Jj := −N−1T0j.
We can thus conclude this section and introduce a definition suitable for modified gravity.

Proposition and Definition 2.2. — The equations for modified gravity in the Cauchy
adapted frame {e0, e1, e2, e3} decompose as follows:
1. Evolution equations:

(2.26)

∂0Kij =NRij +NKijK
l
l − 2NKilK

l
j −∇∂jN

−
8πN

(
Tij − 1

2
gijtr (T )

)
f ′(Rg)

+
N

2
W1(Rg)gij

−
N
(
gij∆g + 2∇i∇j

)
f ′(Rg)

2f ′(Rg)
+
Ngij∇0∇0f

′(Rg)

2N2f ′(Rg)

−N
(
Kij +

1

2
gijK

)
Ln ln(f ′(Rg)),

∂0gij = −2NKij.

2. Hamiltonian constraint:

(2.27)
R−KijK

ij + (Kj
j )

2 =
16πσ

f ′(Rg)
+

2∆gf
′(Rg)

f ′(Rg)

+ 2gijKijLn

(
ln f ′(Rg)

)
−W1(Rg),

3. Momentum constraint:

(2.28) ∂jK
i
i −∇iK

i
j = − 8πJi

f ′(Rg)
+
∂j
(
f ′′(Rg)LnRg

)
f ′(Rg)

+Ki
j∂i
(

ln(f ′(Rg))
)
.

Observe that, in the classical gravity theory, the factor f ′(Rg) is constant and equal to
unit, so that the terms containing f ′(Rg) in the right-hand sides of the constraint equa-
tions (2.27) and (2.28) vanish identically; consequently, we can recover here the standard
equations (2.29) given below.
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These new constraint equations are very involved compared with the classical ones:
they contain fourth-order derivatives of the metric g and, more precisely, second-order
derivatives of the scalar curvature Rg. In particular, we can not recognize directly the
elliptic nature of the classical constraint equations.

Remark 2.3. — Recall here the constraint equations for the classical theory of general
relativity, when the Einstein equations Gαβ = 8πTαβ are imposed: the last two equations
in (2.12) yield

(2.29)
R +KijK

ij − (Ki
i)

2 = 16πσ,

∇i
Kij −∇jK

l
l = 8π Jj,

(when f ′ ≡ 0).

2.3. The divergence identity

As in the classical gravity theory, we expect that the matter should be divergence-free
∇αTαβ = 0, which is now proven.

Lemma 2.4 (The divergence identity in modified gravity)
The contracted Bianchi identities

(2.30) ∇αRαβ =
1

2
∇βR

imply the divergence-free property for the modified gravity tensor

(2.31) ∇αNgαβ = 0.

Proof. — The following calculation holds in any local frame. We compute the three rele-
vant terms:

∇α(∇α∇βf
′(R)− gαβ�gf

′(R)) = (∇α∇α∇β −∇β∇λ∇λ)f
′(R)

= (∇α∇β∇α −∇β∇α∇α)(f ′(R))

= [∇α,∇β](∇α(f ′(R))) = Rαβ∇α(f ′(R)),

then

∇α(f ′(R)Rαβ) = Rαβ∇α(f ′(R)) + f ′(R)∇αRαβ

= Rαβ∇α(f ′(R)) +
1

2
f ′(R)∇βR,

and, finally,

∇α
(1

2
f(R) gαβ

)
=

1

2
∇β(f(R)) =

1

2
f ′(R)∇βR.

Combining these three identities together yields us the desired identity.
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As a first application of Lemma 2.4, we now determine which coupling (formulated in
the Jordan metric as far as this section is concerned) is mathematically sound. On one
hand, consider first the Jordan coupling, corresponding to

(2.32) Tαβ = ∂αφ∂βφ−
1

2
gαβg

α′β′∂α′φ∂β′φ.

By the field equation Ngαβ = 8πTαβ and (2.30), we find ∇αTαβ = 0 and, after some
calculations,

(2.33) ∂βφ�gφ = 0.

Consequently, if the scalar field φ satisfies the wave equation

(2.34) �gφ = 0,

then the tensor Tαβ is divergence-free, as required. Hence, we need to solve a single scalar
equation for the evolution of the matter.

On the other hand, if we assume the Einstein coupling

(2.35) Tαβ = T †αβ = f ′(Rg)
(
∂αφ∂βφ−

1

2
gαβg

α′β′∂α′φ∂β′φ
)
,

then the field equation Ngαβ = 8πT †αβ together with (2.30) lead us to ∇αT †αβ = 0, which
now reads

f ′′(Rg)Tαβ∇αRg + f ′(Rg)∂βφ�gφ = 0.

This (vectorial) equation can be written as

∂βφ�gφ =
f ′′(Rg)

f ′(Rg)

(
∂αφ∂βφ−

1

2
gαβg

α′β′∂α′φ∂β′φ
)
∇αRg

or, equivalently,

(2.36)

(
f ′′(Rg)

f ′(Rg)
∂αφ∇αR−�gφ

)
∇βφ =

f ′′(Rg)

2f ′(Rg)

(
gα
′β′∂α′φ∂β′φ

)
∇βR.

Now, for general initial data, this is an over-determined(1) partial differential system (since
the unknown of this vectorial system is a single scalar field): this strongly suggests that
the Einstein coupling is not mathematically (nor physically) well-behaved. Consequently,
from now on, we focus our attention on the Jordan coupling.

2.4. The initial value problem for modified gravity

Before we can formulate the Cauchy problem for the system (1.6), we need to specify the
stress-energy tensor. In agreement with our discussion in the previous section, we assume

(1)Unless we would impose the very unnatural restriction that ∇φ and ∇R be co-linear.
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a scalar field and the Jordan coupling (2.32), so that the matter fields read

(2.37)
σ = N−2T00 = |Lnφ|2 +

1

2

∣∣∇φ∣∣2
g

=
1

2

(
|Lnφ|2 + gij∂iφ∂jφ

)
,

Ji = −Lnφ ∂iφ.

Definition 2.5. — An initial data set for the modified gravity theory

(M, g,K,R0, R1, φ0, φ1)

consists of the following data:

– a 3-dimensional manifold M endowed with a Riemannian metric g and a symmetric
(0, 2)-tensor field K,

– two scalar fields denoted by R0 and R1 defined on M and representing the (to-be-
constructed) spacetime curvature and its time derivative,

– two scalar fields φ0 and φ1 defined on M .

These data are required to satisfy the Hamiltonian constraint of modified gravity

(2.38)

R−KijK
ij + (Kj

j )
2 =

8
(
φ2
1 + gij∂iφ0∂jφ0

)
f ′(R0)

+
2∆gf

′(R0)

f ′(R0)

+ 2gijKij
f ′′(R0)R1

f ′(R0)
−W1(R0),

and the momentum constraint of modified gravity

(2.39) ∂jK
i
i −∇iK

i
j =

8πφ1 ∂iφ0

f ′(R0)
+
∂j
(
f ′′(R0)R1

)
f ′(R0)

+Ki
j∂i
(

ln(f ′(R0))
)
.

Definition 2.6. — Given an initial data set (M, g,K,R0, R1, φ0, φ1) as in Definition 2.5,
the initial value problem for the modified gravity theory consists of finding a
Lorentzian manifold (M, g) and a matter field φ defined on M such that the following
properties hold:

1. The field equations of modified gravity (1.6) are satisfied.
2. There exists an embedding i : M → M with pull-back metric g = i∗g and second

fundamental form K.
3. The field R0 coincides with the restriction of the spacetime scalar curvature R on M ,

while R1 coincides with the Lie derivative LnR restricted to M , where n denotes the
normal to M .

4. The scalar fields φ0, φ1 coincides with the restriction of φ,Lnφ on M , respectively.

Such a solution to (1.6) is referred to as a modified gravity development of the initial
data set (M, g,K,R0, R1, φ0, φ1).

Similarly as in classical gravity, we can define [10] the notion of maximal globally
hyperbolic development for the modified gravity theory. Observe that the initial value
problem for modified gravity reduces to the classical formulation in the special case of
vacuum and vanishing geometric data φ0 = φ1 = R0 = R1 ≡ 0. For the modified gravity
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theory, we have just shown that, similarly as in classical gravity, these prescribed fields can
not be fully arbitrary, and certain constraints (given above) must be assumed.

2.5. Preservation of the constraints

We need to address the following issue: if the evolution equations are satisfied by symmet-
ric two-tensors (g,K), the stress-energy tensor T is divergence-free, and furthermore the
constraint equations are satisfied on some initial slice M0, then are all of field equations
satisfied? In other words, we want to establish the preservation of the constraint equations
along a flow of solutions.

This is the first instance where we establish a “preservation property” and, later in
this text, other similar situations will occur. The common character of these results is
as follows. A differential system being given, the equations therein can be classified into
two categories: one is easer to handle (the evolution equations in this example) while the
other is more difficult (the constraint equations here). Our strategy is to replace the most
difficult equations by some equations which can be deduced form the original system (in
this example, the trace-free equation of T ) but are also easier to handle. This leads us to
a new system to be studied first, and an essential task is to check the equivalence between
the original system and the new system.

Before we give a precise statement, we make the following observation. The evolution
equations (2.26) are equivalent to (2.20a) and the constraint equations (2.27) and (2.28) are
equivalent to (2.20b) and (2.20c). So we suppose that (2.20a) together with the divergence
condition ∇αTαβ = 0 are satisfied in the spacetime M =

⋃
t∈[0,tmax)

Mt, and the constraint

equations (2.20b) and (2.20c) are satisfied on the initial slice. Then we will prove that the
equations (2.20b) and (2.20c) are satisfied in the whole spacetime. More precisely, we have
the following result.

Proposition 2.7. — With the notation above, suppose that the equations

(2.40) Egij − 8πHij = 0 in the spacetime
⋃

t∈[0,tmax)

Mt

(2.41) ∇αTαβ = 0 in the spacetime
⋃

t∈[0,tmax)

Mt

hold, together with

(2.42) Eg0j = 8πH0j, Ng00 = 8πT00 in the initial slice M0 = {t = 0}.

Then, it follows that

(2.43) Eg0j = 8πH0j, Ng00 = 8πT00 in the spacetime
⋃

t∈[0,tmax)

Mt.
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Proof. — The calculations are made in the Cauchy adapted frame and, for convenience,
we introduce the notation

Σαβ := Ngαβ − 8πTαβ.

We will prove that Σαβ = 0 which is equivalent to the desired result. First of all, by the
condition ∇αTαβ = 0 and the identity (2.30), we have

(2.44) ∇αΣαβ = 0.

By the definition of Egαβ and Hαβ, the following identity holds:

(2.45) Σαβ = Egαβ −Hαβ −
1

2
gαβtr (Eg −H)

and, in particular,

(2.46) Σ00 = Eg00 −H00 −
1

2
g00tr (Eg −H).

Now, due to the fact that g0i = g0i = 0 and (2.40), we have

(2.47) tr (Eg −H) = g00(Eg00 −H00).

Combining (2.46) and (2.47) yields

(2.48) tr (Eg −H) = 2g00Σ00

and, by substituting this into (2.45),

(2.49) Σαβ = Egαβ −Hαβ − gαβg00Σ00.

Here, we can compute more precisely the spatial components in view of (2.40)

(2.50) Σij = −gijg00Σ00.

Given this material, we are now in a position to calculate Σα
β = gαα

′
Σα′β. When α =

β = 0, we find

(2.51) Σ0
0 = Σ0αg

α0 = g00Σ00.

For β = 0, 1 ≤ α ≤ 3, we set a = α and, by recalling that ga0 = 0, we obtain

Σa
0 = gaα

′
Σα′0 = gaa

′
Σa′0

For 1 ≤ b ≤ 3, we have
Σ0
b = gbβg

0αΣβ
α = g00gbcΣ

c
0.

For 1 ≤ b ≤ 3 and 1 ≤ a ≤ 3, by applying (2.50) and (2.51), we obtain

Σa
b = gaαΣbα = gaa

′
Σba′ = −gaa′gba′g00Σ00 = −δabΣ0

0.

Hence, we conclude with

(2.52) Σ0
b = g00gbcΣ

c
0, Σa

b = −δabΣ0
0.

Now recall that the identity (2.44) can be written as

∇αΣα
β = 0,
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which leads to

< eα,Σ
α
β > −ωδαβΣα

δ + ωααδΣ
δ
β = 0.

When β = 0, we have

(2.53) < e0,Σ
0
0 >+ ∂aΣ

a
0 − ωδαβΣα

δ + ωααδΣ
δ
β = 0.

For 1 ≤ b ≤ 3, we can take the equation (2.52) and write

< e0, g
00gbcΣ

c
0 >+ ∂a

(
− δabΣ0

0

)
− ωγαbΣ

α
γ + ωααγΣ

γ
b = 0,

which leads us to

(2.54) < e0,Σ
c
0 >− g00gbc∂bΣ0

0 − g00gbc
(
ωγαbΣ

α
γ − ωααγΣ

γ
b

)
+ g00g

bc < e0, g
00gbc′ > Σc′

0 = 0.

We now consider the equations (2.53) and (2.54) together, and we observe that, in view
of (2.52), the lower-order terms are linear combinations Σα

0 with 0 ≤ α ≤ 3. Hence, these
equations form a first-order differential system with linear source-terms. This system can
also be written in a standard symmetric hyperbolic form. Namely, by recalling the notation
g = gt for the induced Riemannian metric on the slices Mt, we introduce

V := (Σ0
0,Σ

a
0)
T , ρa := g00(g

a1, ga2, ga3)T

and

σ1 = (1, 0, 0), σ2 = (0, 1, 0), σ3 = (0, 0, 1).

The principal part of the system defined by (2.53) and (2.54) can be put in the form

(2.55) < e0, V >+
∑
a

Aa∂aV = F,

where

Aa =

(
0 σa

−g00ρa 0

)
and F is a linear form on V . By multiplying this equation by the matrix

A0 :=

(
1 0
0 −g00gab

)
= −g00

(
−g00 0

0 gab

)
,

we conclude that (2.55) becomes

(2.56) A0< e0, V >+
∑
a

A0A
a∂aV = A0F.

Note that A0A
a are symmetric:

A0A
a =

(
0 σa

(σa)T 0

)
.

and the system (2.55) is thus symmetrizable. Clearly, (2.42) implies that V = 0 on the
initial slice {t = 0}. Thanks to our global hyperbolicity assumption (2.1) and by a standard
uniqueness argument, we therefore conclude that V = 0 in the whole spacetime.
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3. Formulation of the Cauchy problem in the Einstein
metric

3.1. Conformal transformation

In view of the derivation made in Section 2, it is clear that the evolution and the constraint
equations of modified gravity are, both, very involved and do not have a standard (hyper-
bolic, elliptic) type within the general class of PDE’s. The main difficulty comes from the
fourth-order term

∇α∇βf
′(Rg).

As we will now show it, the conformal transformation

(3.1) g†αβ := e2ρ gαβ, g†
αβ

= e−2ρgαβ

(which depends upon second-order derivatives of the unknown metric) will overcome some
of the difficulties: where the conformal factor is defined by

(3.2) ρ :=
1

2
ln f ′(Rg)

or, equivalently, f ′(Rg) = e2ρ. We now proceed by deriving several relevant expressions in
the conformal metric g† in order to derive a tractable formulation of the field equations.

We begin by deriving an expression for the gravity tensor Ng in terms of the Einstein
metric.

Lemma 3.1. — With the notation above, the following identity holds

(3.3) e2ρR†αβ − 6e2ρ∂αρ∂βρ+
g†αβ

2
W2(ρ) = Ngαβ −

1

2
gαβtr (Ng),

where the function W2 = W2(ρ) is defined implicitly by

(3.4) W2(s) :=
f(r)− f ′(r)r

f ′(r)
, e2s = f ′(r), r ∈ R.

We also recall that the function W1 is defined by (2.17) and it will be also convenient
(in the proof below) to introduce the function W3 = W3(ρ) by

(3.5) W3(s) := f(r), e2s = f ′(r), r ∈ R.

Proof. — We need to analyze the tensor

Ngαβ = f ′(Rg)Rαβ −
1

2
f(Rg)gαβ +

(
gαβ�g −∇α∇β

)
f ′(Rg)

and its trace tr (Ng) = f ′(Rg)Rg − 2f(Rg) + 3�gf
′(Rg). Recall first the identities

∇α∇βe
2ρ = 2e2ρ∇α∇βρ+ 4e2ρ∇αρ∇βρ,

�ge
2ρ = 2e2ρ�gρ+ 4e2ρg(∇ρ,∇ρ),
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which imply

Ngαβ = e2ρRαβ −
1

2
gαβW3(ρ) + 2e2ρ

(
gαβ�g −∇α∇β

)
ρ+ 4e2ρ

(
gαβg(∂ρ, ∂ρ)− ∂αρ∂βρ

)
and

�gρ−
W3(ρ)

6e2ρ
+ 2g(∂ρ, ∂ρ)− 1

6
W2(ρ) =

tr (Ng)

6e2ρ
.

Moreover, we have the following relation between the Ricci curvature tensors of g and g†:

(3.6) R†αβ = Rαβ − 2
(
∇α∇βρ−∇αρ∇βρ

)
−
(
�gρ+ 2g(∇ρ,∇ρ)

)
gαβ

and, therefore, we see that Ng can be expressed as

Ngαβ = e2ρR†αβ − 6e2ρ∇αρ∇βρ+ 6e2ρgαβg(∇ρ,∇ρ) + 3e2ρgαβ�gρ−
1

2
W3(ρ)gαβ.

It remains to combine this result with the trace equation above.

We are now in a position to state the field equations in the conformal metric. At this
juncture, it is unclear how the scalar field ρ should be recovered in term of the Einstein
metric, and this is an issue that we will address next.

Proposition and Definition 3.2. — The field equations of modified gravity in
the Einstein metric g†αβ = e2ρgαβ with ρ = 1

2
ln(f ′(Rg)) read

(3.7) e2ρR†αβ − 6e2ρ∂αρ∂βρ+
g†αβ

2
W2(ρ) = 8π

(
Tαβ −

1

2
g†αβg

†α′β′Tα′β′
)
.

Remark 3.3. — For any sufficiently regular function w, one also has

(3.8) �g†w = e−2ρ
(
�gw + 2gαβ∂αρ∂βw

)
= e−2ρ�gw + 2g†

αβ
∂αρ∂βw,

so that the trace equation transforms into

(3.9) �g†ρ =
W2(ρ)

6e2ρ
+
W3(ρ)

6e4ρ
+

1

6e4ρ
tr (Ng).

3.2. Evolution and constraint equations in the conformal metric

As in the previous section, we can formulate the evolution equations and constraint equa-
tions associated with the conformal field equation (3.3). To do so, as before, we introduce
a foliation of the spacetime M = [0,+∞)×Mt and a Cauchy adapted frame {e0, e1, e2, e3}
associated with the transformed metric g†. Then, by similar calculations as above, we find

(3.10a) R†ij = Rij −
∂0K

†
ij

N
+K†ijK

†l
l − 2K†ilK

†l
j −
∇†i∂jN †

N †
,

(3.10b) R†0j = N †
(
∂jK

†l
l −∇

†
lK
†l
j

)
,

(3.10c) G†00 =
N †

2

2

(
R
† −K†ijK†

ij
+ (K†

l

l)
2
)
.
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Here, ∇† refers to the covariant derivative on the slice Mt with respect to g†, and we
observe that (3.10a) yields the evolution equations

(3.11)
∂0K

†
ij = N †

(
R
†
ij −R†ij

)
+N †K†ijK

†l
l − 2N †K†ilK

†l
j −∇

†
i∂jN

†,

∂0g
†
ij = −2N †K†ij.

Moreover, the transformed field equations (3.3) read

R†αβ = e−2ρ
(
Ngαβ −

1

2
gαβtr (Ng)

)
+ 6∂αρ∂βρ−

1

2e2ρ
g†αβW2(ρ)

and, by taking the trace of this equation with respect to the metric g†, we have

R† = −e−4ρtr (Ng) + 6g†(∂ρ, ∂ρ)gαβ + e−2ρg†αβW2(ρ).

This leads us to

G†αβ = Ngαβ + 6∇α%∇β%− 3g†(∂ρ, ∂ρ)g†αβ + e−2ρg†αβW2(ρ),

We have thus derived the evolution equations and constraint equations. The evolution
equations read

∂0K
†
ij = N †R

†
ij +N †K†ijK

†l
l − 2N †K†ilK

†l
j −∇

†
i∂jN

†

−N †e−2ρ
(
Ngij −

1

2e2ρ
g†ijtr (Ng) + 6e2ρ∂iρ∂jρ+

1

2
g†ijW2(Rg)

)
,

∂0g
†
ij = −2N †K†ij,

while the Hamilton constraint equation reads

R
† −K†ijK†

ij
+ (K†

l

l)
2 =

2Ng00

e2ρN †2
+ 12|Ln†ρ|2 + 6g†(∇†ρ,∇†ρ)− e−2ρW2(ρ)

and the momentum constraint equations read

∂jK
†l
l −∇

†
K†

l

j =
Ng0j

e2ρN †
+ 6Ln†ρ ∂jρ.

Here, n† denotes the normal unit vector of the slice Mt.
Finally, we consider the Jordan coupling with matter field (this choice of coupling being

revisited in the next subsection):

(3.12) Ngαβ = 8πTαβ

and, furthermore, we define the matter fields

(3.13) J†j := −T0j
N †

, σ† :=
T00

N †2
.

Definition 3.4. — In the Einstein metric, the equations of modified gravity in a Cauchy
adapted frame {e0, e1, e2, e3} can be decomposed as follows:
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1. Evolution equations:

∂0K
†
ij = N †R

†
ij +N †K†ijK

†l
l − 2N †K†ilK

†l
j −∇

†
i∂jN

†

−N †e−2ρ
(

8πTij − 4πe−2ρg†ijtr (T ) + 6e2ρ∂iρ∂jρ+
1

2
g†ijW1(Rg)

)
,

∂0g
†
ij = −2N †K†ij.

2. Hamiltonian constraint:

(3.14) R
† −K†ijK†

ij
+ (K†

l

l)
2 =

16σ†

e2ρ
+ 12|Ln†ρ|2 + 6g†(∇†ρ,∇†ρ)− e−2ρW2(ρ)

3. Momentum constraints:

(3.15) ∂jK
†l
l −∇

†
K†

l

j = −J
†
j

e2ρ
+ 6Ln†ρ ∂jρ.

Let us again emphasize again that the constraint equations are equivalent to Ng00 =
8πT00, Ng0a = 8πT0a, while the evolution equations are equivalent to

Ngab −
1

2
gabtr (Ng) = 8π

(
Tab −

1

2
gabtr (T )

)
.

3.3. The divergence identity

In order to derive an evolution equation for the matter field, we need the divergence of the
tensor Ng with respect to the conformal metric g†.

Lemma 3.5. — The modified gravity tensor in terms of the conformal metric satisfies the
identity

(3.16) ∇†αNgαβ = e−2ρ
(
2gγδ∂γρNgδβ − tr (Ng)∂βρ

)
.

Proof. — We work in an arbitrary (possibly only locally defined) natural frame. The
desired identity follows from

Γ†
γ

αβ = Γγαβ + gγα∂βρ+ gγβ∂αρ− gαβ∇
γρ.

We have
∇†αNgαβ = e−2ρgαγ∇†γNgαβ

= e−2ρgγα
(
∂γNgαβ − ΓδγαNgβδ − ΓδγβNgαδ

)
− e−2ρgαγ

(
gδγ∂αρ+ gδα∂γρ− gγα∇δρ

)
Ngβδ

− e−2ρgαγ
(
gδγ∂βρ+ gδβ∂γρ− gγβ∇δρ

)
Ngαδ,

thus

∇†αNgαβ

= e−2ρ∇αNgαβ

− e−2ρ
(
∇δρ+∇δρ− 4∇δρ

)
Ngβδ − e

−2ρ(∂βρtr (Ng) +∇αρNgαβ −∇
αρNgαβ

)
.
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Recalling that ∇αNgαβ = 0 by Lemma 2.4, we conclude that

∇†αNgαβ = e−2ρ
(
2gγδ∂γρNgδβ − tr (Ng)∂βρ

)
.

With the Jordan coupling, the divergence of the stress-energy tensor is thus expressed
as

(3.17) ∇†αTαβ =
(
2gδγ∂δρ Tγβ − tr (T )∂βρ

)
e−2ρ,

which (together with an equation of state for the matter field) determines the evolution of
the matter.

Remark 3.6. — We conclude this section with a discussion of the Einstein coupling. We
rely on (3.16) and now show that the only meaningful choice of coupling (now viewed in
the Einstein metric) is the Jordan coupling. Observe first that the Jordan coupling

Tαβ = ∂αφ∂βφ−
1

2
gαβ|∇φ|2g

implies

∂βρ tr (T )− 2gδγ∂δρ Tγβ = −|∇φ|2g∂βρ− 2g(∂ρ, ∂φ)∂βφ+ |∇φ|2g∂βρ
= −2g(∂ρ, ∂φ)∂βφ,

which leads us to

(3.18)
(
2gδγ∂δρTγβ − tr (T )∂βρ

)
e−2ρ = 2g†(∂ρ, ∂ρ)∂βφ.

From the identity

∇†αTαβ = ∂βφ�g†φ

combined with (3.16), we have

∂βφ�g†φ = 2e−2ρgα
′β′∂α′φ∂β′ρ ∂βφ

and this leads us to the wave equation for the matter field

(3.19) �g†φ = 2g†
α′β′

∂α′φ∂β′ρ.

On the other hand, let us consider the Einstein coupling:

Tαβ = T †αβ = e2ρ
(
∂αφ∂βφ−

1

2
gαβ|∇φ|2g

)
,

which gives

∇†αTαβ = e2ρ∂βφ�g†φ+ 2e2ρg†
αα′
∂α′ρ

(
∂αφ∂βφ−

1

2
gαβ|∇φ|2g

)
= e2ρ∂βφ

(
�g†φ+ 2g†(∂ρ, ∂φ)

)
− ∂βρ|∇φ|2g.

In combination with (3.23), we find

e2ρ∂βφ
(
�g†φ+ 2g†(∂ρ, ∂φ)

)
− ∂βρ|∇φ|2g = 2g†(∂ρ, ∂φ)∂βφ,
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and therefore

e2ρ∂βφ
(
�g†φ+ 2g†(∂ρ, ∂φ)− 2e−2ρg†(∇†ρ,∇†φ)

)
= ∂βρ|∇φ|2g.

In agreement with what we noticed with the Jordan metric, the Einstein coupling leads to an
over-determined partial differential system. This suggests again that the Einstein coupling
cannot lead to a well-posed initial value problem.

3.4. The conformal version of the initial value problem

We are now ready to formulate the notion of initial data set and the notion of Cachy
development in terms of the conformal metric. In agreement to our discussion in the
previous section, we work with the Jordan coupling and a massless scalar field:

(3.20) Tαβ = ∂αφ∂βφ−
1

2
gαβ|∇φ|2g,

and we set

σ† :=
1

2

(
|Ln†φ|2 + gij∂iφ∂jφ

)
,

J†j := −Ln†φ ∂jφ.

Definition 3.7. — An initial data set for the modified gravity theory in the
Einstein metric (M, g†, K†, ρ†0, ρ

†
1, φ
†
0, φ
†
1) consists of the following data:

– a 3-dimensional manifold M endowed with a Riemannian metric g† and a symmetric
(0, 2)-tensor field K†,

– two scalar fields denoted by ρ†0 and ρ†1 on M and representing the (to-be-constructed)
conformal factor and its time derivative,

– two scalar field φ†0 and φ†1 defined on M .

Furthermore, these data are required to satisfy the Hamiltonian constraint of mod-
ified gravity in the Einstein metric

(3.21)
R
† −K†ijK†

ij
+ (K†

j

j)
2 = 8 e−2ρ

(
(φ†1)

2 + g†
ij
∂iφ
†
0∂jφ

†
0

)
+ 6(ρ†1)

2

+ 6g†
ij
∂iρ
†
0∂jρ

†
0 − e−2ρ

†
0W2(ρ

†
0),

and the momentum constraint of modified gravity in the Einstein metric

(3.22) ∂jK
†i
i −∇

†
iK
†i
j =

φ†1∂jφ
†
0

e2ρ
+ 6ρ†1∂jρ

†
0.

Definition 3.8. — Given an initial data set (M, g†, K†, ρ†0, ρ
†
1, φ
†
0, φ
†
1) as in Definition 3.7,

the initial value problem for the modified gravity theory in the Einstein metric
consists of finding a Lorentzian manifold (M, g) and a two-tensor field Tαβ on M

1. The conformal metric g† is defined with the relation g†αβ = e2ρgαβ with the conformal

factor ρ = 1
2

ln(f ′(Rg)) where Rg is the scalar curvature of g.

2. The field equations of modified gravity (3.7) are satisfied with ρ = 1
2

ln f ′(Rg).
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3. There exists an embedding i : M → M with pull-back metric g† = i∗g† and second
fundamental form K†.

4. The field ρ†0 coincides with the restriction of the conformal factor ρ on M , while ρ†1
coincides with the Lie derivative Ln†ρ restricted to M , where n† denotes the normal
unit vector of M .

5. The scalar fields φ†0, φ
†
1 coincides with the restriction of φ, Ln†φ on M .

Such a solution to (3.7) is referred to as a modified gravity development of the initial

data set (M, g†, K†, ρ†0, ρ
†
1, φ
†
0, φ
†
1).

The notion of maximal globally hyperbolic development is then defined along the
same lines as in [10] for the classical gravity. We observe that our formulation of the initial
value problem for modified gravity reduces to the classical formulation in the special case
of vanishing geometric data φ†0 = φ†1 = R0 = R1 ≡ 0. On the other hand, without matter
fields and for non-vanishing geometric data R0 and R1, the spacetimes under consideration
do not satisfy Einstein vacuum equations. Similarly as in classical gravity, these fields can
not be fully arbitrary prescribed but certain constraints (given above) must be assumed.

3.5. Preservation of the constraints

Next, we establish the preservation of the constraints, as follows.

Proposition 3.9. — Let (g†, K†) be symmetric two-tensors defined in M = ∪t∈[0,tmax)Mt.
If the following equations hold in M

(3.23) Ngij −
1

2
tr (Ng)gij = 8π

(
Tij −

1

2
tr (Ng)gij

)
,

(3.24) ∇†αTαβ = e−2ρ
(
gγδ∂γρTγβ − ∂βρtr (T )

)
,

and

(3.25) Ng0β = 8πT0β.

holds on the initial slice M0, then (3.25) holds throughout the spacetime M .

Proof. — Recalling the notation Σαβ = Ngαβ − 8πTαβ, we are going to prove that σ00 = 0.

We note that (3.23) can be written as

(3.26) Σij −
1

2
tr †(Σ)g†ij = 0.

By taking the trace of the tensor Σαβ − 1
2
tr Σgαβ with respect to g†, we find

tr †Σ− 2tr †Σ = −N †−2Σ00 + g†
ij(

Σij −
1

2
tr (Σ)gij

)
.

Combining with (3.26), we thus have

(3.27) tr †Σ = −N †−2Σ00.
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Combining (3.27) together with (3.26), we then obtain

(3.28) Σij = − Σ00

2N †2
g†ij.

Along the same lines as in the proof of Proposition 2.7, we have

(3.29) Σ0
b = g†

00
g†bcΣ

c
0, Σa

b = −δabΣ0
0.

Let us consider the identity (3.16) combined with (3.24), and note the identity

(3.30) ∇†αΣαβ = e−2ρ
(
2∂γρΣγ

β − ∂βρtr (Σ)
)
.

We observe that by (3.29), the right-hand-side is a linear form of the function Σβ
0 and, by

definition,

(3.31) ∇†αΣα
β = < eα,Σ

α
β >− ω†

δ

αβΣα
δ + ω†

α

αδΣ
δ
β.

By combining (3.30) and (3.31), we arrive at the first-order linear differential system

< eα,Σ
α
β >− ω†

δ

αβΣα
δ + ω†

α

αδΣ
δ
β = e−2ρ

(
2∂γρΣγ

β − ∂βρtr (Σ)
)
,

whose principal part is

(3.32)
< e0,Σ

0
0 >+ ∂aΣ

a
0 = lower order terms,

< e0, g
†00g†bcΣ

c
0 >− ∂bΣ0

0 = lower order terms.

can be symmetrized by the same procedure as we did for the system (2.53) and (2.54).
Recall also that by (3.25), this system has vanishing initial data and, therefore, in view of
our global hyperbolicity assumption (2.1), the desired result is proven.

4. The conformal formulation in wave coordinates

4.1. The wave gauge

We now turn our attention to solving the system (3.7) and our first task is thus to express
it in well-chosen coordinates. In view of the expression of the left-hand-side of (3.7), we
observe that if we remove the terms in ρ, the principal part (that is, the second-order terms
in g†) is determined by R†αβ. In order to investigate its structure, we perform first some
basic calculations, which are valid for general Lorentzian manifolds in arbitrary local coor-
dinates. Let (M, g) be a Lorentzian manifold with metric g of signature (−,+,+,+) and
consider any local coordinate system {x0, x1, x2, x3}. Let Γγαβ be the associated Christoffel
symbols, and consider the wave operator �g = ∇α∇α associated with g. The following
lemma follows from a straightforward but tedious calculation.

Lemma 4.1 (Ricci curvature in general coordinates). — With the notation

(4.1) Γλ := gαβΓλαβ, Γλ := gλβΓβ,
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one has

(4.2) Rαβ = −1

2
gα
′β′∂α′∂β′gαβ +

1

2
(∂αΓβ + ∂βΓα) +

1

2
Fαβ(g; ∂g, ∂g),

where Fαβ(g; ∂g, ∂g) are nonlinear functions in the metric coefficients and are quadratic

in their first-order derivatives. The wave operator and the reduced wave operator �̃gu :=
gα
′β′∂α′∂β′ satisfy the relation

(4.3) �gu = gα
′β′∂α′∂β′u+ Γδ∂δu = �̃gu+ Γδ∂δu,

and, clearly, these two operators coincide if and only if the coefficients Γλ vanish identically.

Proof. — Recall the definitions

Rαβ = ∂λΓ
λ
αβ − ∂αΓλβλ + ΓλαβΓδλδ − ΓλαδΓ

δ
βλ,

Γλαβ =
1

2
gλλ

′(
∂αgβλ′ + ∂βgαλ′ − ∂λ′gαβ

)
.

In the expression of the Ricci tensor, we consider the first two terms:

∂λΓ
λ
αβ − ∂αΓλβλ

=
1

2
∂λ

(
gλδ(∂αgβδ + ∂βgαδ − ∂δgαβ)

)
− 1

2
∂α

(
gλδ(∂βgλδ + ∂λgβδ − ∂δgβλ)

)
= −1

2
∂λ

(
gλδ∂δgαβ

)
+

1

2
∂λ
(
gλδ(∂αgβδ + ∂βgαδ)

)
− 1

2
∂α

(
gλδ∂βgλδ

)
,

so that

(4.4)
∂λΓ

λ
αβ − ∂αΓλβλ

= −1

2
gλδ∂λ∂δgαβ +

1

2
gλδ∂α∂λgδβ +

1

2
gλδ∂β∂λgδα −

1

2
gλδ∂α∂βgλδ + l.o.t.,

where l.o.t. are quadratic terms in the first-order derivatives of the metric.
On the other hand, we can compute the term ∂αΓβ + ∂βΓα and obtain

Γγ = Γγαβg
αβ =

1

2
gαβgγδ

(
∂αgβδ + ∂βgαδ − ∂δgαβ

)
= gγδgαβ∂αgβδ −

1

2
gαβgγδ∂δgαβ

and

Γλ = gλγΓ
γ = gαβ∂αgβλ −

1

2
gαβ∂λgαβ.

So, we have

∂αΓβ = ∂α
(
gδλ∂δgλβ

)
− 1

2
∂α
(
gλδ∂βgλδ

)
,

and, therefore,

(4.5) ∂αΓβ + ∂βΓα = gγδ∂α∂λgδβ + gλδ∂β∂λgδα − gλδ∂αβgλδ + l.o.t.

It remains to compare (4.4) and (4.5).
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Observe that the field equation (1.6) or the conformally transformed field equations (3.3),
both, contain linear terms in the Ricci curvature. In order to exhibit the hyperbolicity
property for the linear part of these systems (at least for the second-order terms in (1.6)),
we now introduce local coordinates. Recall that a wave coordinate system, by definition,
has Christoffel symbols satisfying

(4.6) Γλ = gαβΓγαβ = 0.

In view of (3.3), the principal part (after removing the terms in ρ) of

Ngαβ −
1

2
gαβtr (Ng)−

1

2
e2ρ
(
∂αΓ† + ∂βΓ†

)
is 1

2
e2ρg†

αβ
∂α′∂β′g

†
αβ, which is a quasi-linear wave operator. From this observation, the

equations (3.7) in wave coordinates, with

(4.7) Γ†λ = 0,

can be reformulated as:

(4.8) Ngαβ −
1

2
gαβtr (Ng)−

1

2
e2ρ
(
∂αΓ†β + ∂βΓ†α

)
= 8π

(
Tαβ −

1

2
tr (T )gαβ

)
,

while the trace equation (3.9) becomes

(4.9) �g†ρ+ Γ†
δ
∂δρ =

W2(ρ)

6e2ρ
+
W3(ρ)

6e4ρ
+

4πtr (T )

3e4ρ
.

Hence, in view of Lemma 4.1, the above system can be written in terms of the metric
g† and its derivatives. We emphasize that the trace equation (4.10c) and the evolution
equation of matter field (4.10d) below are coupled to the field equations.

Lemma 4.2 (Conformal field equations in wave coordinates)
The field equations (3.7) in wave coordinates take the form

(4.10a)
g†
α′β′

∂α′∂β′g
†
αβ

= Fαβ(g†; ∂g†, ∂g†)− 12∂αρ∂βρ+
W2(ρ)

e2ρ
g†αβ −

8π

e2ρ
(
2Tαβ − tr (T )gαβ

)
,

which is supplemented with the algebraic constraint equation (derived from the wave coor-
dinate condition)

(4.10b) g†
αβ

Γ†
γ

αβ = 0.

In addition, this system must be supplemented with the trace equation

(4.10c) g†
α′β′

∂α′∂β′ρ =
W2(ρ)

6e2ρ
+
W3(ρ)

6e4ρ
+

4πtr (T )

3e4ρ

with ρ = 1
2
f ′(Rg), as well as with the evolution equation for the matter

(4.10d) ∇†αTαβ =
(
tr (T )∂βρ− 2gδγ∂γρTγβ

)
e−2ρ.
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4.2. A nonlinear wave system for the modified gravity theory

The aim of this subsection is to study the ‘essential system’ consisting of (4.10a) and
(4.10b). If we remove the terms in ρ, this is a quasi-linear wave system with constraints
(see (4.10b)), whose structure is quite involved. The strategy we propose is to replace these
constraints by another differential equation which will turn out to be simpler to handle.
We will write a new system which may (a priori) not be equivalent to the original system
(3.7). This system is defined as follows.

Definition 4.3. — The wave-reduced system in geometric form associated with
(3.7) is, by definition,

(4.11a) Ngαβ −
1

2
gαβtr (Ng)−

1

2
e2ρ
(
∂αΓ†β + ∂βΓ†α

)
= 8π

(
Tαβ −

1

2
tr (T )gαβ

)
,

(4.11b) ∇†αTαβ =
(
tr (T )∂βρ− 2gδγ∂γρTγβ

)
e−2ρ,

where Ngαβ is defined by (3.3) and e2ρ = f ′(Rg).

Thanks to (3.3) and Lemma 4.1, the above system reads also
(4.12)

g†
α′β′

∂α′∂β′g
†
αβ = Fαβ(g†; ∂g†, ∂g†)− 12∂αρ∂βρ+

W2(ρ)

e2ρ
g†αβ −

8π

e2ρ
(
2Tαβ − tr (T )gαβ

)
,

∇†αTαβ =
(
tr (T )∂βρ− 2gδγ∂γρTγβ

)
e−2ρ,

ρ =
1

2
ln f ′(Rg),

which is (4.10) without the constraint equations (4.10b) but includes the evolution equation
(4.10d). In the following subsection, we will establish the following result.

Proposition 4.4 (Preservation of the wave coordinate conditions in modified
gravity)

Consider a globally hyperbolic spacetime M = ∪t∈[0,tmax)Mt with metric g†, together with
a matter field T defined on M . Suppose that the wave coordinate conditions

(4.13) Γ†
γ

:= g†
αβ

Γ†
γ

αβ = 0 on the initial slice M0,

together with the constraint equations (3.14) and (3.15). Then, the wave conditions (4.13)
are satisfied within the whole of M .

In other words, if one wants to find a solution of (3.7), what we need to do is to find
first a solution of (4.12) with the constraint equations (4.13) satisfied on the initial slice,
with four additional constraint equations to be required on the initial data set. Recall
again that the interest of relying on (4.11) rather than on (3.7) is that the former one has
a hyperbolic principal part (after removing the terms in ρ).
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4.3. Preservation of the wave coordinate conditions

The key to Proposition 4.4 is the contracted Bianchi identity and, amazingly, the precise
form of the modified gravity tensor Ng is not used at this juncture. We begin with some
lemmas and the derivations of key identities.

Lemma 4.5. — For any (pseudo-riemannian) manifold (M, g), the following identity
holds:

(4.14)
∇α
(
∂αΓβ + ∂βΓα − gαβgα

′β′∂α′Γβ′
)

= gα
′β′∂α′∂β′Γβ − gαα

′
Γγαα′∂γΓβ − g

αα′Γδα′β∂δΓα − ∂βgα
′β′
(
∂α′Γβ′

)
,

where Γγαβ denote the Christoffel symbols and Γγ := gαβΓγαβ and Γγ = gγ′γΓ
γ′.

Proof. — From the standard identities

∇α∂βu = gαα
′
∂α′∂βu− Γγα′β∂γu,

�gu = gαβ∂α∂βu− gαβΓγαβ∂γu,

we find

∇α
(
∂αΓβ + ∂βΓα − gαβgα

′β′∂α′Γβ′
)

= ∇α∂αΓβ +∇α∂βΓα − ∂β
(
gα
′β′∂α′Γβ′

)
= �gΓβ + gαα

′
∂α′∂βΓα − gαα

′
Γδα′β∂δΓα − ∂βgα

′β′
(
∂α′Γβ′

)
− gα′β′∂β∂α′Γβ′

thus

∇α
(
∂αΓβ + ∂βΓα − gαβgα

′β′∂α′Γβ′
)

= �gΓβ − gαα
′
Γδα′β∂δΓα − ∂βgα

′β′
(
∂α′Γβ′

)
= gα

′β′∂α′∂β′Γβ − gαα
′
Γγαα′∂γΓ

†
β − gαα

′
Γδα′β∂δΓα − ∂βgα

′β′
(
∂α′Γβ′

)
.

Our next lemma establishes a relation between the wave condition and the evolution
equation of the wave-reduced system (4.12). Recall that sufficiently regular is assumed
throughout so that all terms under consideration are continuous functions at least.

Lemma 4.6. — Consider an arbitrary manifold (M, g†) and a (matter) tensor Tαβ. Then,
if in some local coordinate system {x0, x1, x2, x3}, g†, Tαβ satisfy (4.11), then the following
equations hold

(4.15) g†
α′β′

∂α′∂β′Γ
†
β = Fβ(ρ, g†; Γ†γ, ∂Γ†γ),

where Fβ(ρ, g†; ·, ·) is a combination of linear and bilinear forms, and one recalls Γ†
γ
αβ are

the Christoffel symbols with Γ†β = gββ′Γ
†β′ = gββ′g

αγΓ†
β′

αγ.
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Proof. — Taking the trace of (4.11a) with respect to the metric g,

(4.16) tr (Ng − 8πT ) = −e2ρgαβ∂αΓ†β

and combining with (4.11a), we obtain

(4.17)
Ngαβ − 8πTαβ =

1

2
gαβtr (Ng − 8πT ) +

1

2
e2ρ
(
∂αΓ†β + ∂βΓ†α

)
=

1

2
e2ρ
(
∂αΓ†β + ∂βΓ†α − g†αβg†

α′β′
∂α′Γ

†
β′
)

Taking the trace of (4.17) with respect to g†, we obtain

(4.18)
1

2
∇†α

(
e2ρ
(
∂αΓ†β + ∂βΓ†α − g†αβg†

α′β′
∂α′Γ

†
β′
))

= ∇†α
(
Ngαβ − 8πTαβ

)
,

whose left-hand-side is evaluated by using (4.14):

1

2
∇†α

(
e2ρ
(
∂αΓ†β + ∂βΓ†α − g†αβg†

α′β′
∂α′Γ

†
β′
))

=
1

2
e2ρ∇†α

(
∂αΓ†β + ∂βΓ†α − g†αβg†

α′β′
∂α′Γ

†
β′
)

+ e2ρ
(
∂αΓ†β + ∂βΓ†α − g†αβg†

α′β′
∂α′Γ

†
β′
)
∇†αρ.

We thus obtain that
1

2
∇†α

(
e2ρ
(
∂αΓ†β + ∂βΓ†α − g†αβg†

α′β′
∂α′Γ

†
β′
))

=
1

2
e2ρ
(
g†
α′β′

∂α′∂β′Γ
†
β − g†

αα′
Γ†

γ

αα′∂γΓ
†
β − g†

αα′
Γ†

δ

α′β∂δΓ
†
α − ∂βg†

α′β′(
∂α′Γ

†
β′
))

+ e2ρ
(
∂αΓ†β + ∂βΓ†α − g†αβg†

α′β′
∂α′Γ

†
β′
)
∇†αρ

=:
1

2
e2ρg†

α′β′
∂α′∂β′Γ

†
β +

1

2
e2ρF̃β(ρ, g†; Γ†γ, ∂Γ†γ),

where Fβ(ρ, g†; ·) is a combination of linear and bilinear forms of the functions Γ†γ and
∂Γ†γ.

The right-hand side of (4.18) is computed by using the identity (3.16) and (4.11b), that
is,

∇†α
(
Ngαβ − 8πTαβ

)
= e−2ρ

(
tr (Ng − 8πT )∂βρ− 2gγδ∂γρ(Ngδβ − 8πTδβ)

)
.

Then, by (4.16), we obtain

∇†α
(
Ngαβ − 8πTαβ

)
= e−2ρ

(
− e2ρgα′β′∂α′Γ†β′∂βρ− e2ρgγδ∂γρ

(
∂αΓ†β + ∂βΓ†α − g†αβg†

α′β′
∂α′Γ

†
β′
))

= −gγδ∂γρ
(
∂γΓ

†
β + ∂βΓ†δ

)
and, by (4.18),

(4.19) g†
α′β′

∂α′∂β′Γ
†
β = Fβ(ρ, g†; Γ†γ, ∂Γ†γ),
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where

Fβ(ρ, g†; Γ†γ, ∂Γ†γ) = −F̃β(ρ, g†; Γ†γ, ∂Γ†γ)− 2e−2ρgγδ∂γρ
(
∂δΓ

†
β + ∂βΓ†δ

)
is a combination of linear and bilinear forms in Γ†γ and ∂Γ†γ.

Lemma 4.7. — Let (M, g†) be a globally hyperbolic Lorentzian manifold endowed with a
foliation M = [0, tmax)×Mt (and signature (−,+,+,+)), together with a tensor field Tαβ.
Suppose that the equation (4.11) holds on the initial slice M0 and, furthermore, the wave
coordinate conditions and the constraint equations hold on the slice M0:

Γ†
γ

:= g†
αβ

Γ†
γ

αβ = 0

and (as stated in (3.21)-(3.22))

R
† −K†ijK†

ij
+ (K†

l

l)
2 =

16σ†

e2ρ
+

12| < e0, ρ > |2

N †2
+ 6g†(∇ρ,∇ρ)− e−2ρW2(ρ),

∂jK
†l
l − ∇̄†K†

l

j = −J
†
j

e2ρ
+

6 < e0, ρ > ∂jρ

N †
.

Then, one has

∂0Γ
†λ = 0 in the spacetime M.

Proof. — We work in a Cauchy adapted frame (e0, e1, e2, e3), that is,

e0 = ∂0 − βi∂i, βi =
g†0i
g†ii

, ei = ∂i,

so that g†(e0, ei) = 0. A tensor can be written in, both, the natural frame and the Cauchy
adapted frame. We denote by an underlined letter the components in the Cauchy adapted
frame. For example, Tαβ are the components of T in the Cauchy frame.

Recall that the momentum constraint equations are equivalent to

(4.20) Ng
0j

= 8πT 0j,

the Hamiltonian constraint equation is equivalent to

(4.21) Ng
00

= 8πT 00.

Recall also that the Cauchy adapted frame is expressed in the natural frame via eα = Φβ
α∂β,

where

(
Φβ
α

)
αβ

=


1 −β1 −β2 −β3

0 1 0 0
0 0 1 0
0 0 0 1


Then, we have

Ng
αβ

= Ngα′β′Φ
α′

α Φβ′

β , Tαβ = Tα′β′Φ
α′

α Φβ′

β .
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Observe that the wave-reduced field equation (4.11a) can be rewritten in the Cauchy
adapted frame as

Ng
αβ
− 1

2
tr Ngg

†
αβ
− 1

2
e2ρΦα′

α Φβ′

β

(
∂α′Γ

†
β′ + ∂β′Γ

†
α′
)

= 8π
(
Tαβ −

1

2
tr (T )g†

αβ

)
,

which is

(4.22)
Ng

αβ
− 1

2
tr Ngg

†
αβ
− 1

2
e2ρ
(
Φβ′

β < eα,Γ
†
β′ > +Φα′

α < eβ,Γ
†
α′ >

)
= 8π

(
Tαβ −

1

2
tr (T )g†

αβ

)
.

Next, by combining (4.22) with (4.20) with α = 0, 1 ≤ β = b ≤ 3 in (4.22) and by
observing that g†

0j
= 0, we obtain

Φβ′

b < e0,Γ
†
β′ > +Φα′

0 < eb,Γ
†
α′ >= 0.

We consider this equation on the initial slice M0.

Recall that Γ†
λ

= 0 so that ∂bΓβ = 0 for any 1 ≤ b ≤ 3 and 0 ≤ β ≤ 3. Then observe

that Φβ′

b = δβ
′

b and < eb,Γ
†
α′ >= ∂bΓ

†
α′ = 0, so that

(4.23) < e0,Γ
†
b >= 0,

which leads us to ∂tΓ
†
b = 0.

Now, we can combine (4.22) with (4.20) and (4.21) with α = β = 0 in (4.22):

Φβ′

0 < e0,Γ
†
β′ > +Φα′

0 < e0,Γ
†
α′ >= −tr (Ng − 8πT )g†00.

We recall (4.20) and (4.21) and the fact that g†0j = 0, so that

(4.24) tr (Ng − 8πT ) = gαβ
(
Ng

αβ
− 8πTαβ

)
= gij

(
Ng

ij
− 8πT ij

)
.

We also recall (4.22) with 1 ≤ α = i ≤ 3 and 1 ≤ β = j ≤ 3, and we observe that
< ei,Γ

†
α >= 0. This shows that

Ng
ij
− 8πT ij =

1

2
tr (Ng − 8πT )g

ij
,

which leads us to

gij
(
Ng

ij
− 8πT ij

)
=

1

2
tr (Ng − 8πT )gijg

ij
.

Therefore, by (4.24), we have tr (Ng−8πT ) = 3
2
tr (Ng−8πT ), and thus tr (Ng−8πT ) = 0.

We substitute this conclusion in (4.23) and obtain

Φβ′

0 < e0,Γ
†
β′ > +Φα′

0 < e0,Γ
†
α′ >= 0.

We finally recall (4.23) and get

Φ0
0 < e0,Γ

†
0 > +Φ0

0 < e0,Γ
†
0 >= 0

and the desired conclusion is reached.
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Proof of Proposition 4.4. — In view of Lemma 4.6 and Lemma 4.7, we see that Γ†β satisfies
the initial value problem

g†
α′β′

∂α′∂β′Γ
†
β = Fβ(ρ, g†; Γ†γ, ∂Γ†γ)

with initial data
Γ†β|x0=0 = 0, ∂0Γ

†
β|x0=0 = 0.

Since x0 is the timelike direction and the symmetry of g† guarantees the hyperbolicity of

g†
α′β′

∂α′∂β′ . We also observe that Γ† = 0 is a solution of this initial value problem. Thanks
to the global hyperbolicity of g†, the desired uniqueness result holds within the domain
of determinacy of the initial slice, that is, M itself, thanks to our global hyperbolicity
assumption.

5. The augmented conformal formulation

5.1. A novel formulation

In this section we re-formulate our system and establish a local-in-time existence theory.
Since ρ is function of the scalar curvature, the system under consideration now is still
third-order and is not of a specific PDE type. (The third-order terms are ∂ρ, where ρ is a
function of the second-order derivatives of g†αβ.) To bypass this difficulty, we thus introduce
still another transformation. In (4.11), we now replace the constraint e2ρ = f ′(Rg) by the
trace equation leading to the evolution equation for ρ, and we introduce an augmented
formulation, as we call it. For clarity in the presentation, we switch from the notation ρ to
the notation %, in order the emphasize that the relation e2ρ = f ′(Rg) is no longer imposed.

Let us now define the tensor N ‡g αβ as

(5.1) N ‡g αβ −
1

2
gαβtr (N ‡g ) = e2%R‡αβ − 6e2%∂α%∂β%+

1

2
g‡αβW2(%).

Here, % plays the role of the previous quantity ρ = 1
2

ln f ′(Rg) (which need not hold), and
we work in the metric of the augmented system

(5.2) g‡αβ = e2%gαβ.

We also use the notation ∇‡, R‡α and R‡ for the connection, the Ricci curvature, and the
scalar curvature of g‡, respectively. Also, we denote by Γ‡

γ
αβ the Christoffel symbols of g‡,

and we set Γ‡
γ

:= g‡
αβ

Γ‡
γ
αβ and Γ‡γ := g‡γγ′Γ

‡γ.

Definition 5.1. — The conformal augmented formulation of modified gravity is
the following partial differential system:

(5.3a) N ‡g αβ −
1

2
e2%
(
∂αΓ‡β + ∂βΓ‡α

)
= 8π

(
Tαβ −

1

2
gαβtr (T )

)
,

(5.3b) �g‡% =
W2(%)

6e2%
+
f(θ(%))

6e4%
+

4πtr (T )

3e4%
g‡αβ.
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In the now proposed standpoint, % is an independent unknown, which no longer depends
upon the scalar curvature Rg. In this way, the system under consideration is second-order.
Our first task then is to compute the divergence of N ‡g .

Lemma 5.2. — When (5.3b) holds, the following identity also holds:

(5.4) ∇‡αN ‡g αβ = e−2%
(
2gαα

′
∂α′%N

‡
g αβ
− tr (8πT )∂β%

)
.

Proof. — By (5.3), we have

N ‡g αβ = e2%G‡αβ − 6e2%
(
∂α%∂β%−

1

2
gαβ|∇%|2g‡

)
− 1

2
g‡αβW2(%),

where G‡αβ := R‡αβ− 1
2
g‡αβR

‡ is the Einstein curvature of g‡. We start from the identities

∇‡αG‡αβ = 0,

and

∇‡α
(
∂α%∂β%−

1

2
g‡αβ|∇‡%|2g‡

)
= ∂β%�g‡%,

and we introduce the function

(5.5) s(r) =
1

2
ln f ′(r), r ∈ R,

together with its local inverse near 0, denoted by θ. Then, we have

∇‡αβ
(
g‡αβW2(%)

)
= ∂β

(
W2(%)

)
= ∂β

(
e−2%f(θ(%))− θ(%)

)
=
(
− 2e−2% f(θ(%)) + e−2%f ′(θ(%))θ′(%)∂β%− θ′(%)

)
∂β%

= −2e−2%f(θ(%)) ∂β%.

This allows us to compute the divergence of N ‡g αβ:

∇‡αN ‡g αβ = 2e2%G%
αβ∇

‡α%− 12e2%
(
∂α%∂β%−

1

2
gαβ|∇%|2g‡

)
∇‡α%

− 6e2%∂β%�g‡%+ e2%∂βf(θ(%))

= 2e2%G%
αβ∇

‡α%− 12e2%
(
∂α%∂β%−

1

2
gαβ|∇%|2g‡

)
∇‡α%− g‡αβW2(%)∇‡α%

− 6e2%∂β%�g‡%+ e−2%∂βf(θ(%)) + g‡αβW2(%)∇‡α%

= 2N ‡g αβ∇
‡α%− 6e2%∂β%

(
�g‡ −

f(θ(%))

6e4%
− W2(%)

6e2%

)
.

Then, by (5.9c), we find

�g‡% =
f(θ(%))

6e4%
+
W2(%)

6e2%
+

4πtr (T )

3e4%

and the desired conclusion follows.
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By Lemma 5.2, we see that the evolution law for T is

(5.6) ∇‡αTαβ =
(
2gδγ∂γ%Tγβ − tr (T )∂β%

)
e−2%.

The following question arises at this juncture: Will the relation e2% = f ′(Rg) (with g†αβ =
e2%gαβ) hold if we solely solve the equations (5.3)? The following subsections precisely
provide a (positive) answer to this question.

First, in Section 5.2, we will re-formulate the initial value problem for the augmented
conformal formulation, by building upon our previous formulations of the field equations
in the Jordan and Einstein metrics.

Then, in Section 5.3, in order for the principal part of (5.3) to be hyperbolic, we will
write our augmented system in wave coordinates. Finally, in Section 5.4, we will prove that
once the wave constraint equations Γ‡λ = 0 hold on the initial slice, then the augmentation
relation e2% = f ′(Rg) is guaranteed by (5.10).

5.2. Initial value formulation for the augmented conformal system

In this section, we revisit Definitions 3.7 and 3.8, as follows.

Definition 5.3. — An initial data set for the augmented conformal formulation
of modified gravity (M, g‡, K‡, %0, %1, φ

‡
0, φ
‡
1) consists of the following data:

– a 3-dimensional manifold M endowed with a Riemannian metric g‡ and a symmetric
(0, 2)-tensor field K‡,

– two scalar fields denoted by %0 and %1 on M and representing the (to-be-constructed)
conformal factor and its time derivative,

– and two scalar field φ‡0 and φ‡1 defined on M

Moreover, these data are required to satisfy the Hamiltonian constraint of modified
gravity in the augmented conformal form

(5.7)
R
‡ −K‡ijK‡

ij
+ (K‡

j

j)
2

= 8 e−2ρ
(
(φ‡1)

2 + g‡
ij
∂iφ
‡
0∂jφ

‡
0

)
+ 6(%1)

2 + 6g†
ij
∂i%0∂j%0 − e−2%0W2(%0)

and the momentum constraint in the augmented conformal form

(5.8) ∂jK
‡i
i −∇

‡
iK
‡i
j =

φ‡1∂jφ
‡
0

e2%0
+ 6%1∂j%0.

Here, R
‡

and ∇‡ is the scalar curvature and the connection of the metric g‡, respectively.

Definition 5.4. — Given an initial data set (M, g‡, K‡, %0, %1, φ
‡
0, φ
‡
1) as in Definition 5.3,

the initial value problem in modified gravity in the augmented conformal form
consists of finding a Lorentzian manifold (M, g) and a two-tensor field Tαβ on M such that:

1. The augmented conformal metric g‡αβ = e2%gαβ with conformal factor % satisfies the
evolution equation (5.9c).
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2. The augmented conformal field equations (5.9) are satisfied.
3. There exists an embedding i : M → M with pull-back metric g‡ = i∗g‡ and second

fundamental form K‡.
4. The field %0 coincides with the restriction of the conformal factor % on M , while %1

coincides with the Lie derivative Ln‡% restricted to M , where n‡ denotes the normal
unit vector of M (with respect to g‡).

5. The scalar fields φ‡0, φ
‡
1 coincide with the restriction of φ, Ln‡φ on M .

Such a solution to (3.7) is referred to as a modified gravity development of the initial

data set (M, g‡, K‡, %0, %1, φ
‡
0, φ
‡
1).

Note that, as in Section 3, the geometric form of the constraint equations is the Hamil-
tonian constraint Ng00 = 8πT00 and the momentum constraint Ng0a = 8πT0a.

5.3. Augmented conformal formulation in wave coordinates

We now reduce the conformal augmented system (5.3) in wave coordinates to a system
with hyperbolic principal part. Indeed, we obtain the following formulation, where we
replace the wave constraints by the evolution law of T given by (5.4).

Definition 5.5. — The conformal augmented formulation of modified gravity is,
by definition, the following partial differential system:

(5.9a) N ‡g αβ −
1

2
gαβtr (N ‡g )− 1

2
e2%
(
∂αΓ‡β + ∂βΓ‡α

)
= 8π

(
Tαβ −

1

2
gαβtr (T )

)
,

(5.9b) ∇‡αTαβ =
(
2gδγ∂γ%Tγβ − tr (T )∂β%

)
e−2%,

(5.9c) �g‡%+ Γ‡
δ
∂δ% =

W2(%)

6e2%
+
f(θ(%))

6e4%
+

4πtr (T )

3e4%
g‡αβ.

By Lemma 4.1, we then have the following expressions in coordinates, in which we
emphasize that g‡ need not coincide with g†.

Lemma 5.6. — The conformal augmented formulation of modified gravity theory in co-
ordinates reads

(5.10a)
g‡
α′β′

∂α′∂β′g
‡
αβ

= Fαβ(g‡; ∂g‡, ∂g‡)− 12∂α%∂β%+
W2(%)

e2%
g‡αβ − 16π

(
Tαβ −

1

2
gαβtr (T )

)
,

(5.10b) ∇‡αTαβ =
(
2gδγ∂δ%Tγβ − tr (T )∂β%

)
e−2%,

(5.10c) g‡
α′β′

∂α′∂β′% =
W2(%)

6e2%
+
f(θ(%))

6e4%
+

4πtr (T )

3e4%
,

with

(5.11) g‡αβ = e2%gαβ.
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5.4. Preservation of the constraints

Our first task is to address the problem of the preservation of the constraints.

Proposition 5.7. — Let (M, g‡) be a globally hyperbolic Lorentzian manifold endowed
with foliation M = [0, tmax) and with signature (−,+,+,+). Let T be a symmetric two-
tensor (representing the matter content) and let % be a scalar field defined in (−ε, ε)×R3.
Furthermore, assume that (g‡αβ, φ, %) is a solution to the conformal field equations (5.10).

Let gαβ := e−2%g‡αβ be the metric conformal to g‡. Then, provided the constraint equations
(5.7) and (5.8) together with the constraint equations

(5.12) g‡
αβ

Γ‡
γ

αβ = 0

are satisfied on the slice {x0 = 0} (where Rg is the scalar curvature of gαβ and Γ‡
γ
αβ are

the Christoffel symbols of g‡), then (5.12) holds in the whole of (−ε, ε)×R3. Furthermore,
one has

(5.13) e2% = e2ρ =
1

2
ln(f ′(Rg))

in (−ε, ε)× R3, so that (g‡αβ, φ, %) is also a solution to (3.7).

The rest of this section is devoted to the proof of this proposition. Recall that, through-
out, we assume that the g‡αβ, % and Tαβ are sufficiently regular, so that all relevant deriva-
tives are continuous at least. For the proof, we need some preliminary material and, first
of all, we compute the divergence of N ‡g .

Lemma 5.8. — When (5.9c) holds, the following identity holds:

(5.14) ∇‡αN ‡g αβ = e−2%
(
2gαα

′
∂α′%N

‡
g αβ
− tr (8πT )∂β%

)
+ 6e2%∂β%Γ‡

δ
∂δ%.

Proof. — First of all, in view of (5.3), we have

N ‡g αβ = e2%G‡αβ − 6e2%
(
∂α%∂β%−

1

2
gαβ|∇%|2g‡

)
− 1

2
g‡αβW2(%),

where G‡αβ := R‡αβ − 1
2
g‡αβR

‡ is the Einstein curvature of g‡. We have the identities

∇‡αβG(%)
αβ = 0,

∇‡αβ
(
∂α%∂β%−

1

2
gαβ|∇%|2g‡

)
= ∂β%�g‡%.

As before, by introducing the function

(5.15) s(r) =
1

2
ln f ′(r), r ∈ R
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with (local) inverse denoted by θ and defined near 0 at least, we can write

∇‡αβ
(
g‡αβW2(%)

)
= ∂β

(
W2(%)

)
= ∂β

(
e−2%f(θ(%))− θ(%)

)
= −2e−2%∂β%f(θ(%)) + e−2%f ′(θ(%))θ′(%)∂β%− θ′(%)∂β%

= −2e−2%∂β%f(θ(%)) + e−2%e2%θ′(%)∂β%− θ′(%)∂β%

= −2e−2%∂β%f(θ(%)).

We are now in a position to compute the divergence

∇‡αN ‡g αβ = 2e2%G%
αβ∇

‡α%− 12e2%
(
∂α%∂β%−

1

2
gαβ|∇%|2g‡

)
∇‡α%

− 6e2%∂β%�g‡%+ e2%∂βf(θ(%))

= 2e2%G%
αβ∇

‡α%− 12e2%
(
∂α%∂β%−

1

2
gαβ|∇%|2g‡

)
∇‡α%− g‡αβW2(%)∇‡α%

− 6e2%∂β%�g‡%+ e−2%∂βf(θ(%)) + g‡αβW2(%)∇‡α%

= 2N ‡g αβ∇
‡α%− 6e2%∂β%

(
�g‡ −

f(θ(%))

6e4%
− W2(%)

6e2%

)
.

In view of (5.9c), we find

�g‡% = −Γ‡
δ
∂δ%+

f(θ(%))

6e4%
+
W2(%)

6e2%
+

4πtr (T )

3e4%

and this yields the desired conclusion.

Lemma 5.9. — The equation (5.10a) leads also to the wave equation for %

(5.16) �g‡% =
Rg

6e2%
+
W2(%)

3e2%
+

4πtr (T )

3e4%
− gαβ∂αΓ‡β

6e2%
.

Proof. — We recall that (5.10a) can be written as

(5.17)
e2%R‡αβ − 6e2%∂α%∂β%+

g‡αβ
2
W2(%)− e2%

2

(
∂αΓ‡β + ∂βΓ‡α

)
= 8π

(
Tαβ −

1

2
gαβtr (T )

)
,

and that (3.6) implies

R‡αβ = Rαβ − 2
(
∇α∇β%− ∂α%∂β%

)
−
(
�g%+ 2g(∇%,∇%)

)
gαβ.

We substitute this relation into (5.17) and obtain

e2%Rαβ − 2e2%∇α∇β%− 4e2%∂α%∂β%− gαβe2%�g%− 2e2%gαβg(∇%,∇%) +
g‡αβ

2
W2(%)

= 8π
(
Tαβ −

1

2
tr (T )gαβ

)
+

1

2
e2%
(
∂αΓ‡β + ∂βΓ‡α

)
.

By taking the trace of this equation with respect to g, we have

e2%Rg − 6e2%�g%− 12e2%g(∇%,∇%) + 2e2%W2(%) = −8πtr (T ) + e2%gαβ∂αΓ‡β,
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which can also be written as

�g%+ 2g(∇%,∇%) =
Rg

6
+
W2(%)

3
+

4πtr(T )

3e2%
− gαβ

6
∂αΓ‡β.

In view of the expression (3.8), the desired result is proven.

In the next lemma, we identify the geometric form of the system (5.10).

Lemma 5.10. — Let (M, g‡) be a Lorentzian manifold together with a two-tensor Tαβ.
If, in some local coordinates {x0, x1, x2, x3}, (g‡, Tαβ) satisfy (5.10), then the following
equation holds (in the domain of the coordinate system):

(5.18) g‡
α′β′

∂α′∂β′Γ
‡
β = Fβ(%, g‡; Γ‡γ, ∂Γ‡γ),

where Fβ(%, g‡; ·, ·) is a combination of linear and bilinear forms and Γ‡
γ
αβ denote the as-

sociated Christoffel symbol with

Γ‡β = g‡ββ′Γ
‡β′ = g‡ββ′g

‡αγΓ‡
β′

αγ.

Proof. — By taking the trace of (5.9a) we have

(5.19) e2%gα
′β′∂α′Γ

‡
β′ = −tr (N ‡g − 8πT ).

Combining this results with (5.9a), we obtain

(5.20)
e2%

2

(
∂αΓ‡β + ∂βΓ‡α − gαβgα

′β′∂α′Γ
‡
β′
)

= N ‡g αβ − 8πTαβ.

By computing the divergence of this equation (for the metric g‡) and evaluating the left-
hand side in (4.14), we get

(5.21)

1

2
∇‡α

(
e2%
(
∂αΓ‡β + ∂βΓ‡α − gαβgα

′β′∂α′Γ
‡
β′
))

=
1

2
e2%
(
g‡
α′β′

∂α′∂β′Γ
‡
β − g‡

αα′
Γ‡

γ

αα′∂γΓ
‡
β − g‡

αα′
Γ‡

δ

α′β∂δΓ
‡
α − ∂βg‡

α′β′(
∂α′Γ

‡
β′
))

+ e2%
(
e2%
(
∂αΓ‡β + ∂βΓ‡α − gαβgα

′β′∂α′Γ
‡
β′
))
∇‡α%

=:
1

2
e2%gα

′β′∂α′∂β′Γ
‡
β + F̃β(%, g‡; Γ‡γ, ∂Γ‡γ).

Here, F̃ is a combination of linear and bilinear forms on Γ‡γ and ∂Γ‡γ depending on %, g‡

and their derivatives.
On the other hand, the right-hand side is computed from (5.9b) and (5.14), as follows:

∇‡α
(
N ‡g αβ − 8πTαβ

)
= e−2%

(
2gαα

′
∂α′%N

‡
g αβ
− tr (8πT )∂β%

)
+ 6e2%∂β%Γ‡

δ
∂δ%

− 8πe−2%
(
2gδγ∂γ%Tγβ − tr (T )∂βρ

)
= e−2%

(
2gγα∂γ%

(
N ‡g αβ − 8πTαβ

)
− tr (N ‡g − 8πT )∂β%

)
+ 6∂βρΓ‡δ∂δρ.
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Then, in view of (5.19) and (5.20), we obtain

(5.22) ∇‡α
(
N ‡g αβ − 8πTαβ

)
= gγα∂γ%

(
∂αΓ‡β + ∂βΓ‡α

)
+ 6∂βρΓ‡

δ
∂δρ,

which is a linear form in the functions Γ‡α and ∂γΓ
‡
α. Finally, we arrive at the desired

conclusion by combining (5.21) and (5.22) with (5.20) together.

Lemma 5.11. — Provided the equations (5.10) hold on the initial slice {t = 0} and the
condition

Γ‡λ = 0

and the constraint equations (5.7) and (5.8) also hold on the initial slice {t = 0}, then it
follows that, on this initial slice,

∂tΓ
‡
λ = 0.

Proof. — We observe that the constraint equations (5.7) and (5.8) are equivalent to N ‡g 0j =

8πT00 and N ‡g 00 = 8πT00, respectively. Consequently, the proof of the lemma follows from
the same calculation which was performed in the proof of Lemma 4.7. Therefore, we omit
the details.

Proof of Proposition 5.7. — By Lemmas 5.10 and 5.11 and by the global hyperbolicity of
the metric g‡, we see that, in the spacetime M ,

(5.23) Γ‡β = 0.

Recalling Lemma 5.9 and combining (5.16) with (5.23), we obtain

(5.24) �g‡% =
Rg

6e2%
+
W2(%)

3e2%
+

4πtr (T )

3e4%
.

In a similar way, (5.9c) becomes

(5.25) �g‡% =
W2(%)

6e2%
+
f(θ(%))

6e4%
+

4πtr (T )

3e4%
.

By comparing these two equations, we thus get

Rg +W2(%)− f(θ(%)) = 0,

which (by the definition of W2) leads us to θ(%) = Rg, and it remains to recall the notation
e2% = Rg.

5.5. The local existence theory

The standard theory of local-in-time existence for the initial value problem associated
with hyperbolic problems can now be applied to an arbitrary initial set in these sense of
Definition 3.7. Let us sketch the strategy of proof. For simplicity in this discussion and
without genuine restriction, we can consider that the initial data set and, therefore, the
solutions are close to data in Minkowski space.

First of all, we need to construct the (local-in-time) solution of the problem (6.1) whose

initial data set must be expressed in wave coordinates, say (M, g‡0αβ, g
‡
1αβ, %0, %1, φ0, φ1).
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This PDE initial data set is determined from the geometric initial data set denoted by
(M, g‡, K‡, %0, %1, φ

‡
0, φ
‡
1). Without restriction, smallness (and regularity) assumptions are

here made on the initial data set.
Second, we need to check that this (local-in-time) solution leads to a globally hyperbolic

spacetime. Then, according to Proposition 5.7, we can conclude that this solution preserves
the constraints (5.12) and (5.13) and, consequently, is also a solution to the field equations
(3.7) with g‡ = g† and % = ρ = 1

2
ln f ′(Rg). We thus conclude that this solution solves the

initial value problem in Definition 3.7.
Third, we need to observe that the solution (g, φ) constructed from gαβ := e−2ρg†αβ is a

solution to the original initial value problem, stated in Definition 2.6 with the corresponding
initial data set determined by (M, g‡, K‡, %0, %1, φ

‡
0, φ
‡
1) (via the conformal transformation).

We omit the details and refer to Choquet-Bruhat [10] for the existence and uniqueness
statements in classical gravity, which based on our reformulation and discussion above can
be extactly restated for the field equations of modified gravity. For the rest of this work, our
objective is to revisit such a theory and, while re-proving this existence result, to establish
that modified gravity developments remain close to classical Einstein developments.

6. Local existence theory. Formulation and main state-
ment

6.1. Construction of the PDE initial data set

Our objective is thus to establish an existence theory for the Cauchy problem associated
with the modified gravity field equations (5.10), when the initial data are assumed to be
asymptotic flat. For the sake of simplicity and without genuine loss of generality as far
as our method of proof is concerned, we focus our presentation on quadratic functions
f(r) = r + κ

2
r2. It is straightforward to modify our argument to cover more general

functions f .
We need first to introduce several notations, before we can state one of our main results

in Theorem 6.3 below. Recall that the matter model we are considering is the massless
scalar field with Jordan coupling and that, in agreement with Section 3.3 (see (3.19)), the
system (5.10) under consideration reads

(6.1a)
g‡
α′β′

∂α′∂β′g
‡
αβ

= Fαβ(g‡; ∂g‡, ∂g‡)− 12∂α%∂β%+
W2(%)

e2%
g‡αβ − 16π∂αφ∂βφ,

(6.1b) g‡
α′β′

∂α′∂β′φ = 2g‡
α′β′

∂α′φ∂β′%,

(6.1c) g‡
α′β′

∂α′∂β′% =
W2(%)

6e2%
+
f(θ(%))

6e4%
− 4π

3e2%
g‡
α′β′

∂α′φ∂β′φ.
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Clearly, this is quasi-linear system of wave equations in diagonalized form and, in order to
formulate a well-posed problem, the initial data set should include the functions

(6.2)

g‡αβ(0, x) = g‡0αβ, ∂tg
‡
αβ(0, x) = g‡1αβ,

%(0, x) = %0, ∂t%(0, x) = %1,

φ(0, x) = φ0 = φ‡0, ∂tφ(0, x) = φ1 = φ‡1.

There are 24 functions to be prescribed, but the geometrical initial data set

(M, g‡, K‡, %0, %1, φ
‡
0, φ
‡
1)

contains 16 functions only. In fact, in order to construct a solution of (6.1) that also
satisfies (3.7), we see that, by Proposition 5.7, the conditions (5.12), (5.7) and (5.8) must
hold on the initial hypersurface. These conditions form a nonlinear PDE’s system of
eight equations, and it is expected that the 8 remaining initial data components could be
determined from these 8 constraint equations. This task, however, is not a trivial one and
further investigation would be needed to fully clarify the set of initial data.

From now on, we assume that this system of 8 constraint equations together with the
16 functions prescribed by the geometric initial data set uniquely determine our PDE’s
initial data set. Throughout, we denote by (M, g‡0αβ, g

‡
1αβ, %0, %1, φ0, φ1) the PDE initial

data determined by (M, g‡, K‡, %0, %1, φ
‡
0, φ
‡
1) and the constraint equations (5.7), (5.8) and

(5.12).

6.2. Simplifying the field equations of f(R) gravity

For definiteness, we focus on the role of second-order terms in f and assume that

(6.3) f(r) := r +
κ

2
r2, r ∈ R

for some κ ≥ 0. We recall e2ρ = f ′(Rg), so that

e2ρ = 1 + κRg, Rg =
e2ρ − 1

κ
,

and

W2(s) =
f(r)− rf ′(r)

f ′(r)

=
r + κ

2
r2 − r(1 + κr)

1 + κr
= − κr2

2(1 + κr)
,

with e2s = f ′(r) = 1 + κr so that

(6.4) W2(s) = −(e2s − 1)2

2κe2s
.

The spacetime (M, g‡) under consideration is endowed with a foliation

M = [0, T ]×Mt, t ∈ [0, T ]
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and we assume that, for each t, Mt is diffeomorphic to R3. The spacetime metric is supposed
to be sufficiently close to Minkowski metric and, especially, is asymptotically flat, so that
the following notation is convenient:

(6.5) hαβ := g‡αβ −mαβ

and we thus seek for unknowns triples (hαβ, %, φ). Sometimes, we will write (hαβ, %, φ) =
(hκαβ, %

κ, φκ) in order to emphasize that the solutions of (5.10) depend on the coefficient κ.
With these notation the system (5.10) take in the alternative form:

(6.6a)

(mα′β′ +Hα′β′(hκ))∂α′∂β′h
κ
αβ

= Fαβ(hκ; ∂hκ, ∂hκ)− 16π∂αφ
κ∂βφ

κ − 12∂α%
κ∂β%

κ

−
(
e2%

κ − 1
)2

2κe4%κ
(
mαβ + hκαβ

)
,

(6.6b) (mα′β′ +Hα′β′(hκ))∂α′∂β′φ
κ = 2(mα′β′ +Hα′β′(hκ))∂α′φ

κ∂β′%
κ,

(6.6c)
(mα′β′ +Hα′β′(hκ))∂α′∂β′%

κ − e2%
κ − 1

6κe4%κ

= − 4π

3e2%κ
(mα′β′ +Hα′β′(hκ))∂α′φ

κ∂β′φ
κ,

where, from hκ = (hκαβ), we have determined

(6.7)
(
mαβ +Hαβ(hκ)

)
as the inverse of

(
mαβ + hκαβ

)
.

With this notation, the PDE initial data denoted by (M,h0, h1, %0, %1, φ
‡
0, φ
‡
1) is thus

rewritten in terms of h, with

hαβ|t=0 = h0αβ := g‡0αβ −mαβ, ∂thαβ = h1αβ := g‡1αβ.

The system under consideration is composed of 12 quasi-linear wave equations: 11 of
them (those on hκαβ and φκ) are quasi-linear wave equations, while the equation on %κ is a
quasi-linear Klein-Gordon equation with defocusing potential.

Remark 6.1. — The coefficients Hαβ are clearly smooth functions of h, in a sufficiently
small neighborhood of the origin, at least. Hence, we can find a positive constant ε0 such
that if |h| ≤ ε0, then for any integer k, the k-th order derivatives of Hαβ with respect to h,
say DkHαβ, are well-defined and

sup
|h|≤ε′

|DkHαβ(h)
∣∣ ≤ C(k, ε0)

Standard linear algebra arguments show that when |h| ≤ ε0 (with ε0 sufficiently small), then

(6.8) Hαβ(h) = −hαβ +Qαβ
(
h, h)(1 +Rαβ(h)

)
,

where Qαβ is a quadratic form in its argument and |Rαβ(h)| ≤ C(ε0) |h|.
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6.3. Vector fields and notation

We introduce the three generators of the spatial rotations

(6.9) Ωij := xi∂j − xj∂i = xi∂j − xj∂i,

which are known to commute with the wave operator, as well as with the Klein-Gordon
operator. Here, the coordinate indices are raised and lowered with the Minkowski metric.
We also write

Ω1 := Ω12, Ω2 := Ω23, Ω3 := Ω13.

Note that

(6.10) [Ωa,�] = 0, [Ωa,� + 1] = 0.

The following notation about multi-indices will be used. Given a finite set I =
{α1, α2, . . . , αn}, we call n the order of I , denoted by |I | = n. We introduce an or-
dering relation denoted by � on I , defined by

αi � αj if and only if i ≤ j.

The pair (I ,�) is called an abstract multi-index. Obviously, a subset of I can also be
regarded as a multi-index endowed with the same (restricted) order. The order � describes
the location of each differential operator in a product.

A partition of an abstract index I is defined as follows. Let Jk be family of subsets of
I , with

m⋃
k=1

Jk = I , Jk ∩Jk′ = ∅.

Then, we say that {Jk} is an m-partition of I and we write
∑m

k=1 Jk = I . We observe
that each Jk can be regarded as a multi-index and

∑m
k=1 |Jk| = |I |.

If for all k = 1, 2, . . .m, we have Jk 6= ∅, then we say {Jk} is a proper m-partition of
I and we write

∑m
k=1 Jk = I , |Jk| ≥ 1.

Now, let us return to the case of multi-indices in the context of differential operators. Let
Z be a family of order one differential operator, say Z = {Z1, Z2, . . . Zp}. A n-multi-index
on the family Z is a map

I : I → {1, 2, . . . p},
αi 7→ I(αi) ∈ {1, 2, . . . p},

and we write ZI := ZI(α1) ◦ ZI(α2) ◦ · · · ◦ ZI(αn). With some abuse of notation, we often
write I = (αn, αn−1, . . . , α1) with αi ∈ {1, 2, . . . p}, where each αi is replaced by I(αi).

An m-partition of index I is defined as follows. Let {Jk} be a (proper) m-partition of
an abstract index I . Then we restrict the map I on each ordered set Jk, and this yields
us an m-multi-index, denoted by {Jk} = I({Jk}). Then, we call Jk a (proper) m-partition
of I and we denote it by I =

∑m
k=1 Jk, (|Jk| ≥ 1).

We often consider the set P(I ,m) composed by all possible m-partitions of I . Then,
each partition in P(I ,m) can be associated with a partition of I. We observe that if



THE VALIDITY OF THE THEORY OF MODIFIED GRAVITY 49

∏m
k=1 uk is a product of m functions, then

ZI

( m∏
k=1

uk

)
=

∑
{Jk}∈P(I ,m)

m∏
i=1

ZJkuk

with {Jk} = I({Jk}). However, for the sake of simplicity in the notation and whenever
there is no risk of confusion, we will often write

ZI

( m∏
k=1

hk

)
=

∑
∑m
k=1 Jk=I

m∏
k=1

ZJkuk.

6.4. Functional spaces of interest

Recall that, in classical gravity, an initial data set for the Cauchy problem must satisfy the
constraint equations (2.29). As first proven by Lichnerowicz, solutions can be costructed
by solving a nonlinear elliptic system and, by the positive mass theorem, the non-trivial
part of the metric ḡ − m̄ decreases precisely at the rate r−1 at spatial infinity. Indeed, if
ḡ − m̄ would decrease faster than r−1, then ḡ = m̄.

In modified gravity, the constraint equations (5.7) and (5.8) are much more involved,
an analogue result related to the positive mass theorem is not known. Yet, since we focus
our attention on the (local) existence and (κ → 0) convergence theory, we can consider
an “Einsteinian initial data set” having %0 = %1 ≡ 0 satisfying the classical constraint
equations. We need to handle the quasi-linear wave system with initial data decreasing
like r−1 at spatial infinity. These functions (in general) do not lie in L2(R3), and we need
to construct our local solution in suoitably weighted functional spaces.

We need to introduce some norms about C∞c (R3) functions, that is, smooth functions
with compact support. A first norm to be introduced is

‖%‖Xd :=
∑

|I1|+|I2|≤d

‖∂I1x ΩI2%‖L2(R3).

The L2 norm is with respect to the standard volume form, i.e. the Lebesgue measure.
The second norm defined for the C∞c (R3) functions is

‖%‖Xd+1
P

:=
∑

|I1|+|I2|≤d

‖∂x∂I1x ΩI2%‖L2(R3),

where ∂xφ refers to the spatial gradient of φ.
The first functional space to be used in our analysis, the space Xd+1

P , is defined as the
completion of the norm ‖ · ‖Xd+1

P
on the C∞c functions. We denote by

(6.11) ‖ · ‖Xd+1
R

:= ‖ · ‖Xd + ‖ · ‖Xd+1
P
.

The second functional space, Xd+1
R , to be used in our analysis, is defined as the completion

of the norm ‖ · ‖Xd+1
R

on the C∞c functions.
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We also define the weighted sup-norm

‖f‖E−1 := sup
r≥0
{(1 + r)|f |}

and

‖f‖Xd+1
H

:= ‖f‖E−1 + ‖f‖Xd+1
P
,

so that the functional spaces E−1 and Xd+1
H are obtained by completion from the Cc(R3)

functions with respect of the norm under consideration.
The relations among these functional spaces are as follows:

(6.12) Xd+1 ⊂ Xd+1
R ⊂ Xd, Xd

R ⊂ Xd
P , Xd

H ⊂ Xd
P .

In the next section, when d ≥ 2, by (7.8), we will also see that

(6.13) Xd ⊂ E−1, Xd
R ⊂ Xd

H ⊂ Xd
P .

Finally, we define the norm of a triple S0 := (h0αβ, %0, φ0):

‖S‖Xd+1
0

:=
∑
α,β

‖h0αβ‖Xd+1
H

+ ‖%0‖Xd+1
R

+ ‖φ0‖Xd+1
P

and we set

(6.14) Xd+1
0 = Xd+1

H ×Xd+1
R ×Xd+1

P .

Similarly, for triples S1 = (h1αβ, φ1, %1), we define

‖S1‖Xd
1

:=
∑
α,β

‖h1αβ‖Xd + ‖%1‖Xd + ‖φ1‖Xd

We are now ready to discuss the notion of asymptotically flat PDE initial data.

Definition 6.2. — A PDE initial data set in wave coordinates for the initial value
problem stated in Definition 3.7, say (M,h0αβ, h1αβ, %0, %1, φ0, φ1) , is said to be asymp-
totically flat if

– the initial slice M0 is diffeomorphic to R3 and in its canonical coordinate system, the
initial data set satisfies the wave constraint equations.

– in the canonical coordinate system (x1, x2, x3),

‖h0αβ‖E−1 ≤ ε0,

where ε0 represents the ADM mass.
– the E−1(R3) norm of %0, %1, φ1 are finite.

Hence, the initial data behaves like r−1 at spatial infinity. A geometrical initial data
(M, g‡, K‡, %0, %1, φ

‡
0, φ
‡
1) is called asymptotically flat, if it gives a asymptotically flat PDE

initial data.
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We recall that the components of the solution to the system (6.1) are functions defined
in R4 with three spatial variables and one time variable. To study these functions, say
u = u(t, ·), we need to the following norms and corresponding spaces:

‖u(t, ·)‖Ed : =
∑

|I1|+|I2|≤d

‖∂I1ΩI2u(t, ·)‖L2(R3)

=
∑

k+|J1|+|J2|≤d

‖∂kt ∂J1x ΩJ2u(t, ·)‖ =
∑
k+l≤d

‖∂kt u(t, ·)‖Xl ,

‖u(t, ·)‖Ed+1
P

: =
∑
α

|I1|+|I2|≤d

‖∂α∂I1ΩI2u(t, ·)‖L2(R3)

=
∑
α

∑
k+|J1|+|J2|≤d

‖∂α∂kt ∂J1x ΩJ2u(t, ·)‖L2(R3) =
∑
k+l≤d

‖∂kt u(t, ·)‖Xl
P
,

and then

‖u(t, ·)‖Ed+1
R

:= ‖u(t, ·)‖Ed + ‖u(t, ·)‖Ed+1
P
,

‖u(t, ·)‖Ed+1
H

:= ‖u(t, ·)‖E−1 + ‖u(t, ·)‖Ed+1
P
.

We also define several norms on the time interval [0, T ] for p ∈ [1,∞]:

‖u‖Lp([0,T ];Ed) : =
∥∥‖u(t, ·)‖Ed

∥∥
Lp([0,T ])

, ‖u‖Lp([0,T ];EdP ) :=
∥∥‖u(t, ·)‖EdP

∥∥
Lp([0,T ])

,

‖u‖Lp([0,T ];EdR) : =
∥∥‖u(t, ·)‖EdR

∥∥
Lp([0,T ])

, ‖u‖Lp([0,T ];EdH) :=
∥∥‖u(t, ·)‖EdH

∥∥
Lp([0,T ])

.

Finally, for p <∞, we have the functional spaces of interest

Lp([0, T ];Ed), Lp([0, T ];Ed
P ), Lp([0, T ];Ed

R),

and Lp([0, T ];Ed
H), defined by completion with respect to the corresponding norms in the

space of C∞c (R4) functions. This leads us to the definition of C([0, T ], ;Ed), C([0, T ];Ed
P )

and C([0, T ];Ed
H) by completion from the space C∞c functions with respect to the following

norms:

L∞([0, T ];Ed), L∞([0, T ];Ed
P ), L∞([0, T ];Ed

R),

6.5. Existence theorem for the nonlinear field equations

We introduce the following norm for the initial data S0 := (h0, h1, φ0, φ1, %0, %1):

‖S0‖Xd+1
κ

:= max{‖h0αβ‖Xd+1
H
, ‖h1αβ‖Xd , κ−(1/2)[d/2]+1/4‖φ0‖Xd+1

P
,

κ−(1/2)[d/2]+1/4‖φ1‖Xd , κ−[d/2]−1/2‖%0‖Xd+1
R
, κ−[d/2]−1/2‖%1‖Xd}.

We are ready to state one of our main results.

Theorem 6.3 (Local existence with uniform bounds). — Given any integer d ≥ 4,
assume that

(h0αβ, h1αβ) ∈ Xd+1
H ×Xd, (φ0, φ1) ∈ Xd+1

P ×Xd, (%0, %1) ∈ Xd+1
R ×Xd
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and suppose that S0 := (h0, h1, φ0, φ1, %0, %1) satisfies

(6.15) ‖S0‖Xd+1
κ
≤ ε ≤ ε0

for some sufficiently small ε0 > 0. Then, there exist constants A, T ∗ > 0 which are
independent of κ and such that, within the time interval [0, T ∗], the Cauchy problem
(6.6) (with 0 < κ ≤ 1) has a unique solution (hκαβ, φ

κ, %κ) in the following functional space
(with 0 ≤ k ≤ d− 1):

∂kt h
κ
αβ ∈ C([0, T ], Xd−k

H ) ∩ C1([0, T ], Xd−k−1
H ),

∂kt φ
κ ∈ C([0, T ], Xd−k

P ) ∩ C1([0, T ], Xd−k−1
P ),

∂kt %
κ ∈ C([0, T ], Xd−k

R ) ∩ C1([0, T ], Xd−k−1
R ),

Furthermore, the following estimates hold with constant independent of κ:

(6.16a) ‖hκαβ(t, ·)‖EdH ≤ Aε,

(6.16b) ‖φκ‖EdP ≤ Aε,

(6.16c) ‖%κn‖EdP + κ−1/2‖%κn‖Ed−1 ≤ Aε.

Equipped with the above theorem, we are thus able to build the local solution of the
original Cauchy problem stated in Definition 5.4.

Theorem 6.4 (Existence of modified gravity developments)

Consider an initial data set (M, g‡, K‡, %0, %1, φ
‡
0, φ
‡
1) for the Cauchy problem in Defi-

nition 5.3 and assume that its associated PDE initial data S0 = (h0, h1, φ0, φ1, %0, %1) is
asymptotically flat and satisfies the conditions in Theorem 6.3. Let (hκαβ, φ

κ, %κ) be the

corresponding solution of (5.10) associated with S0. Then the spacetime ([0, T ]×R3, g‡) is

a modified gravity development of the initial data (M, g‡, K‡, %0, %1, φ
‡
0, φ
‡
1).

Proof. — We simply note that the local solution (hκαβ, φ
κ, %κ) is sufficiently regular and that

h = g‡−m sufficiently small, which guarantees that the metric g‡ is globally hyperbolic on
[0, T ]×R3. We can apply the result about the preservation of constraints in Proposition 5.7.
Once the constraints

e2% =
1

2
ln f ′(Rg), Γ‡

λ
= 0

hold, we see that the pair (g‡, φ) satisfies the conformal field equations (3.7).

7. Technical tools for the local existence theory

7.1. Estimates on commutators

From this subsection we will make some preparations in order to prove Theorem 6.3. In this
subsection we derive commutator estimates. First we point out the following commutation
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relations:

(7.1) [∂a,Ωbc] = δab∂c − δac∂b, [∂t,Ωab] = 0.

Lemma 7.1. — If u is a smooth function defined on [0, T ]×R3, then for any multi-index
I1, I2 with |I1|+ |I2| = n, the following estimates hold:

(7.2) [ΩI , ∂α]u =
∑
|J |<|I|

ΘIc
αJ∂cΩ

Ju,

where ΘIc
αJ are constants. When α = 0, one has ΘIc

αJ = 0.

Proof. — First, we observe that when α = 0, ∂0 = ∂t commutes with ΩI . When α > 0,
this is proven by induction on the order of |J |. When |J | = 1, the result is proven by (7.1).
We denote by

[Ωa, ∂β] = θcaβ∂c.

Now assume that for |J | ≤ k, (7.2) is valid. For |J | = k, we find

ΩJ = Ωa1Ω
J1 ,

where |J1| = k − 1. Then, we have

[ΩJ , ∂a]u = Ωa1Ω
J1∂αu− ∂αΩa1Ω

J1u = Ωa1Ω
J1∂αu− Ωa1∂αΩJ1u+ Ωa1∂αΩJ1u− ∂αΩa1Ω

J1u

= Ωa1

(
[ΩJ1 , ∂α]u

)
+ [Ωa1 , ∂α]ΩJ1u

= Ωa1

( ∑
|K1|<|J1|

ΘJ1b
αK1

∂bΩ
K1u

)
+ θba1a∂bΩ

J1u

=
∑

|K1|<|J1|

ΘJ1b
αK1

Ωa1∂bΩ
K1u+ θba1a∂bΩ

J1u

=
∑

|K1|<|J1|

ΘJ1b
αK1

∂bΩa1Ω
K1u+ θba1a∂bΩ

J1u+
∑

|K1|<|J1|

ΘJ1b
αK1

[Ωa1 , ∂b]Ω
K1u

=
∑

|K1|<|J1|

ΘJ1b
αK1

∂bΩa1Ω
K1u+ θba1a∂bΩ

J1u+
∑

|K1|<|J1|

ΘJ1b
αK1

θca1b∂cΩ
K1u.

Lemma 7.2. — Let u be a smooth function defined in [0, T ] × R3. Then the following
estimates hold for |I1|+ |I2| = d:

(7.3a) |∂I1x ΩI2∂xu| ≤ |∂x∂I1x ΩI2u|+ C(d)
∑
|I′2|<|I2|

|∂x∂I1x ΩI′2u|,

(7.3b) |∂x∂I1x ΩI2u| ≤ |∂I1x ΩI2∂xu|+ C(d)
∑

|I′1|+|I′2|<d

|∂I′1x ΩI′2∂xu|,

(7.3c)
∣∣[∂I1x ΩI2 , ∂α∂β]u

∣∣ ≤ C(d)
∑
a,α

|J2|<|I2|

|∂a∂α∂I1x ΩJ2u|,
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(7.3d) |∂krΩI1u(t, x)| ≤ C(k)
∑
|J1|≤k

|∂J1x ΩI1u(t, x)|, for |x| ≥ 1,

(7.3e)

|[∂I1x ΩI2 , Hαβ∂α∂β]u| ≤
∑

J1+J
′
1=I1

J2+J
′
2=I2

|J′1|+|J
′
2|>0

|∂J ′1x ΩJ ′2Hαβ| |∂α∂β∂J1x ΩJ2u|

+ C(d)
∑

J1+J
′
1=I1

|J2|+|J′2|<|I2|
α,β,α′,a

|∂J ′1x ΩJ ′2Hαβ| |∂α′∂a∂J1x ΩJ2u|,

where Hαβ are smooth functions.

Proof. — In view of (7.2), the following identity is immediate:

[∂I1x ΩI2 , ∂α] =
∑
|K|<|I2|

ΘI2b
αK∂b∂

I1
x ΩKu.

To derive (7.3a), we observe that

[∂I1x ΩI2 , ∂α]u = ∂I1x
(
[ΩI1 , ∂α]u

)
=

∑
c,|J2|≤|I2|

∂I1x
(
ΘI1c
αJ2
∂cΩ

J2u
)

=
∑

c,|J2|≤|I2|

ΘI1c
αJ2
∂c∂

I1
x ΩJ2u

and

(7.4)
∑

c,|J2|≤|I2|

∣∣ΘI1c
αJ2
∂c∂

I1
x ΩJ2u

∣∣ ≤ C(d)
∑

c,|I′2|<|I2|

|∂c∂I1ΩI′2u|.

This establishes (7.3a).
The equation (7.3b) is derived by induction on d. Clearly, (7.3b) holds for d = 0. If it

holds for d ≤ k, let us prove the case d = k + 1:∣∣∂α∂I1ΩI2u
∣∣ ≤ ∣∣∂I1ΩI2∂αu

∣∣+
∣∣[∂α, ∂I1ΩI2 ]u

∣∣.
Then by (7.4), ∣∣∂α∂I1ΩI2u

∣∣ ≤ ∣∣∂I1ΩI2∂αu
∣∣+ C(d)

∑
c,|I′2|<|I2|

|∂c∂I1ΩI′2u|.

Note that |I ′2| ≤ |I2| − 1 ≤ k. We apply the induction assumption on the second term in
the right-hand side and obtain

|∂c∂I1ΩI′2u| ≤ |∂I1ΩI′2∂cu|+ C(d− 1)
∑

c′,|I′′2 |>|I′2|

∣∣∂I1ΩI′′2 ∂c′u
∣∣,

which proves (7.3b).
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The proof of (7.3c) is a direct application of (7.2).

(7.5)

[∂I1x ΩI2 , ∂α∂β]u = [∂I1x ΩI2 , ∂α]∂βu+ ∂α
(
[∂I1x ΩI2 , ∂β]u

)
=

∑
|J2|<|I2|

ΘI2c
αJ2
∂c∂

I1
x ΩJ2∂βu+

∑
|J2|<|I2|

ΘI2c
βJ2
∂α∂c∂

I1
x ΩJ2u

=
∑
|J2|<|I2|

ΘI2c
αJ2
∂c∂

I1
x ∂βΩJ2u+

∑
|J2|<|I2|

ΘI2c
αJ2
∂c∂

I1
x [ΩJ2 , ∂β]u

+
∑
|J2|<|I2|

ΘI2c
βJ2
∂α∂c∂

I1
x ΩJ2u

=
∑
|J2|<|I2|
|K2|<|I2|

ΘI2c
αJ2

ΘJ2c′

βK2
∂c∂c′∂

I1
x ΩK2u

+
∑
|J2|<|I2|

ΘI2c
βJ2
∂α∂c∂

I1
x ΩJ2u+

∑
|J2|<|I2|

ΘI2c
αJ2
∂c∂

I1
x ∂βΩJ2u

which leads to (7.3c).
The proof of (7.3d) needs the notion of homogeneous functions. A smooth function f

defined in the pointed region R3 \ {0} is said to be homogeneous of degree i if

f(rx) = rif(x), for any r > 0 and x ∈ R3 \ {0}.

It is well-known that the partial derivatives of a homogeneous function of degree i are also
homogeneous and of degree i− 1.

We denote by ωa := xa

r
and we note that they are homogeneous functions of degree 0.

And recall the definition of radial derivative ∂r = ωa∂a. We will prove that

(7.6) ∂kr =
∑
a,
|I|≤k

AkI∂
I
x,

where AkI is a homogeneous function of degree −k + |I|. For k = 1, this is guaranteed by
the expression of ∂r. Assume that this holds for the integer less than or equal to k, we will
prove the case of k + 1:

∂k+1
r u = ∂r∂

k
ru = ∂r

(∑
I,a

AkI∂
I
x

)
=
∑
I,a

ωb∂b
(
AkI∂

I
x

)
=
∑
I,a

ωb∂bA
k
I∂

I
x +

∑
I,a

ωbAkI∂b∂
I
x

We observe that ωb∂bA
k
I is homogeneous of degree −k−1+ |I| and ωbAkI is homogeneous of

degree −(k+1)+|I|+1. This concludes (7.6). Next, we see that (7.3d) follows immediately
from (7.6).
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To prove (7.3e), we perform the following calculation:

[∂I1x ΩI2 , Hαβ∂α∂βu]

=
∑

J1+J
′
1=I1,J2+J

′
2=I2

|J′1|+|J
′
2|>0

∂J
′
1
x ΩJ ′2Hαβ∂J1x ΩJ2∂α∂βu+Hαβ[∂I1x ΩI2 , ∂α∂β]u

=
∑

J1+J
′
1=I1,J2+J

′
2=I2

|J′1|+|J
′
2|>0

∂J
′
1
x ΩJ ′2Hαβ∂α∂β∂

J1
x ΩJ2u+

∑
J1+J

′
1=I1

J2+J
′
2=I2

∂J
′
1
x ΩJ ′2Hαβ[∂J1x ΩJ2 , ∂α∂β]u

=
∑

J1+J
′
1=I1,J2+J

′
2=I2

|J′1|+|J
′
2|>0

∂J
′
1
x ΩJ ′2Hαβ∂α∂β∂

J1
x ΩJ2u

+
∑

J1+J
′
1=I1

J2+J
′
2=I2

∂J
′
1
x ΩJ ′2Hαβ

( ∑
|K2|<|J2|
|K′2|<|K2|

ΘJ2c
αK2

Θc′K2

βK′2
∂c∂c′∂

J1
x ΩK′2u

+
∑

|K2|<|J2|

ΘJ2c
βK2

∂α∂c∂
J1
x ΩK2u

)
,

where (7.5) is applied. Then (7.3e) follows from this identity.

We also need the commutator estimates on the product in the form ∂I1ΩI2 .

Lemma 7.3. — Let u be a smooth function defined in [0, T ] × R3. Then the following
estimates hold for |I1|+ |I2| = d:

(7.7a) |∂I1ΩI2∂αu| ≤ |∂α∂I1ΩI2u|+ C(d)
∑

a,|I′2|<|I2|

|∂a∂I1ΩI′2u|,

(7.7b) |∂α∂I1ΩI2u| ≤ |∂I1ΩI2∂αu|+ C(d)
∑
β

|I′1|+|I
′
2|<d

|∂I′1ΩI′2∂βu|,

(7.7c)
∣∣[∂I1ΩI2 , ∂α∂β]u

∣∣ ≤ C(d)
∑
a,α

|J2|<|I2|

|∂a∂α∂I1ΩJ2u|,

(7.7d)

|[∂I1ΩI2 , Hαβ∂α∂β]u| ≤
∑

J1+J
′
1=I1

J2+J
′
2=I2

|J′1|+|J
′
2|>0

|∂J ′1ΩJ ′2Hαβ| |∂α∂β∂J1ΩJ2u|

+ C(d)
∑

J1+J
′
1=I1

|J2|+|J′2|<|I2|
α,β,α′,a

|∂J ′1ΩJ ′2Hαβ| |∂α′∂a∂J1ΩJ2u|.
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Proof. — From (7.2), the following identity is immediate:

[∂I1ΩI2 , ∂α] =
∑
|K|<|I2|

ΘI2b
αK∂b∂

I1
x ΩKu.

Then we perform exactly the same calculation as in the proof of Lemma 7.2 with ∂I1x
replaced by ∂I1 .

7.2. Global Sobolev inequalities and embedding properties

For completeness, we re-derive a classical estimate (due to Klainerman).

Lemma 7.4. — For all u ∈ Xd with d ≥ 2, one has

(7.8) ‖u‖E−1 ≤ C‖u‖Xd .

Proof. — We only prove this inequality for smooth functions since, by regularization, it
then extends to the whole Xd. We consider R3 equipped with the polar coordinates, i.e.:

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ.

Note that (7.8) is equivalent to the following inequality for all x0 ∈ R3:

|u(x0)|(1 + r0) ≤ C‖u‖Xd

with x0 = (x10, x
2
0, x

3
0) = (r0 sin θ0 cosϕ0, r0 sin θ0 sinϕ0, r0 cos θ0).

The case r0 ≤ 1 is direct by classical Sobolev inequality. We thus focus on the case
r0 > 1 and we consider the estimate on the the following open subset of R3 defined by

V = (r0 − 1/2, r0 + 1/2)× (θ0 − 1/2, θ0 + 1/2)× (ϕ0 − 1/2, ϕ0 + 1/2)

Now let u be a smooth function and denote also by u its restriction on V , with

v(r, θ, ϕ) := u(r sin θ cosϕ, r sin θ sinϕ, r cos θ)

with r0 > 1. Then by the classical Sobolev inequality, we have

|u(x0)|2 = |v(r0, θ0, φ0)|2 ≤ C
∑

k0+k1+k2≥2

∫
V

|∂k0r ∂
k1
θ ∂

k2
ϕ v|2drdθdϕ.

Note that in V , r0 − 1/2 < r < r0 + 1/2, which leads to 1− 1/(2r0) < r/r0 < 1 + 1/(2r0).
Recall that r0 > 1, then

1

2
<

r

r0
<

3

2
.
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Thus, we have

1

2

∫
V

|∂k0r ∂
k1
θ ∂

k2
ϕ v|2drdθdϕ ≤

∫
V

|∂k0r ∂
k1
θ ∂

k2
ϕ v|2

r2

r20
drdθdϕ

= r−20

∫
V

|∂k0r ∂
k1
θ ∂

k2
ϕ v|2r2drdθdϕ

= r−20

∫
V

|∂k0r ∂
k1
θ ∂

k2
ϕ v|2dx

≤ r−20

∫
R3

|∂k0r ∂
k1
θ ∂

k2
ϕ v|2dx,

where dx is the standard volume form of R3.
Here, we observe that

∂θv = cosϕΩ31u+ sinϕΩ32u =
x1(

(x1)2 + (x2)2
)1/2Ω31u+

x2(
(x1)2 + (x2)2

)1/2Ω32u

and
∂ϕv = Ω12u, ∂rv = ∂ru.

Note that ΩJ cosϕ, ΩJ sinϕ are homogeneous of degree 0. So, by homogeneity, that for
r ≥ 1/2, we have

|∂k0r ∂
k1
θ ∂

k2
ϕ v| =

∣∣∂k0r ( cosϕΩ31 + sinϕΩ33

)k1Ωk2
12u
∣∣ ≤ C

∑
|I|≤k1+k2

|∂k0r ΩIu|,

which leads to

(7.9) |u(x0)|2 ≤ Cr−20

∑
|I|+k0≤2

∫
R3

|∂k0r ΩIu|2dx.

Then by (7.3d), the desired result is proven.

We will also need the following embedding result.

Lemma 7.5. — Let u be a function in Xd+2
H and v ∈ L∞([0, T ];Ed+2

H ). Then for all pair
of multi-indices (I1, I2) with |I1|+ |I2| ≤ d, the following estimate holds:

(7.10a)
∥∥∂I1x ΩI2u

∥∥
L∞(R3)

≤ C‖u‖Xd+2
H
.

(7.10b)
∥∥∂I1ΩI2v(t, ·)

∥∥
L∞(R3)

≤ C‖v(t, ·)‖Ed+2
H

for t ∈ [0, T ].

Proof. — We only prove this inequality when u ∈ C∞c (R3) and v ∈ C∞c (R4). Then by
regularization, it extends on Xd+2

H and L∞([0, T ];Ed+2
H ).

We begin with (7.10a), and the proof is decomposed as follows.

Case 1: I1 = I2 = 0. The left-hand side of (7.10a) is controlled by its E−1 norm so (7.10a)
holds.
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Case 2: |I1| > 0. In this case we suppose that I1 = (a1, a2, · · · , an) and denote by
I ′1 = (a2, · · · , an). Then I ′1 is of order n− 1 ≥ 0 and, by classical Sobolev’s inequality,

∥∥∂I1x ΩI2u
∥∥
L∞(R3)

=
∥∥∂a1∂I′1x ΩI2u

∥∥
L∞(R3)

≤ C
∑
|J1|≤2

∥∥∂J1x ∂a1∂I′1x ΩI2u
∥∥
L2(R3)

≤ C‖u‖Xd+2
P
.

Case 3: |I2| = 0, |I2| > 0. In this case we suppose that I2 = (b1, b2, · · · , bn) and denote by
I ′b = (b2, · · · , bn). Then I ′2 is of order n− 1 ≥ 0, and

∥∥∂I1x ΩI2u
∥∥
L∞(R3)

=
∥∥Ωb1Ω

I′2u
∥∥
L∞(R3)

≤ C
∑
b

∥∥(1 + r)∂bΩ
I′2u
∥∥
L∞(R3)

= C
∑
b

∥∥∂bΩI′2u
∥∥
E−1

.

Then by (7.8), we have

∥∥∂I1x ΩI2u
∥∥
L∞(R3)

≤ C
∑
b

∥∥∂b∂I1x ΩI′2u
∥∥
X2 = C

∑
|J1|+|J2|≤2

∑
b

∥∥∂J1x ΩJ2∂b∂
I1
x ΩI′2u

∥∥
L2(R3)

≤ C
∑

|J1|+|J′2|≤2

b′

∥∥∂b′∂I′1x ∂J1x ΩJ ′2ΩI′2u
∥∥
L2(R3)

≤ C‖u‖Xd+2
P
,

where the commutator estimate (7.3a) is used.
By combining these three cases together, (7.10a) is proven.
We then prove (7.10b). The proof is similar and we also discuss three different cases.

Case 1: I1 = I2 = 0. The left-hand side of (7.10b) is controlled by its E−1 norm so (7.10b)
holds.

Case 2: I1 > 0. In this case we also suppose that I1 = (α1, α2, . . . , αn) and denote by
I ′1 = (α2, . . . , αn). Then |I ′1| ≥ 0, and also by the classical Sobolev’s inequality,

‖∂I1ΩI2v(t, ·)‖L∞ ≤ C
∑
|J1|≤2

‖∂J1x ∂α1∂
I′1ΩI2v(t, ·)‖L2(R3)

=C
∑
|J1|≤2

‖∂α1∂
J1
x ∂

I′1ΩI2v(t, ·)‖L2(R3) ≤ C‖v(t, ·)‖Ed+2
P
.
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Case 3: |I1| = 0, |I2| > 0. We suppose that I2 = (b1, b2, . . . , an) and denote by I ′2 =
(b2, . . . , bn). Then, we have |I ′2| ≥ 0, and

‖∂I1ΩI2v(t, ·)‖L∞(R3) = ‖Ωb1Ω
I′2v(t, ·)‖L∞

≤ C
∑
b

‖(1 + r)∂bΩ
I′2v(t, ·)‖L∞(R3) = C

∑
b

‖ΩI′2v(t, ·)‖E−1

≤ C
∑
b

‖∂bΩI′2v(t, ·)‖X2 = C
∑
b

|J1|+|J2|≤2

‖∂J1x ΩJ2∂bΩ
I′2v(t, ·)‖X2

≤ C
∑
b′

|J2|+|J′2|≤2

‖∂J1x ∂b′ΩJ ′2ΩI′2v(t, ·)‖X2 ≤ C‖v(t, ·)‖Ed+2
P
.

By combining these three cases, (7.10b) is established.

Lemma 7.6. — Let u ∈ Xd
H and v ∈ L∞([0, T ];Ed

P ), then the following estimate holds
for all pair of multi-index (I1, I2) with 1 ≤ |I1|+ |I2| ≤ d:

(7.11a) ‖(1 + r)−1∂I1x ΩI2u‖L2(R3) ≤ C‖u‖Xd
P
.

(7.11b) ‖(1 + r)−1∂I1ΩI2v(t, ·)‖L2(R3) ≤ C‖v(t, ·)‖EdP , for t ∈ [0, T ].

Proof. — The proof of (7.11a) is decomposed into several cases, as follows.

Case 1: |I1| > 0. In this case we suppose that I1 = (a1, a2, · · · , an) and denote by
I ′1 = (a2, · · · , an). Then I ′1 is of order n− 1 ≥ 0, and we obtain∥∥∂I1x ΩI2u

∥∥
L2(R3)

=
∥∥∂a1∂I′1x ΩI2u

∥∥
L2(R3)

≤
∥∥u∥∥

Xd
P
.

Case 2: |I1| = 0, |I2| > 0. In this case we suppose that I2 = (b1, b2, · · · , bn) and denote by
I ′b = (b2, · · · , bn). Then I ′2 is of order n− 1 ≥ 0 and we have∥∥(1 + r)−1∂I1x ΩI2u

∥∥
L2(R3)

=
∥∥(1 + r)−1Ωb1Ω

I′2u
∥∥
L2(R3)

≤ C
∑
b

∥∥∂bΩI′2u
∥∥
L2(R3)

≤ C‖u‖Xd
P
.

By combining these two cases, (7.11a) is proven.
The proof of (7.11b) is exactly the same if we replace ∂x by ∂ in the above proof.

Lemma 7.7. — For all function u of class X2, one has

(7.12) ‖u‖L∞(R3) ≤ C
∑

|I1|+|I2|≤2

‖(1 + |x|)−1∂I1x ΩI2u‖L2 .

Proof. — This inequality is equivalent to

(7.13) |u(x)| ≤ C
∑

|I1|+|I2|≤2

‖(1 + |x|)−1∂I1x ΩI2u‖L2 , x ∈ R3
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for all u ∈ C∞c (R3). Then by regularization, this inequality is hold for all u ∈ X2. This is
proven by distinguish different x. Let χ(·) a C∞ function defined on [0,∞) with

χ(s) =

{
1, s ≤ 1/2,

0, 1 ≤ s <∞.

Then χ(| · |) is a C∞c (R3) function.
Now we consider the case |x| ≤ 1/2. We consider the function

f(x) := χ(|x|)u(x)

which is in class C∞c ({|x| < 1}). Then we apply the classical Sobolev’s inequality:

|u(x)| = |f(x)| ≤ C
∑
|I|≤2

‖∂Ixf‖L2({|x|<1}) = C
∑
|I|≤2

∥∥∂Ix(χ(|x|)u(x)
)∥∥

L2({|x|<1})

= C
∑

|I1|+|I2|≤|I|,
|I|≤2

∥∥∂I1x χ(|x|)∂I2x u(x)
∥∥
L2({|x|<1}) ≤ C

∑
|I2|≤2

‖∂I2x u(x)‖L2({|x|<1})

≤ C
∑
|I2|≤2

∥∥(1 + |x|)−1∂I2x u(x)
∥∥
L2({|x|<1}) ≤ C

∑
|I2|≤2

∥∥(1 + |x|)−1∂I2x u(x)
∥∥
L2(R3)

,

where we used that ∂I1x χ(|x|) are bounded.
When |x| ≥ 1/2, we have

|u(x)| =
∣∣(1− χ(2|x|)

)
u(x)

∣∣ =
∥∥(1 + |x|) · (1 + |x|)−1

(
1− χ(2|x|)

)
u(x)

∥∥
L∞(R3)

≤
∥∥(1 + |x|)−1

(
1− χ(2|x|)

)
u(x)

∥∥
E−1

and the by (7.8),

|u(x)| ≤
∥∥(1 + |x|)−1

(
1− χ(2|x|)

)
u(x)

∥∥
E−1

≤ C
∑

|I1|+|I2|≤2

∥∥∂I1x ΩI2
(
(1 + |x|)−1

(
1− χ(2|x|)

)
u(x)

)∥∥
L2(R3)

= C
∑

|J1|+|J′1|=I1
|I1|+|I2|≤2

∥∥∂J ′1x ((1 + |x|)−1
(
1− χ(2|x|)

))
∂J1x ΩI2

(
(1 + |x|)−1

(
1− χ(2|x|)

)
u(x)

)∥∥
L2(R3)

,

where for the last equality we have used the fact that

Ωa

(
(1 + |x|)−1

(
1− χ(2|x|)

))
= 0,

since both factors are radial symmetric. Then we will prove that

∂J
′
1
(
(1 + |x|)−1

(
1− χ(2|x|)

))
≤ C(1 + |x|)−1

for |J ′1| ≤ 2. This is check directly by calculating and the fact that
(
1 − χ(2|x|)

)
and

its derivatives are supported out of the ball {|x| < 1/4}. Then the desired result is
established.
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7.3. Linear estimates

We begin with the linear theory of wave equation with the initial data given in Xd+1
H (R3)×

Xd(R3). For the simplicity of proof, we introduce the energy functional with respect to a
metric gαβ defined in R4 as follows:

(7.14) Eg(t, u) :=

(∫
R3

(
− g00|∂tu|2 + gab∂au∂bu

)
(t, ·)dx

)1/2

and

(7.15) Eg,c(t, u) :=

(∫
R3

(
− g00|∂tu|2 + gab∂au∂bu+ c2v2

)
(t, ·)dx

)1/2

.

A metric gαβ is said to be coercive with constant C > 0 if

(7.16) C−1‖∇u‖L2(R3) ≤ Eg(t, u) ≤ C‖∇u‖L2(R3),

where∇u refers to the spacetime gradient of u. At this juncture, let us introduce a notation
for the C∞c functions defined in the region [0, T ]× R3:

‖u(t, ·)‖Xd+1
E

:=
∑

|I1|+|I2|≤d

‖∇∂I1x ΩI2u(t, ·)‖L2(R3).

By (7.3a) and (7.3b), the norm ‖ · ‖Xd+1
E

and ‖∇(·)‖Xd are equivalent.

We also introduce

Ed
g (s, u) :=

∑
|I1|+|I2|≤d

Eg(s, ∂
I1ΩI2u), Ed

g,c(s, u) :=
∑

|I1|+|I2|≤d

Eg,c(s, ∂
I1ΩI2u).

Then when the coercivity condition (7.16) is assumed,

(7.17) C−1‖u(t, ·)‖Ed+1
P
≤ Ek

g (s, u) ≤ C‖u(t, ·)‖Ed+1
P
.

The existence result in the next section is based on the following linear estimate.

Lemma 7.8 (L∞ type estimate for wave equation). — Let u be a smooth function
defined in the region [0, T ] and let F = −�u, then for any 0 ≤ t ≤ T
(7.18)

‖u(t, ·)‖E−1(R3) ≤ Ct

∫ t

0

‖F (s, ·)‖E−1(R3)ds+ C
(
‖u(0, x)‖E−1(R3) + t‖∇u(0, x)‖E−1(R3)

)
,

where ∇u refers to the spacetime gradient of u.

Proof. — This estimate based on the explicit expression of the linear wave equation. We
consider the Cauchy problem:

(7.19)
�u = −F,
u(0, x) = −f(x), ∂tu(0, x) = −g(x).
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Then, u can be expressed by

u(t, x) =
1

4π

∫ t

0

1

t− s

∫
|y|=t−s

F (s, x− y)dσ(y)ds

+
1

4πt

∫
|y|=t

g(x− y)dσ(y) +
1

4πt2

∫
|y|=t

(
f(x− y)− < ∂xf(x− y), y >

)
dσ(y)

: = u1(t, x) + u2(t, x) + u3(t, x).

Here, dσ(y) refers to the standard Lebesgue measure on the sphere |y| = t − s or |y| = t,
and < ·, · > refers to the standard scalar product on R3. The notation ∂xf stands for the
(spacial) gradient of f . The remaining work is to estimate ui with i = 1, 2, 3.

When |x| ≤ 1, we make use of the fact that ‖ · ‖L∞(R3) ≤ ‖ · ‖E−1 . Then, we have

|u1(t, x)| ≤ 1

4π

∫ t

0

‖F (s, ·)‖E−1

t− s

∫
|y|=t−s

dσ(y)ds

≤
∫ t

0

‖F (s, ·)‖E−1(t− s)ds ≤ t

∫ t

0

‖F (s, ·)‖E−1 .

The other terms u2 and u3 are estimated similarly. Then (7.18) is proven in this case.
When |x| > 1, we need to establish the decay estimate of the solution at spatial infinity.

We begin with u1.

|u1(t, x)| ≤ 1

4π

∫ t

0

1

t− s

∫
|y|=t−s

‖F (s, ·)‖E−1

1 + |x− y|
dσ(y)ds

=
1

4π

∫ t

0

‖F (s, ·)‖E−1

t− s

∫
|y|=t−s

(1 + |x− y|)−1dσ(y)ds.

We focus on the expression
∫
|y|=t−s(1+|x−y|)−1dσ(y). We make the following parametriza-

tion of the sphere {|y| = t− s}. Let θ be the angle from the vector −x to the vector −y,
and ϕ refers the angle from the plan determined by pair of vector (x, y) to a fixed plan con-
taining x (for example the plan determined by x and (0, 0, 1)). With this parametrization,
the volume form σ(y) has the following expression:

dσ(y) = (t− s)2 sin θdθdϕ.

Also, by the classical trigonometrical theorem “Law of cosines”,

|x− y|2 = |x|2 + |t− s|2 − 2|x|(t− s) cos θ.

Then, we obtain∫
|y|=t−s

(1 + |x− y|)−1dσ(y) =

∫ 2π

0

∫ π

0

(t− s)2 sin θdθdϕ

1 +
(
|x|2 + |t− s|2 − 2|x|(t− s) cos θ

)1/2
= 2π

∫ 1

−1

(t− s)2dγ
1 +

(
|x|2 + |t− s|2 − 2|x|(t− s)γ

)1/2 ,
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where γ := cos θ. Then, we have

∫
|y|=t−s

(1 + |x− y|)−1dσ(y) =
2π(t− s)
|x|

∫ 1

−1

|x|(t− s)dγ
1 +

(
|x|2 + |t− s|2 − 2|x|(t− s)γ

)1/2
=

2π(t− s)
|x|

∫ |x|+(t−s)

||x|−(t−s)|

τdτ

1 + τ
,

where τ :=
(
|x|2 + |t− s|2 − 2|x|(t− s)γ

)1/2
. Then, we obtain

|u1(t, x)| ≤ 1

4π

∫ t

0

‖F (s, ·)‖B−1
t− s

∫
|y|=t−s

(1 + |x− y|)−1dσ(y)ds

≤ 1

2|x|

∫ t

0

‖F (s, ·)‖E−1

∫ |x|+(t−s)

||x|−(t−s)|

τdτ

1 + τ
ds.

Now the discussion should distinguish between two cases.

Case 1: |x| > t. In this case |x| > t− s always holds, and we find

|u1(t, x)| ≤ 1

2|x|

∫ t

0

‖F (s, ·)‖E−1

∫ |x|+(t−s)

||x|−(t−s)|

τdτ

1 + τ
ds

=
1

2|x|

∫ t

0

‖F (s, ·)‖E−1

∫ |x|+(t−s)

|x|−(t−s)

τdτ

1 + τ
ds

≤ 1

2|x|

∫ t

0

‖F (s, ·)‖E−1

∫ |x|+(t−s)

|x|−(t−s)
dτds

=
1

|x|

∫ t

0

(t− s)‖F (s, ·)‖E−1ds ≤
t

|x|

∫ t

0

‖F (s, ·)‖E−1ds,

which leads to

|x||u(t, x)| ≤ t

∫ t

0

‖F (s, ·)‖E−1ds.
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Case 2: |x| ≤ t. In this case we need a more precise calculation:

|u1(t, x)| ≤ 1

2|x|

∫ t

0

‖F (s, ·)‖E−1

∫ |x|+(t−s)

||x|−(t−s)|

τdτ

1 + τ
ds

=
1

2|x|

∫ t−|x|

0

‖F (s, ·)‖E−1

∫ |x|+(t−s)

(t−s)−|x|

τdτ

1 + τ
ds

+
1

2|x|

∫ t

t−|x|
‖F (s, ·)‖E−1

∫ |x|+(t−s)

|x|−(t−s)

τdτ

1 + τ
ds

≤ 1

2|x|

∫ t−|x|

0

2|x|‖F (s, ·)‖E−1ds+
1

2|x|

∫ t

t−|x|
2(t− s)‖F (s, ·)‖E−1ds

≤
∫ t−|x|

0

‖F (s, ·)‖E−1ds+

∫ t

t−|x|
‖F (s, ·)‖E−1ds =

∫ t

0

‖F (s, ·)‖E−1ds.

Recalling that |x| ≤ t ≤ T , we find

|u1(t, x)| ≤
∫ t

0

‖F (s, ·)‖E−1ds ≤
t

|x|

∫ t

0

‖F (s, ·)‖E−1ds,

so that

|x||u1(t, x)| ≤ t

∫ t

0

‖F (s, ·)‖E−1ds.

The estimate of u2 and u3 are similar:

|u2(t, x)| ≤ 1

4πt

∫
|y|=t
|g(x− y)|dσ(y)

≤
‖g‖E−1

4πt

∫
|y|=t

(|x− y|+ 1)−1dσ(y).

By the same parametrization made in the estimate of u1 and similar calculation, we can
conclude with

|x||u2(t, x)| ≤ t‖g‖E−1 .

In the same way, we have

|u3(t, x)| ≤ 1

4πt2

∫
|y|=t

‖f‖E−1dσ(y)

|x− y|+ 1
+

1

4πt

∫
|y|=t

‖∂xf‖E−1dσ(y)

|x− y|+ 1

≤ 1

|x|
‖f‖E−1 +

t

|x|
‖∂xf‖E−1 .

By combining the estimates made in |x| ≤ 1 and |x| > 1, the desired result is established.

Lemma 7.9 (L2 type estimate for wave equation). — Let u be a smooth function
defined in the region [0, T ] × R3 and gαβ = mαβ + Hαβ be a smooth metric, where mαβ
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is the Minkowski metric with signature (−,+,+,+). Assume that gαβ is coercive with
constant C. Let f = −gαβ∂α∂βu, then for any 0 ≤ t ≤ T ,

(7.20)
d

dt
Eg(t, u) ≤ C‖f(t, ·)‖L2(R3) + C

∑
α,β

‖∇gαβ(t, ·)‖L∞Eg(t, u),

where ∇u refers to the spacetime gradient of u.

Proof. — This is a standard calculation and we write

∂tug
αβ∂α∂βu =

1

2
∂0
(
g00(∂0u)2 − gab∂au∂bu

)
+ ∂a

(
gaβ∂tu∂βu

)
+

1

2
∂tg

αβ∂αu∂βu− ∂αgαβ∂tu∂βu.

Integrating on the slice {t = τ} and applying Stokes’ formula, we find

1

2

∫
R3

∂0
(
− g00(∂tu)2 + gab∂au∂bu

)
dx

=

∫
R3

∂tufdx+
1

2

∫
R3

(
∂tg

αβ∂αu∂βu− 2∂αg
αβ∂tu∂βu

)
dx,

which leads to (by the coercivity condition)

1

2

d

dt

(
Eg(t, u)

)2
=

∫
R3

∂tufdx+
1

2

∫
R3

(
∂tg

αβ∂αu∂βu− 2∂αg
αβ∂tu∂βu

)
dx,

which is

Eg(t, u)
d

dt
Eg(t, u) =

∫
R3

∂tufdx+
1

2

∫
R3

(
∂tg

αβ∂αu∂βu− 2∂αg
αβ∂tu∂βu

)
dx.

So we have

Eg(t, u)
d

dt
Eg(t, u) ≤ ‖∂tu‖L2(R3)‖f‖L2(R3) + C‖∇gαβ‖L∞(R3)‖∇u‖2L2(R3)

and by recalling (7.16)

d

dt
Eg(t, u) ≤ C‖f‖L2(R3) + C‖∇gαβ‖L∞(R3)Eg(t, u).

Now we combine Lemmas 7.8 and 7.9 with the Sobolev estimate (7.8) in order to get a
estimate on the Ed+1

H norm.

Lemma 7.10 (Ed
H norm estimate on wave equation). — Let u be a smooth function

defined in the region [0, T ]× R3. Let gαβ be a smooth metric, gαβ = mαβ +Hαβ with mαβ

the standard Minkowski metric. Assume that g satisfies the following coercivity condition
with a constant C > 0 and |H00| ≤ 1/2. Let gαβ∂αβu = −F . Then the following estimates
hold for d ≥ 3:

(7.21a) ‖u(t, ·)‖Ed+1
P
≤ C‖u(0, ·)‖Ed+1

P
eC

∫ t
0 Dd(τ)dτ + C

∫ t

0

‖F (τ, ·)‖Ed eC
∫ t
τ Dd(s)dsdτ,



THE VALIDITY OF THE THEORY OF MODIFIED GRAVITY 67

(7.22)

‖u(t, ·)‖E−1 ≤ Ct

∫ t

0

‖F (s, ·)‖E−1ds+ CtE3
g (0, u)

∑
α,β

∫ t

0

‖Hαβ(s, ·)‖L∞eC
∫ s
0 D3(τ)dτds

+ Ct
∑
α,β

∫ t

0

‖Hαβ(s, ·)‖L∞
∫ s

0

‖F (τ, ·)‖E3eC
∫ s
τ D3(λ)dλds+ CtE3

g (0, u),

where
Dk(t) := max

α,β
‖Hαβ(t, ·)‖Ek+1

H
.

Proof. — We begin with the estimate on Ed norm of ∇u. We differentiate the equation
with respect to ∂I1ΩI2 , where |I1| + |I2| = l. Remember that this product of operator
commute with the linear wave operator, Then

−∂I1ΩI2F = �∂I1ΩI2u+Hαβ∂α∂β∂
I1ΩI2u+ [∂I1ΩI2 , Hαβ∂α∂β]u

which is
gαβ∂α∂β∂

I1ΩI2u = −F − [∂I1ΩI2 , Hαβ∂α∂β]u.

Apply (7.20),

(7.23)

d

dt
Eg(t, ∂

I1ΩI2u) ≤ C‖∂I1ΩI2F (t, ·)‖L2(R3) + C‖[∂I1ΩI2 , Hαβ∂α∂β]u(t, ·)‖L2(R3)

+ C
∑
α,β

‖∇Hαβ(t, ·)‖L∞(R3)Eg(t, ∂
I1ΩI2u).

We should estimate the second term in the right-hand side. By (7.3e),

(7.24)

∥∥[∂I1ΩI2 , Hαβ∂α∂β]u
∥∥
L2(R3)

≤
∑

J1+J
′
1=I1

J2+J
′
2=I2

|J′1|+|J
′
2|>0

‖∂J ′1ΩJ ′2Hαβ ∂α∂β∂
J1ΩJ2u‖L2(R3)

+
∑

J1+J
′
1=I1

|J2|+|J′2|<|I2|
α,β,α′,a

‖∂J ′1ΩJ ′2Hαβ ∂α′∂a∂
J1ΩJ2u‖L2(R3)

=:T1 + T2.

Here, we make the convention that when l ≤ 0, [∂I1ΩI1 , ∂α∂β] = 0. We see that both terms
can be bounded by CDdE

d(s, u): For T1, when |J ′1|+ |J ′2| ≤ d− 1, Then by (7.10b),

‖∂J ′1ΩJ ′2Hαβ ∂α∂β∂
J1ΩJ2u‖L2(R3) ≤ ‖∂J

′
1ΩJ ′2Hαβ‖L∞(R3)‖∂α∂β∂J1ΩJ2u‖L2(R3)

≤ C‖Hαβ‖Ed+1
H
‖u‖Ed+1

P
.

When |J ′1|+ |J ′2| ≥ d, then J1 = J2 = 0. Then by (7.11b) and (7.8),

‖∂J ′1ΩJ ′2Hαβ ∂α∂β∂
J1ΩJ2u‖L2(R3) ≤ ‖(1 + r)−1∂J

′
1ΩJ ′2Hαβ‖L2(R3)‖(1 + r)∂α∂βu‖L∞(R3)

≤ C‖Hαβ‖Ed+1
H
‖∂α∂βu‖E2 ≤ C‖Hαβ‖Ed+1

H
‖u‖E4

P
.
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The term T2 is bounded in the same manner and we omit the details.
Combining this with (7.23), we find

(7.25)

d

dt
Eg(t, ∂

I1ΩI2u) ≤ C‖∂I1ΩI2F (t, ·)‖L2(R3) + CDdE
d
g (t, u)

+ C
∑
α,β

‖∇Hαβ(t, ·)‖L∞(R3)Eg(t, ∂
I1ΩI2u)

Taking the sum with respect to (I1, I2) for |I1|+ |I2| ≤ d, then

(7.26)
d

dt
Ed
g (t, u) ≤ C‖F (t, ·)‖Ed + CDdE

d
g (t, u).

Integrating (7.26), we obtain

(7.27) Ed
g (t, u) ≤ Ed

g (0, u)eC
∫ t
0 Dd(τ)dτ + C

∫ t

0

‖F (τ, ·)‖Ed eC
∫ t
τ Dd(s)dsdτ,

which leads to (by (7.17)) (7.21a).
We now turns to estimate the E−1 norm. We can easily deduce that

(7.28) �u = −(1−H00)−1
(
Hab +H00mab

)
∂a∂bu− 2(1−H00)−1Ha0∂t∂au− (1−H00)−1F.

Here, we use the assumption that H00 ≤ 1/2 to make sure that (1−H00)−1 is well defined.
By Lemma 7.8, we have

‖u‖E−1 ≤ Ct

∫ t

0

‖(1−H00)−1F (s, ·)‖E−1ds

+ Ct

∫ t

0

‖(1−H00)−1Hab∂a∂bu‖E−1ds+ Ct

∫ t

0

‖(1−H00)−1Ha0∂a∂tu‖E−1ds

+ C
(
‖u(0, x)‖E−1(R3) + t‖∇u(0, x)‖E−1(R3)

)
≤ Ct

∫ t

0

‖F (s, ·)‖E−1ds+ Ct

∫ t

0

‖Hab∂a∂bu‖E−1ds+ Ct

∫ t

0

‖Ha0∂a∂tu‖E−1ds

+ C
(
‖u(0, x)‖E−1(R3) + t‖∇u(0, x)‖E−1(R3)

)
.

We observe that the following estimates are guaranteed by (7.8):

‖Haβ∂a∂βu‖E−1 ≤ ‖Haβ‖L∞ ‖∂a∂βu‖E−1

≤ ‖Hαβ‖L∞ ‖∂a∂βu‖E2 ≤ C
∑
a,β

‖Haβ‖L∞E3
g (s, u)

and
‖∇u(0, ·)‖E−1 ≤ C‖∇u(0, ·)‖E2 .

By combining these two estimates, we get

(7.29)

‖u(t, ·)‖E−1

≤ Ct

∫ t

0

‖F (s, ·)‖E−1ds+ Ct
∑
α,β

∫ t

0

‖Hαβ(s, ·)‖L∞E3
g (s, u)ds+ CtE2

g (0, u).
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By combining (7.27) and (7.29), we obtain
(7.30)

‖u(t, ·)‖E−1 ≤ Ct

∫ t

0

‖F (s, ·)‖E−1ds+ CtE3
g (0, u)

∑
a,β

∫ t

0

‖Haβ(s, ·)‖L∞eC
∫ s
0 D3(τ)dτds

+ Ct
∑
a,β

∫ t

0

‖Haβ(s, ·)‖L∞
∫ s

0

‖F (τ, ·)‖E3
R
eC

∫ s
τ D3(λ)dλds+ CtE3

g (0, u).

Furthermore, the following L2 estimate for Klein-Gordon equations is essential in our
analysis.

Lemma 7.11 (L2-type estimate for KG equations). — Let v be in a smooth func-
tion defined [0, T ]×R3 and let F = c2v− gαβ∂α∂βv, c > 0. Suppose that gαβ = mαβ +Hαβ

satisfies the coercivity condition with a constant C, i.e. (7.16). Then, the following estimate
holds for 0 ≤ t < T :

(7.31a)

c‖v(t, ·)‖Ed + ‖v(t, ·)‖Ed+1
P
≤ C

(
‖v(0, ·)‖Ed+1

P
+ c‖v(0, ·)‖Ed

)
eC

∫ t
0 Dd(τ)dτ

+ C

∫ t

0

‖F (s, ·)‖Ed eC
∫ t
s Dd(τ)dτds.

Proof. — The proof is essentially the same to that of Lemma 7.8. The only difference
comes from the potential term:

∂tv
(
gαβ∂α∂βv − c2v

)
=

1

2
∂0
(
g00(∂0v)2 − gab∂av∂bv

)
− 1

2
(c∂0v)2 + ∂a

(
gaβ∂tv∂βv

)
+

1

2
∂tg

αβ∂αv∂βv − ∂αgαβ∂tv∂βv.

Then the same calculation of the proof in (7.8) leads to

(7.32)
d

dt
Eg,c(t, v) ≤ C‖F (t, ·)‖L2(R3) + C

∑
α,β

‖∇Hαβ(t, ·)‖L∞(R3)Eg,c(t, v).

Now we derive the equation with respect to ∂I1ΩI2 , and perform the same calculation as
we done in the proof of Lemma 7.10, the we arrive at:

(7.33) Ed
g,c(t, u) ≤ Ed

g,c(0, u)eC
∫ t
0 Dd(τ)dτ + C

∫ t

0

‖F (τ, ·)‖Ed eC
∫ t
τ Dd(s)dsdτ.

Then combined with the expression of Eg,c and the coercivity condition (7.16), the desired
result is proven.

At the end of this subsection, we establish the following estimate on second order time
derivative of the solution.

Lemma 7.12. — Let u be a smooth function defined in R4 and suppose that u satisfies
the following wave/Klein-Gordon equation:

gαβ∂α∂βu− c2u = −F,
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where c ≥ 0. Suppose that gαβ = mαβ+Hαβ with
∣∣H00

∣∣ ≤ 1/2. Then the following estimate
hold for all pair of multi-index (I1, I2)

(7.34)

∥∥∂I1x ΩI2∂t∂tu
∥∥
L2(R3)

≤
∥∥∂I1x ΩI2

(
(1−H00)−1(mab +Hab)∂a∂bu

)∥∥
L2(R3)

+ c2
∥∥∂I1x ΩI2

(
(1−H00)−1u

)∥∥
L2(R3)

+ 2
∥∥∂I1x ΩI2

(
(1−H00)−1H0a∂t∂au

)∥∥
L2(R3)

+
∥∥∂I1x ΩI2

(
(1−H00)−1F

)∥∥
L2(R3)

.

Proof. — By decomposing the wave operator, we have

gαβ∂α∂βu =
(
− 1 +H00

)
∂t∂tu+ 2H0a∂t∂au+

(
mab +Hab

)
∂a∂bu

and thanks to the equation(
− 1 +H00

)
∂t∂tu+ 2H0a∂t∂au+

(
mab +Hab

)
∂a∂bu− c2u = −F,

we have

∂t∂tu = − c2u

1−H00
+

2H0a∂t∂au

1−H00
+

(
mab +Hab

)
∂a∂bu

1−H00
+

F

1−H00
.

7.4. Existence results for linear equations

We now establish the existence theory for linear wave and Klein-Gordon equations with
initial data in the corresponding functional spaces defined in subsection 6.4. We begin with
the wave equation.

Proposition 7.13 (Existence of linear wave equation in Ed+1
H )

Let d ≥ 3 be an integer. Assume that F ∈ L1([0, T ];Ed), (u0, u1) ∈ Ed+1
H ×Ed. Assume

that gαβ is a smooth metric defined on [0, T ] × R3 and coercive with constant C > 0, and
Hαβ = gαβ − mαβ is in the class C([0, T ];Ed+1

H ) with |H00| < 1/2. Then the following
Cauchy problem

(7.35)
gαβ∂α∂βu = −F,
u(0, x) = u0(x), ∂tu(0, x) = u1(x)

has a unique solution in class C([0, T ];Ed+1
H ) with ∂kt u ∈ C([0, T ];Ed+1−k), 1 ≤ k ≤ d.

Furthermore, this solution satisfies the following estimate:

(7.36a) ‖u(t, ·)‖Ed+1
P
≤ C‖∇u(0, ·)‖EdeC

∫ t
0 Dd(τ)dτ + C

∫ t

0

‖F (τ, ·)‖Ed eC
∫ t
τ Dd(s)dsdτ,
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(7.37)

‖u(t, ·)‖E−1 ≤ Ct

∫ t

0

‖F (s, ·)‖E−1ds+ CtE3
g (0, u)

∑
α,β

∫ t

0

‖Hαβ(s, ·)‖L∞e
∫ s
0 D3(τ)dτds

+ Ct
∑
α,β

∫ t

0

‖Hαβ(s, ·)‖L∞
∫ s

0

‖F (τ, ·)‖E3e
∫ s
τ D3(λ)dλds+ CtE3

g (0, u),

where

Dk(t) := max
α,β
‖Hαβ(t, ·)‖Ek+1

H
.

Proof of Proposition 7.13. — The uniqueness is direct by applying Lemma 7.9.
The existence is based on the regularization and the estimate proved in Lemma 7.10.

We proceed by make a series of triple (un0 , u
n
1 , F

n) which converges to (u0, u1, F ) in the
following sense:

lim
n→∞

‖un0 − u0‖Ed+1
H

= 0, lim
n→∞

‖un1 − u0‖Ed = 0

lim
n→∞

‖F n − F‖L1([0,T ];Ed) = 0, lim
n→∞

‖Hαβ
n −Hαβ‖L∞([0,T ];Ed) = 0,

where un0 , u
n
1 are C∞c (R3) functions and for all t ∈ [0, T ], F n(t, ·) ∈ C∞c (R3).

By classical existence theorem of linear wave equation (see for example [26]), fix the
time interval [0, T ], each triple (un0 , u

n
1 , F

n) determines a unique smooth solution by (7.35).
These solution, denoted by un, formes a series.

Now we take the difference of the equation satisfied by un and un−1:

gαβn ∂α∂β(un − un−1) = (gαβn−1 − gαβn )∂α∂βu
n−1 + (F n − F n−1).

The apply to this equation the estimate (7.22), we see that the sequence {un} converges
with respect the norm L∞([0, T ];E−1).

By estimate (7.21a), {un} is bounded in L∞([0, T ], Ed+1
P ). We recall the estimate (7.27)

and apply this on the time interval [t′, t′′] ⊂ [0, T ], we get

Ed
g (t′′, un)− Ed

g (t′, un) ≤ Ed
g

(
eC

∫ t′′
t′ D

n
d (τ)dτ − 1

)
+ C

∫ t′′

t′
‖F n(τ, ·)‖EdeC

∫ t′′
τ Dnd (s)dτ,

where

Dk(t) := max
α,β
‖Hαβ(t, ·)‖Ek+1

H
.

Recall that Dn
d (τ) and ‖F (τ, ·)‖Ed are uniformly (with respect to n) bound. This implies

that {un} is equicontinuous with respect to the norm L∞([0, T ], Ed+1
P ). Then there is a

sub-sequence of {un} converges in the sense of L∞([0, T ], Ed+1
P ). We denote it again by un.

Then we see that {un} converges in L∞([0, T ], Ed+1
H ). We denote by u its limit.

When d ≥ 3, (7.22) shows that {un} is a Cauchy sequence in L∞([0, T ],E−1). So that
{un} converges in C([0, T ], Ed+1

H ) (un are C∞c functions so un ∈ C([0, T ];E−1)). Further-
more, since un are C∞c functions so they are in C([0, T ], Ed+1

H ) which is a closed sub-
space of L∞([0, T ], Ed+1

H ). Then {un} converges in C([0, T ], Ed+1
H ). We denote by u the

C([0, T ], Ed+1
H )-limit of {un}. Then we see that u ∈ C([0, T ];Ed

H)
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We apply the same argument on {∂kt u} and get the desired regularity. The estimate on
u is gained by taking limit of the estimate on un.

If we analyse carefully the proof of Proposition 7.13, we can conclude that if the triple
(F, u0, u1) is only supposed to be in L1([0, T ], Ed)×Ed+1

P ×Ed, the Cauchy problem (7.35)
determines also a unique solution in C([0, T ], Ed+1

P ). We prefer to state this result sepa-
rately in the following proposition:

Proposition 7.14. — Let d ≥ 3 and assume that the triple (F, u0, u1) is only supposed
to be in L1([0, T ], Ed) × Ed+1

P × Ed. And assume that gαβ is a C∞ metric defined on
[0, T ] × R3 and coercive with constant C > 0, and Hαβ = gαβ − mαβ is in the class
C([0, T ];Ed+1

H ). Then the Cauchy problem (7.35) has a unique solution u in C([0, T ], Ed+1
P )

and ∂kt u ∈ C([0, T ];Ed+1−k) for 0 ≤ k ≤ d. Furthermore, it satisfies the following estimate:

(7.38a) ‖u(t, ·)‖Ed+1
P
≤ C‖∇u(0, ·)‖Ede

∫ t
0 CDd(τ)dτ + C

∫ t

0

‖F (τ, ·)‖Ed e
∫ t
τ Dd(s)dsdτ,

where

Dk(t) := max
α,β
‖Hαβ(t, ·)‖Ek+1

H
.

Apply Lemma 7.11 and taking the same regularization argument as in the proof of
Proposition 7.13, the following existence result for linear Klein-Gordon equation holds.

Proposition 7.15 (Existence for KG equation). — Let d ≥ 3 and the triple
(v0, v1, F ) be in class Ed+1

R × Ed
R × L1([0, T ], Ed

R). Assume that gαβ is a C∞ metric
defined on [0, T ] × R3 and coercive with constant C > 0, and Hαβ = gαβ −mαβ is in the
class C[0, T ];Ed+1

H ). Then the following Cauchy problem

(7.39)
gαβ∂α∂βv − c2v = F, c > 0,

v(0, x) = v0(x), ∂tv(0, x) = v1(x)

has a unique solution in class C([0, T ];Ed+1
R )∩C1([0, T ];Ed

R). Furthermore, it satisfies the
following estimate

(7.40a)

‖v(t, ·)‖Ed+1
P

+ ‖∂tv(t, ·)‖Ed + c‖v(t, ·)‖Ed

≤ C
(
‖∇u(0, ·)‖Ed + c‖v(0, ·)‖Ed

)
eC

∫ t
0 Dd(τ,·)dτ

+ C

∫ t

0

‖F (s, ·)‖Ed eC
∫ t
s Dd(τ,·)dτds,

(7.40b)

‖v(t, ·)‖Ed+1
P

+ c‖v(t, ·)‖Ed ≤ C
(
‖∇u(0, ·)‖Ed + c‖v(0, ·)‖Ed

)
eC

∫ t
0 Dd(τ,·)dτ

+ C

∫ t

0

‖F (s, ·)‖Ed eC
∫ t
s Dd(τ,·)dτds,
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where

Dk(t) := max
|I1|+|I2|≤k

α,β

‖∂I1ΩI2Hαβ(t, ·)‖L∞(R3).

7.5. Nonlinear estimates

To estimate the solution of quasi-linear system, we will need the following estimates on
nonlinear terms.

Lemma 7.16. — Let F be a C∞ function from Rm to R and u a C∞ application form
R4 to Rm with components denoted by u = (u1, u2, · · · , um). Let Z be a family of one order
linear differential operate Z = {Zα} with α ∈ Λ, where Λ is a subset of N∗. Then the
following identity holds for all multi-index I = (α1, α2, · · · , α|I|) with |I| ≥ 1:

(7.41) ZI
(
F (u)

)
=

∑
1≤|L|≤|I|

PLF (u)
∑

∑
jiKji=I

m∏
j=1

lj∏
i=1

ZKjiuj.

Here

PL =
m∏
i=1

∂lii

is a product of partial differential operator with L = (l1, · · · lm) and the convention:

ZIu = 1, if |I| = 0

is applied. Furthermore, in a product if the set of index is empty, this product is regarded
as 1. For example,

lj∏
i=1

ZKjiuj = 1, if lj = 0.

Proof. — We observe that, in the right-hand side and for a fixed L, the sum is taken over
all the proper |L|-partition of index I. That is, over all the proper L-partition of abstract
index I with |I | = I. We denote by

Kji = I with {Kji} = I({Kji})

and we denote by Pp(I , |L|) the set of all proper |L|-partition of I . Then (7.41) can be
written as

ZI
(
F (u)

)
=

∑
1≤|L|≤|I|

PLF (u)
∑

{Kji}∈Pp(I ,|L|)

m∏
j=1

lj∏
i=1

ZKjiuj, {Kji} = I({Kji}).

Now we associate each term in the right-hand side to a pair (L, {Kij}): in the sum, each

term PLF (u)
∏m

j=1

∏lj
i=1 Z

Kjiuj corresponds to an operator PL. The quantity {Kji} is a

partition of I which is a restriction of I on a abstract partition {Kji}. Note that for fixed
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L the sum is taken on Pp(I , |L|), so we have constructed a bijection from the terms in
the right-hand side to the following set

Q(I ) = {(L, {Kji})|Kji ∈PP (I , |L|), 1 ≤ |L| ≤ |I |}

We will prove (7.16) by induction on the order of |I| with associated abstract multi-index
I = {α1, α2, . . . , αn}. We check by direct calculation that this identity is valid for |I| = 1.
Suppose that it holds for |I| ≤ n, we consider |I ′| = n+ 1. Let I ′ be the associated n+ 1
order abstract multi-index composed by {α1, α2 . . . , αn, αn+1} and the restriction of I ′ on
I is coincide with I.

Then
ZI′
(
F (u)

)
= ZI′(αn+1)

( ∑
1≤|L|≤|I|

PLF (u)
∑

{Kji}∈Pp(I ,|L|)

m∏
j=1

lj∏
i=1

ZKjiuj

)

=
∑

1≤|L|≤|I|

ZI′(αn+1)

(
PLF (u)

) ∑
{Kji}∈Pp(I ,|L|)

m∏
j=1

lj∏
i=1

ZKjiuj

+
∑

1≤|L|≤|I|

PLF (u)
∑

{Kji}∈Pp(I ,|L|)

ZI′(αn+1)

m∏
j=1

lj∏
i=1

ZKjiuj

=: T1 + T2.

For T1, we observe that

T1 =
∑

1≤|L|≤|I|

m∑
k=1

PL′kF (u)ZI′(αn+1)uk
∑

{Kji}∈Pp(I ,|L|)

m∏
j=1

lj∏
i=1

ZKjiuj

=
∑

1≤|L|≤|I|

m∑
k=1

PL′kF (u)
∑

{Kji}∈Pp(I ,|L|)

m∏
j=1

l′j∏
i=1

ZK′jiuj

with L′k = (l′1, l
′
2, . . . l

′
k, . . . , l

′
m) with l′j = lj for j 6= k and l′k = lk + 1 and K ′

ji = Kji with
(j, i) 6= (k, l′k) and K ′

kl′k
= αn+1. Here, Kij is the restriction of I on Kji while K ′ji is the

restriction of I ′ on K ′
ji.

For T2,

T2 =
∑

1≤|L|≤|I|

PLF (u)
∑

{Kji}∈Pp(I ,|L|)

ZI′(αn+1)

m∏
j=1

lj∏
i=1

ZKjiuj

=
∑

1≤|L|≤|I|

PLF (u)
∑

{Kji}∈Pp(I ,|L|)

∑
1≤j0≤m
1≤i0≤lj

m∏
j=1

lj∏
i=1

ZK′jiuj,

where K ′
ji = Kji when (j, i) 6= (j0, i0) and K ′

j0i0 = Kj0i0 ∪ {αn+1}.
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Now, we associate to each term in T1 and T2 a pair o(L′, {Kji}) in the same manner.
This defines an injection from the terms contained in T1 and T2 to the set

Q(I ′) = {(L′, {Kji})|1 ≤ |L′| ≤ |I ′|, {Kji} ∈PP (|L|,I ′)}.

The injectivity porperty is by checked from the fact that for two terms if L′ = L̃′, the
different terms correspond to a different partition (by our definition of sum over partitions).

Denote by A the image of the terms in T1 and T2 under this injection. This is a subset of
Q(I ′). We will prove that A = Q(I ′) which leads to the equality in the case |I ′| = n+1.
To do so, let

(L′, {K ′
ji}) ∈ Q(I ′), L′ = (l′1, l

′
2 . . . , l

′
m)

Then we see that as αn+1 ∈ I ′ there is one and only one (j0, i0) such that αn+1 ∈ K ′
j0i0

since⋃
(j,i) K

′
ji = I ′ and they are disjoint to each other. We will prove that (L′, {K ′

ji}) ∈ A .

We define L = (l1, l2, . . . , lm) with lj = l′j for j 6= j0 and lj0 = l′j0−1. We construct {Kji}
as follows: Kji = K ′

ji if (j, i) 6= (j0, i0) and Kj0i0 = K ′
j0i0
∩{αn+1}c. Such constructed pair

(L,Kji) to be in Q(I ).
When Kj0i0 = ∅, we see that (L′, {K ′

ji}) corresponds to a term in T1. More precisely in
the following term:

ZI′(αn+1)

(
PLF (u)

) ∑
{Kji}∈Pp(I ,|L|)

m∏
j=1

lj∏
i=1

ZKjiuj

= PL′kF (u)
m∑
k=1

Zαn+1uk
∑

{Kji}∈Pp(I ,|L|)

m∏
j=1

lj∏
i=1

ZKjiuj,

where we can see it by fixing k = j0 and {Kji} in the sum.
When Kj0i0 6= ∅, (L′, {K ′

ji}) corresponds to a term in T2:

PLF (u)
∑

{Kji}∈Pp(I ,|L|)

ZI′(αn+1)

m∏
j=1

lj∏
i=1

ZKjiuj

= PLF (u)
∑

{Kji}∈Pp(I ,|L|)

∑
1≤j0≤m
1≤i0≤lj

m∏
j=1

lj∏
i=1

ZK′jiuj

we see it by fixing (ii, j0) and {Kji} in the sum.

Lemma 7.17. — Let F be a C∞ function from Rm to R and u a C∞ application form
R4 to Rm. Then the following identity holds for any multi-index I1, I2 with |I1|+ |I2| ≥ 1:

(7.42) ∂I1ΩI2
(
F (u)

)
=

|I1|+|I2|∑
l=1

∑
∑m
j=1 lj=l

PLF (u)
∑

∑
j,i K1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj,
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where L = (l1, l2, · · · , lm) is a m-dimensional vector with its components taking value in N
and PL the partial differential operator

PL =
m∏
i=1

∂lii

and the convention:
∂I1ΩI2u = 1, if |I1| = |I2| = 0

is applied.

Proof. — The proof is an application of (7.41). Let DI = ∂I1ΩI2 with D = {∂α,Ωa}. We
denote by

Dα = ∂α for α = 0, 1, 2, 3, Dα = Ωα−3, for α = 4, 5, 6.

We denote the components of I1 and I2 by

I1 = (β1, β2, · · · βn1), I2 = (γ1, γ2, · · · , γn2)

Then I is determined by

I = (α1, α2, · · ·αn1 , αn1+1 · · · , αn1+n2)

with αi = βi for i = 1, 2, n1 and αi+n1 = γi + 3 for i = 1, 2, n2.
Remake that D is a family of first-order linear differential operator. Then by (7.41)

(7.43) ∂I1ΩI2
(
F (u)

)
=

∑
1≤|L|≤|I|

∑
∑
jiKji=I

PLF (u)
m∏
j=1

lj∏
i=1

ZKjiuj.

Then, since
∑

jiKji = I is a partition of I. Then

DKji = ∂K1jiΩK′2ji

with
∑

jiK1ji = I1 a partition of I1 and
∑

jiK2ji = I2 a partition of I2. This gives

∂I1ΩI2
(
F (u)

)
=

∑
1≤|L|≤|I|

∑
∑
ji K1ji=I1∑
ji K2ji=I2

PLF (u)
m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj.

Then the desired result is proven.

The result of Lemma 7.17 will be applied in the following case where F (·) is supposed
to vanish at 0 in second order.

Lemma 7.18. — Let F be a C∞ function defined in a compact neighborhood V of 0 in
Rm and F (0) = ∇F (0) = 0. Let d ≥ 3 and suppose that u map from R4 to V with its
components uj in L∞([0, T ];Ed). Then the following estimates hold for any couple of index
(I1, I2) with |I1|+ |I2| ≤ d:

(7.44)
∥∥∂I1ΩI2

(
F (u)

)
(t, ·)

∥∥
L2(R3)

≤ C(F, V, d)

|I1|+|I2|∑
k=2

‖u(t, ·)‖kEd , for t ∈ [0, T ],
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where C(F, V, d) is a constant determined by F , V and d, and ‖u(t, ·)‖Ed := maxj ‖uj(t, ·)‖Ed.

Proof. — When |I1|+ |I2| = 0, by the condition F (0) = ∇F (0) = 0,

|F (u)| ≤ C(F, V )
m∑
j=1

|uj|2

which leads to the desired result.
For |I1|+ |I2| ≥ 1, proof is based on Lemma 7.17. We take the expression:

∂I1ΩI2
(
F (u)

)
=

|I1|+|I2|∑
l=1

∑
∑m
j=1 lj=l

PLF (u)
∑

∑
j,i K1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj

and observe that for |L| =
∑m

j=1 lj = 1, PLF (0) = 0. Then we have, in the compact
neighborhood V of 0,

|∂jF (u)| ≤ C(F, V )|u|,

where C(F, V ) is determined by V and F and |u| := maxj |uj|. Then,

(7.45)

∣∣∂I1ΩI2
(
F (u)

)∣∣ ≤ m∑
j=1

|∂jF (u)|
∣∣∂I1ΩI2uj

∣∣
+

|I1|+|I2|∑
l=2

∑
∑m
j=1 lj=l

|PLF (u)|
∑

∑
j,i K1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∣∣∂K1jiΩK2jiuj
∣∣

≤ C(F, V )|u|
∣∣∂I1ΩI2u

∣∣
+

|I1|+|I2|∑
l=2

∑
∑m
j=1 lj=l

|PLF (u)|
∑

∑
j,i K1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∣∣∂K1jiΩK2jiuj
∣∣.

The first term in the right-hand side is estimated as follows:∥∥u(t, ·) ∂I1ΩI2u(t, ·)
∥∥
L2(R3)

≤ ‖u(t, ·)‖L∞(R3)‖∂I1ΩI2u(t, ·)‖L2(R3)

≤ C‖u(t, ·)‖E2‖u(t, ·)‖Xd ≤ C‖u(t, ·)‖2Ed ,

where the Sobolev’s inequality is applied.
The second term in the right-hand side of (7.45) is estimated as follows: we observe the

term: ∑
∑
j,i K1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∣∣∂K1jiΩK2jiuj
∣∣
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Recall that |L| =
∑

j lj ≥ 2, then we see that in the product there are at least two factors
and ∑

ji

K1ji = I1,
∑
ji

K2ji = I2

is a partition of (I1, I2) in |L| =
∑

j lj pieces with |L| ≥ 2. Note that∑
ji

|K1ji| = |I1|,
∑
ji

|K2ji| = |I2|.

We observe that there among the index K1ji there is at most one, denoted by K1i0j0 , is of
order higher than |I1|/2. In an other world,

|K1ji| ≤
[
|I2|/2

]
, if i 6= i0, j 6= j0,

where [x] denotes the biggest integer less than or equal to x. The same result holds for the
index K2ji. Then we conclude that in the decomposition of (I1, I2) there is at most one
pair of index, denoted by (K1i0j0 , K2i0j0), is of order higher than d/2. In an other world,

|K1ji|+ |K2ji| ≤ [d/2], if i 6= i0, j 6= j0.

Then if we take the L2 norm, we will find that∥∥∥∥ m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj(t, ·)
∥∥∥∥
L2(R3)

≤
m∏
j=1
j 6=j0

lj∏
i=1
i6=i0

∥∥∂K1jiΩK2jiuj(t, ·)
∥∥
L∞(R3)

·
∥∥∂K1i0j0ΩK2i0j0uj0(t, ·)

∥∥
L2(R3)

≤
m∏
j=1
j 6=j0

lj∏
i=1
i6=i0

∥∥∂K1jiΩK2jiuj(t, ·)
∥∥
E2 · ‖uj0(t, ·)‖Ed

≤
m∏
j=1
j 6=j0

lj∏
i=1
i6=i0

‖u(t, ·)‖E2+[d/2]‖u(t, ·)‖Ed .

Here, we have applied (7.3a). Now recall d ≥ 3, then 2 + [d/2] ≤ d. Then, we get∥∥∥∥ m∏
j=1

lj∏
i=1

∂K1jiΩK2jiu(t, ·)
∥∥∥∥
L2(R3)

≤ ‖u‖|L|
Ed
.

Also, we observe that in the compact neighborhood V , supx∈V |PLF (u)| ≤ C(F, V )
with C(F, V, |L|) a constant determined by F and V and |L|. Then the desired result is
proven.

Now, we combine Lemma 7.18 with the global Sobolev inequality (7.8).
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Lemma 7.19. — Based on the same assumptions on F and u as in Lemma 7.18, for
|I1|+ |I2| ≤ d− 2, the following estimate holds:

(7.46) ‖∂I1ΩI2
(
F (u)

)
(t, ·)‖E−1 ≤ C(F, V, d)

|I1|+|I2|+2∑
k=2

‖u(t, ·)‖kEd .

We also need the following estimate in the following discussion.

Lemma 7.20. — Let d ≥ 3 and assume that H(·) be a C∞ function defined in a compact
neighborhood V of 0 in Rm and assume that u is a map from R3 to V with its components
uj in class L∞([0, T ];Ed

H). Then the following estimate holds for d ≥ |I1|+ |I2| ≥ 1:

(7.47)
∥∥(1 + r)−1∂I1ΩI2

(
H(u)

)
(t, ·)

∥∥
L2(R3)

≤ C(H, V, d)

|I1|+|I2|∑
k=1

‖u(t, ·)‖kEdH , t ∈ [0, T ].

Proof. — We apply the expression (7.42):

∂I1ΩI2
(
H(u)

)
=

|I1|+|I2|∑
l=1

∑
∑m
j=1 lj=l

PLH(u)
∑

∑
ji K1ji=I1∑
ji K2ji=I2

m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj

Note that PLH(u) is bounded by a constant C(H,V, |L|) determined by V . The estimate
of
∥∥∂I1ΩI2

(
H(u)

)
(t, ·)

∥∥
L2(R3)

reduced into the estimate of∥∥∥∥(1 + r)−1
m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj(t, ·)
∥∥∥∥
L2(R3)

,

where K1ji and K2ji is a possible partition of (I1, I2). We take the same argument to that
the proof of Lemma 7.18. Suppose that |K1j0i0| + |K2j0i0| ≥ |K1ji| + |K2ji| for all pares
(j, i), i.e. (K1j0i0 , K2j0i0) is the pair of index with highest order. Then, we find

|K1ji|+ |K2ji| ≤ [d/2], if i 6= i0, j 6= j0

and

|K1j0i0 |+ |K2j0i0 | ≥ 1,

and we also have∥∥∥∥(1 + r)−1
m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj(t, ·)
∥∥∥∥
L2(R3)

≤
m∏
j=1,
j 6=j0

lj∏
i=1,
i 6=i0

∥∥∂K1jiΩK2jiuj(t, ·)
∥∥
L∞(R3)

∥∥(1 + r)−1∂K1j0i0ΩK2i0j0uj(t, ·)
∥∥
L2(R3)

.

In view of (7.10b) and (7.11b), the desired result is proven.
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Lemma 7.21. — By taking the same assumption on H and u as in Lemma 7.20, and
assuming furthermore that H(0) = 0. Then for all |I1| + |I2| ≤ d − 2, the following
estimate holds:

(7.48)
∥∥∂I1ΩI2

(
H(u)

)
(t, ·)

∥∥
L∞(R3)

≤ C(H, V, d)

|I1|+|I2|+2∑
k=1

‖u(t, ·)‖kEdH .

Proof. — When I1 = I2 = 0, we recall the that the condition H(0) = 0 implies

‖H(u)‖L∞(R3) ≤ C(H,V )‖u‖L∞(R3) ≤ C(H,V )‖u‖E−1 .

When |I1|+ I2| ≥ 1, we apply (7.47) combined with Lemma 7.7:

‖
∥∥∂I1ΩI2

(
H(u)

)
(t, ·)

∥∥
L∞(R3)

≤ C
∑

|J1|+|J2|≤2

‖∂J1x ΩJ2∂I1ΩI2
(
H(u)

)
(t, ·)‖L2(R3)

≤ C
∑

|J1|+|J′2|≤2

|I′1|≤|I1|

‖∂J1x ∂I
′
1ΩJ ′2ΩI2

(
H(u)

)
(t, ·)‖L2(R3).

Here, we observe that when |I1| ≥ 1, by applying (7.7a) successively (|I1| times), we see
that |I ′1| ≥ 1, this leads to the fact that |J1|+ |I ′1|+ |J2|+ |I ′2| ≥ 1. Then we apply (7.47).

When |I1| = 0, then |I2| ≥ 1 then we can also apply (7.47).

Lemma 7.22. — Let F be a C∞ function defined in a compact neighborhood V1 of 0 in
Rm and H be a C∞ function defined in a compact neighborhood V2 of 0 in Rn. Assume that
F (0) = 0 and ∇(F ) = 0. Let u be a map from R4 to V1 with its components uj in class
L∞([0, T ];Ed

H) and v be a map form R4 to V2 with its components vl in class L∞([0, T ];Ed).
Then the following estimate holds for |I1|+ |I2| ≤ d with d ≥ 3:

(7.49)

∥∥∂I1ΩI2
(
H(u)F (v)

)
(t, ·)

∥∥
L2(R3)

≤ C(H,F, V, d)

( d∑
k=0

‖u(t, ·)‖kEdH

)( d∑
k=2

‖v(t, ·)‖kEd
)
, t ∈ [0, T ].

Proof. — The proof is based on Lemmas 7.18, 7.19, 7.20, and 7.21:

∂I1ΩI2
(
H(u)F (v)

)
=

∑
J1+J

′
1=I1

J2+J
′
2=I2

∂J1ΩJ2
(
H(u)−H(0)

)
∂J
′
1ΩJ ′2

(
F (v)

)
+H(0)∂I1ΩI2

(
F (v)

)
.

When d ≥ |J ′1|+ |J ′2| ≥ d/2, |J1|+ |J2| ≤ [d/2] ≤ d− 2:∥∥∂J1ΩJ2
(
H(u)−H(0)

)
(t, ·)∂J ′1ΩJ ′2

(
F (v)

)
(t, ·)

∥∥
L2(R3)

≤
∥∥∂J1ΩJ2

(
H(u)−H(0)

)
(t, ·)

∥∥
L∞(R3)

∥∥∂J ′1ΩJ ′2
(
F (v)

)
(t, ·)

∥∥
L2(R3)

≤ C(H,F, V, d)

|J1|+|J2|+2∑
k=1

‖u(t, ·)‖kEdH

|J ′1|+|J ′2|∑
k=2

‖v(t, ·)‖kEd ,
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where Lemma 7.21 and Lemma 7.19 are applied (on function H(u)−H(0) and F (v)). The
term H(0)∂I1ΩI2

(
F (v)

)
is estimated by (7.44).

When |J1|+ |J2| ≥ d/2 > 1, |J ′1 + |J ′2| ≤ [d/2] ≤ d− 2:∥∥∂J1ΩJ2
(
H(u)

)
(t, ·)∂J ′1ΩJ ′2

(
F (u)

)
(t, ·)

∥∥
L2(R3)

≤
∥∥(1 + r)−1∂J1ΩJ2

(
H(u)

)
(t, ·)

∥∥
L2(R3)

∥∥(1 + r)∂J
′
1ΩJ ′2

(
F (u)

)
(t, ·)

∥∥
L∞(R3)

=
∥∥(1 + r)−1∂J1ΩJ2

(
H(u)

)
(t, ·)

∥∥
L2(R3)

∥∥∂J ′1ΩJ ′2
(
F (u)

)
(t, ·)

∥∥
E−1

≤ C(H,F, V, d)

( |J1|+|J2|∑
k=1

‖u(t, ·)‖kEdH

)( |J ′1|+|J ′2|+2∑
k=2

‖v(t, ·)‖kEd
)
,

where Lemma 7.20 and Lemma 7.19 are applied.

We will need the following estimate on multi-linear functions.

Lemma 7.23. — Let d ≥ 3 be an integer and ui, vi, i = 1, 2, · · ·m be functions in class
L∞([0, T ];Ed). Then the following estimates hold for m ≥ 2 and |I1|+ |I2| ≤ d:

(7.50)

∥∥∥∥∂I1ΩI2

( m∏
i=1

ui −
m∏
i=1

vi

)
(t, ·)

∥∥∥∥
L2(R3)

≤ C(V, d)‖u(t, ·)− v(t, ·)‖Ed
m−1∑
k=1

∑
k1+k2=k

‖u(t, ·)‖k1
Ed
‖v(t, ·)‖k2

Ed
,

where ‖u‖Xd := maxi ‖ui‖Xd and ‖v‖Xd := maxi ‖vi‖Xd.

Proof. — We observe the following indentity
m∏
i=1

ui −
m∏
i=1

vi =
m∑
k=1

(uk − vk)
∏
j<k

uj
∏
j>k

vj.

Then, for each term, we have

∂I1ΩI2

(
(uk − vk)

∏
j<k

uj
∏
j>k

vj

)
=

∑
∑
i K1i=I1∑
i K2i=I2

∂K1kΩK2k(uk − vk)
∏
j>k

∂K1jΩK2juj
∏
j<k

∂K1jΩK2jvj.

To estimate the product

∂K1kΩK2k(uk − vk)
∏
j>k

∂K1jΩK2juj
∏
j<k

∂K1jΩK2jvj,

we apply the same reasoning as in the proof of Lemma 7.18, there is at most one pair
of multi index of order bigger that d/2. Then (7.50) is proven by applying the classical
Sobolev’s inequality.
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Lemma 7.24. — Let d ≥ 3 be an integer and ui, vi, i = 1, 2, · · ·m be functions in class
L∞([0, T ];Ed

H). Then the following estimates hold for m ≥ 2 for 1 ≤ |I1|+ |I2| ≤ d:

(7.51)

∥∥∥∥(1 + r)−1∂I1ΩI2

( m∏
i=1

ui −
m∏
i=1

vi

)
(t, ·)

∥∥∥∥
L2(R3)

≤ C(V, d)‖u(t, ·)− v(t, ·)‖EdH

m−1∑
k=1

∑
k1+k2=k

‖u(t, ·)‖k1
EdH
‖v(t, ·)‖k2

EdH
, t ∈ [0, T ],

where ‖u‖EdH := maxi ‖ui‖EdH and ‖v‖Xd := maxi ‖vi‖EdH .

Proof. — We observe the following indentity
m∏
i=1

ui −
m∏
i=1

vi =
m∑
k=1

(uk − vk)
∏
j<k

uj
∏
j>k

vj.

Then, for each term, we have

∂I1ΩI2

(
(uk − vk)

∏
j<k

uj
∏
j>k

vj

)
=

∑
∑
i K1i=I1∑
i K2i=I2

∂K1kΩK2k(uk − vk)
∏
j>k

∂K1jΩK2juj
∏
j<k

∂K1jΩK2jvj.

To estimate the product

∂K1kΩK2k(uk − vk)
∏
j>k

∂K1jΩK2juj
∏
j<k

∂K1jΩK2jvj,

we also apply the same reasoning as in the proof of Lemma 7.18, there is at most one pair
of multi index of order bigger that d/2. We discuss three cases.

Case 1: |K1k| + |K2k| ≥ |K1j| + |K2j| for j = 1, 2, · · ·m. Hence, (K1k, K2k) takes the
highest order. For j 6= k, |K1j|+ |K2j| ≤ [d/2] ≤ d− 2 and |K1k|+ |K2k| ≥ 1, and we have∥∥∥∥(1 + r)−1∂K1kΩK2k(uk − vk)

∏
j>k

∂K1jΩK2juj
∏
j<k

∂K1jΩK2jvj

∥∥∥∥
L2(R3)

≤
∥∥(1 + r)−1∂K1kΩK2k(uk − vk)

∥∥
L2(R3)

∥∥∥∥∏
j>k

∂K1jΩK2juj
∏
j<k

∂K1jΩK2jvj

∥∥∥∥
L∞(R3)

≤ C‖uk − vk‖EdP

∥∥∥∥∏
j>k

∂K1jΩK2juj
∏
j<k

∂K1jΩK2jvj

∥∥∥∥
L∞(R3)

.

Here, we used (7.10a) on the first factor. Note that m ≥ 2 then there exists a j0 6= k. So
the second factor is bounded by applying (7.48) and the fact that |K1j|+ |K2j| ≤ d− 2.
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Case 2: |K1k|+|K2k| ≤ [d/2] ≤ d−2 and there exists j0 < k such that |K1j0|+|K2j0| ≥
|K1j|+ |K2j|. Then, we have∥∥∥∥(1 + r)−1∂K1kΩK2k(uk − vk)

∏
j>k

∂K1jΩK2juj
∏
j<k

∂K1jΩK2jvj

∥∥∥∥
L2(R3)

≤
∥∥∂K1kΩK2k

(
uk − vk

)∥∥
L∞(R3)

∏
j>k

∥∥∂K1jΩK2juj
∥∥
L∞(R3)

∏
j<k
j 6=j0

∥∥∂K1jΩK2jvj
∥∥
L∞(R3)

×
∥∥(1 + r)−1∂K1j0ΩK2j0uj0

∥∥
L2(R3)

≤ C‖u− v‖EdH
∏
j>k

∥∥uj∥∥EdH ∏
j<k
j 6=j0

∥∥vj∥∥EdH‖uj0‖EdH ,
where (7.10b) and (7.11b) are applied.

Case 3: |K1k|+|K2k| ≤ [d/2] ≤ d−2 and there exists j0 > k such that |K1j0 |+|K2j0| ≥
|K1j| + |K2j|. The proof is exactly the same as in the last case provided we exchange the
roles of uj and vj.

Finally, we are able to estimate the difference of two quadratic functions.

Lemma 7.25. — Let d ≥ 3 be an integer. Let F be a C∞ function defined in a compact
neighborhood V of 0 in Rm with F (0) = ∇F (0) = 0. Assume that u and v are maps from
R4 to V with their components in L∞([0, T ];Ed). Then the following estimate hold for all
pair of index (I1, I2) with |I1|+ |I2| ≤ d:

(7.52)
∥∥∂I1x ΩI2

(
F (u)− F (v)

)∥∥
L2(R3)

≤ C(F, V, d)‖u− v‖Xd

|I1|+|I2|−1∑
k=1

∑
k1+k2=k

‖u‖k1
Xd‖v‖k2Xd .

Proof. — When I1 = I2 = 0, we apply the mean value theorem: there is a θ ∈ [0, 1] such
that

|F (u)− F (v)| ≤
∣∣∇F(θu+ (1− θ)v

)∣∣u− v∣∣.
Then by the condition ∇F (0) = 0,

|F (u)− F (v)| ≤
∣∣∇F(θu+ (1− θ)v

)
|u− v| ≤ C(F, V )|θu+ (1− θ)v||u− v|.

Then

‖F (u)(t, ·)− F (v)(t, ·)‖L2(R3) ≤ C(F, V )‖u− v‖L2(R3)‖θu+ (1− θ)v‖L∞(R3)

≤ C(V )‖u(t, ·)− v(t, ·)‖Ed(‖u(t, ·)‖Ed + ‖v(t, ·)‖Ed).



84 PHILIPPE G. LEFLOCH AND YUE MA

For the case for |I1|+ |I2| ≥ 1, we recall the expression (7.42) :

∂I1ΩI2
(
F (u)− F (v)

)
=

|I1|+|I2|∑
l=1

∑
∑
j lj=l

(
PLF (u)

∑
∑
j,iK1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj

− PLF (v)
∑

∑
j,iK1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∂K1jiΩK2jivj

)

=
∑
j

∂jF (u)
(
∂I1ΩI2uj − ∂I1ΩI2vj

)
+

|I1|+|I2|∑
l=2

∑
∑
j lj=l

PLF (u)
∑

∑
j,iK1ji=I1∑
j,i K2ji=I2

( m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj −
m∏
j=1

lj∏
i=1

∂K1jiΩK2jivj

)

+

|I1|+|I2|∑
l=1

∑
∑
j lj=l

(
PLF (u)− PLF (v)

) ∑
∑
j,iK1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∂K1jiΩK2jivj

=: T1 + T2 + T3.

To estimate T1, we take into consideration of the condition ∇F (0) = 0 with leads to∣∣∂jF (u)(t, ·)
∣∣ ≤ C(V )|u|.

So ‖∂jF (u)(t, ·)‖L∞(R3) ≤ C(V )‖u(t, ·)‖L∞(R3) ≤ C(F, V )‖u(t, ·)‖Xd . Then

‖T1(t, ·)‖L2(R3) ≤ C(F, V )‖u(t, ·)− v(t, ·)‖Xd‖u(t, ·)‖Xd .

To estimate T2, we need to apply Lemma 7.23. To do so, we observe the following
relation:

(7.53) ∂I1ΩI2

( m∏
i=1

u
lj
j −

m∏
i=1

v
lj
j

)
=

∑
∑
j,iK1ji=I1∑
j,i K2ji=I2

( m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj −
m∏
j=1

lj∏
i=1

∂K1jiΩK2jivj

)

Then

T2 =

|I1|+|I2|∑
l=2

∑
∑
j lj=l

PLF (u)∂I1ΩI2

( m∏
j=1

u
lj
j −

m∏
j=1

v
lj
j

)
Recall that |PLF (u)| is bounded by a constant C(F, V, |L|) determined by the neighborhood
V , the function F and the order |L|. Then we apply (7.50).
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The estimate of T3 is as follows:
(7.54)

‖T3‖L2(R3) ≤
|I1|+|I2|∑
l=1

∑
∑
j lj=l

∥∥PLF (u)−PLF (v)
∥∥
L∞(R3)

∑
∑
j,iK1ji=I1∑
j,i K2ji=I2

∥∥ m∏
j=1

lj∏
i=1

∂K1ji
x ΩK2jivj

∥∥
L2(R3)

As in the estimate on T2, we see that

∑
∑
j,iK1ji=I1∑
j,i K2ji=I2

∥∥ m∏
j=1

lj∏
i=1

∂K1ji
x ΩK2jiv(t, ·)

∥∥
L2(R3)

≤
|I1|+|I2|∑
l=1

‖v(t, ·)‖lXd .

and ∥∥PLF (u)(t, ·)− PLF (v)(t, ·)
∥∥
L∞(R3)

≤ C(F, V, |L|)‖u(t, ·)− v(t, ·)‖L∞

≤ C(V, |L|)‖u(t, ·)− v(t, ·)‖Ed

and then

‖T3(t, ·)‖L2(R3) ≤ C(V )‖u(t, ·)− v(t, ·)‖Ed
d−1∑
k=1

‖v‖kEd

which leads us to the conclusion (7.52).

The following L∞ type estimate is a direct application of Lemma 7.25 and the global
Sobolev inequality (7.8):

Lemma 7.26. — Let F , G, u and v take the assumption as in Lemma 7.25, then for any
|I1|+ |I2| ≤ d− 2, the following estimate holds:

(7.55)

∥∥∂I1ΩI2
(
F (u)(t, ·)− F (v)(t, ·)

)
(t, ·)

∥∥
E−1(R3)

≤ C(F, V, d)‖u(t, ·)− v(t, ·)‖Ed
d−1∑
k=1

∑
k1+k2=k

‖u(t, ·)‖k1
Ed
‖v(t, ·)‖k2

Ed
.

Lemma 7.27. — Let d ≥ 3 be an integer. Let H be a C∞ function which is defined in a
compact neighborhood V of 0 in Rm and let u, v be maps from R4 to V with their components
in class L∞([0, T ], Ed

H). Then the following estimate holds for 1 ≤ |I1|+ |I2| ≤ d:

(7.56)

∥∥(1 + r)−1∂I1ΩI2
(
H(u)−H(v)

)
(t, ·)

∥∥
L2(R3)

≤ C(V )‖u(t, ·)− v(t, ·)‖EdH

|I1|+|I2|∑
k=0

∑
k1+k2=k

‖u(t, ·)‖k1
EdH
‖v(t, ·)‖k2

EdH
.

Proof. — The proof is quite similar to that of Lemma 7.25.
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When |I1|+ |I2| ≥ 1, we apply the same calculation:

∂I1ΩI2
(
H(u)−H(v)

)
=

|I1|+|I2|∑
l=1

∑
∑
j lj=l

(
PLH(u)

∑
∑
j,iK1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj

− PLH(v)
∑

∑
j,iK1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∂K1jiΩK2jivj

)

=

|I1|+|I2|∑
l=1

∑
∑
j lj=l

PLH(u)
∑

∑
j,iK1ji=I1∑
j,i K2ji=I2

( m∏
j=1

lj∏
i=1

∂K1jiΩK2jiuj −
m∏
j=1

lj∏
i=1

∂K1jiΩK2jivj

)

+

|I1|+|I2|∑
l=1

∑
∑
j lj=l

(
PLH(u)− PLH(v)

) ∑
∑
j,iK1ji=I1∑
j,i K2ji=I2

m∏
j=1

lj∏
i=1

∂K1jiΩK2jivj

=: T1 + T2.

The estimate of T1 and T2 are similar to the estimate made in the proof of Lemma 7.25.
T1 is estimated by apply Lemma 7.24 and T2 is by applying the following estimate∥∥PLH(u)− PLH(v)

∥∥
L∞(R3)

≤ C(H, V, |L|)‖u− v‖L∞ ≤ C(V, |L|)‖u− v‖Xd

and the fact that (by applying (7.47))∥∥∥∥(1 + r)−1
m∏
j=1

lj∏
i=1

∂K1ji
x ΩK2jivj

∥∥∥∥
L2(R3)

≤ C(V )‖v‖|L|
Xd
H
.

We also need a L∞ estimate on H(u)−H(v):

Lemma 7.28. — Let d ≥ 3. Assume that H be a C∞ function defined in a compact neigh-
borhood V of 0 in Rm and assume that u, v are maps from R4 to V with their components
in the class L∞([0, T ];Ed

H). Then the following estimate holds for |I1|+ |I2| ≤ d− 2:

(7.57)

‖∂I1ΩI2
(
H(u)−H(v)

)
(t, ·)‖L∞(R3)

≤ C(H,V, d)‖u(t, ·)− v(t, ·)‖EdH

|I1|+|I2|+1∑
k=0

∑
k1+k2=k

‖u(t, ·)‖k1
EdH
‖v(t, ·)‖k2

EdH

Proof. — When I1 = I2 = 0, then there exists θ ∈ [0, 1] such that

|H(u)−H(v)| ≤ |∇H(θu+ (1− θ)v)||u− v| ≤ C(H,V )|u− v|.
which proves (7.57).
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For |I1|+ |I2| ≥ 1, we apply Lemma 7.7 combined with (7.56).

Lemma 7.29. — Let F be a C∞ function defined in a compact neighborhood V1 of 0 in
Rm and H be a C∞ function defined in a neighborhood V2 of 0 in Rn. Let d be an integer
and d ≥ 3. Assume that F (0) = 0,∇F (0) = 0. Let u1 and u2 be maps from R4 to V1 with
their components in L∞([0, T ];Ed

H) and v1, v2 be maps from R4 to V2 with their components
in class L∞([0, T ];Ed). Then the following estimate holds for |I1| + |I2| ≤ d and d ≥ 3.
Then, we have

(7.58)

∥∥∂I1ΩI2
(
H(u1)F (v1)−H(u2)F (v2)

)
(t, ·)

∥∥
L2(R3)

≤ C(V )
(
‖u1(t, ·)− u2(t, ·)‖EdH + ‖v1(t, ·)− v2(t, ·)‖Ed

) d−1∑
k=1

Mk(t),

where

M(t) := max{‖u1j(t, ·)‖EdH , ‖u2j(t, ·)‖EdH , ‖v1j(t, ·)‖Ed , ‖v2j(t, ·)‖Ed}.

Proof. — We have

∂I1ΩI2
(
H(u1)F (v1)−H(u2)F (v2)

)
= ∂I1ΩI2

(
H(u1)F (v1)−H(u1)F (v2) +H(u1)F (v2)−H(u2)F (v2)

)
= ∂I1ΩI2

(
H(u1)(F (v1)− F (v2))

)
+ ∂I1ΩI2

(
F (v2)(H(u1)−H(u2))

)
=: T1 + T2.

The term T1 is estimated as follows:

T1 = ∂I1ΩI2
(
H(u1)(F (v1)− F (v2))

)
=

∑
J1+J2=I1
J′1+J

′
2=I2

∂J1ΩJ2
(
H(u1)

)
∂J
′
1ΩJ ′2(F (v1)− F (v2)).

When |J1|+ |J2| ≤ [d/2] ≤ d− 2, by applying (7.48) and (7.52)∥∥∂J1ΩJ2
(
H(u1)

)
∂J
′
1ΩJ ′2(F (v1)− F (v2))(t, ·)

∥∥
L2(R3)

=
∥∥∂J1ΩJ2

(
H(u1)

)
(t, ·)

∥∥
L∞(R3)

∥∥∂J ′1ΩJ ′2(F (v1)− F (v2))(t, ·)
∥∥
L2(R3)

≤ C(H,F, V, d)

( |J1|+|J2|+2∑
k=0

‖u1(t, ·)‖EdH

)
(
‖v1(t, ·)− v2(t, ·)‖Ed

|J ′1|+|J ′2|−1∑
k=1

∑
k1+k2=k

‖v1(t, ·)‖k1Ed‖v2(t, ·)‖
k2
Ed

)
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When |J1|+ |J2| ≥ d/2 > 1, |J ′1|+ |J ′2| ≤ [d/2], we apply (7.47):∥∥∂J1ΩJ2
(
H(u1)

)
∂J
′
1ΩJ ′2(F (v1)− F (v2))(t, ·)

∥∥
L2(R3)

≤ ‖(1 + r)−1∂J1ΩJ2
(
H(u1)

)
(t, ·)‖L2(R3)‖∂J

′
1ΩJ ′2(F (v1)− F (v2))(t, ·)‖E−1

≤ C(V )

|J1|+|J2|∑
k=1

‖u‖kEdH · C(H,F, V, d)‖v1(t, ·)− v2(t, ·)‖Ed
|J ′1|+|J ′2|+1∑

k=1

∑
k1+k2=k

‖v1(t, ·)‖k1Ed‖v2(t, ·)‖
k2
Ed

≤ C(H,F, V, d)‖v1(t, ·)− v2(t, ·)‖Ed
|I1|+|I2|+2∑

k=1

∑
k1+k2+k3=k

‖u1(t, ·)‖k1EdH‖v1(t, ·)‖
k2
Ed
‖v2(t, ·)‖k3Ed

The term T2 is estimated similarly by applying (7.44), (7.56), (7.46) and (7.57). We
omit the details, but we write out the estimate

‖T2(t, ·)‖L2(R3) ≤ ‖u1(t, ·)− u2(t, ·)‖EdH

|I1|+|I2|+1∑
k=2

∑
k1+k2+k3=k

‖u1‖k1EdH‖u2‖
k2
EdH
‖v2‖k3Ed .

8. Proof of the local existence

8.1. Iteration and uniform bound

In this section we will begin the proof of Theorem 6.3. The proof of this theorem will
occupy the following two subsections and follows a classical iteration procedure:

(8.1a)
(mα′β′ +Hα′β′(hκn))∂α′∂β′h

κ,n+1
αβ = Fαβ(hκn; ∂hκn, ∂h

κ
n)− 16π∂αφ

κ
n∂βφ

κ
n

− 12∂α%
κ
n∂β%

κ
n − κ−1Vh(%κn)

(
mαβ + hκ,nαβ

)
,

(8.1b) (mα′β′ +Hα′β′(hκn))∂α′∂β′φ
κ
n+1 = 2(mα′β′ +Hα′β′(hκn))∂α′φ

κ
n∂β′%

κ
n,

(8.1c)
(mα′β′ +Hα′β′(hκn))∂α′∂β′%

κ
n+1 −

%κn+1

3κ

= κ−1Vρ(%
κ
n)− 4π

3e2%κn
(mα′β′ +Hα′β′(hκn))∂α′φ

κ
n∂β′φ

κ
n,

where

κ−1Vh(s) :=

(
e2s − 1

)2
2κe4s

, κ−1Vρ(s) :=
e2s − 1

6κe4s
− s

3κ
and with initial data

hκ,nαβ (0, x) = h0αβ, φκn(0, x) = φ0(x), %κn(0, x) = %0(x),

∂th
κ,n
αβ (0, x) = h1αβ, ∂tφ

κ
n(0, x) = φ1(x) ∂t%

κ
n(0, x) = %1(x).
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Recall the function Hαβ(h) are defined in (6.7) and the associated estimates are in (6.8).
We take (hκ,0αβ ) and set

Sκn := (hκ,nαβ , φ
κ
n, %

κ
n).

We also denote by FH(Sκn), FP (Sκn) and FR(Sκn) the terms in the right-hand side of (8.1a),
(8.1b) and (8.1c).

We take Sκ0 = (hκ,0αβ , φ
κ
0 , %

κ
0) as the solution of the following homogeneous Cauchy problem:

�hαβ = 0, �φ = 0, �%− %

3κ
= 0,

hκ,0αβ (0, x) = h0αβ, φκ0(0, x) = φ0(x), %κ0(0, x) = %0(x),

∂th
κ,0
αβ (0, x) = h1αβ, ∂tφ

κ
0(0, x) = φ1(x) ∂t%

κ
0(0, x) = %1(x).

We see that the source terms and metric coefficients in (8.1) are sufficiently regular and
the initial data are in the corresponding class required in Propositions 7.13, 7.14 and 7.15.
Then, by the theory of local existence for linear equations, this iteration procedure is well
defined in a fixed time interval [0, T ], where the metric coefficients and source terms are in
the corresponding class and |H(hκn)00| ≤ 1/2. We see that is iteration defines a sequence
of triple Sκn := (hκ,nαβ , φ

κ
n, %

κ
n). In order to get the local existence, we will prove that Sκn

converges in the following norm:

‖S(t, ·)κn‖Ed+1
κ

: = max{‖hκ,nαβ (t, ·)‖Ed+1
H
, ‖φκn(t, ·)‖Ed+1

P
, ‖%κn(t, ·)‖Ed+1

P
, κ−1/2‖%κn(t, ·)‖Ed},

for all t ∈ [0, T ∗], in which T ∗ > 0 will be defined.
We suppose that for certain d ≥ 3, for all k ≤ n and all t ∈ [0, T ],

(8.2) ‖Sκk (t, ·)‖Ed+1
κ
≤ Aε,

we will show that ‖Sκn+1(t, ·)‖Xd+1
κ
≤ Aε with T and A well chosen.

First, we observe that when (8.2) holds with Aε ≤ ε0 with ε0 small enough, the metric

gκ,kαβ := mαβ + hκ,kαβ are coercive with constant C(ε0), where C(ε0) is determined by ε0.
Now, by combining (8.2) with Lemma 7.18, the following estimates on the source terms

follow.

Lemma 8.1. — Assume that (8.2) holds with d ≥ 3. Suppose that 0 ≤ Aε ≤ ε0, where ε0
is a constant sufficiently small. Then the following estimates holds for k ≤ n:
(8.3a)
‖Fαβ(hκk, ∂h

κ
k, ∂h

κ
k)(t, ·)‖Ed + ‖∂αφκk∂βφκk(t, ·)‖Ed + ‖∂α%κk∂β%κk(t, ·)‖Ed ≤ C(ε0, d)(Aε)2,

(8.3b) ‖(mα′β′ +Hα′β′(hκk))∂α′φ
κ
k∂β′φ

κ
k(t, ·)‖Ed ≤ C(ε0, d)(Aε)2,

(8.3c) ‖e−2%κk (mα′β′ +Hα′β′(hκn))∂α′φ
κ
k∂β′φ

κ
k(t, ·)‖Ed ≤ C(ε0, d)(Aε)2,

(8.3d)

‖κ−1Vρ(%κk)(t, ·)‖Ed ≤ C(ε0, d)(Aε)2, ‖κ−1Vh(%κk)(mαβ + hκ,kαβ )(t, ·)‖Ed ≤ C(ε0, d)(Aε)2.
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These are classical estimate when we establish the local theory of existence for quasi-
linear wave equations with quadratic nonlinearity. The only thing important is (8.3d),
where the κ appears in the left-hand side in order to get estimates independent of κ.

Proof. — These estimates are applications of (7.44) and (7.49) combined with (8.2). The
only thing we need to be pay attention is that to guarantee the C∞ regularity of the
function Hαβ(·), we need to restrict its defined in a compact neighborhood V of 0 in R10

with
V = { max

1≤1≤10
|xi| ≤ ε0}

with ε0 sufficiently small. This can be guaranteed by taking ε ≤ ε0 in (8.2).
We observe that Fαβ(hκn, ∂h

κ
n, ∂h

κ
n) is quadratic with respect to ∂hκn and C∞ with respect

to hκn. Then we apply (7.49). The estimate on the term

(mα′β′ +Hα′β′(hκk))∂α′φ
κ
k∂β′φ

κ
k

is established in the same manner.
The estimate of (8.3d) is checked by using the estimate

κ−1/2‖%κk‖Ed ≤ Aε,

which follows from (8.2).

Now we begin the discussion of the commutators such as [∂I1x ΩI2 , Hα′β′(hκn)∂α′∂β′ ]h
κ,n
αβ

which appears in the estimates of ‖hκ,n+1
αβ ‖Xd

E
.

Lemma 8.2. — There exists a positive constant ε0 such that if (8.2) holds with d ≥ 3,
Aε ≤ ε0 ≤ 1, then the following estimates hold for all couple of index (I1, I2) with 1 ≤
|I1|+ |I2| ≤ d:

(8.4a)
∥∥[∂I1ΩI2 , Hα′β′(hκn)∂α′∂β′ ]h

κ,n+1
αβ (t, ·)

∥∥
Ed
≤ C(ε0, d)Aε‖hκ,n+1

αβ (t, ·)‖Ed+1
P
,

(8.4b)
∥∥[∂I1ΩI2 , Hα′β′(hκn)∂α′∂β′ ]φ

κ
n+1(t, ·)

∥∥
Ed
≤ C(ε0, d)Aε‖φκn+1(t, ·)‖Ed+1

P
,

(8.4c)
∥∥[∂I1ΩI2 , Hα′β′(hκn)∂α′∂β′ ]%

κ
n+1(t, ·)

∥∥
Ed
≤ C(ε0, d)Aε‖%κn+1(t, ·)‖Ed+1

P
.

Proof. — The estimate of these three commutators are similar, and we only prove the first
statement. Let (I1, I2) be a pair of multi-indices, |I1| + |I2| ≤ d. Recall the estimate of
commutator (7.3e):∣∣[∂I1ΩI2 , Hα′β′∂α′∂β′ ]h

κ,n+1
α′β′

∣∣ ≤ ∑
J1+J

′
1=I1

|J2|+|J′2|<|I2|
α′,β′,α′′,a

|∂J ′1ΩJ ′2Hα′β′| |∂α′′∂a∂J1ΩJ2hκ,n+1
αβ |

+
∑

J1+J
′
1=I1

J2+J
′
2=I2

|J′1|+|J
′
2|>0

|∂J ′1ΩJ ′2Hα′β′| |∂α′∂β′∂J1ΩJ2hκ,n+1
αβ |

=:T1 + T2.
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We begin with T2 and distinguish between two cases.

Case 1: 1 ≤ |J ′1|+ |J ′2| ≤ d− 1, 1 ≤ |J1|+ |J2| ≤ d− 1. In this case, we have∥∥∂J ′1ΩJ ′2Hα′β′(hκn)∂α′∂β′∂
J1ΩJ2hκ,n+1

αβ

∥∥
L2(R3)

≤ ‖∂J ′1ΩJ ′2Hα′β′(hκn)‖L∞(R3)‖∂α′∂β′∂J1ΩJ2hκ,n+1
αβ

∥∥
L2(R3)

≤ C(ε0, d)Aε‖hκn(t, ·)‖Ed+1
P
,

where we used Aε ≤ 1 and (7.48).

Case 2: J ′1 = I1, J
′
2 = I2, J1 = J2 = 0. Recall that d ≥ 3 then |J1|+ |J2| ≤ d− 3:∥∥∂J ′1x ΩJ ′2Hα′β′(hκn)∂α′∂β′∂

J1
x ΩJ2hκ,n+1

αβ

∥∥
L2(R3)

≤
∥∥(1 + r)−1∂I1x ΩI2Hα′β′(hκn)

∥∥
L2(R3)

∥∥∂α′∂β′hκ,n+1
αβ

∥∥
E−1

≤ C(ε0, d)Aε‖hκ,n+1
αβ ‖Ed+1

P
,

where we used Aε ≤ 1 and (7.47).
The estimate of term T1 is quite simpler. Recall that in the expression of T1, the sum is

taken over the index satisfying the following conditions:

J1 + J ′1 = I1, |J2|+ |J ′2| ≤ |I2| − 1

So

(|J1|+ |J ′1|) + (|J2|+ |J ′2|) ≤ d− 1

which leads to

|J ′1|+ |J ′2| ≤ d− 1.

So ∥∥∂J ′1x ΩJ ′2Hα′β′∂α′′∂a∂
I1
x ΩJ2hκ,n+1

αβ

∥∥
L2(R3)

≤
∥∥∂J ′1x ΩJ ′2Hα′β′

∥∥
L∞

∥∥∂α′′∂a∂I1x ΩJ2hκ,n+1
αβ

∥∥
L2(R3)

As in the estimate of T2, we see that with |J ′1|+ |J ′2| ≤ d− 1,∥∥∂J ′1x ΩJ ′2Hα′β′
∥∥
L∞(R3)

≤ C(ε0, d)Aε.

The second factor on hκ,n+1
αβ is bounded directly by ‖hκ,n+1

αβ ‖Xd+1
E

. So we conclude with

(8.4a).

Now we need to discuss the bound of the initial data Ed
gn(0, hκ,n+1

αβ ), Ed
gn(0, φκn+1) and

Ed
gn,c(0, %

κ
n+1). We will see that these norms are controlled by ‖S0‖Xd+1

κ
:

Lemma 8.3. — When ‖S0‖Xd+1
κ

is supposed to be bounded by ε ≤ ε0 for ε0 sufficiently
small, there exists a positive constant determined by ε0 and d such that

Ed
gn(0, hκn+1) + Ed

gn+1
(0, φκ) + Ed

gn+1,κ−1/2(0, %
κ) ≤ C(ε0, d)ε.
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Proof. — We recall that

‖S0‖Xd+1
κ

:= max{‖h0αβ‖Xd+1
H
, ‖h1αβ‖Xd , κ−(1/2)[d/2]+1/4‖φ0‖Xd+1

P
,

κ−(1/2)[d/2]+1/4‖φ1‖Xd , κ−[d/2]−1/2‖%0‖Xd+1
P
, κ−[d/2]−1/2‖%1‖Xd}.

We observe that when 0 ≤ k ≤ 1 the norm ‖∂kt ∂I1x ΩI2%κ(0, ·)‖L2(R3) is determined directly

by %0 and %1 thus, bounded by κ−[d/2]−1/2 ≤ κ−1/2.
When 2 ≤ k ≤ d, we need to use the equation.
We will prove that for 0 ≤ |k| ≤ d− 2 and |I1|+ |I2| ≤ d− 1− k

(8.5)

‖∂t∂t∂kt ∂I1x ΩI2hκαβ(0, ·)‖L2(R3) ≤ C(ε0, d)ε,

‖∂t∂t∂kt ∂I1x ΩI2%κ(0, ·)‖L2(R3) ≤ C(ε0, d)κ[d/2]+1/2−[k/2]ε,

‖∂t∂t∂kt ∂I1x ΩI2φκ(0, ·)‖L2(R3) ≤ C(ε0, d)κ1/2[d/2]−1/4ε

This is proven by induction on k. We see that for k = 0, 1, the estimates hold by direct
verification. Suppose that (8.5) holds for (k − 1, k) we will prove the case k + 1.

The estimate of ‖∂t∂t∂k+1
t ∂I1x ΩI2φκ‖L2(R3), is a bit complicated. We see that by

Lemma 7.12,

‖∂t∂t∂k+1
t ∂I1x ΩI2%κ‖L2(R3) ≤ ‖∂k+1

t ∂I1x ΩI2
(
(1−H00)−1

(
mab +Hab

)
∂a∂b%

κ
)
‖L2(R3)

+ 2‖∂k+1
t ∂I1x ΩI2

(
(1−H00)−1H0a∂t∂a%

κ
)
‖L2(R3)

+
3

κ
‖∂k+1

t ∂I1x ΩI2%κ‖L2(R3)

+ ‖∂k+1
t ∂I1x ΩI2

(
(1−H00)FR

)
‖L2(R3)

Then we see that

‖∂t∂t∂kt ∂I1x ΩI2%κ‖L2(R3) ≤ C(ε0, d)κ[d/2]+1/2−[d/2]ε.

We observe that by Lemma 7.12,

‖∂t∂t∂kt ∂I1x ΩI2hκαβ‖L2(R3) ≤ ‖∂kt ∂I1x ΩI2
(
(1−H00)−1

(
mab +Hab

)
∂a∂bh

κ
αβ

)
‖L2(R3)

+ 2‖∂kt ∂I1x ΩI2
(
(1−H00)−1H0a∂t∂ah

κ
αβ

)
‖L2(R3)

+ ‖∂kt ∂I1x ΩI2
(
(1−H00)FH

)
‖L2(R3)

Then by the bounds prescribed by ‖S0‖d+1
κ and (8.5), we see that ‖∂t∂t∂I1x ΩI2hκαβ‖L2(R3) is

bounded by C(ε0, d)ε.
In the same manner, we see that for 0 ≤ k ≤ d− 2

‖∂t∂t∂kt ∂I1x ΩI2φκ‖L2(R3) ≤ C(ε0, d)κ−(1/2)[d/2]+1/4ε.

Now we are ready to estimate the L2 type norm of Sκn.
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Lemma 8.4. — There exists a positive constant ε0 such that if (8.2) holds for Aε ≤ ε0 ≤ 1
and d ≥ 3, then

(8.6a) ‖hκ,n+1
αβ (t, ·)‖Ed+1

P
+ ‖∂thκ,n+1

αβ (t, ·)‖Ed ≤ C(ε0, d)
(
εeC(ε0,d)Aεt + Aε

(
eC(ε0,d)Aεt − 1

))
(8.6b) ‖φκn+1(t, ·)‖Ed+1

P
+ ‖∂tφκn+1(t, ·)‖Ed ≤ C(ε0, d)

(
εeC(ε0,d)Aεt + Aε

(
eC(ε0,d)Aεt − 1

))
(8.6c)

‖%κn+1(t, ·)‖Ed+1
P

+ ‖∂t%κn+1(t, ·)‖Ed + κ−1/2‖%κn+1(t, ·)‖Ed

≤ C(ε0, d)
(
εeC(ε0,d)Aεt + Aε

(
eC(ε0,d)Aεt − 1

))
,

where C(ε0, d) is a positive constant determined by ε0 and d.

Proof. — This is an application of the L2 estimate (7.20). We consider the estimate for
hκ,n+1
αβ . To do so, we derive the equation (8.1a) with respect to a product ∂I1ΩI2 with
|I1|+ |I2| ≤ d:(
mα′β′ +Hα′β′(hκn)

)
∂α′∂β′∂

I1ΩI2hκ,n+1
αβ = ∂I1ΩI2FH(hκn, φ

κ
n, %

κ
n)− [∂I1ΩI2 , Hα′β′∂α′∂β′ ]h

κ,n+1
αβ ,

where FH denotes the terms in the right-hand side of (8.1a), which is

FH(hκn, φ
κ
n, %

κ
n) = Fαβ(hκn; ∂hκn, ∂h

κ
n)− 16π∂αφ

κ
n∂βφ

κ
n − 12∂α%

κ
n∂β%

κ
n − κ−1Vh(%κn)

(
mαβ + hκ,nαβ

)
.

Then by (7.20),

d

dt
Egn(t, ∂I1ΩI2hκ,n+1

αβ ) ≤ C‖∂I1ΩI2FH‖L3(R3) + C
∥∥[∂I1ΩI2 , Hα′β′∂α′∂β′ ]h

κ,n+1
αβ

∥∥
L2(R3)

+ C
∑
αβ

∥∥∇Hα′β′(hκn)
∥∥
L∞(R3)

Egn(t, ∂I1ΩI2hκ,n+1
αβ ).

By Lemma 8.1 and (8.2), and the (equi-)coercivity of gn guaranteed by Aε ≤ ε0,

d

dt
Egn(t, ∂I1ΩI2hκ,n+1

αβ ) ≤ C(ε0, d)(Aε)2 + C(ε0, d)Aε
∑
αβ

Ed
g (t, hκ,n+1

αβ )

+ C(ε0, d)AεEgn(t, ∂I1ΩI2hκ,n+1
αβ ).

Taking the sum over the index (I1, I2) with |I1|+ |I2| ≤ d and α, β:

d

dt

∑
αβ

Ed
gn(t, hκ,n+1

αβ ) ≤ C(ε0, d)(Aε)2 + C(ε0, d)Aε
∑
αβ

Ed
gn(t, hκ,n+1

αβ ),

which leads to

(8.7)
∑
αβ

Ed
gn(t, hκ,n+1

αβ ) ≤
∑
αβ

Ed
gn(0, hn+1

αβ )eC(ε0,d)Aεt + Aε
(
eC(ε0,d)Aεt − 1

)
Note that by Lemma 8.3, Ed

gn(0, hα,β) is controlled by ‖h0‖Xd+1
P

and ‖h1‖Xd , so it can be

controlled by C(ε0, d)ε, where C(ε0, d) is a constant depending only on d and ε0.
The estimate of Ed

gn(t, φκn+1) is exactly the same, and we omit the details.
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The estimate of on %κn+1 is similar. By the same energy estimate, we arrive at the
following estimate:
(8.8)

d

dt
Egn,κ−1/2(t, ∂I1ΩI2%κn+1) ≤ C‖∂I1ΩI2FR‖L3(R3) + C

∥∥[∂I1ΩI2 , Hα′β′∂α′∂β′ ]%
κ
n+1

∥∥
L2(R3)

+ C
∑
αβ

∥∥∇Hα′β′(hκn)
∥∥
L∞(R3)

Egn,κ−1/2(t, ∂I1ΩI2%κn+1),

where FR denotes the right-hand side of (8.1c). Then, also by Lemma 8.1 and (8.4c) and
the same calculation in the estimate of hκ,n+1

αβ ,

Ed
gn,κ−1/2(t, %

κ
n+1) ≤ Ed

gn,κ−1/2(0, %
κ
n+1)e

C(ε0,d)Aεt + Aε
(
eC(ε0,d)Aεt − 1

)
.

Now we begin to make the choice of the couple (A0, T0) such that when A ≤ A0, T ≤ T0,
(8.6) implies

(8.9)

‖hκ,n+1
αβ (t, ·)‖Ed+1

P
+ ‖∂thκ,n+1

αβ (t, ·)‖Ed ≤ Aε,

‖φκn+1(t, ·)‖Ed+1
P

+ ‖∂tφκn+1(t, ·)‖Ed ≤ Aε,

‖%κn+1(t, ·)‖Ed+1
P

+ ‖∂t%κn+1(t, ·)‖Ed + κ−1/2‖%κn+1(t, ·)‖Ed ≤ Aε

on the time interval [0, T ].

Lemma 8.5. — There exists a couple of positive constants (ε0, A0(ε0, d)), where ε0 is a
universal constant and A0(ε0, d) is determined by d and ε0 such that when (8.2) is valid
with A ≥ A0 and Aε ≤ ε0 ≤ 1 on the time interval [0, T ] with

T ≤ T0 :=
ln
(
1 + (2C(ε0, d))−1

)
C(ε0, d)Aε

,

where C(ε0, d) is a constant determined by ε0 and d. Therefore, (8.9) hold.

Proof. — By Lemma 8.4, we chose A0(ε0, d) and T such that when A ≥ A0(ε0, d) and
t ≤ T

C(ε0, d)
(
εeC(ε0,d)Aεt + Aε

(
eC(ε0,d)Aεt − 1

))
≤ Aε.

This can be guaranteed by 
eC(ε0,d)AεT0 − 1 ≤ 1

2C(ε0, d)
,

eC(ε0,d)AεT0 ≤ A

2C(ε0, d)

which is equivalent to

T ≤
ln
(
1 + (2C(ε0, d))−1

)
C(ε0, d)Aε

A ≥ 2C(ε0, d) + 1.
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Then we can take A0 = 2C(ε0, d) + 1 and T0 =
ln
(
1+(2C(ε0,d))−1

)
C(ε0,d)Aε

.

Then we are about to estimate the E−1 norm of hκ,n+1
αβ .

Lemma 8.6. — There exists a positive constant ε0 such that if (8.2) holds with d ≥
3, A ≥ A0, Aε ≤ ε0 on the time interval [0, T ], T ≤ T0, where (A0, T0) are constants
determined in Lemma 8.5. Then the following estimate holds:

(8.10) ‖hκ,n+1
αβ (t, ·)‖E−1 ≤ C(ε0)T

2(Aε)2 + C(T + 1)ε.

Proof. — We will apply (7.18), and we note that

�hκ,n+1
αβ = FH −Hα′β′∂α′∂β′h

κ,n+1
αβ .

Then by (7.18), we have

‖hκ,n+1
αβ (t, ·)‖E−1 ≤ Ct

∫ t

0

‖FH(τ, ·)‖E−1dτ + Ct
∑
α,β

∫ t

0

‖Hα′β′∂α′∂β′h
κ,n+1
αβ (τ, ·)‖E−1dτ

+ C
(
‖hκ,n+1

αβ (0, ·)‖E−1 + t‖∇hκ,n+1
αβ (0, ·)‖E−1

)
Then we can apply on each term the global Sobolev inequality (7.8) to get estimates on
the E−1 norms:

‖FH‖E−1 ≤ C‖FH‖X2 ≤ C‖FH‖E2 ≤ C(ε0)(Aε)
2,

where we used (8.3a) and (7.8). We have

‖Hα′β′∂α′∂β′h
κ,n+1
αβ (t, ·)‖E−1 ≤ ‖Hα′β′‖L∞(R3)‖∂α′∂β′hκ,n+1

αβ ‖X2

≤ C‖Hαβ‖E2
H
‖hκ,n+1

αβ ‖E4
P

≤ C(ε0)(Aε)
2.

Here, we used Lemma 8.5.
The initial terms ‖hκ,n+1

αβ (0, x)‖E−1 and ‖∇hκ,n+1
αβ ‖B−1 are determined by the initial data

h0 and h1, hence, can be controlled by Cε, where C is a universal constant. So we conclude
with the desired result.

Now we can conclude that, with suitable choice of A and T and sufficient small ε, the
sequence {Sn} is bounded with respect to the norm ‖·‖Xd+1

S
. More rigorously, the following

proposition.

Proposition 8.7. — There exists a couple of positive constant (A, T ) depends only on ε0,
ε and d such that if (8.2) holds on [0, T ], then

(8.11) ‖Sκn(t, ·)‖Ed+1
κ
≤ Aε ≤ ε0 ≤ 1,

which means that the sequence of triple {Sκn} is bounded in the Banach space Ed+1
κ . Fur-

thermore, if ε→ 0+,
T →∞.

Note that the choice of (A, T ) are independent of κ.
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Proof. — By Lemma 8.5, we take already A ≥ A0(ε0, d) and T ≤ T0 such that (8.9) holds.
In order to prove (8.11), we need only to guarantee, by (8.10), the following inequality:

C(ε0)T
2(Aε)2 + C(T + 1)ε ≤ Aε.

This can be guaranteed by 
T ≤ A

2C
− 1,

T 2 ≤ 1

2C(ε0)Aε
.

So we require that A
2C
− 1 > 0. Taking into consideration of the conditions in Lemma 8.5:

A ≥ A0(ε0, d) = 2C(ε0, d) + 1

T ≤ T0 =
ln
(
1 + (2C(ε0, d))−1

)
C(ε0, d)Aε

together withe the condition Aε ≤ ε0. So we see that when ε sufficiently small such that

A0(ε0, d) ≤ ε0ε
−1/3,

we can take A = ε0ε
−1/3 and T = min{A(2C)−1 − 1, (2C(ε0)Aε)

−1/2, T0}. Then there exist
a constant C ′(ε0, d) such that T ≥ C ′(ε0, d)ε−1/3. This proves the desired result.

8.2. Contraction property and local existence

To establish theorem 6.3, we need to prove that the sequence {Sκn} is contracting.

Proposition 8.8. — Let (8.11) holds with (A, T ) determined in by Proposition 8.7. As-
sume that d ≥ 4. Then there exist a time interval [0, T ∗] determined by ε0, ε and d such
that the sequence {Sn} is contracting in the following sense:

(8.12) ‖Sκn+1 − Sκn‖L∞([0,T ∗];Xd
κ)
≤ λ‖Sκn(t, ·)− Sκn−1(t, ·)‖L∞([0,T ∗];Xd

κ)
.

with a fixed 0 < λ < 1. Furthermore, when ε→ 0+, we can take T ∗ such that T ∗(ε)→ +∞.

We emphasize that here the lower bound of the life-span-time T ∗ given here does not
depend on the coefficient κ.

The rest of this section is mainly devoted to the proof of this proposition. To do so, we
start by taking the difference of between the iteration relation for the pair (Sκn+1, S

κ
n) and

that of (Sκn, S
κ
n−1). This leads to the following differential system

(8.13a)

(
mα′β′ +Hα′β′(hκn)

)
∂α′∂β′

(
hκ,n+1
αβ − hκ,nαβ

)
=
(
Hα′β′(hκn−1)−Hα′β′(hκn)

)
∂α′∂β′h

κ,n
αβ

+ FH(Sκn)− FH(Sκn−1),

(8.13b)

(
mα′β′ +Hα′β′(hκn)

)
∂α′∂β′

(
φκn+1 − φκn

)
=
(
Hα′β′(hκn−1)−Hα′β′(hκn)

)
∂α′∂β′φ

κ
n

+ FP (Sκn)− FP (Sκn−1),
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(8.13c)

(
mα′β′ +Hα′β′(hκn)

)
∂α′∂β′

(
%κn+1 − %κn

)
=
(
Hα′β′(hκn−1)−Hα′β′(hκn)

)
∂α′∂β′%

κ
n

+ FR(Sκn)− FR(Sκn−1)

with zero initial data

hκ,n+1
αβ (0, x)− hκ,nαβ (0, x) = 0, ∂t

(
hκ,n+1
αβ − hκ,nαβ

)
(0, x) = 0,

φκn+1(0, x)− φκn(0, x) = 0, ∂t
(
φκn+1 − φκn

)
= 0,

%κn+1(0, x)− %κn(0, x) = 0, ∂t
(
%n+1 − %n

)
(0, x) = 0

For simplicity of expression, we denote by DH(Sn, Sn−1) the right-hand side of (8.13a), by
DP (Sn, Sn−1) the right-hand side of (8.13b) and by DR(Sn, Sn−1) the right-hand side of
(8.13c). We need to estimate

(8.14)

∥∥hκ,n+1
αβ − hκ,nαβ

∥∥
Xd
E
,
∥∥φκn+1 − φκn

∥∥
Xd
E
,
∥∥%κn+1 − %κn

∥∥
Xd
E
,∥∥hκ,n+1

αβ − hκ,nαβ
∥∥
E−1

.

First we recall the uniform bound of the sequence constructed in the last subsection:

(8.15) ‖Sκn(t, ·)‖Ed+1
κ
≤ Aε ≤ ε0 ≤ 1

with d ≥ 3 for 0 ≤ t ≤ T . We observe that this condition is equivalent to (8.9) for all
n ∈ N∗.

Now we will make a series of estimates to bound the norm listed in (8.14).

Lemma 8.9. — Let {Sκn} be the sequence constructed by (8.1) which satisfies the uniform
bound condition (8.15) with d ≥ 4. Then the following estimate holds for |I1|+ |I2| ≤ d−1:

(8.16)
∥∥∂I1ΩI2DH(Sκn+1, S

κ
n)(t, ·)

∥∥
L2(R3)

≤ C(ε0, d)Aε‖Sκn(t, ·)− Sκn−1(t, ·)‖Edκ .

Proof. — This is guaranteed by (7.58) and (8.2). Recall that

DH(Sn, Sn−1) = −
(
Hα′β′(hκn)−Hα′β′(hκn−1)

)
∂α′∂β′h

κ,n
αβ

+
(
Fαβ(hκn, ∂h

κ
n, ∂h

κ
n)− Fαβ(hn−1, ∂h

κ
n−1, ∂h

κ
n−1)

)
− 16π

(
∂αφ

κ
n∂βφ

κ
n − ∂αφκn−1∂βφκn−1

)
− 12

(
∂α%

κ
n∂β%

κ
n − ∂α%κn−1∂β%κn−1

)
− κ−1

(
Vh(%

κ
n)
(
mαβ + hκ,nαβ

)
− Vh(%κn−1)

(
mαβ + hκ,n−1αβ

))
=: T1 + T2 + T3 + T4.

We observe that ‖T1‖Ed is bounded by C(ε0, d)Aε‖hκn − hκn−1‖Xd
H

.

‖∂I1ΩI2T1‖L2(R3) ≤
∑

J1+J
′
1=I1

J2+J
′
2=I2

∥∥∂J1ΩJ2
(
Hα′β′(hκn)−Hα′β′(hκn−1)

)
∂J
′
1ΩJ ′2∂α′∂β′h

κ,n
αβ

∥∥
L2(R3)

.
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When |J1|+ |J2| ≤ d− 3, d− 1 ≥ |J ′1|+ |J ′2| ≥ 2,∥∥∂J1ΩJ2
(
Hα′β′(hκn)−Hα′β′(hκn−1)

)
∂J
′
1ΩJ ′2∂α′∂β′h

κ,n
αβ

∥∥
L2(R3)

≤
∥∥∂J1ΩJ2

(
Hα′β′(hκn)−Hα′β′(hκn−1)

)∥∥
L∞(R3)

∥∥∂J ′1ΩJ ′2∂α′∂β′h
κ,n
αβ

∥∥
L2(R3)

≤ C(ε0, d)‖hκn − hκn−1‖EdH‖h
κ,n
αβ ‖Ed+1

P

≤ C(ε0, d)Aε‖hκn − hκn−1‖EdH
≤ C(ε0, d)Aε‖Sκn − Sκn−1‖Edκ ,

Where (7.57) is applied.
When d − 1 ≥ |J1| + |J2| ≥ d − 2, we have 0 ≤ |J ′1| + |J ′2| ≤ 1. Then recall that d ≥ 4,
|J ′1|+ |J ′2|+ 1 ≤ d− 2. Then∥∥∂J1ΩJ2

(
Hα′β′(hκn)−Hα′β′(hκn−1)

)
∂J
′
1ΩJ ′2∂α′∂β′h

κ,n
αβ

∥∥
L2(R3)

≤
∥∥(1 + r)−1∂J1ΩJ2

(
Hα′β′(hκn)−Hα′β′(hκn−1)

)∥∥
L2(R3)

∥∥∂J ′1ΩJ ′2∂α′∂β′h
κ,n
αβ

∥∥
E−1

≤ C(ε0, d)‖hκn − hκn−1‖EdH
∥∥∂J ′1ΩJ ′2∂α′∂β′h

κ,n
αβ

∥∥
X2

≤ C(ε0, d)‖Sκn − Sκn−1‖Edκ‖h
κ,n
αβ ‖EdP

≤ C(ε0, d)Aε‖Sκn − Sκn−1‖Edκ ,

where (7.8), (7.56) and (7.7a) are applied. Note that since of the term with second order
derivative ∂α′∂β′h

κ,n
αβ , we can only bound the Ed norm, i.e. one order of regularity is lost.

The Ed term T2 and T3 are bounded by (7.52) and (8.15).
We should pay additional attention to the term T4:

κ−1
(
Vh(%

κ
n)
(
mαβ + hκ,nαβ

)
− Vh(%κn−1)

(
mαβ + hκ,n−1αβ

))
The Ed norm of this term can be bounded by C(ε0, d)(Aε)2. This is garanteed by (7.44)
and the assumption

κ−1/2‖%κk‖Xd ≤ C(ε0, d)Aε

deduced from (8.15).

Lemma 8.10. — Let {Sκn} be the sequence constructed by (8.1) which satisfies the uni-
form bound condition (8.15). Then the following estimate holds for |I1|+ |I2| ≤ d− 1:

(8.17)
∥∥[∂I1ΩI2 , Hα′β′(hκn)∂α′∂β′ ]

(
hκ,n+1
αβ − hκ,nαβ

)∥∥
L2(R3)

≤ C(ε0)Aε‖hκ,n+1
αβ − hκ,nαβ ‖EdP .
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Proof. — We perform the same calculation as in the proof of Lemma 8.2:∣∣[∂I1ΩI2 , Hα′β′∂α′∂β′ ]
(
hκ,n+1
αβ − hκ,nαβ

)∣∣
≤

∑
J1+J

′
1=I1

|J2|+|J′2|<|I2|
α′,β′,α′′,a

|∂J ′1ΩJ ′2Hα′β′ | |∂α′′∂a∂J1ΩJ2
(
hκ,n+1
αβ − hκ,nαβ

)
|

+
∑

J1+J
′
1=I1

J2+J
′
2=I2

|J′1|+|J
′
2|>0

|∂J ′1ΩJ ′2Hα′β′| |∂α′∂β′∂J1ΩJ2
(
hκ,n+1
αβ − hκ,nαβ

)
|

=:T1 + T2.

To estimate T1, we observe that since |J ′1| + |J ′2| + |J2| + |J ′2| ≤ d − 2, by (7.48) and
(8.15),

‖∂J ′1ΩJ ′2Hα′β′(hκ,nαβ )‖L∞(R3) ≤ C(ε0, d)Aε

and also since |J1|+ |J2| ≤ d− 2:∥∥∂α′∂a∂I1ΩJ2
(
hκ,n+1
αβ − hκ,nαβ

)∥∥
L2(R3)

≤ C
∥∥hκ,n+1

αβ − hκ,nαβ
∥∥
EdP

Then we see that
‖T1‖L2(R3) ≤ C(ε0)Aε

∥∥hκ,n+1
αβ − hκ,nαβ

∥∥
EdP
.

The estimate on T2 is established in a bit complicated. We see that in T2, |J1|+|J2| ≤ d−2
so ∥∥∂α′∂a∂I1ΩJ2

(
hκ,n+1
αβ − hκ,nαβ

)∥∥
L2(R3)

≤ C
∥∥hκ,n+1

αβ − hκ,nαβ
∥∥
EdP

When 1 ≤ |J ′1|+ |J ′2| ≤ d− 1

‖∂J ′1ΩJ ′2Hα′β′(hκ,nαβ )‖L∞(R3) ≤ C(ε0, d)Aε,

where we used (7.48) combined with (8.15).

Now we are ready to estimate the term
∥∥hκ,n+1

αβ − hκ,nαβ
∥∥
EdP

.

Lemma 8.11. — Let {Sκn} be the sequence constructed by (8.1) which satisfies the uni-
form bound condition (8.15) with d ≥ 4. Then the following estimate holds:

(8.18)

d

dt
Ed−1
gn (t, (hκ,n+1

α,β − hκ,nαβ )) ≤ C(ε0, d)Aε
∥∥Sn(t, ·)− Sn−1(t, ·)

∥∥
Edκ

+ C(ε0, d)AεEd−1
gn (t, (hκ,n+1

α,β − hκ,nαβ )).

Proof. — We differentiate the equation (8.13a) with respect to a product ∂I1ΩI2 with
|I1|+ |I2| ≤ d− 1. Recall the relation of commutation, we get(
mα′β′ +Hα′β′(hκn)

)
∂α′∂β′∂

I1ΩI2
(
hκ,n+1
αβ − hκ,nαβ

)
= ∂I2ΩI2

((
Hα′β′(hκn−1)−Hα′β′(hκn)

)
∂α′∂β′h

κ,n
αβ

)
+ ∂I1ΩI2

(
FH(Sκn)− FH(Sκn−1)

)
− [∂I1ΩI2 , Hα′β′∂α′∂β′ ]

(
hκ,n+1
αβ − hκ,nαβ

)
.
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Then we apply (7.20),

d

dt
Egn(t, ∂I1ΩI2

(
hκ,n+1
αβ − hκ,nαβ

)
)

≤ C
∥∥∂I1ΩI2DH(Sκn, S

κ
n−1)

∥∥
L2(R3)

+
∥∥[∂I1ΩI2 , Hα′β′(hκn)∂α′∂β′ ]

(
hκ,n+1
αβ − hκ,nαβ

)∥∥
L2(R3)

+
∑
α′,β′

∥∥∇Hα′β′(hκn)
∥∥
L∞(R3)

Egn(t, ∂I1ΩI2
(
hκ,n+1
αβ − hκ,nαβ

)
).

Note that by (7.48) and (8.15),∥∥∇Hα′β′(hκn)
∥∥
L∞(R3)

≤ C(ε0, d)Aε.

Then by Lemma 8.9 and 8.10,

d

dt
Egn(t, ∂I1ΩI2

(
hκ,n+1
αβ − hκ,nαβ

)
) ≤ C(ε0, d)Aε

∥∥Sn(t, ·)− Sn−1(t, ·)
∥∥
Edκ

+ C(ε0, d)Aε
∥∥hκ,n+1

α,β − hκ,nαβ
∥∥
EdP

+ C(ε0)AεEgn(t, ∂I1x ΩI2(hκ,n+1
α,β − hκ,nαβ )).

Then by taking the sum over all the pair of multi-index (I1, I2) with |I1| + |I2| ≤ d − 1,
and observe that (by (8.15)):

‖hκ,n+1
α,β − hκ,nαβ

∥∥
EdP
≤ C(ε0, d)Ed−1

gn (t, (hκ,n+1
α,β − hκ,nαβ )),

and the desired result is proven.

The estimates on
(
φκn+1 − φκn

)
and

(
%κn+1 − %κn

)
are established in the same manner.

Lemma 8.12. — Let {Sκn} be the sequence constructed by (8.1) which satisfies the uni-
form bound condition (8.15) with d ≥ 4. Then the following estimates hold:

(8.19a)

d

dt
Ed−1
gn (t, (φκn+1 − φκn))

≤ C(ε0, d)Aε
∥∥Sn(t, ·)− Sn−1(t, ·)

∥∥
Edκ

+ C(ε0, d)AεEd−1
gn (t, (φκn+1 − φκn)),

(8.19b)

d

dt
Ed−1
gn,κ−1/2(t, (%

κ
n+1 − %κn))

≤ C(ε0, d)Aε
∥∥Sn(t, ·)− Sn−1(t, ·)

∥∥
Edκ

+ C(ε0, d)AεEd−1
gn,κ−1/2(t, (%

κ
n+1 − %κn)).

At this juncture, we can finally estimate the E−1 norm of
(
hκ,n+1
αβ − hκ,nαβ

)
.

Lemma 8.13. — Let {Sκn} be the sequence constructed by (8.1) which satisfies the uni-
form bound condition (8.15) with d ≥ 4. Then the following estimate holds:

(8.20)
∥∥hκ,n+1

αβ − hκ,nαβ
∥∥
E−1
≤ C(ε0)t

2Aε
∥∥Sκn − Sκn−1∥∥Edκ .
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Proof. — We are going to apply (7.18). To do so we need to establish the following
estimates:

(8.21)
∥∥Hα′β′(hκn)∂α′∂β′

(
hκ,n+1
αβ − hκ,nαβ

)∥∥
E−1
≤ C(ε0)Aε‖hκ,n+1

αβ − hκ,nαβ ‖EdH ,

(8.22)
∥∥DH(Sκn, S

κ
n−1)

∥∥
E−1
≤ C(ε0)Aε

∥∥Sκn − Sκn−1∥∥Edκ .
We see that (8.21) follows from (8.16) and (7.8). To establish (8.21), we see that∥∥Hα′β′(hκn)∂α′∂β′

(
hκ,n+1
αβ − hκ,nαβ

)∥∥
E−1
≤
∥∥Hα′β′(hκn)

∥∥
E−1

∥∥∂α′∂β′(hκ,n+1
αβ − hκ,nαβ

)∥∥
L∞(R3)

≤ C(ε0)Aε‖hκ,n+1
αβ − hκ,nαβ ‖E4

P
,

where (7.7) is applied.

Proof of Proposition 8.8. — We integrate (8.18), (8.19a) and (8.19b) and get the following
estimates:

(8.23a) Ed−1
gn (t, (hκ,n+1

α,β − hκ,nαβ )) ≤
(
eC(ε0,d)Aεt − 1

)∥∥Sκn − Sκn−1∥∥L∞([0,T ∗];Edκ)

(8.23b) Ed−1
gn (t, (φκn+1 − φκn)) ≤

(
eC(ε0,d)Aεt − 1

)∥∥Sκn − Sκn−1∥∥L∞([0,T ∗];Edκ)

(8.23c) Ed−1
gn,κ−1/2(t, (%

κ
n+1 − %κn)) ≤

(
eC(ε0,d)Aεt − 1

)∥∥Sκn − Sκn−1∥∥L∞([0,T ∗];Edκ)

Recall that the metric gn is coercive with constant C(ε0). We have

‖Sκn+1(t, ·)− Sκn(t, ·)‖Edκ
≤ C(ε0, d) max{Ed−1

gn (t, (hκ,n+1
α,β − hκ,nαβ )), Ed−1

gn (t, (φκn+1 − φκn)), Ed−1
gn,κ−1/2(t, (%

κ
n+1 − %κn))}.

Then we conclude with

(8.24) ‖Sκn+1 − Sκn‖L∞([0,T ∗];Edκ)
≤ C(ε0, d)

(
eC(ε0,d)AεT ∗ − 1

)∥∥Sκn − Sκn−1∥∥L∞([0,T ∗];Edκ)
.

Then if we choose

T ∗ =
ln
(
1 + (2C(ε0))

−1)
C(ε0)Aε

,

then

λ := eC(ε0)Aεt − 1 = 1/2 < 1,

which satisfies the contraction condition. Furthermore, recall that in Proposition 8.7 we
can take A = ε0ε

−1/3 and T ≥ C ′(ε0, d)ε−1/3 when ε sufficiently small. So here we can
also take T ∗ = C ′′(ε0, d)ε−1/3 for ε sufficiently small. This leads to the limit of T ∗(ε) when
ε→ 0+.

Now we apply Banach’s fixed point theorem and see that {Sκn} converges to a triple
Sκ := (hκ, φκ, %κ) in the sense of L∞([0, T ∗], Ed

κ). Then we will prove that Sκ is a solution
of (8.1).
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Proposition 8.14. — When d ≥ 4, the function Sκ constructed above is a solution of
(8.1) and, furthermore, for k ≤ d

hκαβ ∈ C([0, T0], E
d
H), ∂kt h

κ
αβ ∈ C([0, T0], E

d−k
P ),

φκ ∈ C([0, T0], E
d
P ), ∂kt h

κ
αβ ∈ C([0, T0], E

d−k
P ),

%κ ∈ C([0, T0], E
d
R), ∂kt h

κ
αβ ∈ C([0, T0], E

d−k
R ),

with, in addition, ‖Sκ(t, ·)‖Edκ ≤ Aε with 0 ≤ t ≤ T ∗.

Proof. — The proof is based on taking the limit in both side of (8.1). The convergence
of {Sκn} in sense of L∞([0, T ∗];Ed

κ) can guarantee the convergence of both sides of (8.1).
Recall that the sequence {∂t∂thκ,nαβ } also converges in the sense L∞([0, T ∗];Ed−2) and so
does {∂t∂tφκn} and {∂t∂t%κn}.

The convergence of {Sκn} in Ed
κ guarantees the following convergence (remark that κ ≤ 1:

(8.25)
hκ,nαβ → hκαβ in L∞([0, T ∗];Ed

H), ∇hκ,nαβ → ∇h
κ
αβ in L∞([0, T ∗];Ed−1),

φκn → φκ in L∞([0, T ∗];Ed
P ), ∇φκn → ∇φκ in L∞([0, T ∗];Ed−1),

%κn → %κ in L∞([0, T ∗];Ed
P ) ∩ L∞([0, T ∗];Ed−1), ∇%κn → ∇%κ in L∞([0, T ∗];Ed−1).

Here, ∇ denotes the spacetime divergence. By Sobolev embedding (d − 1 ≥ 2), {hκn},
{∇φκn} and {%κn} converges in L∞([0, T ∗]× R3). Furthermore, we have
(8.26)

∂t∂xh
κ,n
αβ → ∂t∂xh

κ
αβ in L∞([0, T ∗];Ed−2), ∂x∂xh

κ,n
αβ → ∂x∂xh

κ
αβ in L∞([0, T ∗];Ed−2)

∂t∂xφ
κ
n → ∂t∂xφ

κ in L∞([0, T ∗];Ed−2), ∂x∂xφ
κ
n → ∂x∂xφ

κ in L∞([0, T ∗];Ed−2)

∂t∂xh
κ,n
αβ → ∂t∂xh

κ
αβ in L∞([0, T ∗];Ed−2), ∂x∂xh

κ,n
αβ → ∂x∂xh

κ
αβ in L∞([0, T ∗];Ed−2).

These convergence properties are sufficient to guarantee the convergence of both side of
(8.1) since both side depend linearly the terms with second order derivatives. And the
lower order terms converge in L∞ sense.

Proof of Theorem 6.3. — We have checked that the triple Sκ is a local solution of (6.6).
Furthermore, we notice that the lower bound of life-span-time T ∗ constructed in Proposi-
tion 8.14 does not depend on κ. The estimates are established by taking the limit of the
(8.15).

9. Comparing the f (R) theory to the classical theory

9.1. Statement of the main estimate

In this section, we compare the solutions given by the f(R) theory with the solutions of
the classical Einstein theory. We denote by S0 := (hαβ, φ) the triple determined by the
following Cauchy problem:

(9.1a)
(
mα′β′ +Hα′β′(h)

)
∂α′∂β′hαβ = Fαβ(h, ∂h, ∂h)− 16π∂αφ∂βφ,
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(9.1b)
(
mα′β′ +Hα′β′(h)

)
∂α′∂β′φ = 0

with initial data

(9.2)
hαβ(0, x) = h0αβ, ∂thαβ(0, x) = h1αβ,

φ(0, x) = φ0, ∂tφ(0, x) = φ1.

This limiting problem is defined by replacing ρκ by 0 in our formulation (6.3). As before,
if the initial data satisfies the corresponding constraint conditions, then gαβ = mαβ + hαβ
and φ satisfy the classical Einstein’s field equation coupled with the massless scalar field
φ. For the convenience of discussion we introduce the norm∥∥S0

∥∥
Xd+1

0
:= max

(
‖h0αβ‖Xd+1

H
, ‖h1αβ‖Xd , ‖φ0‖Xd+1

P
, ‖φ1‖Xd

)
.

Proposition 9.1 (Local existence theory for the classical gravity system)
Suppose that (h0αβ, h1αβ) ∈ Xd+1

H ×Xd and (φ0, φ1) ∈ Xd+1
P ×Xd and with d ≥ 4, and

denote by S0 = (h0, h1, φ0, φ1) and assume that for a sufficiently small ε0∥∥S0

∥∥
Xd+1

0
≤ ε ≤ ε0 ≤ 1.

Then there exist positive constants A, T ∗ determined from ε0, ε and d such that the Cauchy
problem (9.1) with initial data S0 has a unique solution (hαβ, φ) in the time interval [0, T ∗].
Here

hαβ ∈ C([0, T ∗];Ed
H), φ ∈ C([0, T ∗];Ed

P ).

When ε→ 0+, we can take
lim
ε→0+

T ∗ = +∞.

Furthermore, the local solution satisfies the following estimates in the time interval [0, T ∗]:

(9.3)
∥∥hαβ∥∥EdH +

∥∥φ∥∥
EdP
≤ Aε.

The proof is similar to that of Theorem 6.3: we make an iteration and estimate the
sequence constructed by this iteration and we prove that with suitable choice of (A, T ∗),
this sequence is contracting. The details of the argument are omitted.

Let S0 = (h00αβ, h
0
1αβ, φ

0
0, φ

0
1) be an initial data which satisfies the Einstein’s constraint

equation (2.29) and S1 = (h0αβ, h1αβ, φ0, φ1, %0, %1) be an initial data which satisfies the
nonlinear constraint equations (5.7) and (5.8). Define the following function Dκ(S0, S1):

Dd
κ(S0, S1) := max{

∥∥h00αβ − h0αβ∥∥Xd+1
H
,
∥∥h01αβ − h1αβ∥∥Xd ,

∥∥φ0
0 − φ0

∥∥
Xd+1
P
,∥∥φ0

1 − φ1

∥∥
Xd+1
P
,
∥∥%0∥∥Xd+1

P
,
∥∥%1∥∥Xd , κ

−1/2∥∥%0∥∥Xd}.

Denote by

S0(t) = (h0αβ(t), φ0(t)) ∈ C([0, T ∗];Xd
H)∩C1([0, T ];Xd−1

H )×C([0, T ∗];Xd
P )∩C1([0, T ];Xd−1

P ).

the local solution of Cauchy problem (9.1) with initial data S0(0) = S0, and

Sκ(t) = (hκαβ, φ
κ, %κ) ∈ C([0, T ∗];Xd

H) ∩ C1([0, T ];Xd−1
H )× C([0, T ∗];Xd

P ) ∩ C1([0, T ];Xd−1
P )

× C([0, T ∗];Xd
P ) ∩ C1([0, T ];Xd−1

P ) ∩ C([0, T ∗];Xd−1
R ).
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We introduce the “distance” from S0 to Sκ:

Dd(S0, Sκ)(t) :=
∑
αβ

‖h0αβ − hκαβ‖EdH + ‖φ0 − φκ‖EdP

and we are ready to state the key estimate derived in the present work.

Theorem 9.2 (Comparison estimate). — There exists a positive constant ε0 such that
if

max{‖S1‖Xd+1
κ
, ‖S0‖Xd+1

0
} ≤ ε ≤ ε0 ≤ 1

(with d ≥ 4), then in the common interval of existence [0, T ∗] (which depends only on ε, ε0
and d), the following estimates hold:

(9.4) Dd−1(S0, Sκ)(t) ≤ C(ε0, d)
(
Dd−1(S0, Sκ)(0) +

(
Ed−2
g,κ−1/2(0, %

κ)
)2

+ κ1/2(Aε)3
)
.

9.2. Derivation of the comparison estimate

The proof of Theorem 9.2 requires better estimates on ‖%κn+1‖Xd−1 . First we establish an
improved bound on the L2 norm of ∂t∂

I1ΩI2%κ. The following lemma is immediate from
(6.16c).

Lemma 9.3. — Let Sκ = (hκαβ, φ
κ, %κ) be the solution of Cauchy problem (6.6) with d ≥ 4.

Then the following estimate holds for all |I1|+ |I2| ≤ d− 2:

(9.5) κ−1/2‖∂t∂I1ΩI2%κ‖L2(R3) ≤ C(ε0, d)Aε.

Lemma 9.4. — There exists a positive constant ε0 such that if (8.2) holds for d ≥ 4 and
Aε ≤ ε0, then

(9.6) ‖%κ(t, ·)‖2Ed−2 ≤ κ3/2C(ε0, d)t(Aε)3 + C(ε0, d)κ
(
Ed−2
g,κ−1/2(0, %

κ)
)2
.

Proof. — We derive an energy-type estimate by differentiating (6.6c) with respect to ∂I1ΩI2

with |I1|+ |I2| ≤ d− 2. Similarly as in the proof of Lemma 7.11, we have

∂t∂
I1ΩI2%κ

(
gαβ∂α∂β∂

I1ΩI2%κ − 3κ−1∂I1ΩI2%κ
)

=
1

2
∂0
(
g00(∂0∂

I1ΩI2%κ)2 − gab∂a∂I1ΩI2%κ∂b∂
I1ΩI2%κ

)
− 1

2
∂0
(
(3κ)−1/2∂I1ΩI2%κ

)2
+ ∂a

(
gaβ∂I1ΩI2%κ∂β∂

I1ΩI2%κ
)

+
1

2
∂tg

αβ∂α∂
I1ΩI2%κ∂β∂

I1ΩI2%κ

− ∂αgαβ∂0∂I1ΩI2%κ∂β∂
I1ΩI2%κ.

For simplicity, we set v = ∂I1ΩI2%κ and obtain

∂tv
(
∂I1ΩI2FR(hκ, φκ, %κ)

)
=

1

2
∂t
(
g00(∂tv)2 − gab∂av∂bv

)
− 1

2
∂t
(
(3κ)−1/2v

)2
+ ∂a

(
gaβ∂tv∂βv

)
+

1

2
∂tg

αβ∂αv∂βv − ∂αgαβ∂tv∂βv.
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Integrating this equation in the region [0, t]× R3 and using Stokes’ formula, we obtain

(9.7)

∫ t

0

∫
R3

∂tv
(
∂I1ΩI2FR(hκ, φκ, %κ)

)
dxdt

=
1

2

(
Eg,κ−1/2(t, ∂I1ΩI2%κ)

)2 − 1

2

(
Eg,κ−1/2(0, ∂I1ΩI2%κ)

)2
+

∫ t

0

∫
R3

(1

2
∂tg

αβ∂αv∂βv − ∂αgαβ∂tv∂βv
)
dxdt

Then by (7.44), (7.49), (9.5) and (6.16), we see that∣∣∣∣ ∫ t

0

∫
R3

∂tv
(
∂I1ΩI2FR(hκ, φκ, %κ)

)
dxdt

∣∣∣∣ ≤ C(ε0, d)t(Aε)3κ1/2

then, by (6.16) and since d ≥ 4,∣∣∂αgαβ∣∣L∞(R3)
≤ C(ε0)‖hαβ‖Ed−1

P
≤ C(ε0)Aε,

and thus ∣∣∣∣ ∫ t

0

∫
R3

(1

2
∂tg

αβ∂αv∂βv − ∂αgαβ∂tv∂βv
)
dxdt

∣∣∣∣ ≤ C(ε0, d)t(Aε)3κ.

Combining the above two estimates together with (9.7), we find (with 0 < κ ≤ 1)(
Eg,κ−1/2(t, ∂I1ΩI2%κ)

)2 ≤ (Eg,κ−1/2(0, ∂I1ΩI2%κ)
)2

+ C(ε0, d)t(Aε)3κ1/2.

In view of the definition of Eg,κ−1/2(t, u), this leads us to

κ−1‖∂I1ΩI2%κ(t, ·)‖2L2(R3) ≤ C(ε0, d)
(
Eg,κ−1/2(0, ∂I1ΩI2%κ)

)2
+ C(ε0, d)t(Aε)3κ1/2.

Proof of Theorem 9.2. — By taking the difference of (6.6a) and (9.1a), and the difference
of (6.6b) and (9.1b), we obtain

(9.8a)

(
mα′β′ +Hα′β′(h0)

)
∂α′∂β′

(
(h0αβ − hκαβ

)
= −

(
Hα′β′(h0)−Hα′β′(hκ)

)
∂α′∂β′h

κ
αβ +

(
Fαβ(h0, ∂h0, ∂h0)− Fαβ(hκ, ∂hκ, ∂hκ)

)
− 16π

(
∂αφ

0∂βφ
0 − ∂αφκ∂βφκ

)
+ 12∂α%

κ∂β%
κ + κ−1Vh(%

κ)
(
mαβ + hκαβ

)
and

(9.8b)

(
mα′β′ +Hα′β′(h0)

)
∂α′∂β′

(
φ0 − φκ

)
= −

(
Hα′β′(h0)−Hα′β′(hκ)

)
∂α′∂β′φ

κ − 2
(
mα′β′ +Hα′β′(hκ)

)
∂α′φ

κ∂β%
κ.

We are going to derive (9.4) from these two equations. The proof is quite similar to that
of Lemmas 8.11 and 8.12.
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Step I. L2-Type estimates. Let us begin with the Ed−2
P norm of

(
h0αβ−hκαβ

)
. Let (I1, I2)

be a pair of multi-indices with |I1| + |I2| ≤ d − 2. We differentiate (9.8) with respect to
∂I1ΩI2 :(
mα′β′ +Hα′β′(h0)

)
∂α′∂β′∂

I1ΩI2
(
h0αβ − hκαβ

)
= −∂I1ΩI2

((
Hα′β′(h0)−Hα′β′(hκ)

)
∂α′∂β′h

κ
αβ

)
+ ∂I1ΩI2

(
Fαβ(h0, ∂h0, ∂h0)− Fαβ(hκ, ∂hκ, ∂hκ)

)
− 16π∂I1ΩI2

(
∂αφ

0∂βφ
0 − ∂αφκ∂βφκ

)
− [∂I1ΩI2 , Hα′β′(h0)∂α′∂β′ ]

(
h0αβ − hκαβ

)
+ 12∂I2ΩI2

(
∂α%

κ∂β%
κ
)

+ κ−1∂I1x ΩI2
(
Vh(%

κ)
(
mαβ + hκαβ

))
=: T1 + T2 + T3 + T4 + T5 + T6.

Then combined with (7.20),

(9.9)

d

dt
Eg(t, ∂

I1ΩI2
(
h0αβ − hκαβ

)
)

≤ C
6∑
i=1

‖Ti‖L2 + C
∑
α,β

∥∥Hα′β′(h0)
∥∥
L∞(R3)

Eg(t, ∂
I1ΩI2

(
h0αβ − hκαβ

)
).

We will need to control the L2 norm of these Ti for i = 1, · · · , 6. The term Ti for i = 1, 2, 3, 4
can be bounded as follows:

(9.10)

∥∥Ti∥∥L2(R3)
≤ C(ε0, d)Aε

(
‖h0 − hκ‖Ed−1

H
+ ‖h0 − hκ‖Ed−1

P
‖φ0 − φκ‖Ed−1

P

)
≤ C(ε0, d)AεDd−1(S0, Sκ)(t).

The proof is exactly the same to the one of (8.16) and (8.17) and we omit the details.
The key terms T5 and T6 are bounded as follows:

(9.11)
‖T5‖L2(R3) ≤ C(ε0, d)κ(Aε)2,

‖T6‖L2(R3) ≤ C(ε0, d)κ1/2(Aε)3 + C(ε0, d)
(
Ed−2
g,κ−1/2(0, %

κ)
)2
.

The estimates on T5 and T6 is related to the refined estimates (9.5) and (9.6). More
precisely, T5 is estimated by (7.44), (6.16b) and (9.5). The term T6 is estimated by (7.44)
and (9.6).

Next, we combine together the above estimates on Ti and observe that∥∥Hα′β′(h0)
∥∥
L∞
≤ C(ε0)Aε

and

Eg(t, ∂
I1ΩI2

(
h0αβ − hκαβ

)
) ≤ C(ε0, d)Dd−1(S0, Sκ)(t).

We can thus deduce from (9.9) that

(9.12)

d

dt
Ed−2
g (t,

(
h0αβ − hκαβ

)
) ≤ C(ε0, d)AεDd−1(S0, Sκ)(t) + C(ε0, d)κ1/2(Aε)3

+ C(ε0, d)
(
Ed−2
g,κ−1/2(0, %

κ)
)2
,
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where we recall the definition

Dd(S0, Sκ)(t) :=
∑
αβ

‖h0αβ − hκαβ‖EdH + ‖φ0 − φκ‖EdP .

The estimate on the norm ‖φ0 − φ1‖Xd
E

is similar to that of h0 − hκ (even simpler). We

claim that the following estimate on the right-hand side of (9.8b):

(9.13a)
∥∥(Hα′β′(h0)−Hα′β′(hκ)

)
∂α′∂β′φ

κ
∥∥
Ed−2 ≤ C(ε0)Aε‖h0 − hκ‖Ed−1

H
,

(9.13b)
∥∥(mαβ +Hαβ(hκ)

)
∂αφ

κ∂β%
κ
∥∥
Ed−2 ≤ C(ε0)κ

1/2(Aε)2.

The first can be proved exactly as in the proof of (9.12). The second one is proven as
follows: for any (I1, I2) with |I1|+ |I2| ≤ d− 2,∥∥∂I2ΩI2

(
(mαβ +Hαβ(hκ))∂αφ

κ∂β%
κ
)∥∥

L2(R3)

≤
∑

J1+J
′
1=I1

J2+J
′
2=I2

∥∥∂J1ΩJ2
(
mαβ +Hαβ(hκ)

)∥∥
L∞(R3)

∥∥∂J ′1ΩJ ′2
(
∂αφ

κ∂β%
κ
)∥∥

L2(R3)

≤ C(ε0, d)
∑
α,β

|J′1|+|J
′
2|≤d−2

∥∥∂J ′1ΩJ ′2
(
∂αφ

κ∂β%
κ
)∥∥

L2(R3)

≤ C(ε0, d)
∑
α,β

|J′1|+|J
′
2|≤d−2

∑
K1+K

′
1=J
′
1

K2+K
′
2=J
′
2

∥∥∂K1ΩK2∂αφ
κ∂K

′
1

x ΩK′2∂β%
κ
∥∥
L2(R3)

Then, when |K1|+ |K2| ≤ d− 3,∥∥∂K1ΩK2∂αφ
κ∂K

′
1ΩK′2∂β%

κ
∥∥
L2(R3)

≤
∥∥∂K1ΩK2∂αφ

κ
∥∥
L∞(R3)

∥∥∂K′1ΩK′2∂β%
κ
∥∥
L2(R3)

≤ C(ε0, d)Aε‖%κ‖Ed−1

≤ C(ε0, d)κ1/2(Aε)2.

When |K1|+ |K2| = d− 2 and K ′1 = K ′2 = 0, recall that d ≥ 4:∥∥∂K1ΩK2∂αφ
κ∂K

′
1ΩK′2∂β%

κ
∥∥
L2(R3)

≤
∥∥∂K1ΩK2∂αφ

κ
∥∥
L2(R3)

∥∥∂β%κ∥∥L∞(R3)

≤ C(ε0, d)Aε
∥∥%κ∥∥

Ed−1 ≤ C(ε0, d)κ1/2(Aε)2

So we conclude with (9.13b), and combined with (7.20),

(9.14)
d

dt
Ed−2
g (t,

(
φ0 − φκ

)
) ≤ C(ε0, d)AεDd−1(S0, Sκ)(t) + C(ε0, d)κ1/2(Aε)2.
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Step II. Estimate of the E−1 norm. To do so we rewrite the equation (9.8a) into the
following form:
(9.15)

�
(
(h0αβ − hκαβ

)
= −Hα′β′(h0)∂α′∂β′

(
(h0αβ − hκαβ

)
−
(
Hα′β′(h0)−Hα′β′(hκ)

)
∂α′∂β′h

κ
αβ

+
(
Fαβ(h0, ∂h0, ∂h0)− Fαβ(hκ, ∂hκ, ∂hκ)

)
− 16π

(
∂αφ

0∂βφ
0 − ∂αφκ∂βφκ

)
+ 12∂α%

κ∂β%
κ + κ−1Vh(%

κ)
(
mαβ + hκαβ

)
=: T0 + T1 + T2 + T3 + T4 + T5 + T6.

By (7.18) we need to control the E−1 norm of the terms Ti for i = 1, · · · 6. By (7.8), we need
only to control the X2 norm of these terms. Recall the condition d ≥ 4, then d−2 ≥ 2. So
we only need to control the Xd−2 norm of these terms. Note that in the Step I we have
already controlled this norm for the terms Ti with i ≥ 1. Now we only need to control the
X2 norm of T0. Let (I1, I2) be a pair of multi-indices with |I1|+ |I2| ≤ 2. Then, we have∥∥∂I1x ΩI2

(
Hα′β′(h0)∂α′∂β′(h

0
αβ − hκαβ)

)∥∥
L2(R3)

≤
∑

J1+J
′
1=I1

J2+J
′
2=I2

∥∥∂J1x ΩJ2
(
Hα′β′(h0)

)
∂J
′
1
x ΩJ ′2∂α′∂β′(h

0
αβ − hκαβ)

)∥∥
L2(R3)

≤
∑

J1+J
′
1=I1

J2+J
′
2=I2

∥∥∂J1x ΩJ2
(
Hα′β′(h0)

)∥∥
L∞(R3)

∥∥∂J ′1x ΩJ ′2∂α′∂β′(h
0
αβ − hκαβ)

)∥∥
L2(R3)

≤ C(ε0)‖h0‖X4‖h0 − hκ‖E3
P
≤ C(ε0)Aε‖h0 − hκ‖Ed−1

P
.

Then by (7.18), the following estimate on E−1 norm holds:

(9.16)

‖h0αβ(t, ·)− hκαβ(t, ·)‖E−1

≤ C(ε0)tAε

∫ t

0

Dd−1(S0, Sκ)(τ)dτ + C(1 + t)
(
‖h00αβ − h0αβ‖Xd−1

H

)
.

Step III: Conclusion. Now by integrating (9.12) and (9.15), we get the following esti-
mate:

(9.17a)
Ed−2
g (t, h0αβ − hκαβ) ≤ Ed−2

g (0, h0αβ − hκαβ) + C(ε0, d)Aε

∫ t

0

Dd−1(S0, Sκ)(τ)dτ

+ C(ε0, d)κ1/2(Aε)3t+ C(ε0, d)t
(
Ed−2
g,κ−1/2(0, %

κ)
)2
,

(9.17b)
Ed−2
g (t, φ0 − φκ) ≤ Ed−2

g (0,
(
φ0 − φκ

)
) + C(ε0, d)Aε

∫ t

0

Dd−1(S0, Sκ)(τ)dτ

+ C(ε0, d)κ1/2(Aε)2t.
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Recall that g is coercive with constant C(ε0) when ε0 is sufficiently small. Then, we have

(9.18)

Dd−1(S0 − Sκ)(t)

≤ C(ε0, d)
∑
α,β

Ed−2
g (t, h0αβ − hκαβ) + C(ε0, d)

∑
α,β

‖h0αβ(t, ·)− hκαβ(t, ·)‖E−1

+ C(ε0, d)Ed−2
g (t, φ0 − φκ) ≤ C(ε0, d)2Dd−1(S0 − Sκ)(t).

Then by combining (9.16), (9.17a), (9.17b) and (9.18), the following estimate holds:

(9.19)

Dd−1(S0, Sκ)(t) ≤ C(ε0, d)(1 + T ∗)Dd−1(S0, Sκ)(0) + C(ε0, d)T ∗
(
Ed−2
g,κ−1/2(0, %

κ)
)2

+ C(ε0, d)T ∗κ1/2(Aε)3

+ C(ε0, d)(1 + T ∗)Aε

∫ t

0

Dd−1(S0, Sκ)(τ)dτ,

which yields

Dd−1(S0, Sκ)(t)

≤ C(ε0, d)(1 + T ∗)
(
Dd−1(S0, Sκ)(0) +

(
Ed−2
g,κ−1/2(0, %

κ)
)2

+ κ1/2(Aε)3
)
eC(ε0,d)Aε(1+T ∗)t.
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