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PHILIPPE G. LEFLOCH AND YUE MA

Abstract. — We investigate the Cauchy problem for the f(R) theory of modified gravity,
which is a generalization of Einstein’s classical theory of gravitation. The integrand of the
Einstein-Hilbert functional is the scalar curvature R of the spacetime, while, in modified
gravity, it is a nonlinear function f(R) so that, in turn, the field equations of the modified
theory involve up to fourth-order derivatives of the unknown spacetime metric. We introduce
here a formulation of the initial value problem in modified gravity when initial data are
prescribed on a spacelike hypersurface. We establish that, in addition to the induced metric
and second fundamental form (together with the initial matter content, if any), an initial data
set for modified gravity must also provide one with the spacetime scalar curvature and its
first-order time-derivative. We propose an augmented conformal formulation (as we call it), in
which the spacetime scalar curvature is regarded as an independent variable. In particular, in
the so-called wave gauge, we prove that the field equations of modified gravity are equivalent
to a coupled system of nonlinear wave-Klein-Gordon equations with defocusing potential.
We establish the consistency of the proposed formulation, whose main unknowns are the
conformally-transformed metric and the scalar curvature (together with the matter fields) and
we establish the existence of a maximal globally hyperbolic Cauchy development associated
with any initial data set with sufficient Sobolev regularity when, for definiteness, the matter
is represented by a massless scalar field. We analyze the so-called Jordan coupling and work
with the so-called FEinstein metric, which is conformally equivalent to the physical metric
—the conformal factor depending upon the unknown scalar curvature. A main result in this
paper is the derivation of quantitative estimates in suitably defined functional spaces, which
are uniform in term of the nonlinearity f(R) and show that spacetimes of modified gravity
are ‘close’ to Einstein spacetimes, when the defining function f(R) is ‘close’ to the Einstein-
Hilbert integrand R. We emphasize that this is a highly singular limit problem, since the field
equations under consideration are fourth-order in the metric, while the Einstein equations are
second-order only. In turn, our analysis provides the first mathematically rigorous validation
of the theory of modified gravity.
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1. Introduction

In recent years, new observational data have suggested that alternative theories of grav-
ity, based on extensions of Einstein’s field equations of general relativity, may be relevant
in order to explain the accelerated expansion of the Universe as well as certain instabil-
ities observed in galaxies —without explicitly introducing notions such as ’dark energy’
or ’dark matter’. Among these theories, the so-called f(R)-theory of modified grav-
ity (associated with a prescribed function f(R) of the scalar curvature R) was recognized
as a physically viable alternative to Einstein’s theory. Despite the important role played
by this theory in physics, the corresponding field equations have not been investigated
by mathematicians yet. This is due to the fact that the modified gravity equations are
significantly more involved than the Einstein equations: they contain up to fourth-order
derivatives of the unknown metric, rather than solely second-order derivatives. Extensive
works are available in the physical and numerical literature [3, 4, 8, 7, 13, 23, 24, 25].
The study of the well-posedness for this theory was also investigated earlier for instance in
[9] by taking advantage of an equivalence with the Brans-Dicke theory. Furthermore, the
function f is sometimes taken to be singular (and this leads to a further difficulty [5]), but
here we assume this function to be regular.

Our purpose in this article is to initiate a rigorous mathematical study of the modified
gravity equations and, specifically,

— to introduce a notion of initial data set in modified gravity,

— to describe an initial value formulation from an arbitrary spacelike hypersurface,

— to establish the existence of a globally hyperbolic maximal development as-
sociated with a given initial data set,

— and, importantly, to provide a rigorous validation that the modified gravity the-
ory is an ‘approximation’ of Einstein’s theory, in sense that we will make precise with
quantitative estimates. For definiteness, we will deal with asymptotically flat solu-
tions, although our arguments are purely local and could be formulated in a domain
of dependence of any initial data set. Our setting is appropriate in order to address
the global nonlinear stability of Minkowski spacetime which we establish in the series
of papers [18]-[22].

As already mentioned, in addition to the (second-order) Ricci curvature terms arising in
the Einstein equations, the field equations of the f(R)-theory involve fourth-order deriva-
tives of the metric and, more precisely, second-order derivatives of the scalar curvature.
The corresponding system of partial differential equations (after a suitable choice of gauge)
consists of a system of nonlinear wave equations, which is significantly more involved than
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the corresponding system derived from Einstein’s equations. Yet, a remarkable mathe-
matical structure is uncovered in the present work, which we refer to as the augmented
conformal formulation:

— we introduce a conformally equivalent metric based on a conformal factor that depends
upon the (unknown) scalar curvature,

— we proceed by introducing an extended system in which the metric and its scalar
curvature are regarded as independent unknowns,

— we then establish the well-posedness of the initial value problem for this augmented
formulation,

— and we finally explain how to recover the solutions to the original system of modified
gravity.

Before we present our results in further details, let us first to recall that Einstein’s theory

is based on Hilbert-Einstein’s action

(1) Auclog)i= [ (3 + Lio.gl) av,
M s

associated with a (3 + 1)-dimensional spacetime (M,g) with Lorentzian signature
(—,4+,+,+) whose canonical volume form is denoted by dV' = dVj,. Here, and thereafter,
we denote by Rm = Rmy, Ric = Ricy, and R = R, the Riemann, Ricci, and scalar curva-
ture of the metric g, respectively. Observe that the above functional Agg|g| is determined
from the scalar curvature R, and a Lagrangian L[¢, g], the latter term describing the
matter content represented by one or several fields ¢ defined on M.

It is well-known that critical metrics for the action Agg[g] (at least formally) satisfy
Einstein’s equation

(1.2) Gy = Ricy — %g =8 T[o, ],
in which the right-hand side(”)

oL
(13) Taﬂ[(ba g] = =2 @Tﬁ[¢’ g] + 9o L[¢7 g]

is referred to as the stress-energy tensor of the matter model. In the vacuum, for instance,
these equations are equivalent to the Ricci-flat condition
(1.4) Ricy = 0.

The ‘higher-order’ gravity theory of interest is defined as follows. A smooth function
f : R — R being prescribed, the action of the f(R)-modified gravity theory reads®

f(R
(15) axologl = [ (B8 2o g1) av,
M Y
(1) Greek indices o, 3 = 0,. .., 3 represent spacetime indices.

(2)See Buchdahl [6], as well as the earlier proposal by Brans and Dicke [4].
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whose critical points satisfy the field equations of modified gravity

1(f(Rg) - Rgf/(Rg>)9 + (g Ly — Vd) (f/(Rg))

Ny o= f'(Ry) Gy — 5

=81 T, g].

The modified gravity tensor N, thus “replaces” Einstein’s tensor G4, while the right-hand
side(V) is still given by the same expression (1.3). Observe that, by taking the trace of
(1.6), we deduce the scalar equation

(1.7) tr N, = f'(Ry)Ry — 2f'(R,) + 30, (R,) = 8rtr (T),

which can be regarded as an evolution equation for the spacetime curvature and will play
an important role.

Concerning the matter content, we point out (cf. Section 2 below for the derivation) that
the modified gravity tensor IV, is divergence free, that is,

(1.6)

(1.8) V¥Nup =0,
so that the matter field satisfies the matter evolution equation
(1.9) VeT,5 = 0.

Furthermore, in order for the nonlinear theory to be a formal extension of the classical
theory, we assume that f(R) ~ R in the zero curvature limit R — 0. Since we will see later
that the (positive) sign of the coefficient  := f”(0) > 0 is critical for nonlinear stability,
1t 1s convenient to set

(1.10) f(R) =1+ k(R + rO(R?)),

which after integration yields
R2
(1.11) F(R) = R+f<;<7 +/<LO(R3)>.

By definition, the remainder O(z?)/2? remains bounded when z — 0 (uniformly in &, if
this parameter is taken to vary). In particular, the function f is increasing and strictly
convex in a neighborhood of the origin and, therefore, one-to-one. In particular, the term
kO(R?) in (1.11) could be taken to vanish identically, which corresponds to the quadratic

action [}, (Rg + 5(Ry)* 4 167 L[9, g}) dV, often treated in the physical literature.

As we will see, in local coordinates, the field equations (1.6) take the form of a nonlinear
system of fourth-order partial differential equations (PDE’s), while the Einstein equation
(1.2) leads to only second-order equations. Our challenge in the present work is investigat-
ing the role of these fourth-order terms and generalizing the mathematical methods that
were originally developed for Einstein’s equations. Furthermore, one formally would expect
to recover Einstein’s theory by letting the coefficient x tend to zero. However, this limit
is very singular, since this involves analyzing the convergence of a fourth-order system (of
no well-defined type) to a system of second-order (hyperbolic-elliptic) PDE’s.

W further discussed shortly below
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Before we can proceed further, we need to make an important observation concerning
the modeling of the matter content of the spacetime. In the physics literature, the choice of
the frame® in which measurements are made is still somewhat controversial as explained
in [8, 7, 23]. Yet, this issue is essential in order for properly formulating the coupling
between the gravity equations and the matter fields. Two standpoints were proposed by
physicists. In the so-called “Jordan frame”, the original metric g,s is considered to be the
physically relevant metric, while in the “Einstein frame”, the conformally-transformed
metric

(1.12) 9'as = I (Rg)gap

is considered to be the physically relevant metric. In the present work, these two approaches
will be referred to as the “Jordan coupling” and “Einstein coupling” for the matter. Hence,
the “Jordan coupling” refers to the minimal coupling of the matter field to the geometry
of the spacetime (represented by the tensor N,) described by the “Jordan metric” (i.e. the
original metric) gos. On the other hand, the “Einstein coupling” refers to the minimal
coupling of the matter field to the geometry of the spacetime described by the metric gTaB.

It is important to observe that different matter couplings lead to different physical the-
ories, which may or may not be equivalent to each other. Of course, a given physical
theory can also be expressed in various choices of metrics, that is, for the problem under
consideration, the “Jordan coupling” could also be expressed with the “Einstein metric”
gTaﬁ, while the “Einstein coupling” could also be stated in the “Jordan metric” g,5. A
coupling which is minimal (in the sense that the action takes the decoupled form (1.5)),
in general, will no longer be minimal in another choice of metric. This suggests that the
Einstein metric is not the physical metric in the Jordan coupling theory, while the Jordan
metric is not the physical metric in the Einstein coupling. This has apparently led to great
confusion and controversies in the physical literature, until some clarification was brought
in the most recent contributions [8, 7]. Observe that our notion of Einstein coupling is
equivalent to the notion of Einstein frame adopted in [23].

In this work, we will treat the Jordan coupling but expressed in the (conformal) Einstein
metric g'. This coupling has the minimal form (1.5), but only in the original metric g. If
one would insist on stating the problem in terms of the Einstein metric, then the coupling
would not be minimal. This presentation appears to be optimal from the standpoint of
establishing a well-posed theory for the initial value problem.

Throughout this article, the matter model of interest is a massless scalar field, defined
by its standard stress-energy tensor, and we consider the following two possible couplings:

1
Top = VadVop — §gaﬁ95AV5¢VA¢7

1
Ths = ['(Ry) (VadV 56 — 50059™ V56V r9).

and, for convenience, the Einstein coupling is stated in the Jordan metric. As should be
expected from the above discussion, different choices of coupling lead to systems of PDE’s

(1.13)

(D From a mathematical standpoint, all frames are of course equivalent.
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of rather different nature. In fact, we will show that the Einstein coupling leads to an
ill-defined Cauchy problem. Therefore, in the rest of this section, we restrict attention to
the Jordan coupling.

We are now in a position to state our existence theory, at least in a preliminary form.
We recall that the initial value problem for the Einstein equations is classically formulated
as follows. (We refer to the textbook by Choquet-Bruhat [10] for the terminology and
historical references.) Given a Riemannian 3-manifold (M,g) together with a 2-covariant
tensor field K (plus suitable matter data) satisfying certain constraint equations, one
seeks for a (globally hyperbolic) development of this initial data set. By definition, such a
development consists of a Lorentzian manifold (M, g) satisfying the Einstein equations such
that M is embedded in M as a spacelike hypersurface with induced metric g and second
fundamental form K. The maximal (globally hyperbolic) development, by definition, is
the unique development of the initial data set in which any such development can be
isometrically embedded.

In short, our formulation of the initial value problem for the theory of modified gravity is
as follows. Since the field equations (1.6) are fourth-order in the metric, additional initial
data are required, which are denoted by Ry, R; and are specified on the initial slice M:
they represent the scalar curvature and the time derivative of the scalar curvature of the
(to-be-constructed) spacetime. They must of course also satisfy certain Gauss-Codazzi-
type constraints. In addition, since the matter is modeled by a scalar field, say ¢, we
also prescribe some initial data denoted by ¢g, ¢1, and representing the initial values of
the scalar field and its time derivative, respectively. The prelimary statement above will
be made more precise in the course of our analysis and all necessary terminology will be
introduced. For definiteness, the results are stated with asymptotically flat data, but this
is unessential.

Theorem 1.1 (Cauchy developments in the theory of modified gravity)

Consider the field equations (1.6) for the theory of modified gravity based on a
function f = f(R), satisfying (1.10), and assume that the matter is described by a
scalar field with Jordan coupling (1.13). Given an asymptotically flat initial data set™)
(M,g,K, Ry, R1,¢0, ¢1), there exists a unique mazimal globally hyperbolic development
(M, g) of these data, which satisfies® the modified gravity equations (1.6). Furthermore,
if an initial data set (M, g, K, Ry, Ry, ¢o, ¢1) for modified gravity is “close” (in a sense
that will be made precise later on) to an initial data set (M, g, K', ¢}, #,) for the classical
Einstein theory, then the corresponding development of modified gravity is also close to
the corresponding Finstein development. This statement is uniform in term of the gravity
parameter k and modified gravity developments converge to Finstein developments when
Kk — 0.

(Win the sense of Definition 6.2, below
()in the sense of Definition 2.6, below
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Our results provide the first mathematically rigorous proof that the theory of modified
gravity admits a well-posed Cauchy formulation and, furthermore, can be regarded as a
“correction” to Einstein’s classical theory, as indicated by physicists.

A key contribution of the present work is a re-formulation of the field equations of
modified gravity as a system of second-order hyperbolic equations and, more precisely, a
coupled system of wave-Klein-Gordon equations. Note that wave-Klein-Gordon systems
have brought a lot of attention in mathematical analysis: see, for instance, Bachelot [1, 2],
Delort et al. [11, 12], Holzegel and Warnick [15], Katayama [16], Lannes [17], and LeFloch
and Ma [18]-[22] and the references therein. For further results on the mathematical as-
pects of the f(R) theory, we refer to [19]. We advocate here the use of wave coordinates
associated with the Einstein metric and our formulation in such a gauge leads us to pro-
pose the following definition. Importantly, our formulation below contains an augmented
variable denoted by p, which represents the scalar curvature of the spacetime).

Definition 1.2. — The augmented conformal formulation of the field equations of
modified gravity (with Jordan coupling and in wave coordinates associated with the Einstein
metric) reads:

a/ﬁ/
9" 0009 ap = Fap(g'; 09", 09") — 120ap0sp + V (p)g' o5 — 16706000,
o8 of
gT aa’aﬂ’gb = _ZQT aa¢aﬁpa

(1.14) .
97 0,005,

Ta’ﬁ’a/a, —ﬁzw _Am
gTaﬁFTiﬁ =0,

in which Fos(g';0g",09") are quadratic expressions (defined in Section 3 below), dg' is
determined by the Ricci curvature, and the function V.= V(p) and W = W(p) are of
quadratic order as p — 0.

Clearly, we recover Einstein equations by letting x — 0 and thus f(R) — R. Namely, we
will show that p — 0 so that (1.14) reduces to the standard formulation in wave coordinates
[10]. In particular, in this limit, we do recover the expression R = 87 V6V ¢ of the scalar
curvature in terms of the norm of the scalar field.

An outline of the rest of this article is as follows. In Sections 2 and 3, we formulate the
initial value problem first in the Jordan metric and then in the Einstein metric. We find that
the second formulation is simpler, since the Hessian of the scalar curvature is eliminated
by the conformal transformation. Furthermore, we demonstrate that the Einstein coupling
is ill-posed. The conformal formulation is analyzed in Section 4, where the wave gauge
is introduced and the wave-Klein-Gordon structure of the field equations is exhibited.
Section 5 contains one of our main result and proposes an augmented formulation of the
conformal system of modified gravity. The local existence theory with bounds that are

m;) = %ln f’(Rg)
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uniform in x is developed in Sections 6 to 8 and leads us in Section 9 to our main statement
concerning the comparison between the modified and the classical theories.

2. Formulation of the Cauchy problem in the Jordan
metric

2.1. The 3+ 1 decomposition of spacetimes

In this section, we formulate the initial value problem for the modified gravity system, by
prescribing suitable initial data on a spacelike hypersurface. We follow the presentation in
the textbook [10] where the classical gravity is studied. We are interested in a time-oriented
spacetime (M, g) endowed with a Lorentzian metric g with signature (—, +, 4, +), which
is homeomorphic to [0, tmax) X M; and admits a global foliation by spacelike hypersurfaces
M; ~ {t} x M. The foliation is determined by a time function t : M — [0, ty.y) and a
three-dimensional manifold M and, throughout, we assume that

(2.1) M is globally hyperbolic and every M, is a Cauchy surface.

This ensures that a wave equation with initial data posed on any such Cauchy surface
enjoys the local existence and uniqueness property. (See [10, 14] for the definitions.)

We introduce local coordinates adapted to the above product structure, that is, (z%) =
(29, 2%) = (t,2"), and we call the basis of vectors (9;) the natural frame defined on each
slice M;. This also provides us with a 'natural frame’ (9;,0;) on the spacetime M. By
definition, the Cauchy adapted frame is given by the vectors e¢; = 9; and eg = 9, — 30;,
where 3 = 3°0; a time-dependent field, tangent to M, called the shift vector. We impose
the restriction that ey is orthogonal to each M;.

We also introduce the dual frame (6%) of the Cauchy adapted frame (e,) by setting

(2.2) 6° = dt, 0" = dx" + p'dt,
so that the spacetime metric reads
(23) g = —NQHOQO + gijﬁiﬁj,

where the function N > 0 is referred to as the lapse function of the foliation. The Levi-

Civita connection V associated with g is represented by the set of connection coefficients
w?,, defined by

(2.4) Ve, = wfam ® eg
and, consequently,
(2.5) VO = —wist" @ 67

We denote by g = g, the induced Riemannian metric associated with the slices M; and
by V the Levi-Civita connection of g, whose Christoffel symbols (in the natural frame)



THE VALIDITY OF THE THEORY OF MODIFIED GRAVITY 11

are denoted by T,,. We can also introduce the extrinsic curvature of the slices or second
fundamental form K = K, defined by

(2.6) K(X,Y):=g(Vxn,Y)
for all vectors X,Y tangent to the slices M;, where n denotes the future-oriented, unit
normal to the slices. In the Cauchy adapted frame, it reads

1
“aw
Here, and throughout this article, we use the notation < ey, g;; > for the action of the

vector field ey on the function g;;. Next, we define the time-operator J, acting on a
two-tensor defined on the slice M; by

(2.7) Ki; = < eq, gi; > —g;0:8' — gilajﬁl)-

(2.8) 00Ty =< ey, Ty; > —T;0i8" — Ty0; ',

which, by definition, is a two-tensor on M;. With this notation, we thus have
1 —

2.9 K = ———007,;.

( ) IN ng]

Elementary calculations (see, for instance, [10, Section VI.3|) yield us the connection
coefficients in terms of the (3 + 1)-decomposition:

0 —1

who = Ng”O;N, wy; = wiy = N'O;N,
1
(2.10) wyy = §N72( < €0, 9ij > —gn0iB" — gin9;8°) = =N Ky,
wy; = —NK + 0,4, wiy=—NKj,

Here, F;k denotes the Christoffel symbol of the connection V in the coordinates {z'}.
It is also a standard matter to derive the Gauss—Codazzi equations for each slice:

Rij = Riju + Kipkyy — Ky Ky,
(2.11) Roiji = N(V; Ky — ViKji),
ROi,Oj — N(E()KU + NKleJk ‘|‘ v,(?]N)

In addition by suitable contractions of these identities, we arrive at

(2.12a) Rij =Ry — — +%M—Mﬂ%zﬁﬂ
(2.12b) Ry = N((’)J-Kll _ szé),
and, for the (0,0)-component of the Einstein curvature,

N?
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These equations clarify the relations between the geometric objects of the spacetime M
and the ones of the slices M.

The equation (2.12a) yields the evolution of the tensor K and together with the definition
0og = —2N K, we thus find the following first-order system satisfied by the metric and the
second fundamental form:

007;; = —2NK;.

(2.13) _ ~ l L

2.2. Evolution and constraint equations

Our objective is to combine the equations (2.12) and the field equations (1.6) in order
to derive the fundamental equations of modified gravity. We recall first some elementary
identities about the Hessian of a function expressed in the Cauchy adapted frame. Given
any smooth function f : M — R, we can write

Vdf =V(<ey,[>0) =<es <ea f>>0 00— <e,, [ >w],b0 @0
First of all, we compute the components
ViV, f = 00;f— < ey, f > ], = 0,0, f — Tyouf — o < eo, f >
(2.14) =V,V,f+ KN (0, — p'O)f
= ViV, f + Ki;Lnf,

where £,, is the Lie derivative associated with the normal unit vector of the slice M;. Then,
for the other components, we find

ViVof =VoV,f =<ey,0;f >—<ey f> ng — @-fwéj
= (0, — B'9)0;f — (0 — B'O) f NT'O;N + N(?Z-fK; — 0,f0;8'
= (0, — 8'0;)0;f — (0, — B'0;) f O;In N + N@ifK;: — 0if0,;8'
=0;(0,— B'0))f — (0 — 8'0;) f O;In N + N&, f K,
= NO;(N"Y (0, — B'0:) f) + NK}0:f
and
VoVof = (0: — ﬂi(?i)(é?t - 5iai)f — (0 — 5i5i)f Wgo —o0if W(i)o
= (0s = B'0:)(0y — B'O) f — (0 — B'0i) f (NT'O;N) — 8 f (NTH(0, — B'Di)N)
= (0y — B'0,)(0r — B'O)f — (0r — B'D) f - 0;In N — 0, f (9, — B'9;) In N.
In particular, the trace of the Hessian of a function is the so-called wave operator,
expressed in the Cauchy adapted frame as

Oy f = gaﬁvavﬁf = —N?VoVof + gV f
= —N"VoVof +3'ViV,f + " Ky;N (0, — B'0) f
=NV Vof + Agf + ginijLnfa
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where Az f is the Laplace operator associated with the metric g.
To proceed with the formulation of the field equation (1.6), we need first to rewrite it in
a slightly different form, by defining the tensor:

1
(2.15) Egos = Ngos — §tr (Ng)Gas,

where tr (+) is the trace with respect to the metric g. Then, we have the following relation
in terms of the Ricci tensor:

1 1
210 Eyy = LR Ras + 57 R (Ros — ( G0y + Vi) ()
where we have introduced the function W, by
flr) —rf'(r)
frery
In view of (1.6), we know that E, satisfies the field equations

(2.17) Wi(r) = r e R.

1
§tr (T)gaﬁ) = 87THQ/3,

where we have introduce the new matter tensor H,g. More precisely, it will be most
convenient to introduce, for different components, a different form of the equations, that
is, we write the field equations as:

(2.18) Eg,5=8(Tos —

Jap

Egij = 87THZ‘J‘,

(219) Egoj = 87T[—IOJH
N900 = 87TT00,

or, equivalently,

(2.20a)

/ 1 / 1 !/ 1
J'(Rg)Rij + §f (R)Wi(Ry)gij — (591‘359 + vivj>f (Ry) = 8 (T — St (T)gis)
(2.20b) f'(Rg)Ro; — VoV, f'(Ry) = 8Ty,
/ 1 !/ /
(2.20c) F'(Rg) Gggo — 5" (Rg)Wi(Ryg)goo + (900 Oy — vOVO) (f (Rg)) = 8 Tpo.

2
For completeness we check the following equivalence.

Lemma 2.1. — If a metric gop and a matter tensor T,p satisfy the field equations (1.6),
then they also satisfy (2.19). The converse is also true.

Proof. — The equations (2.19) are clearly equivalent to
1
(Ny — 87TT)ij = —§gijtr (87T — N,),
(N —87T),, =0,

NQOO — 87TT00 = 0.



14 PHILIPPE G. LEFLOCH AND YUE MA

By taking the trace of the tensor (N, — 87T, we find tr (N, — 877T) = —3tr (871 — N,)
and thus tr (877 — N,) = 0, which proves the result. O

Hence, in view of (2.20a) and by using (2.14), we have arrived at the field equations of
modified gravity in a preliminary form. First of all, we have

1 1, 1 ’
Rij = F(Ry) (Egij - §f (Rg)Wi(Ry)gi; + 5(92'ng + zvivj)f (Rg>>
By 1 _ (9585 +2ViV5) F'(Ry)
— =iy I T R,
gijVOVOfI(Rg) 1_ !
o INZf'(R,) + (KU + igin)Ln In(f'(Ry)),

where K := g Kj; is the trace of K with respect to g. We also have

1 /
By = s (Moo + V09,7,
_ Mooy, NO,(NTH@: — 50)['(Ry))
f'(Ry) f'(Ry)
B Ng()j Naj (f//(Rg)LnRg) in ol f
=Tty T VK (I (R).

(2.21b) + NK;0;(In(f'(Ry)))

and, finally,

1

f'(Ry)
_ Do + 1g Wi(Ry) — =20 (Ag + GV K L,) f/(Ry)

f/(Rg) 9 oovvVi1 g f/(Rg) g g~ n g)-

Next, by combining (2.21a) with (2.12a), (2.21b) with (2.12b), and (2.21¢) with (2.12c¢),
the evolution equations and constraint equations for the system of modified gravity read

Goo = (Ngoo + %f/(Rg)Wl(Rg)goo - (gOODQ - VOvO)f/(Rg))

(2.21c)

00K;j = NR;; — NR;; + NK;;K| — 2NK; K} — V;0;N
= NR;; + NK;;K| —2NK; K} — V,0;N

NE; N _ N(GyAg +2ViV)) [ (Ry)
(222) TRy T2 T Ry
Ng.;VoVof'(Ry) 1_ /
2]N2f’(Rg) - N(Kij + §gin)Ln ln(f (Rg))v

50?@' = —2N Ky,
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and
R_K. KUY AV 2Ny 20gf"'(Ry)
(223 R Kl U= Sapin,) * 7(R,)
+ 29" Kij Lo (In f/(Ry)) — Wi(Ry),
where
i 1ot NQO' aj (f”(Rg)LnRg) i /
(2.24) 0; K} — V,L-Kj = Nf’(lj%g) F(R) + Kjai(ln(f (Rg))).

It remains to consider the coupling with the matter field, described by the stress-energy
tensor T,p. Recall that the equations read Ngaﬁ = 8nT1,3, where different expressions for
T, are provided for the Jordan coupling and for the Einstein coupling. We also define the
mass density o and the momentum vector J (measured by an observer moving orthogonally
to the slices) by the relations

(2.25) o:=N"?Ty, Jj:=-N'Ty.
We can thus conclude this section and introduce a definition suitable for modified gravity.

Proposition and Definition 2.2. — The equations for modified gravity in the Cauchy
adapted frame {eg, €1, €2, e3} decompose as follows:
1. Evolution equations:

00K;; =NRjj + NK;;K| —2NKy K| — VO;N

8N (Tij — 2gitr (T)) N _
— ( J 271 )+EW1<Rg)g@J

i)
(2.26)  N(7585 +2ViV5) f(Ry) | Ng;VoVof'(R,)
2f'(Ry) 2N2f'(R,)

~ N(Kyy + 5,K) L0 0(f(R,)),
007;; = —2NK;.
2. Hamiltonian constraint:
o 16mo  2A5f'(R,)
Ry fU(Ry)
+ 297 K;; £, (In f'(Ry)) — Wi(Ry),

R— K, K9+ (K’
(2.27) ’ ()

3. Momentum constraint:
o stti  O;(f"(Ry)LnRy) .
(2.28) K — VK = — + - I I+ K0, (In(f/(Ry))).
VI Ty T iy D)

Observe that, in the classical gravity theory, the factor f'(R,) is constant and equal to
unit, so that the terms containing f/'(R,) in the right-hand sides of the constraint equa-
tions (2.27) and (2.28) vanish identically; consequently, we can recover here the standard
equations (2.29) given below.
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These new constraint equations are very involved compared with the classical ones:
they contain fourth-order derivatives of the metric g and, more precisely, second-order
derivatives of the scalar curvature R,. In particular, we can not recognize directly the
elliptic nature of the classical constraint equations.

Remark 2.3. — Recall here the constraint equations for the classical theory of general
relativity, when the Einstein equations Gop = 8n1, 5 are imposed: the last two equations
in (2.12) yield

(2.29)

F‘i‘ Kij Kij — (KZZ)Q = 1671'0',
— (when f"=0).
VK,

ij —ijll = 871' Jj,

2.3. The divergence identity

As in the classical gravity theory, we expect that the matter should be divergence-free
VT, 3 = 0, which is now proven.

Lemma 2.4 (The divergence identity in modified gravity)
The contracted Bianchi identities

1
(2.30) V*Ru5 = §VgR
imply the divergence-free property for the modified gravity tensor
(2.31) Vo‘Ngaﬁ = 0.

Proof. — The following calculation holds in any local frame. We compute the three rele-
vant terms:

V(VaVsf'(R) = gagUef'(R)) = (VOVaVs — V5VV,) f'(R)
= (VaVaV* = V5V V) (f/(R))
= [Va, VE](VH(f'(R))) = RagV*(f'(R)),
then
V[ (R) Rag) = RagV(f'(R)) + f'(R) V*Rag
= RusV"(f'(R) + 3'(R) V5R
and, finally,

Ve (57(R) gus) = 5 Va(F(R) = £ F(R) V51

Combining these three identities together yields us the desired identity. O
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As a first application of Lemma 2.4, we now determine which coupling (formulated in
the Jordan metric as far as this section is concerned) is mathematically sound. On one
hand, consider first the Jordan coupling, corresponding to

1 a/ /
(2.32) Top = 0a0050 = 59as9 7 O 9019

By the field equation Ngaﬁ = 81T, and (2.30), we find V*T,5 = 0 and, after some
calculations,

(2.33) Oy = 0.

Consequently, if the scalar field ¢ satisfies the wave equation

(2.34) Ug0 = 0,

then the tensor 7,3 is divergence-free, as required. Hence, we need to solve a single scalar
equation for the evolution of the matter.
On the other hand, if we assume the Einstein coupling

]_ 1l
(2:3) Top = Thp = f'(Ry) (0a6056 — 59039"" 0ur603/0)

then the field equation Ny, = 87TT;,3 together with (2.30) lead us to V"‘Tlﬁ = 0, which
now reads

J"(R)TosVR, + f'(Ry)0360,6 = 0.
This (vectorial) equation can be written as
f"(Ry)

(95¢ Dgﬁb = f/(Rg)

1 '
(3a¢aggb - §gaﬂga p 8a/(/§85,¢) vaRg
or, equivalently,

" R 1 R ot
(2.36) (%aawaﬁ, — ngs) Vsg = %ng)) (ga o amam) VsR.

Now, for general initial data, this is an over-determined") partial differential system (since
the unknown of this vectorial system is a single scalar field): this strongly suggests that
the Einstein coupling is not mathematically (nor physically) well-behaved. Consequently,
from now on, we focus our attention on the Jordan coupling.

2.4. The initial value problem for modified gravity

Before we can formulate the Cauchy problem for the system (1.6), we need to specify the
stress-energy tensor. In agreement with our discussion in the previous section, we assume

(W Unless we would impose the very unnatural restriction that V¢ and VR be co-linear.
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a scalar field and the Jordan coupling (2.32), so that the matter fields read

1 1 g
0= N"Ton = |£adl* + 5| Ve, = 5(1£a0f +770:00;0).

(2.37)

Definition 2.5. — An initial data set for the modified gravity theory
(M’ ga K7 ROa Rl: ¢0a gbl)

consists of the following data:

— a 3-dimensional manifold M endowed with a Riemannian metric § and a symmetric
(0,2)-tensor field K,

— two scalar fields denoted by Ry and Ry defined on M and representing the (to-be-
constructed) spacetime curvature and its time derivative,

— two scalar fields ¢y and ¢y defined on M.

These data are required to satisfy the Hamiltonian constraint of modified gravity

2 _ 8(¢% + 70000 ) n 2Agf'(Ro)

R— KKV + (KJJ)

. A
+ 29" Ky PR Wi (Ro),

and the momentum constraint of modified gravity

81 Digo n 9 (f"(Ro)Ry)
f'(Ro) f'(Ro)

Definition 2.6. — Given an initial data set (M, G, K, Ry, Ry, ¢o, ¢1) as in Definition 2.5,
the initial value problem for the modified gravity theory consists of finding a
Lorentzian manifold (M, g) and a matter field ¢ defined on M such that the following
properties hold:

1. The field equations of modified gravity (1.6) are satisfied.

2. There exists an embedding i : M — M with pull-back metric § = i*qg and second
fundamental form K.

3. The field Ry coincides with the restriction of the spacetime scalar curvature R on M,
while Ry coincides with the Lie derivative L, R restricted to M, where n denotes the
normal to M.

4. The scalar fields ¢, ¢1 coincides with the restriction of ¢, Lnd on M, respectively.

Such a solution to (1.6) is referred to as a modified gravity development of the initial
data set (Mv ga Ka ROa R17 ¢07 ¢1)

(2.39) O;K! — V,Ki = + K0 (In(f'(Ro)))-

Similarly as in classical gravity, we can define [10] the notion of maximal globally
hyperbolic development for the modified gravity theory. Observe that the initial value
problem for modified gravity reduces to the classical formulation in the special case of
vacuum and vanishing geometric data ¢g = ¢; = Ry = R; = 0. For the modified gravity
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theory, we have just shown that, similarly as in classical gravity, these prescribed fields can
not be fully arbitrary, and certain constraints (given above) must be assumed.

2.5. Preservation of the constraints

We need to address the following issue: if the evolution equations are satisfied by symmet-
ric two-tensors (g, K), the stress-energy tensor 7' is divergence-free, and furthermore the
constraint equations are satisfied on some initial slice M, then are all of field equations
satisfied? In other words, we want to establish the preservation of the constraint equations
along a flow of solutions.

This is the first instance where we establish a “preservation property” and, later in
this text, other similar situations will occur. The common character of these results is
as follows. A differential system being given, the equations therein can be classified into
two categories: one is easer to handle (the evolution equations in this example) while the
other is more difficult (the constraint equations here). Our strategy is to replace the most
difficult equations by some equations which can be deduced form the original system (in
this example, the trace-free equation of T') but are also easier to handle. This leads us to
a new system to be studied first, and an essential task is to check the equivalence between
the original system and the new system.

Before we give a precise statement, we make the following observation. The evolution
equations (2.26) are equivalent to (2.20a) and the constraint equations (2.27) and (2.28) are
equivalent to (2.20b) and (2.20c). So we suppose that (2.20a) together with the divergence
condition VT3 = 0 are satisfied in the spacetime M = {J,co,, )M, and the constraint
equations (2.20b) and (2.20c) are satisfied on the initial slice. Then we will prove that the
equations (2.20b) and (2.20c) are satisfied in the whole spacetime. More precisely, we have
the following result.

Proposition 2.7. — With the notation above, suppose that the equations

(2.40) Eg,; —8rH;; =0 in the spacetime U M,
te[oytmax)
(2.41) VT, =0 in the spacetime U M,
t6[07tmax)

hold, together with

(242) E = 87THQj, N,

905 900 = 3100 in the initial slice My = {t = 0}.

Then, it follows that

(2.43) E

905

= 87THOj, N,

900 = 3mToo  in the spacetime U M,.

t€[0,tmax)



20 PHILIPPE G. LEFLOCH AND YUE MA

Proof. — The calculations are made in the Cauchy adapted frame and, for convenience,
we introduce the notation
Zaﬁ = Nga,b’ - 87TTO£/3.

We will prove that ¥,s = 0 which is equivalent to the desired result. First of all, by the
condition V,T,5 = 0 and the identity (2.30), we have

(2.44) Va5 = 0.
By the definition of E, 5 and H,g, the following identity holds:

(2.45) a5 = Eyoy — Hap — %gaﬁtr (E, — H)

and, in particular,

(2.46) S0 = Eygy — Hoo — %gogtr (E, — H).
Now, due to the fact that g% = go; = 0 and (2.40), we have

(2.47) tr (By — H) = " (Eyqy — Hoo)-

Combining (2.46) and (2.47) yields

(2.48) tr (E, — H) =29"%q

and, by substituting this into (2.45),

(2.49) Yas = Egoy = Hop — 9apg™ oo

Here, we can compute more precisely the spatial components in view of (2.40)
(2.50) S = —9i59" Zoo-

Given this material, we are now in a position to calculate X5 = go‘alEa/B. When a =

£ =0, we find
(2.51) 20 = Z0a9"" = " Soo.
For 3 =0,1<a < 3, we set a = a and, by recalling that ¢®° = 0, we obtain
St = 9" S = ¢" Saro
For 1 < b < 3, we have
¥ = 965" %0 = 9% 9025,

For 1 <b<3and 1 <a<3, by applying (2.50) and (2.51), we obtain

Yy = 9" = gaalEba/ = —Qaalgba'gooxoo = —5§Z8.
Hence, we conclude with
(2.52) ¥ = g% 25, D¢ =630,

Now recall that the identity (2.44) can be written as
V.23 =0,
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which leads to
< €ay 25 > —wiBEg‘ + wgaZg = 0.
When 5 = 0, we have
(2.53) < €0, B) >+ 0,55 — wl Sy + wi s = 0.
For 1 <b < 3, we can take the equation (2.52) and write
< €0, 9" X5 > + 0a( — 9 %g) — wey BT +wh,X) =0,
which leads us to
(2.54) < e, 25 > — 900G 0T — 9007 (Wop D5 — Wi By ) + 009" < €0, 9" gur > 25 =0.

We now consider the equations (2.53) and (2.54) together, and we observe that, in view
of (2.52), the lower-order terms are linear combinations 3§ with 0 < o < 3. Hence, these
equations form a first-order differential system with linear source-terms. This system can
also be written in a standard symmetric hyperbolic form. Namely, by recalling the notation
g = g, for the induced Riemannian metric on the slices M;, we introduce

V= (30,257 p" = goo(g" 7% 5%)"
and
o1 = (1,0,0), o3 =(0,1,0), o3 =(0,0,1).
The principal part of the system defined by (2.53) and (2.54) can be put in the form

(2.55) <eo,V>+Y A9V =F

0 o
Aa — a
( —goop* 0 )

and F' is a linear form on V. By multiplying this equation by the matrix

_ (1 0 _ —goo 0
Ao-—(o _googab>— 900( 0 gab)’

we conclude that (2.55) becomes

(2.56) Ap< g,V >+ AgAd,V = AgF.

AgA® = ( <US)T - ) .

and the system (2.55) is thus symmetrizable. Clearly, (2.42) implies that V' = 0 on the
initial slice {¢ = 0}. Thanks to our global hyperbolicity assumption (2.1) and by a standard
uniqueness argument, we therefore conclude that V' = 0 in the whole spacetime. O]

where

Note that AgA® are symmetric:
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3. Formulation of the Cauchy problem in the Einstein
metric

3.1. Conformal transformation

In view of the derivation made in Section 2, it is clear that the evolution and the constraint
equations of modified gravity are, both, very involved and do not have a standard (hyper-
bolic, elliptic) type within the general class of PDE’s. The main difficulty comes from the
fourth-order term

VaVsf'(Ry).

As we will now show it, the conformal transformation

af _ o
(3.1) gTaﬁ = 2P GaBs gt = e gs

(which depends upon second-order derivatives of the unknown metric) will overcome some
of the difficulties: where the conformal factor is defined by

(3:2) pi=ynf(R)

or, equivalently, f'(R,) = e*. We now proceed by deriving several relevant expressions in
the conformal metric g' in order to derive a tractable formulation of the field equations.

We begin by deriving an expression for the gravity tensor N, in terms of the Einstein
metric.

Lemma 3.1. — With the notation above, the following identity holds

g’ 1

(3.3) € Rlag — 6% 0updsp + = SWa(p) = Ny — 59astr (Ny),
where the function Wy = Wy (p) is defined implicitly by

ol
(3.4) Wy(s) = Jr) = S e* = f'(r), reR.

frery
We also recall that the function W is defined by (2.17) and it will be also convenient
(in the proof below) to introduce the function W5 = W;5(p) by

(3.5) Ws(s) := f(r), €* = f(r), r € R.
Proof. — We need to analyze the tensor
1
Nyos = f'(Rg)Rag — §f(Rg)9aB + (gaﬂDg - Vavﬂ)f,<Rg>

and its trace tr (IV,) = f'(R,) R, — 2f(R,) + 30, f'(R,). Recall first the identities
VaVge* = 2e*V,Vp + 4e*V o pV sp,
O,e* = 2e*0,p + 4e**g(Vp, Vp),
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which imply

1
Ngaﬁ = €2pRa6 - §Qa5W3(P) + 2€2p (ga,BDg - vavﬂ)p + 462p (gaﬁg(ap7 ap) - aap&ﬁp)

and

Ws(p) 1 _tr ()
Ogp — =55~ 1 29(0p. 0p) = Walp) = ==
Moreover, we have the following relation between the Ricci curvature tensors of g and g':
(3.6) R'ag = Rap — 2(VaVap = VapVap) = (Ogp +29(Vp, V) gas

and, therefore, we see that N, can be expressed as

1
Nga,g = €2pRTa,8 - 6€2pvapvﬁp + 662pgcxﬁg(vp7 vp) + 362[)90&3[]9)0 - §W3(p)gaﬁ‘

It remains to combine this result with the trace equation above. O

We are now in a position to state the field equations in the conformal metric. At this
juncture, it is unclear how the scalar field p should be recovered in term of the Einstein
metric, and this is an issue that we will address next.

Proposition and Definition 3.2. — The field equations of modified gravity in
the Einstein metric ¢' 5 = €*g.5 with p = 5 In(f'(Ry)) read

T

9 a 1 a'g
(3.7) ¢ Rl ap = 66%0updzp + 5 Walp) = 87(Tus = 59%p9" " Turw).
Remark 3.3. — For any sufficiently reqular function w, one also has
(3.8) Oyiw = e (0gw + 2g* 0 pdsw) = e *Oyw + QgTa’Bﬁap(%w,

so that the trace equation transforms into

~ Walp) |, Ws(p) | 1

(3.9) Oyip = o+ aote + goip 7 (No):

3.2. Evolution and constraint equations in the conformal metric

As in the previous section, we can formulate the evolution equations and constraint equa-
tions associated with the conformal field equation (3.3). To do so, as before, we introduce
a foliation of the spacetime M = [0, 4+00) x M, and a Cauchy adapted frame {eg, ey, €2, e3}
associated with the transformed metric g'. Then, by similar calculations as above, we find

= Nl
= KT I 1 V,0;Nt
(3.10a) RYy; =Ry — TJ + KK — 2K KT, — TJT
I =1, 4l
(3.10b) Ry, = NT(9;K", = V,KT)),
Nt

(3.10c) Gloo = T(ET - KT@'jKTij + (KT§)2)'
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Here, vT refers to the covariant derivative on the slice M, with respect to ¢, and we

observe that (3.10a) yields the evolution equations
(3.11) 8Ky = NY(Rl — Ry) + NUKT K — 2NTK T K1, — V9N,

Moreover, the transformed field equations (3.3) read

Rlas = € (Nyyy — st (Ny)) + 60up0sp — 5 o Walp)
and, by taking the trace of this equation with respect to the metric g', we have
R' = —e™*tr (Ny) + 69" (9p, 9p)gas + ¢ " (s Wa(p).
This leads us to
G'op = Nyoy +6Va0Vs0— 39" (0p,0p)g' 05 + € 9" s Wa(p),

We have thus derived the evolution equations and constraint equations. The evolution
equations read

JoK 1y = N'RL + NTKT, KT, — oaNTKT, KT — Vo, N1

1 1
— NT6_2P (N — —gTith‘ (Ng) + 662”8ip8jp + §gTZ~jW2(Rg)),

Jij  9e2p
gogTij = _2NTKTija
while the Hamilton constraint equation reads

— ij ! 2N, _
R'— KTy K™ 4+ (KT)? = iz T 121Lpl? 4+ 69 (V10 Vo) — e Wa(p)

and the momentum constraint equations read

Ny,
I =t a4l 90
0jKTl — V KJ[J. = eQPJ\;T -+ G[Jmpﬁjp.
Here, n' denotes the normal unit vector of the slice M,.
Finally, we consider the Jordan coupling with matter field (this choice of coupling being
revisited in the next subsection):

(3.12) N,

Jap

=8m Tag
and, furthermore, we define the matter fields

TOj T TOO

fo 10 too
(3.13) Ji=—5 =1

Definition 3.4. — In the Einstein metric, the equations of modified gravity in a Cauchy
adapted frame {eg,e1,e2,e3} can be decomposed as follows:
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1. Evolution equations:
BoK 'y = N'RL + NTKT, KTy — 2NTK T KT, — Vo, N
1
_ Nfe2 (87@ — dme™ gl tr (1) +6¢0,p0p + 59 Wa(R, ))

2. Hamiltonian constraint:

— ij l 160 B
(314) R - K K" 4 (KT)? = wipl? 4691 (Vip, Vip) — e 2 Wa(p)
3. Momentum constraints:
_ Jt.
(3.15) oK, — V' K1 = ~ 52+ 6L,pdp.

Let us again emphasize again that the constraint equations are equivalent to Ny, =

8110, Ngo, = 8T10a, while the evolution equations are equivalent to

1 1
N~ La () = 85(72 — Lguir (7).

3.3. The divergence identity

In order to derive an evolution equation for the matter field, we need the divergence of the
tensor N, with respect to the conformal metric g'.

Lemma 3.5. — The modified gravity tensor in terms of the conformal metric satisfies the
identity
(3.16) vTaNg =e (29 6avp 958 — (Ng)aﬂp)-

Proof. — We work in an arbitrary (possibly only locally defined) natural frame. The
desired identity follows from

I =T05+ gl0sp + 940ap — GasVp.

We have »
VN5 = € g7V Ny 5
= 29 (0, Nyos — T2aNgss — 195 Ng0s)
—e g™ (g 0ap+9a5‘wp 91aV°P) Nygs
— e 9°7(9303p + 93010 — 948V P) Ngus
thus
VI Nyos
= ¢ 2PV*N,

9dap
—2p(v5 +V6P 4v6) 9,86_6 p(@gptr( g) VN, 9ap -V gaﬁ)'
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Recalling that VN, 5=10 by Lemma 2.4, we conclude that
VTaNgaﬁ = (2g7587p]\/g5ﬁ — tr (Ny)9sp).
]

With the Jordan coupling, the divergence of the stress-energy tensor is thus expressed
as

(3.17) Vs = (29"05p Ty — tr (T)pp) e,

which (together with an equation of state for the matter field) determines the evolution of
the matter.

Remark 3.6. — We conclude this section with a discussion of the Einstein coupling. We
rely on (3.16) and now show that the only meaningful choice of coupling (now viewed in
the Einstein metric) is the Jordan coupling. Observe first that the Jordan coupling

1
Ty = 000036 = 5905|V9l;
implies
Dpptr (T) — 29”050 Ty = — |V 8|203p — 29(0p, 09) 056 + [V ¢|20sp
= —29(9p, 09)93¢,
which leads us to
(3.18) (29"05pTy5 — tr (T)Dsp) e = 29" (Dp, Dp)ds.
From the identity
V.5 =050 0,10
combined with (3.16), we have
90 g1 = 269" 00§01 p D36
and this leads us to the wave equation for the matter field
(3.19) 0,10 = 29" 0w p.
On the other hand, let us consider the Finstein coupling:
1
Taﬁ = Toig - e?p (aa¢8ﬁ¢ - §gaﬁ|v¢|§)a
which gives
« ao! 1
VT Taﬁ = 62paﬁ¢DgT¢ + 262pgT aa’p(aa¢aﬁ¢ - §gaﬂ|v¢|3)
= 030Dy ¢ + 29" (9p, 09)) — Ipp|V o l;.
In combination with (3.23), we find
030016 + 29" (9p, 00)) — 9pp| VoI = 29" (9p, 06) D50,
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and therefore

050 (0410 + 291 (Op, 09) — 2¢ 4" (VTp, VT¢)) = D5p|V |2
In agreement with what we noticed with the Jordan metric, the Finstein coupling leads to an

over-determined partial differential system. This suggests again that the Einstein coupling
cannot lead to a well-posed initial value problem.

3.4. The conformal version of the initial value problem

We are now ready to formulate the notion of initial data set and the notion of Cachy
development in terms of the conformal metric. In agreement to our discussion in the
previous section, we work with the Jordan coupling and a massless scalar field:

(3.20) Tos = 00036 — 500|VOL,
and we set
ol = %(Mmﬁbl? +970,00;9),
JTJ- = —L,1¢00;0.

Definition 3.7. — An initial data set for the modified gravity theory in the
Einstein metric (M, 3", KT,pg,pI7 ¢$,¢1) consists of the following data:
— a 3-dimensional manifold M endowed with a Riemannian metric §' and a symmetric
(0,2)-tensor field KT,
— two scalar fields denoted by p(T) and pi on M and representing the (to-be-constructed)
conformal factor and its time derivative,
— two scalar field qbg and gbi defined on M.
Furthermore, these data are required to satisfy the Hamiltonian constraint of mod-
ified gravity in the Einstein metric
a1 R = K1k 4 (K1) =87 ((6])? + 51 0,610,6)) + 6(s))°
' 1
+ 65" 0000 — e 2 Wa(p}),

and the momentum constraint of modified gravity in the Einstein metric

¢1 JQZSO +6 Ta

(3.22) o KT, - VIK! =
Definition 3.8. — Given an initial data set (M, g, KT, pg, p{, gzﬁzr], ng as in Definition 3.7,
the initial value problem for the modified gravity theory in the Einstein metric
consists of finding a Lorentzian manifold (M, g) and a two-tensor field T,,g on M
1. The conformal metric g' is defined with the relation gTaﬁ = €% g, with the conformal
factor p = 1In(f'(Ry)) where Ry is the scalar curvature of g.
2. The field equations of modified gravity (3.7) are satisfied with p = 5 1n f'(R,).
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3. There exists an embedding i + M — M with pull-back metric ' = i*g" and second
fundamental form KT.

4. The field p;f] coincides with the restriction of the conformal factor p on M, while pi
coincides with the Lie derivative C,ip restricted to M, where n' denotes the normal
unit vector of M.

5. The scalar fields gbg, gzﬁ coincides with the restriction of ¢, £,1¢ on M.

Such a solution to (3.7) is referred to as a modified gravity development of the initial
data set (M, gT,KT,pg,qubg, ng{)

The notion of maximal globally hyperbolic development is then defined along the
same lines as in [10] for the classical gravity. We observe that our formulation of the initial
value problem for modified gravity reduces to the classical formulation in the special case
of vanishing geometric data qbg) = gbi = Ry = R; = 0. On the other hand, without matter
fields and for non-vanishing geometric data Ry and R;, the spacetimes under consideration
do not satisfy Einstein vacuum equations. Similarly as in classical gravity, these fields can
not be fully arbitrary prescribed but certain constraints (given above) must be assumed.

3.5. Preservation of the constraints
Next, we establish the preservation of the constraints, as follows.

Proposition 3.9. — Let (g, KT) be symmetric two-tensors defined in M = Ug|
If the following equations hold in M

\ M.

Ovtmax

1 1
(3.24) vTaTaﬁ =c (97667pT75 — Ogptr (T))’
and
(3.25) NQOB = 87 1{g.

holds on the initial slice My, then (3.25) holds throughout the spacetime M.

Proof. — Recalling the notation ¥,3 = Ngop — 8T T4p, we are going to prove that ogp = 0.
We note that (3.23) can be written as

1
By taking the trace of the tensor X,z — %tr Ygas With respect to g', we find

_ ij 1
tr 'Y —2tr T2 = —NT 2Zoo + QT ](Eij o §tr (Z)gij)'

Combining with (3.26), we thus have
(3.27) tr 18 = —NT 2%y,
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Combining (3.27) together with (3.26), we then obtain
200

(3.28) Xij = _WQTU‘

Along the same lines as in the proof of Proposition 2.7, we have
(3.29) D3RI D VAR 10 3]
Let us consider the identity (3.16) combined with (3.24), and note the identity
(3.30) V1"Sas = €7%(20,p%] — Opptr (X)).

We observe that by (3.29), the right-hand-side is a linear form of the function 25 and, by
definition,

o @ g @ @
By combining (3.30) and (3.31), we arrive at the first-order linear differential system
< €qy 25 > — wTiﬁEg‘ + sz(sZ% =e % (QGVpEg — Ogptr (X)),
whose principal part is

( ) < e, 28 > + 0,25 = lower order terms,
3.32
< eq, gToogTchg > — 9,50 = lower order terms.

can be symmetrized by the same procedure as we did for the system (2.53) and (2.54).
Recall also that by (3.25), this system has vanishing initial data and, therefore, in view of
our global hyperbolicity assumption (2.1), the desired result is proven. O

4. The conformal formulation in wave coordinates

4.1. The wave gauge

We now turn our attention to solving the system (3.7) and our first task is thus to express
it in well-chosen coordinates. In view of the expression of the left-hand-side of (3.7), we
observe that if we remove the terms in p, the principal part (that is, the second-order terms
in g") is determined by Rf,s. In order to investigate its structure, we perform first some
basic calculations, which are valid for general Lorentzian manifolds in arbitrary local coor-
dinates. Let (M, g) be a Lorentzian manifold with metric ¢ of signature (—, +, +, +) and
consider any local coordinate system {2, ', 2% 2°}. Let I'} ; be the associated Christoffel
symbols, and consider the wave operator [, = V*V,, associated with g. The following
lemma follows from a straightforward but tedious calculation.

Lemma 4.1 (Ricci curvature in general coordinates). — With the notation

(4.1) M= gaﬁrgﬁ, Ty = gasl?,
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one has

1 s 1 1
(4.2) Rag = —590‘ A 8a/85/ga5 + 5(8QF5 + 851“&) + §Fa5(g; 89, 89),

where F,z(g;0g,0g) are nonlinear functions in the metric coefficients and are quadratic

in their first-order derivatives. The wave operator and the reduced wave operator Uyu :=
9% 0 0pr satisfy the relation

(4.3) Oyu = g% 00 0gu + T005u = Oyu + M85u,
and, clearly, these two operators coincide if and only if the coefficients I'* vanish identically.
Proof. — Recall the definitions

Rag = hLag — 013y + Tagl% — TasI'on,

1 v
A Lo
Tas =59 (
In the expression of the Ricci tensor, we consider the first two terms:

1 1
= 58,\ <9A6(3a955 + 089as — a&Qaﬁ)) — 5(% (gm(ﬁﬁgm + Ohgss — (%gm))

1 1 1
= =50 (9”&%5) + 505 (97°(0agss + 959as)) — 50a (9)\63,89)\6>>

Dagpy + O3gar — OnGas).

so that
(4.4)

1 1 1 1
= —§9A59A359aﬂ + 59)\68040)\955 + §g>\6866/\96a - 59/\60&8,89)\6 +Lo.t.,

where l.o.t. are quadratic terms in the first-order derivatives of the metric.
On the other hand, we can compute the term 9,1's + 031", and obtain

1
I = Flﬂgaﬁ — 5904,8976 (aagﬂJ + aﬁga(g — a(sgag)

1 (6
~g*? 9" 0590

= g7 9*%0agps — 5

and .
I N N §9a6 OrGap-
So, we have

1
Oal's = 0a (9" 059x5) — 50a (9™ Dp925),
and, therefore,
(45) 8QFB + 85Fa = gV‘Saac“)Agw + g”@;(‘hg(ga — gmaaﬁg)\g + l.o.t.
It remains to compare (4.4) and (4.5). O
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Observe that the field equation (1.6) or the conformally transformed field equations (3.3),
both, contain linear terms in the Ricci curvature. In order to exhibit the hyperbolicity
property for the linear part of these systems (at least for the second-order terms in (1.6)),
we now introduce local coordinates. Recall that a wave coordinate system, by definition,
has Christoffel symbols satisfying

A _ af —
(4.6) M = g*I7, = 0.
In view of (3.3), the principal part (after removing the terms in p) of
1 L 2y t

Noop — §gagtr (Ng) — 56 P(aar + 050 )
is %e2pgTaﬂ8a/85/gTaﬁ, which is a quasi-linear wave operator. From this observation, the
equations (3.7) in wave coordinates, with
(4.7) Iy =0,
can be reformulated as:

1 1 1

(4.8) Ngop — égagtr (Ny) — §e2p(aaFTg + %FTQ) = 87 (Tup — étr (T)ap)
while the trace equation (3.9) becomes

Walp) | Walp) | 4ntr (T)

6e2r Geltr 3etr

Hence, in view of Lemma 4.1, the above system can be written in terms of the metric
g" and its derivatives. We emphasize that the trace equation (4.10c) and the evolution
equation of matter field (4.10d) below are coupled to the field equations.

(4.9) O,ip+ 05 =

Lemma 4.2 (Conformal field equations in wave coordinates)
The field equations (3.7) in wave coordinates take the form

a’ﬁ/
gT 3{1'(96’9*@5

(4.10a) Walp) ;  8r

2p 9 a8 —(2Tws — tr (T)gap),

= Fa,@(.gT)agTvagT) - 12804p8510+ e2p

which is supplemented with the algebraic constraint equation (derived from the wave coor-
dinate condition)

(4.10D) gt = 0.
In addition, this system must be supplemented with the trace equation
Walp) | Wslp) | Amtr (T)

6e2r 6etr 3etr

with p = %f’(Rg), as well as with the evolution equation for the matter

(4.10d) VIT,5 = (tr (T)0sp — 29”70, pT5) e .

(410C) gTalﬂlﬁa@B,p =
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4.2. A nonlinear wave system for the modified gravity theory

The aim of this subsection is to study the ‘essential system’ consisting of (4.10a) and
(4.10b). If we remove the terms in p, this is a quasi-linear wave system with constraints
(see (4.10b)), whose structure is quite involved. The strategy we propose is to replace these
constraints by another differential equation which will turn out to be simpler to handle.
We will write a new system which may (a priori) not be equivalent to the original system
(3.7). This system is defined as follows.

Definition 4.3. — The wave-reduced system in geometric form associated with
(3.7) is, by definition,

1 1 1
(4.11a) N, Gaptr (Ng) — 562" (aaFTg + 3/3FTQ) =87 (Tag — —tr (T)gag),

af 9 2

(4.11b) ViT,s = (tr (T)9sp — 29°70,pTy5) e,
where Ny, is defined by (3.3) and €* = f'(R,).

Thanks to (3.3) and Lemma 4.1, the above system reads also
(4.12)
8T

B Wa(p
9" 009" 05 = Faplg'; 09", 0g") — 120,p0sp + 622(,) )gTag = =5 (2Tap =t (T)gap),
Vi, = (tr (T)9sp — 29°70,pT5)e %,

Lo
p= §hlf (Rg)a

which is (4.10) without the constraint equations (4.10b) but includes the evolution equation
(4.10d). In the following subsection, we will establish the following result.

Proposition 4.4 (Preservation of the wave coordinate conditions in modified
gravity)

Consider a globally hyperbolic spacetime M = Uyco 4,0 M; with metric g, together with
a matter field T defined on M. Suppose that the wave coordinate conditions

(4.13) .= gTa’BFTlﬁ =0 on the initial slice My,

together with the constraint equations (3.14) and (3.15). Then, the wave conditions (4.13)
are satisfied within the whole of M.

In other words, if one wants to find a solution of (3.7), what we need to do is to find
first a solution of (4.12) with the constraint equations (4.13) satisfied on the initial slice,
with four additional constraint equations to be required on the initial data set. Recall
again that the interest of relying on (4.11) rather than on (3.7) is that the former one has
a hyperbolic principal part (after removing the terms in p).
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4.3. Preservation of the wave coordinate conditions

The key to Proposition 4.4 is the contracted Bianchi identity and, amazingly, the precise
form of the modified gravity tensor N, is not used at this juncture. We begin with some
lemmas and the derivations of key identities.

Lemma 4.5. — For any (pseudo-riemannian) manifold (M, g), the following identity

holds:
(4.14) V(0al's + 05 a = gapg™ " OuTs)
= go/ﬁ’aalﬁglfﬁ - gaalFZéa/a'yFﬁ - gaalri’ﬁaéra - aﬁgalﬂ/ (8QIF5/)’

/

where Flﬁ denote the Christoffel symbols and I'" := gaﬂf‘lg and I'y = g, 7.

Proof. — From the standard identities
V05u = g 0w Opu — T'Y, 50,
Oyu = 9% 0,05u — gaﬁFlﬁ&yu,

we find

V(95 + 05T 0 — Gupg™? 0T )

= V0l + V0sL0 — 95(9"" 0l

= 0,05 + g° 0w 05T — ¢°“T2305Ta — 039”7 (0w Ts) — g°7 00T
thus

U (0als + 05T — Gusg™ " DarTs)
= 0,05 = ¢* To305Ta = 959™ (OuT )
= ¢"7 0w 03T — g T, 0,175 — gaalri/ﬁaara — 059" (0uTsr)
]

Our next lemma establishes a relation between the wave condition and the evolution
equation of the wave-reduced system (4.12). Recall that sufficiently regular is assumed
throughout so that all terms under consideration are continuous functions at least.

Lemma 4.6. — Consider an arbitrary manifold (M, g') and a (matter) tensor T,s. Then,
if in some local coordinate system {x° z', 2% 23}, g7, Tos satisfy (4.11), then the following
equations hold

(4.15) 9" 0u0a T 5 = Fa(p, g's T, 00",

where Fg(p, g';-,-) is a combination of linear and bilinear forms, and one recalls FTlB are
the Christoffel symbols with T'f 5 = gBB/I‘Tﬁ/ = gﬁﬁzgaVFTg;.
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Proof. — Taking the trace of (4.11a) with respect to the metric g,
(4.16) tr (N, — 87T) = —e*¢*?9,I'1
and combining with (4.11a), we obtain
1 1
Nyqop = 87Tap = Sgastr (Ny —87T) + §e2p (0I5 + 85I,)

(4.17) 2 »
= 562'0 (aaFTﬁ + 8/3FT04 - gTaﬂgT ao/FTﬁ')

Taking the trace of (4.17) with respect to g', we obtain
1 o Oc/ / [e%
(4.18) SV (@ (0als + 05T — gl 0! P 0.uT15)) = V1% (N, s — 87T0p),
whose left-hand-side is evaluated by using (4.14):
1 o o' B!
V(€ (05 + 05T e — g 0! 7 0T ))

1 o OCI !
= §ezva (aaFTﬁ + aﬁr’ra _ gTaﬁgT s ao/FTB’)

4 20 (aaFTﬁ + aBFTa _ gTaggTa B 8a/FT5')VTap_
We thus obtain that

1 o OC/,B/
§VT (e (0154 05T — 9T g™ " 0 TTg))
1 o' B! aa’ aa’ 16 o' B!
= §€2p (gT 6a/85/FT5 — gT FTza/&YFTg — ng FTa,ﬂ&;FTa — Qgng (aa/FT/g/)>

+ (0T + 05T — g gg! ™ 0T )V
1 o' B! 1 ~
=: 562"’9T g aa,aﬁ,rfg + 562’)F5(p, q'; FT% GFTV),

where Fs(p,g';-) is a combination of linear and bilinear forms of the functions I'"., and
ort,.
The right-hand side of (4.18) is computed by using the identity (3.16) and (4.11b), that
is,
VTa(Ngaﬁ — 81 T,5) = e (tr (N, — 87T)0gp — 2g”’687p(Ngéﬁ — 8T55)).

Then, by (4.16), we obtain

VI (Ngos — 87T0p)

_ e—20< _ e?pga/ﬁ/aalrfﬁ/aﬁp _ erg’yéavp(aaFTﬁ + 551"Ta _ gTaﬁgTa/@a&lF’rﬁ,)>

= —g”’éﬁvp(ﬁwl“% + 65FT5)
and, by (4.18),

(4.19) 6" 00Tl s = Fa(p,g's T, 00",
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where
Fs(p, g TT,, 0T = —Fs(p, ¢"; T, 00T — 2672’)975&,,0(85]7% + 5’5FT5)
is a combination of linear and bilinear forms in FTA, and art,. O]

Lemma 4.7. — Let (M, g") be a globally hyperbolic Lorentzian manifold endowed with a
foliation M = [0, tya) X My (and signature (—, +,+,+) ), together with a tensor field Tip.
Suppose that the equation (4.11) holds on the initial slice My and, furthermore, the wave
coordinate conditions and the constraint equations hold on the slice My:
RAPS LC ol
[M=g" T7,5=0

and (as stated in (3.21)-(3.22))

1607 12| < ep,p > |?
e2r + N2
ﬂ+6<eo,p>3jp

e2p Nt ’

R — KK 4 (k)2 = +6g'(Vp, Vo) — e 2 Wa(p),

l = l
KT, — VIKT, = —

Then, one has
GOFT/\ =0 in the spacetime M.

Proof. — We work in a Cauchy adapted frame (e, €1, €2, e3), that is,

) . gTO‘
€o = 80 - 5261'7 BZ = T Za €; = ai?
qr..

(23

so that g'(eq, e;) = 0. A tensor can be written in, both, the natural frame and the Cauchy
adapted frame. We denote by an underlined letter the components in the Cauchy adapted
frame. For example, T, 5 are the components of T in the Cauchy frame.

Recall that the momentum constraint equations are equivalent to

(4.20) Ny, = 8Ly,
the Hamiltonian constraint equation is equivalent to

Recall also that the Cauchy adapted frame is expressed in the natural frame via e, = ®29s,
where

1 -pt =B =p
o1 0 0
B8 _
@Dws=10 0o 1 o
o 0 0 1

Then, we have
_ o &b _ o' b
Ny = Ny,5P8 5, Top=Tuwp®, 5.

N0 T Narp
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Observe that the wave-reduced field equation (4.11a) can be rewritten in the Cauchy
adapted frame as

1 1, 1
N, = 5tr Nogl = 503 0 (0Tl + 9pTl o) = 87(L5 — 5tr (T)g! ),

—Zap 2 2 w2 =
which is
1 1 / /
N, —=tr Nyg'  — e*(®] < eo, g > +02 < e5,TT, >)
“Jag 9 Zag 9 B o
(4.22) 1
=87 (Top — §tr (T>QL,B)‘

Next, by combining (4.22) with (4.20) with o = 0, 1 < f = b < 3 in (4.22) and by
observing that g_T 0 = 0, we obtain
(I)'gl < eO,FTg/ > —|—q)8/ < eb,FTa/ >= 0.

We consider this equation on the initial slice M.

Recall that it = 0 so that 9,I's = 0 for any 1 < b < 3 and 0 < 8 < 3. Then observe
that @bﬁ/ = 55’ and < ey, [Ty >= 9,I'f, = 0, so that
(4.23) < ey, Iy >=0,
which leads us to 9,I'f, = 0.

Now, we can combine (4.22) with (4.20) and (4.21) with o = 5 =0 in (4.22):

@gl <ep, Ty > 485 < eo, Iy >= —tr (N, — 87T)g" -

We recall (4.20) and (4.21) and the fact that gy; = 0, so that
(4.24) tr (N, — 87T) = g** (N, , = 87Lag) = g” (Ng, — 87Ly).

294
We also recall (4.22) with 1 < o =i <3 and 1 < 8 = j < 3, and we observe that
< e;,I't, >=0. This shows that

1
Ny —8nl,; = §tr (Ny —87T)g

19 ij’
which leads us to
ij 1 ij
g](&,j — 87TLJ-) = §tr (N, — 87rT)g ]gij.

1,

Therefore, by (4.24), we have tr (N, —87T) = 3tr (N, —8xT'), and thus tr (N, —8xT) = 0.
We substitute this conclusion in (4.23) and obtain

(I)g/ < €p, FT/B/ > —|—Q)8‘, < 60,FTO/ >=0.
We finally recall (4.23) and get
) < e, [y > +D) < e,y >= 0

and the desired conclusion is reached. O
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Proof of Proposition 4.4. — In view of Lemma 4.6 and Lemma 4.7, we see that ['T 5 satisfies
the initial value problem

gTaIB,ao/@ﬁ’FTﬁ = Fs(p, gTQ FT’)’? 8PT7)
with initial data
I'g)p0—0 = 0, ol g|z0—0 = 0.
Since ¥ is the timelike direction and the symmetry of ¢g' guarantees the hyperbolicity of
gTalB/&X’@/gz. We also observe that I'' = 0 is a solution of this initial value problem. Thanks
to the global hyperbolicity of ¢, the desired uniqueness result holds within the domain

of determinacy of the initial slice, that is, M itself, thanks to our global hyperbolicity
assumption. H

5. The augmented conformal formulation

5.1. A novel formulation

In this section we re-formulate our system and establish a local-in-time existence theory.
Since p is function of the scalar curvature, the system under consideration now is still
third-order and is not of a specific PDE type. (The third-order terms are dp, where p is a
function of the second-order derivatives of g7, 5-) To bypass this difficulty, we thus introduce
still another transformation. In (4.11), we now replace the constraint e** = f'(R,) by the
trace equation leading to the evolution equation for p, and we introduce an augmented
formulation, as we call it. For clarity in the presentation, we switch from the notation p to
the notation p, in order the emphasize that the relation ¢’ = f’(R,) is no longer imposed.
Let us now define the tensor N, ja 5 as

1 1
(5.1) Ngiag — égagtr (Ng) = 629R1a5 — 6€*0,0050 + §9¢Q6W2(9)‘
Here, ¢ plays the role of the previous quantity p = 1 In f’(R,) (which need not hold), and
we work in the metric of the augmented system
(5:2) ghs = ¢*gus
We also use the notation V#, R} and R* for the connection, the Ricci curvature, and the
scalar curvature of g*, respectively. Also, we denote by Filﬁ the Christoffel symbols of ¢,
and we set I't" := giaﬁFizB and I't, .= gt I

Definition 5.1. — The conformal augmented formulation of modified gravity is
the following partial differential system:

1 1
(5.3a) Ngos = §e2g(aariﬁ +0pTH,) = 87 (Tug — S Jstr (1)),

(5.3D) 00— Wale) | fl0(o))  Antr (T) .

95 Ge2e Gete 3ete ap
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In the now proposed standpoint, o is an independent unknown, which no longer depends
upon the scalar curvature RR,. In this way, the system under consideration is second-order.
Our first task then is to compute the divergence of N, g.

Lemma 5.2. — When (5.3b) holds, the following identity also holds:
(54) ViaNgiaB — e 20 (2gaa’ o/QNgaB —ir (87TT>85Q)
Proof. — By (5.3), we have

N§ 5= G, — 6¢*(Da0050 égaﬁ|VQ|§i) - %g*(sz(@%
where Gt 5 := R¥,5 — % gioﬁRi is the Einstein curvature of g*. We start from the identities
VGt =0,

and
V*(0a0050 — %giaglviglf,i) = 950010,
and we introduce the function
(5.5) s(r) = %ln f'(r), reR,
together with its local inverse near 0, denoted by 6. Then, we have
VI (g a5 Wa(0)) = 05(Wa(0) = D3(c 21 (6(2)) — 6(0))
= (= 2¢7% f(00)) + e 22F (9(0))0' ()30 — 0'(0) ) D30
= —2¢7*¢f(6(0)) Os0-

This allows us to compute the divergence of N, gia PE
« (0% 1 «
VNG 5= 262G V" — 12€7° (020050 — Ega5|VQ]§¢)Vi 0
— 6e*°0g00,10 + €*°03f(0(0))
(0% 1 « 0%
= 2e*°G2 V" 0 — 126* (000050 — §ga,3|VQ|§¢)V* 0—g'sWa(0)V*0
— 6e*°0500,:0 4+ € 2205 (0(0)) + gia[gWQ(g)ViQQ

a f(6(0))  Wa(o)
:2N§aﬁvjt Q—6€2905Q<Dgi— 6cie . Ge2e )

Then, by (5.9¢), we find

f(0(0)) | Walo) | Amtr (T)
Hgro = Gele + Ge2e + 3ete

and the desired conclusion follows. O
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By Lemma 5.2, we see that the evolution law for T is
(5.6) Vs = (2¢°70,0T,5 — tr (T)0g0)e 2.

The following question arises at this juncture: Will the relation *¢ = f'(R,) (with ¢',5 =
€*g.5) hold if we solely solve the equations (5.3)7 The following subsections precisely
provide a (positive) answer to this question.

First, in Section 5.2, we will re-formulate the initial value problem for the augmented
conformal formulation, by building upon our previous formulations of the field equations
in the Jordan and Einstein metrics.

Then, in Section 5.3, in order for the principal part of (5.3) to be hyperbolic, we will
write our augmented system in wave coordinates. Finally, in Section 5.4, we will prove that
once the wave constraint equations I'¥y = 0 hold on the initial slice, then the augmentation
relation e?¢ = f'(R,) is guaranteed by (5.10).

5.2. Initial value formulation for the augmented conformal system
In this section, we revisit Definitions 3.7 and 3.8, as follows.

Definition 5.3. — An initial data set for the augmented conformal formulation
of modified gravity (M, 5", K¥, 0o, 01, 65, &%) consists of the following data:

— a 3-dimensional manifold M endowed with a Riemannian metric G+ and a symmetric
(0,2)-tensor field K*,

— two scalar fields denoted by oy and o0, on M and representing the (to-be-constructed)
conformal factor and its time derivative,

— and two scalar field gzﬁé and ¢:{ defined on M

Moreover, these data are required to satisfy the Hamiltonian constraint of modified
gravity in the augmented conformal form

- i :
R — K KM 4+ (K%)?

=8¢ ((01)* + 9" 0:660;60) + 6(01)* + 63" Dr000;00 — € Wa(g0)
and the momentum constraint in the augmented conformal form

— i Lo,k
(5.8) 0; K*, — v*iKij _ 910:% + 6010; 00-

6290

(5.7)

Here, R and V' is the scalar curvature and the connection of the metric g+, respectively.

Definition 5.4. — Given an initial data set (M, g+, K*, 0, 01, ¢§§, gbf) as in Definition 5.3,
the initial value problem in modified gravity in the augmented conformal form
consists of finding a Lorentzian manifold (M, g) and a two-tensor field Tng on M such that:
1. The augmented conformal metric giag = €?¢g,p with conformal factor o satisfies the
evolution equation (5.9¢).
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2. The augmented conformal field equations (5.9) are satisfied.

3. There exists an embedding i : M — M with pull-back metric ¢ = i*¢g* and second
fundamental form K*.

4. The field oy coincides with the restriction of the conformal factor o on M, while o,
coincides with the Lie derivative £,z:0 restricted to M, where n* denotes the normal
unit vector of M (with respect to g*).

5. The scalar fields gzbé, ﬂ coincide with the restriction of ¢, £,1¢ on M.

Such a solution to (3.7) is referred to as a modified gravity development of the initial
data set (Mv §i7 Ki? 00, 01, ¢(:g’ Qﬁ)

Note that, as in Section 3, the geometric form of the constraint equations is the Hamil-
tonian constraint N, , = 871y and the momentum constraint N,, = 87Tj,.

5.3. Augmented conformal formulation in wave coordinates

We now reduce the conformal augmented system (5.3) in wave coordinates to a system
with hyperbolic principal part. Indeed, we obtain the following formulation, where we
replace the wave constraints by the evolution law of T given by (5.4).

Definition 5.5. — The conformal augmented formulation of modified gravity s,
by definition, the following partial differential system:
1 1 1
(5.9a) Ngiaﬁ = 59astr (N}) — §e2a(aari6 + 05Tt ) = 87 (Top — 9astr (7)),
(5.9b) V5 = (2¢770,0T,5 — tr (T)9s0)e 22,
w6, Wale) | f0(0) | 4mtr (T) ;
(5.9¢) Ogto+ T 050 = G20 + Goie aoie 9 o

By Lemma 4.1, we then have the following expressions in coordinates, in which we
emphasize that ¢g* need not coincide with ¢'.

Lemma 5.6. — The conformal augmented formulation of modified gravity theory in co-
ordinates reads

a/ﬁ/
9" 0w0p gt o
(5.10a)

Ws(o 1
= Fa3(g%; 09", 0g") — 120,0050 + 622(9 )giaﬁ — 167 (Top — 59astr (1)),
(5.10b) V.5 = (29"050T5 — tr (T)0g0)e %,
po'B _ Walo) | f(0(0) | 4mir (T)
(5.10c) g " OwOpo= Go2e + Goie + EYTR.
with

(5.11) T ap = €Gas-
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5.4. Preservation of the constraints

Our first task is to address the problem of the preservation of the constraints.

Proposition 5.7. — Let (M, g*) be a globally hyperbolic Lorentzian manifold endowed
with foliation M = [0, t;ne) and with signature (—,+,4,+). Let T be a symmetric two-
tensor (representing the matter content) and let o be a scalar field defined in (—e,€) x R3.
Furthermore, assume that (giaﬂ, ®,0) is a solution to the conformal field equations (5.10).
Let gop = 6*2991065 be the metric conformal to g*. Then, provided the constraint equations
(5.7) and (5.8) together with the constraint equations

ap
(5.12) g T =0

are satisfied on the slice {z° = 0} (where R, is the scalar curvature of gns and Filﬁ are

the Christoffel symbols of g*), then (5.12) holds in the whole of (—¢,€) x R3. Furthermore,
one has

(5.13) e’ =e* = —In(f'(R,))
in (—e, €) x R3, so that (giaﬁ, o, 0) is also a solution to (3.7).

The rest of this section is devoted to the proof of this proposition. Recall that, through-
out, we assume that the giaﬂ, o and 7,3 are sufficiently regular, so that all relevant deriva-

tives are continuous at least. For the proof, we need some preliminary material and, first
of all, we compute the divergence of N, gi.

Lemma 5.8. — When (5.9¢) holds, the following identity holds:

(5.14) VNG 5= e (29 000N} 5 — tr (871)950) + 6e*2950 *050.
Proof. — First of all, in view of (5.3), we have

1 1
Ngiaﬁ - GQQGiB a 6629(80498/39 - 59&/3|VQ|31) - §9ia,@W2(9),

where G*.5 := Rty3 — 3¢*,5R* is the Einstein curvature of g*. We have the identities
1B ~(e) _
VZ G, =0,
af 1
VY (040050 — 59a6|v9|§i) = dg00yi0.
As before, by introducing the function

(5.15) s(r) = %m F(r), reRr
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with (local) inverse denoted by 6 and defined near 0 at least, we can write

VI (gt s Wal0)) = 85(Wa(0)) = Ds(e 22 £ (0(0)) — 0(0))
= —2e7 %0301 (0(0)) + €' (6(0))0' (0) D30 — ' (0) 30
= —2e*030f(0(0)) + e 2”20 (0)I0 — 0'(0)Ip0
= —2¢ %9501 (0(0))-

We are now in a position to compute the divergence
« « 1 «
v Ngiaﬁ = QeQQG(QlBVi 0— 12629(8a985g — Egamvgyfﬂ)vi 0
— 6e*%0300,10 + €*°03f(0(0))
(0% 1 o (0%
= 2*°G2 V" 0 — 126* (000050 — §ga,3|VQ|§¢)V* 0—g'osWa(0)V*0
— 6050010+ € 2205 f(0(0)) + gia[gWQ(g)ViQQ
o 0 4%
= QNgaﬁvi 0— 662%%(591 _ f0(e) _ 2(@))‘

Gete 6e2e

In view of (5.9¢), we find

_ih f(0(e)) | Walo) | dmtx (T)
Hpro=-T" 050+ Gele * 6e2e 3ete
and this yields the desired conclusion.
Lemma 5.9. — The equation (5.10a) leads also to the wave equation for o
Ry, Wi(o)  Amtr (T) g*P0.I'g
(5.16) Hyie = Ge2e * 3e2e 3ede  Ge2e

Proof. — We recall that (5.10a) can be written as
giaﬁ 629
2Rt 5 — 66220, 0050 + TWQ(Q) — T(aariﬂ + 95,
(5.17)

1
=87 (Top — §ga5tr (7)),
and that (3.6) implies

Rlas = Rap = 2(VaV0 = Oaedse) — (Do +29(V e, Vo)) gap-
We substitute this relation into (5.17) and obtain

i3
(AP
BWQ(Q)

629Ra5 - ZGZQVQVBQ — 462080“965@ — gaﬁe%’Dgg — QGQanﬁg(Vg, Vo) + 5

1 1
= 87(Tas — 5tr (T)gap) + 5™ GARFESARNE
By taking the trace of this equation with respect to g, we have
e R, — 6e?20,0 — 12*29(Vo, Vo) + 2¢*2Wy(0) = —8tr (T) + €*2g*P 0,5,
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which can also be written as

R Wo(o) = dntr(T)  g*f
Oy0 +29(Vo, Vo) = =2 — L0,
gQ + g( Qv Q) 6 + 3 3629 6 ,8
In view of the expression (3.8), the desired result is proven. ]

In the next lemma, we identify the geometric form of the system (5.10).

Lemma 5.10. — Let (M, g%) be a Lorentzian manifold together with a two-tensor T.s.
If, in some local coordinates {z° x*, 2 23}, (g% Tag) satisfy (5.10), then the following
equation holds (in the domain of the coordinate system):

(5.18) 77 905 Tt s = Fy(o, gt I%., O0%),

where Fg(o,g%;-,-) is a combination of linear and bilinear forms and Filﬁ denote the as-
sociated Christoffel symbol with

B ayih
Fig — gigﬁfi — giﬁﬁlgi Wria'y'
Proof. — By taking the trace of (5.9a) we have
(5.19) e*g"? 9Tty = —tr (N} — 8aT).

Combining this results with (5.9a), we obtain
29 1l
(5.20) %(aarig + 0T — Gapg™” QurT' ) = N}, — 87T,

By computing the divergence of this equation (for the metric g*) and evaluating the left-
hand side in (4.14), we get
1 o 13l
SV (% (0al s + sl = gupg™ " 0T ) )
1 a/ ! aa/ Oéa/ Oél ’
= e <gi 7 000ty — g1 TY L0 Ty — g T ,05TY, — 09" (aa/riﬁ/)>
(5.21)
+ 62'9 <€2Q ((%Fig + 85F¢a — gagga B (%Tiﬁx)) VIQQ

1 ' a0 -
=: 56299(1 g 80/8/3/1_‘1/3 + FB(Q’ gi; Fiw 81“17).

Here, F' is a combination of linear and bilinear forms on 't and OT'*, depending on g, g*
and their derivatives.
On the other hand, the right-hand side is computed from (5.9b) and (5.14), as follows:

V(NG — 87Tas)
— e 20 (290‘0/60/ QNgiaﬁ — tr (87TT)8/5Q) + 6629659 FI(S@&Q
— 8me (29”0, 0T, 5 — tr (T)0sp)
— 2 (29””‘87@(1\73&5 — 8nTp) — tr (N — 87TT)359> + 605 pT"* 005 .
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Then, in view of (5.19) and (5.20), we obtain
(5.22) VI (NE, — 87Tus) = 0°0,0(0als + 0T74) + 6001 3.

which is a linear form in the functions I'f, and &YFIQ. Finally, we arrive at the desired
conclusion by combining (5.21) and (5.22) with (5.20) together. O

Lemma 5.11. — Provided the equations (5.10) hold on the initial slice {t = 0} and the
condition
I\ =0
and the constraint equations (5.7) and (5.8) also hold on the initial slice {t = 0}, then it
follows that, on this initial slice,
8t1—‘i)\ = 0
Proof. — We observe that the constraint equations (5.7) and (5.8) are equivalent to NV} 0 =

8Ty and N, gioo = 811y, respectively. Consequently, the proof of the lemma follows from
the same calculation which was performed in the proof of Lemma 4.7. Therefore, we omit
the details. ]

Proof of Proposition 5.7. — By Lemmas 5.10 and 5.11 and by the global hyperbolicity of
the metric ¢g*, we see that, in the spacetime M,

(5.23) Ity =0.

Recalling Lemma 5.9 and combining (5.16) with (5.23), we obtain

R,  Ws(o) Anmtr (T)

6e2e + 3e2e 3ede

(5.24) Dgig =

In a similar way, (5.9¢) becomes

_ Wale) | f(B(e) | 4mtr (T)
(5'25) DQIQ T Be2e Geteo 3ete
By comparing these two equations, we thus get

Ry + Wa(e) — f(0(0)) =0,

which (by the definition of ;) leads us to §(¢) = R,, and it remains to recall the notation
e’ = R,. [

5.5. The local existence theory

The standard theory of local-in-time existence for the initial value problem associated
with hyperbolic problems can now be applied to an arbitrary initial set in these sense of
Definition 3.7. Let us sketch the strategy of proof. For simplicity in this discussion and
without genuine restriction, we can consider that the initial data set and, therefore, the
solutions are close to data in Minkowski space.

First of all, we need to construct the (local-in-time) solution of the problem (6.1) whose
initial data set must be expressed in wave coordinates, say (M, ggaﬂ,ghﬁ, 00, 01, ®o, P1)-
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This PDE initial data set is determined from the geometric initial data set denoted by
(M,g*, K*, 00, 01, qﬁé, gzﬁ) Without restriction, smallness (and regularity) assumptions are
here made on the initial data set.

Second, we need to check that this (local-in-time) solution leads to a globally hyperbolic
spacetime. Then, according to Proposition 5.7, we can conclude that this solution preserves
the constraints (5.12) and (5.13) and, consequently, is also a solution to the field equations
(3.7) with g* = ¢' and o = p = 3 In f'(R,). We thus conclude that this solution solves the
initial value problem in Definition 3.7.

Third, we need to observe that the solution (g, ¢) constructed from g,p := e_2pgTa5 is a
solution to the original initial value problem, stated in Definition 2.6 with the corresponding
initial data set determined by (M, g+, K*, 0o, 01, gbé, qbf) (via the conformal transformation).

We omit the details and refer to Choquet-Bruhat [10] for the existence and uniqueness
statements in classical gravity, which based on our reformulation and discussion above can
be extactly restated for the field equations of modified gravity. For the rest of this work, our
objective is to revisit such a theory and, while re-proving this existence result, to establish
that modified gravity developments remain close to classical Einstein developments.

6. Local existence theory. Formulation and main state-
ment

6.1. Construction of the PDE initial data set

Our objective is thus to establish an existence theory for the Cauchy problem associated
with the modified gravity field equations (5.10), when the initial data are assumed to be
asymptotic flat. For the sake of simplicity and without genuine loss of generality as far
as our method of proof is concerned, we focus our presentation on quadratic functions
f(r) =r+ %7’2. It is straightforward to modify our argument to cover more general
functions f.

We need first to introduce several notations, before we can state one of our main results
in Theorem 6.3 below. Recall that the matter model we are considering is the massless
scalar field with Jordan coupling and that, in agreement with Section 3.3 (see (3.19)), the
system (5.10) under consideration reads

a/ﬁ/
9" 0w0p gt o

(6.1a)
= Fo5(g%; 0g*,09") — 12040050 + Walo)

giaﬂ - 167T8a¢85¢,

e2e
(61b) gia,ﬁlaa/a/yQS = 2910//8/00/@56/8’@’

o8 ~ Wale) | fB(0) Am ap
(6.1c) 9" OO0 = S+ e — 50t Ow st
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Clearly, this is quasi-linear system of wave equations in diagonalized form and, in order to
formulate a well-posed problem, the initial data set should include the functions

gia,@(OVI) = gga,@’ atgiocﬁ(()?x) = gfaﬁ’
(62) Q(O,l’) = 0o, 6tg(0,x) = 01,
(0,2) = ¢o = o}, 0,:6(0,2) = 1 = .

There are 24 functions to be prescribed, but the geometrical initial data set

(Ma 517 K¢7 0o, 01, (bé? ¢§)

contains 16 functions only. In fact, in order to construct a solution of (6.1) that also
satisfies (3.7), we see that, by Proposition 5.7, the conditions (5.12), (5.7) and (5.8) must
hold on the initial hypersurface. These conditions form a nonlinear PDE’s system of
eight equations, and it is expected that the 8 remaining initial data components could be
determined from these 8 constraint equations. This task, however, is not a trivial one and
further investigation would be needed to fully clarify the set of initial data.

From now on, we assume that this system of 8 constraint equations together with the
16 functions prescribed by the geometric initial data set uniquely determine our PDE’s
initial data set. Throughout, we denote by (M, ggaﬁ,gfaﬁ, 00, 01, G0, $1) the PDE initial

data determined by (M, g%, K*, 0, 01, gbé, qzﬁ) and the constraint equations (5.7), (5.8) and
(5.12).

6.2. Simplifying the field equations of f(R) gravity

For definiteness, we focus on the role of second-order terms in f and assume that

(6.3) f(r)=r+ STZ, reR
for some k > 0. We recall e = f'(R,), so that
e —1
e2p:1+l-@Rg, R, = P
. ) = 1)
r)—rf(r
Wols) = 2t "\
=
At = (14 k) K12
B 1+ kr  2(1+ k)’
with e = f'(r) = 1+ sr so that
2s 1 2
(6.4) Wy(s) = =1

2Kk e2s

The spacetime (M, g*) under consideration is endowed with a foliation

M =[0,T] x M,, tel0,T]
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and we assume that, for each ¢, M, is diffeomorphic to R®. The spacetime metric is supposed

to be sufficiently close to Minkowski metric and, especially, is asymptotically flat, so that

the following notation is convenient:

(6.5) hap = G'as — Mag

and we thus seek for unknowns triples (hag, 0, ¢). Sometimes, we will write (hag, 0, ¢) =

(h&g, 0%, ") in order to emphasize that the solutions of (5.10) depend on the coefficient &.
With these notation the system (5.10) take in the alternative form:

(ma/b’/ + Ho/,B/ (hn))aa/aﬁ/ hgﬁ

= Fop(h™; 0R",0h") — 16m0,¢" 050" — 120,0"030"

(6.6a) )
(e —1) H
— 2/{}64@% (maﬁ + haﬁ)?
(6.6b) (m®F + HY?' (W) 00 05 ¢ = 2(m*? + HY? (1h")) 00 ¢" 0 0",
(ma/ﬁ/ + Ha/ﬁ/(hﬁ))a a . eQQK —1
(6.6¢) W OTE T et
' 4 o B o'B 11k s 5
= —goag (M P+ HYP (W) 0w ¢" 059",
where, from h* = (h[;), we have determined
(6.7) (m*? + H*?(h*)) as the inverse of (mag + his)-

With this notation, the PDE initial data denoted by (M, hg, h1, 0o, gl,gbé,qﬁj{) is thus
rewritten in terms of A, with

hagli=o = hoap = G 0as — Mas; Othas = hiap = g'10p-

The system under consideration is composed of 12 quasi-linear wave equations: 11 of
them (those on hs and ¢") are quasi-linear wave equations, while the equation on ¢" is a
quasi-linear Klein-Gordon equation with defocusing potential.

Remark 6.1. — The coefficients H*? are clearly smooth functions of h, in a sufficiently
small neighborhood of the origin, at least. Hence, we can find a positive constant €y such
that if |h| < e, then for any integer k, the k-th order derivatives of H*® with respect to h,
say DYHB | are well-defined and

sup [DXHP(h)| < C(k, €)

[h|<¢
Standard linear algebra arguments show that when |h| < €y (with € sufficiently small), then
(6.8) HP(h) = —hag + Q% (h, h)(1 + R*(h)),

where Q* is a quadratic form in its argument and |R*?(h)| < C(eo) |h).
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6.3. Vector fields and notation
We introduce the three generators of the spatial rotations
(69) Qij = xi(()j — C(]jai = xi(()j — Ij8i7

which are known to commute with the wave operator, as well as with the Klein-Gordon
operator. Here, the coordinate indices are raised and lowered with the Minkowski metric.
We also write

Q= g, Qg i=Cos, Qg 1= 3.
Note that
(6.10) Q2,00 =0, [Q,0+1]=0.

The following notation about multi-indices will be used. Given a finite set & =
{ag,as,...,a,}, we call n the order of .#, denoted by |.#| = n. We introduce an or-
dering relation denoted by < on ., defined by

a; R «; ifand only if 7 <j.

The pair (£, <) is called an abstract multi-index. Obviously, a subset of .# can also be
regarded as a multi-index endowed with the same (restricted) order. The order < describes
the location of each differential operator in a product.

A partition of an abstract index .# is defined as follows. Let _#; be family of subsets of
&, with

U A= N Jy =92,

Then, we say that {_#;} is an m-partition of .# and we write Y ,-, # = .#. We observe
that each ¢ can be regarded as a multi-index and ;" | |_Zi| = |.7].

If for all kK =1,2,...m, we have _#;, # @, then we say {_#;} is a proper m-partition of
S and we write ) " 7. =S, | Zi| > 1.

Now, let us return to the case of multi-indices in the context of differential operators. Let
Z be a family of order one differential operator, say Z = {Z;, Z5, ... Z,}. A n-multi-index
on the family Z is a map

I:7 —{1,2,...p},
a; — (o) € {1,2,...p},

and we write Z! = Zi(a1) © Z1(az) © "+ © ZI(a,)- With some abuse of notation, we often
write I = (a,, @1, ..., 1) with oy € {1,2,...p}, where each «; is replaced by I(«q;).

An m-partition of index [ is defined as follows. Let {_#;} be a (proper) m-partition of
an abstract index .#. Then we restrict the map I on each ordered set #;, and this yields
us an m-multi-index, denoted by {Ji.} = I({_#k}). Then, we call J; a (proper) m-partition
of I and we denote it by I =3"," | Ji, (|Jk] > 1).

We often consider the set &?(.#, m) composed by all possible m-partitions of .#. Then,
each partition in & (.#,m) can be associated with a partition of I. We observe that if
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[T, ux is a product of m functions, then

Zl<lf[1uk): > ﬁZJkuk

{Akrez (S m) i=1

with {Ji} = I({_#}). However, for the sake of simplicity in the notation and whenever
there is no risk of confusion, we will often write

Zf(lf[lhk): > ﬁZJkuk.

SRy Je=1 k=1

6.4. Functional spaces of interest

Recall that, in classical gravity, an initial data set for the Cauchy problem must satisfy the
constraint equations (2.29). As first proven by Lichnerowicz, solutions can be costructed
by solving a nonlinear elliptic system and, by the positive mass theorem, the non-trivial
part of the metric § — m decreases precisely at the rate »~! at spatial infinity. Indeed, if
g — m would decrease faster than =1, then § = m.

In modified gravity, the constraint equations (5.7) and (5.8) are much more involved,
an analogue result related to the positive mass theorem is not known. Yet, since we focus
our attention on the (local) existence and (k — 0) convergence theory, we can consider
an “Einsteinian initial data set” having o9 = 01 = 0 satisfying the classical constraint
equations. We need to handle the quasi-linear wave system with initial data decreasing
like 7~! at spatial infinity. These functions (in general) do not lie in L?(R?), and we need
to construct our local solution in suoitably weighted functional spaces.

We need to introduce some norms about C°(R3) functions, that is, smooth functions
with compact support. A first norm to be introduced is

lollxe ==Y 080202
1| +[12]<d

The L? norm is with respect to the standard volume form, i.e. the Lebesgue measure.
The second norm defined for the C°(R?) functions is

lollxar == > 10:070" 0 12s),
|I1|+|I2]<d

where 0,¢ refers to the spatial gradient of ¢.
The first functional space to be used in our analysis, the space Xj‘f,“, is defined as the

completion of the norm || - || a1 on the G2 functions. We denote by
(6.11) I g o= - o + 0 Do

The second functional space, Xj‘é“, to be used in our analysis, is defined as the completion
of the norm || - ||ng+1 on the C'° functions.
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We also define the weighted sup-norm
Iflle- = sup{(1 +r)[f]}

and
[ lLxaes o= 1 + 1 g,

so that the functional spaces € ; and X %™ are obtained by completion from the C,(IR?)
functions with respect of the norm under consideration.
The relations among these functional spaces are as follows:

(6.12) X o Xt cxd, XicX$, X§cXg.
In the next section, when d > 2, by (7.8), we will also see that
(6.13) Xtcé ,, X&cXicXxi

Finally, we define the norm of a triple Sy := (hoas, 00, ¢0):

HS”XgH = Z ||h0a6||Xz+1 + HQOHX%+1 + ||¢0||Xf,+1
a7ﬁ
and we set
(6.14) Xt = X O Xt o X g
Similarly, for triples S1 = (hiag, ¢1, 01), we define
I1S1llxg = > Irrallxe + llorllxe + 161l xe
a76

We are now ready to discuss the notion of asymptotically flat PDE initial data.

Definition 6.2. — A PDE initial data set in wave coordinates for the initial value

problem stated in Definition 3.7, say (M, hoag, P1ag, 00, 01, o, @1) , is said to be asymp-
totically flat if

— the initial slice My is diffeomorphic to R® and in its canonical coordinate system, the
initial data set satisfies the wave constraint equations.
— in the canonical coordinate system (x', 22, x3),

||h0a/3||3—1 < eo,

where € represents the ADM mass.
— the &_1(R®) norm of 0o, 01, ®1 are finite.

Hence, the initial data behaves like =1 at spatial infinity. A geometrical initial data

(M,g*, K*, 00, 01, qbf], qﬁ) is called asymptotically flat, if it gives a asymptotically flat PDE
initial data.
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We recall that the components of the solution to the system (6.1) are functions defined
in R* with three spatial variables and one time variable. To study these functions, say
u = u(t,-), we need to the following norms and corresponding spaces:

lult, Mpa: =D 10"Q%u(t, )| 2@

|I1|+]|12]<d

- Z 1070 Q2 u(t H—ZHG’“ )l xt,
k| J1|+|J2|<d k+1<d

lult, Mgar s = > 100" Qult, )2y
|11\+?12\§d
=Y > 0Pl ult ey = Y 0Fult, ) x,
« k+|J1H>‘J2|§d k+1<d

and then
[ult, ) gae = [lult, )lpa + ult, )l garr,
[, ) parr = llult, )lle_, + ult, )] o
We also define several norms on the time interval [0, T] for p € [1, o0]:
||U||LP([0,T];Ed) L= ||||U(t7 ')HEdHLp([o,TDa ||U||LP([0,T];E5‘2) = H||u(t, ')HE?,HLP([O,T])’
el ooy - = [Nt Mo ooz Iell ooty = 11t Mg oo
Finally, for p < co, we have the functional spaces of interest
Lp([O>T]§Ed)a Lp([()»T];Eg)» Lp([O’T];EiE%

and LP([0,T]; E%), defined by completion with respect to the corresponding norms in the
space of C°(R*) functions. This leads us to the definition of C'([0,T7],; E%), C([0,T]; E%)
and C([0,T]; E%) by completion from the space C2° functions with respect to the following
norms:

L=([0, T EY),  L*(0,T}: Ep),  L*((0.T}; Ep),

6.5. Existence theorem for the nonlinear field equations

We introduce the following norm for the initial data Sy := (hg, k1, ¢o, @1, 00, 01):

10ll xa+1 := max{[lhoasll et [1hrapllxa, 5~ E2W2H g yarn,

K_(1/2)[d/2]+1/4||¢1||Xd, R—[d/Z]—1/2||QOHX%+17 ﬁ—[d/Z 1/2||Q ||Xd}
We are ready to state one of our main results.
Theorem 6.3 (Local existence with uniform bounds). — Given any integer d > 4,

assume that

(h()aﬁahlaﬁ) € X}jf—l X Xd, (¢, 1) € X%—H % Xd, (00, 01) € X%"'l « x4
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and suppose that Sy := (hg, h1, ¢o, 41, 00, 01) Satisfies
(6.15) HSUHX,C_}“ S € S €0

for some sufficiently small ¢g > 0. Then, there exist constants A, T* > 0 which are
independent of k and such that, within the time interval [0,T*], the Cauchy problem
(6.6) (with 0 < k < 1) has a unique solution (hfg, ¢", 0") in the following functional space
(with 0 <k <d-—1):

Ok, € C(0,T), X3 n C([0, T), X3+,
o € O0,T1, XN CH ([0, T), XE+7),
ofe" € C(0.7), X57) €' ([0, 71, X577,

Furthermore, the following estimates hold with constant independent of x:

(6.16a) 155t g, < Ae
(6.16b) 6" < Ae,
(6.16¢) Il + 52l gl s < Ae.

Equipped with the above theorem, we are thus able to build the local solution of the
original Cauchy problem stated in Definition 5.4.

Theorem 6.4 (Existence of modified gravity developments)

Consider an initial data set (M,g, K*, oo, Ql,gb(i),qzﬁ) for the Cauchy problem in Defi-
nition 5.3 and assume that its associated PDE initial data Sy = (hg, h1, ¢o, @1, 00, 01) 1S
asymptotically flat and satisfies the conditions in Theorem 6.53. Let (hgﬁ,¢“, o") be the

corresponding solution of (5.10) associated with Sy. Then the spacetime ([0, T] x R3, g*) is
a modified gravity development of the initial data (M, g%, K*, 0o, 01, gbé, qﬁ)

Proof. — We simply note that the local solution (hf, ¢*, 0") is sufficiently regular and that

h = g* —m sufficiently small, which guarantees that the metric g* is globally hyperbolic on
[0, T]xR3. We can apply the result about the preservation of constraints in Proposition 5.7.
Once the constraints

1
e = SInf(R,). T =0
hold, we see that the pair (g%, ¢) satisfies the conformal field equations (3.7). O

7. Technical tools for the local existence theory

7.1. Estimates on commutators

From this subsection we will make some preparations in order to prove Theorem 6.3. In this
subsection we derive commutator estimates. First we point out the following commutation
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relations:
(71) [8,1, ch] = 5abac - 5(108177 [ata Qab] =0.
Lemma 7.1. — If u is a smooth function defined on [0, T] x R3, then for any multi-index
I, Iy with |I,| + |I5] = n, the followmg estimates hold:
Ic J
(7.2) alu= ) €50

1</
where ©1¢ are constants. When o = 0, one has ©1¢, = 0.

Proof. — First, we observe that when a = 0, 9y, = 9, commutes with Q. When o > 0,
this is proven by induction on the order of |J|. When |J| = 1, the result is proven by (7.1).
We denote by
[Q(l7 aﬁ] — Hcﬁa
Now assume that for |J| < k, (7.2) is valid. For |J| =k, we find
Q7 =0, 0",
where |J;| = k — 1. Then, we have
[Q7,0u)u = Q0, Q71 00t — 052,27 U = Qo V1 00tt — Uy 027 U + Q4 0.V u — 0,2, Q71w
= Qq, ([, 0a]u) + [Qy, 0.2 u
= Q(ll < Z @i}?l 8bQK1u> + 921aabQJ1
|| <[ J1]

= Z @i}?lQalabQKlu—i—@b 8;,9‘]1

aia

[K1]<|J1]

= > O 02,2 u+ 0,00 u+ Y 0% [Q,, 0] u
[K1]<|J1] [K1]<| /1]
= > O 002, u+ 0,00t D 0% 65,00 .
|[K1]<|J1] [K1]<|J1]

O

Lemma 7.2. — Let u be a smooth function defined in [0,T] x R3. Then the following
estimates hold for |I| + |I| = d:

(7.3a) 002 0,u] < (0,00 Q2u] + C(d) > 0,00 Q%ul,
1151<|12|

(7.3b) 10,00 Q%] <00 Q"20,ul + C(d) Y |04Q"%0,ul,
Hil+13]<d

(7.3¢) (020", 0,05]u] < C(d) D 10a0a00 2",

a,a
[Jal<|I2]
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(7.3d) FQ u(t, )| < C(k) Y [0 Q"ult, )|, for |a| > 1,

[J1|<k

[02Q", HP0,05lul < |05 H?| (0,050, Q072ul

Ji+J =0
Jo+J4=1Iy
[J]1+]75]>0

+C(d) > (0B HY| 000,00 Q%

I+ =0
[J21+]J51<|I2]

a,B,a,a

(7.3¢)

where H*? are smooth functions.

Proof. — In view of (7.2), the following identity is immediate:
00102, 0,) = > 02,000 .
| K| <| 2]

To derive (7.3a), we observe that

000", OpJu = 0 (9", 0uJu) = > oM (O1,0.0%u) = > Ol .00 0"

aJa ads
¢, J2|<| 12| ¢, J2|<|I2]

and

(74) Z |@i1;2808£1QJ2u} < O(d) Z |308[1Q15u|.

¢,|J2|<|I2 | o131 <| T2

This establishes (7.3a).
The equation (7.3b) is derived by induction on d. Clearly, (7.3b) holds for d = 0. If it
holds for d < k, let us prove the case d = k + 1:

0,01 Q20| < [01Q20,u + |[0a, 0" Q"]ul.
Then by (7.4),

10,01 Q2| < [0"Q20,u] + C(d) D 10.0"Q"%u.

e[ 5|<| 2]

Note that |I}| < |I] — 1 < k. We apply the induction assumption on the second term in
the right-hand side and obtain

0,01 Q0| < [0"Q%0u] + C(d—1) > [0"QE 0,

s[5 [> 115

which proves (7.3b).
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The proof of (7.3c) is a direct application of (7.2).

(020", 9,05]u = [0, 0,]05u + 0 ([0 Q" D]u)
> 050000 0u+ > O 0.0.00 Q"

aJs
[J2|<|I2] | J2|<| 2|
- Y emasantes Y oastian ol
[J2|<|I2] | J2|<| 2|
(7.5) + ) 08 0,000 "
| J2|<| 12|
Inc Jac I K:
= ) O 0% 00,000
[Ja|<[I2]
[Ko|<|I2]
+ Y 050,000 0"u+ Y 08 0,00 050"
| J2]|<| 2| [J2|<|I2]

which leads to (7.3c).
The proof of (7.3d) needs the notion of homogeneous functions. A smooth function f
defined in the pointed region R3\ {0} is said to be homogeneous of degree i if

f(rz) =r'f(x), for any r > 0 and z € R*\ {0}.

It is well-known that the partial derivatives of a homogeneous function of degree 7 are also
homogeneous and of degree ¢ — 1.

We denote by w® := % and we note that they are homogeneous functions of degree 0.
And recall the definition of radial derivative 0, = w®d,. We will prove that
(7.6) oF =) Ajor,
1<k

where A% is a homogeneous function of degree —k + |I|. For k = 1, this is guaranteed by
the expression of 0,. Assume that this holds for the integer less than or equal to k, we will
prove the case of k + 1:

Iy = 0,0 = 0, ( > A’;@i)

I,a

=Y w0, (Af0)) =D w0, A50L + > Wb Ab0,0;
Ia 1,a La

We observe that w’d, A¥ is homogeneous of degree —k — 1+ |I| and w® A% is homogeneous of
degree —(k+1)+|I|+1. This concludes (7.6). Next, we see that (7.3d) follows immediately
from (7.6).
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To prove (7.3e), we perform the following calculation:
(01" H*P9,04u]
= > O HP 0" 0,05u + H*P |01 Q2 0,05)u

Ji+I{ =11, Ja+T5=1

[J{1+1751>0
! ! U /
= Sy 0JiQHY 0,050 Q0 u+ > OfQRH P91 Q% 0,04]u
J1+J] =11, Ja+Th=1I Ji+Ji=1
[T{1+1751>0 Jo+Jh=1Iy

— > 9102 H% 9,050 Q"

J1+J] =11, Ja+Th=1I
171 1+1751>0

E J'OJL rraB § Jac ' Ko J1 O K}
+ 8‘%19 2H ( @aKQG/BKéacgc’am Q 2U
Ji+J] =11 [Ka|<|J2]
Ja+Th=1Ig IKhI<|Ka|

+ ) @ﬁéaa@c@;chfl&u),
| K2 |<|J2]

where (7.5) is applied. Then (7.3e) follows from this identity. O

We also need the commutator estimates on the product in the form 91Q'2.

Lemma 7.8. — Let u be a smooth function defined in [0,T] x R3. Then the following
estimates hold for |I| + |I| = d:

(7.7a) 0" Q20,u] < [0,0"QPul+ C(d) Y [0,0"Q"ul,
a,| 13| <12
(7.7D) 020" Q20| < [07QR0,u] + C(d) ) [019Q"%0sul,
|Ii\+flé\<d
(7.7¢) [07Q", 0,05]u] < C(d) D 100.0" ",
‘JQT’<Q‘12|

[0"Q"2, H*0,05)ul < Y [071Q2H||0,0507 Q"

Ji+J =1
Jo+Jh=1Iy
|71 1+1751>0

+C(d) > [0MQEHY|0,0,0" Q.

Ji+J =1
[J2|+]751<|I2]
a,B,a’,a

(7.7d)



THE VALIDITY OF THE THEORY OF MODIFIED GRAVITY 57

Proof. — From (7.2), the following identity is immediate:

102,60, = Y 629,000 u.

|K[<|I2]

Then we perform exactly the same calculation as in the proof of Lemma 7.2 with 9t
replaced by 9. [

7.2. Global Sobolev inequalities and embedding properties

For completeness, we re-derive a classical estimate (due to Klainerman).

Lemma 7.4. — For allu € X with d > 2, one has

(7.8) [ulle -, < Cllullxa.

Proof. — We only prove this inequality for smooth functions since, by regularization, it
then extends to the whole X?. We consider R? equipped with the polar coordinates, i.e.:

z' =rsinfcose, x?=rsinfsing, 3 =rcosé.
Note that (7.8) is equivalent to the following inequality for all zy € R3:
[u(z0)| (1 +70) < Clluflxe

with zg = (2}, 22, 23) = (10 sin 0y cos g, 7o sin Oy sin g, 7 cos Oy).
The case rg < 1 is direct by classical Sobolev inequality. We thus focus on the case
ro > 1 and we consider the estimate on the the following open subset of R? defined by

Vi={(ro—1/2,r0+1/2) x (60 — 1/2,00 + 1/2) x (po — 1/2, 00 + 1/2)
Now let u be a smooth function and denote also by w its restriction on V| with
v(r, 0, ) = u(rsinf cos @, rsin 0 sin p, r cos )

with 7o > 1. Then by the classical Sobolev inequality, we have

u(zo) 2 = [v(ro, B, o) > < C 3 / D00k O 2drdbdyp.
1%

ko+ki1+ko>2

Note that in V', rg — 1/2 < r < ro + 1/2, which leads to 1 — 1/(2rg) < r/ro < 1+ 1/(2r¢).
Recall that ro > 1, then

r

DO W

< <

DN | —

To
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Thus, we have
1 2
5 /V 0k 02 v[2drdbdi < /V |8f°8§10§2v|2:—8drd0d90
= 7"52/ |0f08§18£2v|2r2drd0dg0
1%
— r02/ ]81’?08518@211]%%
v
< 7"52/ |87'f08§18§2v|2dx,
R3
where dz is the standard volume form of R3.

Here, we observe that

! x?

1 2Q31u + 1/2
(22 + (22)2)" ((21)2 + (22)2)

Opv = cos P§231u + sin p§30u = Qa9

and
0,v = Qou,  0v = O,u.

Note that Q7 cos ¢, 7 sin ¢ are homogeneous of degree 0. So, by homogeneity, that for
r > 1/2, we have

|0F 0 0k20| = |08 (cos a1 +sin Q)" Q3| <€ 30 [9RQTu|,

[1|<k1+k2
which leads to
(7.9) lu(xo)|* < Cry? Z / |oF Q u|da.
I +ko<2 VR
Then by (7.3d), the desired result is proven. ]

We will also need the following embedding result.

Lemma 7.5. — Let u be a function in X&? and v € L=([0,T]; E4™?). Then for all pair
of multi-indices (11, Is) with |I1| + |I2| < d, the following estimate holds:

(7.10a) 102" Q" ul| oo gy < Cllull xare.
(7.10b) |07 Q= u(t, ~)HLOO(R3) < C|v(t, ~)HE<11{+2 fort €[0,T7.

Proof. — We only prove this inequality when u € C°(R3) and v € C®°(R*). Then by
regularization, it extends on X% and L>([0, T]; E%?).
We begin with (7.10a), and the proof is decomposed as follows.

Case 1: I} = I, = 0. The left-hand side of (7.10a) is controlled by its €_; norm so (7.10a)
holds.
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Case 2: || > 0. In this case we suppose that I; = (ay,a,- - ,a,) and denote by
I = (ag, -+ ,a,). Then I] is of order n — 1 > 0 and, by classical Sobolev’s inequality,

107 Q"] e oy = 1001 O Q20| Ly < C Y 110700, 0P Q|| o oy < Cllual] e

|J1|<2

Case 3: |I3] =0, |l5] > 0. In this case we suppose that Iy = (by, by, -+ ,b,) and denote by
I} = (ba,- -+ ,by). Then I} is of order n — 1 > 0, and

102 Q%] gy = 19020l gy < C DN+ 1) ooy = € 3 (|82,
b b

Then by (7.8), we have

107" u]| o sy < CY |oorlull, =C Y Y "Gzlﬁjz(‘?b@ilﬁléuum(w)
b [J1]4+]J2|<2 b
<C Y |ooioratat < Cllull e

[T1I+1751<2
bl

u||L2(R3)

where the commutator estimate (7.3a) is used.
By combining these three cases together, (7.10a) is proven.
We then prove (7.10b). The proof is similar and we also discuss three different cases.

Case 1: I} = I, = 0. The left-hand side of (7.10b) is controlled by its €_; norm so (7.10b)
holds.

Case 2: [; > 0. In this case we also suppose that Iy = (a1, a9,...,a,) and denote by
I = (g, ...,ay). Then |I7| > 0, and also by the classical Sobolev’s inequality,

10" Q0 (t, Y < C Y (1000, 01 Q0 (L, )| 2y

|J1]<2

=C Z ||aa18;]16]iﬂ[21)(t, ')||L2(R3) < CHU(t, ')||Ef,+2‘

[J1]<2
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Case 3: || = 0,|I5] > 0. We suppose that Iy = (by,bs,...,a,) and denote by I}, =
(ba, ..., b,). Then, we have |I}| > 0, and

107 Q2 0(t, )| o) = ([ Q202 )|
< O3+ 1A 20t Y s = C Y 1Q%0(t,)le,
b b

<O [laQ%0(t, lx2=C Y (10]Q70,Q%0(t, )| x2
b \(71|+TJ2\52

<C >y ||aglab,QJéQfév<t,-)|yX2gcuv(t,.)uwg.
\J2\+7J§\s2

By combining these three cases, (7.10b) is established. [

Lemma 7.6. — Let uw € X% and v € L>([0,T); E%), then the following estimate holds
for all pair of multi-index (11, Iy) with 1 < ||+ || < d:

(7.11a) 11+ )70 Q% ul ragey < Cllull g
(7.11b) (L + 7)o" Q2 0(t, ) || 2@s) < Clu(t, Mes, fortel0,T].
Proof. — The proof of (7.11a) is decomposed into several cases, as follows.
Case 1: |[;] > 0. In this case we suppose that I; = (ay,aq9,- - ,a,) and denote by
I = (ag,- -+ ,a,). Then I is of order n — 1 > 0, and we obtain
I O _ I ol
102 % L2 sy = (|00 02120 2y < ] g

Case 2: || =0, |I3] > 0. In this case we suppose that Iy = (b1, bs, - ,b,) and denote by
It = (by,- -+ ,by). Then I} is of order n — 1 > 0 and we have

(L +7) 710 | o gy = 1L+ 7)1, %0 | g

<CY 0625 gay < Cllull g
b

By combining these two cases, (7.11a) is proven.
The proof of (7.11b) is exactly the same if we replace 9, by 0 in the above proof. [

Lemma 7.7. — For all function u of class X2, one has
(712) HUHL‘X’(R?’) < C Z H(l + |$|)718£IQI2UHL2'
[T1]+]12|<2

Proof. — This inequality is equivalent to

(7.13) ()| <C Y 1+ |z) 7o )|, x e R

[T1|+[12]<2
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for all w € C2°(R?). Then by regularization, this inequality is hold for all u € X?2. This is
proven by distinguish different z. Let x(-) a C*° function defined on [0, 00) with

1, s<1/2,
x(s) = 0, 1<s<0.

Then x(] - |) is a C°(R?) function.
Now we consider the case |z| < 1/2. We consider the function

f(@) = x(|z])u(z)

which is in class C2°({|x| < 1}). Then we apply the classical Sobolev’s inequality:

lu(z)| = |f(z)] < C Z ”yf“Lz ({lel<1y) = C Z HaI (EL ||L2({\x|<1})
17]<2 |7]<2
=C > llorx(lehoru HL2({|CC|<1} <O ) 1102 u(@) a(qial<ay
i< I|<2
<C 3 A+ 1D 02u@)] o gy £ € 2 10+ )70 u(@)]| sy
[12]<2 [12]<2

where we used that 811 (]z|) are bounded.
When |z| > 1/2, we have

fu@)| = (1 = x(2a]))u L—Hruﬂ>u+mw*a—x@m»mm
<+ =) (1 = x@lz)) u()|,
and the by (7.8),
fule)] < || (1 + [a]) " (1 = x(2fz]))u(@)], |
<C N foRa((+ e = @) u(@) | 2

[I1 ]+ 12| <2

=¢ Y [loA ()L - x(2le)))

[J1 14191 1=11
[T1]+[I2]<2

HLOO(R:%)

O (1 + lal) ™ (1 = x(2la)) (@) | g
where for the last equality we have used the fact that
Qo (1 + 271 = x(2lz)))) =
since both factors are radial symmetric. Then we will prove that
O (14 |27 (1 = x(@la))) < C(1L + |27

for |Ji| < 2. This is check directly by calculating and the fact that (1 — x(2|z|)) and
its derivatives are supported out of the ball {|z| < 1/4}. Then the desired result is
established. O
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7.3. Linear estimates

We begin with the linear theory of wave equation with the initial data given in X% (R?) x
X4(R3). For the simplicity of proof, we introduce the energy functional with respect to a
metric ¢®° defined in R* as follows:

1/2
(7.14) Ey(t,u) := ( / (= g%[0wul? + g™ 0udpu) (2, -)d:z:)
R?’
and
1/2
(7.15) Ego(t,u) == (/ ( - 900|atu|2 + g“baauﬁbu + CQ?JQ) (¢, )dzp) )
R3

A metric ¢*? is said to be coercive with constant C' > 0 if
(7.16) C_1||Vu||L2(R3) < Ey(t,u) < C||Vu||L2(R3),

where Vu refers to the spacetime gradient of u. At this juncture, let us introduce a notation
for the C2° functions defined in the region [0, 7] x R3:

[[ult, ) xar = Z VO Q"2u(t, )| 2 s).
[11]+|12]<d

By (7.3a) and (7.3b), the norm || - ngfl and ||V (-)||xa are equivalent.
We also introduce

Ej(s,u) = Z E,(s, 0" Q"u), EZ’C(s,u) = Z E,.(s,0"Q2u).

[1]+|12]<d [1]+|12]<d
Then when the coercivity condition (7.16) is assumed,
(7.17) Ot pger < B, 0) < Clult, ) g
The existence result in the next section is based on the following linear estimate.

Lemma 7.8 (L™ type estimate for wave equation). — Let u be a smooth function
defined in the region [0,T] and let F = —Ou, then for any 0 <t < T
(7.18)

t
[ult, e @) < Ct/o 1E (s, )lle -y zyds + C ([u(0, ) le_, @) + VU0, 2)lle_y @),

where Vu refers to the spacetime gradient of u.

Proof. — This estimate based on the explicit expression of the linear wave equation. We
consider the Cauchy problem:

Lu = —F,
(7.19)

u(0,2) = —f(x), Ou(0,2) = —g(x).
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Then, u can be expressed by

I
t,x)=— F —y)d d
e =g [ | Pyt

+ It |y|:tg(x —y)do(y) + 2 " (f(z —y)— < 0uf(x —y),y > )do(y)

c=wuy(t,x) +us(t, x) + us(t, ).

Here, do(y) refers to the standard Lebesgue measure on the sphere |y| =t — s or |y| =,
and < -, > refers to the standard scalar product on R*. The notation 0, f stands for the
(spacial) gradient of f. The remaining work is to estimate u; with i = 1,2, 3.

When |z| < 1, we make use of the fact that || - ||fec(®s) < || - ||e_,. Then, we have

F
luy (t, 2)] < /H HSI/ do(y)ds
t—S ly|=t—s
/||F ||elt—sds<t/||F Mer.

The other terms uy and ug are estimated similarly. Then (7.18) is proven in this case.
When |z| > 1, we need to establish the decay estimate of the solution at spatial infinity.

We begin with u;.
F(s
ly|=t—s 1+|‘T—y|

lup (t, )] < — /

HF ||€1 -1
1 — d ds.
= [ 1) [ ) aotas

We focus on the expression f‘y|:t_s(1—|— |z —y|)"'do(y). We make the following parametriza-

tion of the sphere {|y| =t — s}. Let 6 be the angle from the vector —x to the vector —y,
and ¢ refers the angle from the plan determined by pair of vector (z,y) to a fixed plan con-
taining x (for example the plan determined by z and (0,0, 1)). With this parametrization,
the volume form o(y) has the following expression:

do(y) = (t — s)*sin 0dfdp.
Also, by the classical trigonometrical theorem “Law of cosines”,
lz —y|* = |z* + |t — s|* — 2|2|(t — 5) cos .

Then, we obtain
(t — 5)?sin 0dOdyp
/ (I+]z -yl ldU / / ) 1/2
ly|=t—s 1+ (|22 + |t — s> = 2|z|(t — s) cos )

(t — s)*dy
=27 ; ; 7
—1 14 (|22 + [t — s> = 2[z|(¢t — s)7)
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where v := cos . Then, we have

1/2

1 2r(t —s) (! |z|(t — s)dy
1+ |z — do =
/y|=t—s( o=l ) |z /—1 L+ (|z2+ |t — s> = 2|z[(t — s)v)

_ 2n(t —s) /'xH(tS) Tdr
el e 1T

where 7 := (|z]> + [t — s]* — 2|z|(t — 3)7)1/2. Then, we obtain

1F(s, )51 / o
1+ |z —y|) 'do(y)d
4ﬂ/ P IMFJ + |z —yl) " do(y)ds

||+ (t—s) rdr
<L / 1F (s, e / ds.
2|z| el LT

Now the discussion should distinguish between two cases.

jur (¢, 7))

| /\

Case 1: |z| > t. In this case |z| > ¢ — s always holds, and we find

1 t |$|+(tfs) TdT
un(t,)] < —— / 1P (s, e / ds
2|z "=y 1T
||+ (t—s) rdr
_ 1P (s, )l / ds
2’*7C|/ "emesy 1T
/H “ |z|+(t—s)
< — e / drds
2Jz| " ial— -
= [l 1ds<—/ (s, e ds.

which leads to

t
alfut, 2)] < ¢ / 1E(s, e ds.
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Case 2: |z| < t. In this case we need a more precise calculation:

us(t, ) s e [ T
ur(t,x)| < — / e / ds
2\ | el LT
t—|x| |z|+(t—s) rdr
- / P [
|| —s)—fa| LT

|z|+(t—s) rdr
176, | ds
2| | izl "Jigesy 1HT

t

t—|z| 1
S2||/ AalllF (s, Yeords + 50 | 2t =) IF (s, )llerds
t—

|z

t—|x| t t
sA Hnawhw+/uw@wwwzluﬂam4w
t—|x
Recalling that |z| <t < T, we find
t t t
mmmz/wmﬂhws—/wwmhm
0 |$| 0
so that

t
umm@mpéwwmhm

The estimate of uy and us are similar:

wlto) < = [ lgta = y)ldoty

ly|=t

lglle_, / .
< — DYdo(y).
< M:t('x y| +1)""do(y)

By the same parametrization made in the estimate of u; and similar calculation, we can
conclude with

|zlfuz(t, )] < tlglle.-

In the same way, we have

1 [ flle_ydo(y) 1 10:flle_,do(y)
us(t, 2)] < 4WQ/I +—/|yt

=t T —yl+1  4xt |z —y|+1
1 t
< — — |0y :
< il e + ol e
By combining the estimates made in |z| < 1 and |z| > 1, the desired result is established.
[
Lemma 7.9 (L? type estimate for wave equation). — Let u be a smooth function

defined in the region [0,T] x R® and g*® = m®® + H*® be a smooth metric, where m®?
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is the Minkowski metric with signature (—,+,+,+). Assume that g®° is coercive with
constant C'. Let f = —g*P0,0gu, then for any 0 <t < T,

d Q
(7.20) T By(t ) (e + C Y IV (1) | By (8, w),
a8

where Vu refers to the spacetime gradient of u.

Proof. — This is a standard calculation and we write

1
Orug®P 0,05u = 580 (9%(9ou)? — g™ Oudyr) + 9a (9° Opudsu)

1
+ §8tgaﬁaau85u - aagaﬁatuaﬁu.

Integrating on the slice {t = 7} and applying Stokes’ formula, we find

1

3 / 80( — " (0u)* + g“bﬁauﬁbu) dx
R3

1
= / Owufdr + 3 / (8tga58au8/5u — 2(’3ag°"88tu85u) dx,
RS RS

which leads to (by the coercivity condition)

1d 1
——(Eg(t, u))2 = / ufdr + = / (Gtgaﬂﬁaua/ju — 2(’3&g°"88tu85u) dz,
2 dt R3 2 R3
which is
d 1
E,(t, u)aEg(t, u) = Oyufdr + 3 / (ﬁtgaﬁaauagu — 28ag“ﬁ0tu85u) dx.
R3 R3
So we have

d «
Eg(t,u)EEg(t,u) < [|0sull 2 | fll 223y + ClIVI* N ooy VUl 72 sy
and by recalling (7.16)

d
ot 0) < Cllfl12es) + OV i) Byt w).

O

Now we combine Lemmas 7.8 and 7.9 with the Sobolev estimate (7.8) in order to get a
estimate on the E%™ norm.

Lemma 7.10 (E% norm estimate on wave equation). — Let u be a smooth function
defined in the region [0,T] x R3. Let g°° be a smooth metric, g = m®® + H*? with m®?
the standard Minkowski metric. Assume that g satisfies the following coercivity condition
with a constant C > 0 and |[H®| < 1/2. Let ¢®*0,5u = —F. Then the following estimates
hold for d > 3:

t
(1.210)  fult, g < OO, M ggne RO 4 C [ |F(r, g e P,
0
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(7.22)
t t
Hu(t")HE& < Ct/ HF(Sv')HS1dS+CtE§(07u)Z/ HHQB(S?')HL"oeCfOSDB(T)deS
0 B 0

t s
+Ct2/ ||H‘“ﬂ(s,-)l|mo/ 1E(7, ) [|s e = PV Pds + CLES (0, w),
B 0 0

where
Dy(t) := rg%x ||H0‘5(t, -)||E1;{+1.

Proof. — We begin with the estimate on E¢ norm of Vu. We differentiate the equation
with respect to 9'Q2 where |I;| + |I5] = . Remember that this product of operator
commute with the linear wave operator, Then
—0" QR F = 00" QP u + H* 0,050 Q"2u + [0 Q"2 H*P0,05]u
which is
9°%0,050" Q2u = —F — [0 Q2 H*0,05]u.

Apply (7.20),

d

Bt 0" Q"2u) < C|o"QRF(t, )| 2@y + C[|[07Q", H?0,05)u(t, )|l 12(ms)
7.23
( ) +CZ ||VHa’6(t, ')HLoo(RB)Eg(t,aIIQIQU).

a75

We should estimate the second term in the right-hand side. By (7.3e),

H[angw’Haﬁaaaﬁ]uHLQ(Rg)S ST [0%Q%H 0,0507 Q| 2

J1+J =1
Jo+Jh=1Iy
|71 1+]75]>0

(7.24) + ) [01Q%RH 0,0,0" Q% s

J1+J) =1
[Jal+]J51<|I2]
a,B,a’,a

::Tl —+ TQ.

Here, we make the convention that when [ < 0, [0:1Q"9,05] = 0. We see that both terms
can be bounded by C'Dy E%(s,u): For Ty, when |J;| + |J3| < d — 1, Then by (7.10b),

1071272 HYP 9,0507 Q2| p2(gsy < (1071972 HOP|| oo (85|00 0507 Q72| L2 gy
< CIIH“BIIEleIUIIEgH-
When |J{| + |J5] > d, then J; = Jo = 0. Then by (7.11b) and (7.8),

107197 0% 9,050 Q" ul| r2rsy < [|(1 4 7)1 01Q HP|| p2me || (1 + 7) 00| oo (r9)
< C||Haﬁ||E;i{+1||5aaﬁU||E2 < C||Ha’8||Eg+1||u||E;g-
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The term 75 is bounded in the same manner and we omit the details.
Combining this with (7.23), we find
d
o Ey(t,0"Q"u) < C||0"Q2F(t,-)|| r2re) + CDaEL(t,w)
+C Y VHP ()| oo (es) By, 0" Q")
a?/B
Taking the sum with respect to (I, I) for |I1| + |I5] < d, then

(7.25)

d
(7.26) %E;l(t, u) < C||F(t,-)||pe + CDLEL(t, w).

Integrating (7.26), we obtain
t
(7.27) Eg(t, u) < Eg(o’ u)eCfO Dy(r)dr + C/ ||F(T, ')HEd oC I Dd(s)dsdT,
0

which leads to (by (7.17)) (7.21a).
We now turns to estimate the €_; norm. We can easily deduce that

(7.28) Du = —(1—H)7 (H® + Hm™)0,0u —2(1 — H*) "' H*°0,du — (1— H*)™'F.
Here, we use the assumption that H% < 1/2 to make sure that (1 — H%)™! is well defined.
By Lemma 7.8, we have

lulle_, < Ct / 11— H®) " F(s, e ds

+Ot/ (1 — HY T H*0,04ul|e_ 1ds+(]t/ (1 — H®)"*H™0,0ule_,ds
+ C([lu(0,2) e, @)y + [ Vu(0, 2)lle_, @)
t
< C’t/ ||F(5,-)||g_1ds+C’t/ ||H“b8aabu||g_lds+0t/ ||H“08a8tu||g_1ds
0 0 0

+ C(HU(O, ZE) ||571(R3) + t”VU(O, IL’) ||871(]R3)>-
We observe that the following estimates are guaranteed by (7.8):
[ 0uDgulle ., < NH* |l [[aDsule

< H| 1 | 0aOpullp2 < C Y |IH |1 Ej(s, u)
a,B
and
[Vu(0,)][e_, < Cl[Vu(0,-)| g

By combining these two estimates, we get

[Jult,)lle_,

t t
(729) < Ct/o HF(S,)HE_1d5+ CtZA "Haﬁ(37>"LooE3<S,U>dS+ CtE;(O,U)
a,
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By combining (7.27) and (7.29), we obtain
(7.30)

t t
lu(t, e, < Ct / 1E (s, )e_yds + CLEX0,u) Y / | (s, ) || oee®Jo P07 ds
0 a,8 0

t s
+CtZ/ ||Haﬁ(3;')||L°°/ ||F(T7')HE%eijDS()\)d)\dS—I—CtE3(07u>.
wp /0 0

]

Furthermore, the following L? estimate for Klein-Gordon equations is essential in our
analysis.

Lemma 7.11 (L*-type estimate for KG equations). — Let v be in a smooth func-
tion defined [0,T] x R? and let F = ¢®v — g*9,0sv, ¢ > 0. Suppose that g*% = m*? + H*P
satisfies the coercivity condition with a constant C, i.e. (7.16). Then, the following estimate
holds for 0 <t < T':

clo(t, M + [lo(t, Y gasr < C([0(0, ) gar + €][0(0, )] ga) e o P2

(7.31a) : t
+c/ 1F (s, )| g €€ PO s,
0

Proof. — The proof is essentially the same to that of Lemma 7.8. The only difference
comes from the potential term:

oy (go‘ﬁaa&gv - 021))
= %80 (goo(aov)2 — g“baavabv) — %(C@ov)Q + 0, (g“ﬁatvﬁgv) + %&gaﬁaav@ﬁv — 8ag°‘*38t2185v.

Then the same calculation of the proof in (7.8) leads to

d «
(7.32) T Boo(t,0) < CIIF (L, )l|aes) + CY IIVHY(t, )| 1o @) Eye(t,v).
a,B

Now we derive the equation with respect to 91922, and perform the same calculation as
we done in the proof of Lemma 7.10, the we arrive at:

t
(733) E;{C(t, u) < E’;{C(O’ u)eCfg Dg(r)dr + C/ HF(T, ')HEd 6Cf7 Dd(s)deT.
0
Then combined with the expression of £, . and the coercivity condition (7.16), the desired

result is proven. O

At the end of this subsection, we establish the following estimate on second order time
derivative of the solution.

Lemma 7.12. — Let u be a smooth function defined in R* and suppose that u satisfies
the following wave/Klein-Gordon equation:

go‘ﬁaoﬁgu —Pu=—F,
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where ¢ > 0. Suppose that g*® = m®® + H*? with |H®| < 1/2. Then the following estimate
hold for all pair of multi-index (I, I5)

1020 Be| s

< [|ogr (1 — H) 7 (m™ + H*)0pu) || 12 gy

7.34
( ) —|—CQ||6£IQIQ((1 _HOO)flu)HLQ(RS)

+2[| 07 % (1 = HP) T H0000u) || 2 gay + 102 Q% (1 = H®) )| 2 oy
Proof. — By decomposing the wave operator, we have

g“’B@a@Bu = ( -1+ HOO)atatu + 2H%9,0,u + (mab + Hab) 0,0t
and thanks to the equation
(=14 H*)00u + 2H%0,0,u + (m® + H®)9,05u — *u = —F,

we have

u 2H%0,0,u  (m® + H™)9,00u F

6tatu:_1_Hoo+ 1 — HO00 1 — HO00 +1—H00‘

7.4. Existence results for linear equations

We now establish the existence theory for linear wave and Klein-Gordon equations with
initial data in the corresponding functional spaces defined in subsection 6.4. We begin with
the wave equation.

Proposition 7.13 (Existence of linear wave equation in E¢™)

Let d > 3 be an integer. Assume that F € L'([0,T]; EY), (uo,u1) € ES™ x B4, Assume
that g*° is a smooth metric defined on [0,T] x R® and coercive with constant C > 0, and
H = g% — m*® is in the class C([0,T); ES™) with |[H®| < 1/2. Then the following
Cauchy problem

9*%005u = —F,

(7.35) w(0,2) = up(z),  Au(0,z) = uy(z)

has a unique solution in class C([0,T); E4Y) with Ofu € C([0,T); E4'F), 1 < k < d.
Furthermore, this solution satisfies the following estimate:

t
(7.36a) ||ul(t, -)||E§z>+1 < O Vu(0, -)HEdech Da(r)dr C’/ IF(7, )| ga ¢C Jf Da()ds g
0
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t t
Jut ey < Ct [ 1F(.eosds + CEYO0) Y [ 18 s,0) el PO
0 a 0

(7.37) t )
+CtZ/O HH“ﬁ(s,-)HLm/O |F (7, )| peelr PN ds + CLE3 0, ),
e

where
D(t) = maas [t )|

Proof of Proposition 7.13. — The uniqueness is direct by applying Lemma 7.9.

The existence is based on the regularization and the estimate proved in Lemma 7.10.
We proceed by make a series of triple (ug,u}, F™) which converges to (ug,u1, F') in the
following sense:

JLTEOHUS—UOHEZH =0, nll_)r1010||u? — Ugl|pa =0
lim [|F" = Fll oy =0, lim [[He? — H|| g o 13,80) = 0,

where u, u} are C>°(R?) functions and for all ¢ € [0,T], F"(t,-) € C°(R3).

By classical existence theorem of linear wave equation (see for example [26]), fix the
time interval [0, T, each triple (uf, u}, F™) determines a unique smooth solution by (7.35).
These solution, denoted by u", formes a series.

Now we take the difference of the equation satisfied by v and u

977 0a0(u" = u"™Y) = (gp2) = g77)apu" " + (F" = F" 1),

The apply to this equation the estimate (7.22), we see that the sequence {u"} converges
with respect the norm L>([0,T]; €_1).

By estimate (7.21a), {u"} is bounded in L>®([0, 7], E4™). We recall the estimate (7.27)
and apply this on the time interval [t',t"] C [0, 7], we get

n—1.

n

E;l@//’un) _E;l@/’un) < Ed( Cft, D7 (r)dr +C/ |Fn ‘ i€ f Dd(s)d7_7

where
D(t) o= maas [t )|

Recall that D} (7) and || F(7,-)| g« are uniformly (with respect to n) bound. This implies
that {u"} is equicontinuous with respect to the norm L*([0, 7], E4™). Then there is a
sub-sequence of {u"} converges in the sense of L>([0,T], ™). We denote it again by u™.
Then we see that {u"} converges in L>=([0,T], E4™). We denote by u its limit.

When d > 3, (7.22) shows that {u"} is a Cauchy sequence in L>°([0,7],€_1). So that
{u"} converges in C([0,T], E4™) (u” are C functions so u™ € C([0,T); €_1)). Further-
more, since u" are C° functions so they are in C([0,7], E4™) which is a closed sub-
space of L=([0,T], E4™). Then {u"} converges in C([0,T], E4™). We denote by u the
C([0,T], B4 -limit of {u"}. Then we see that u € C([0,T]; E%)
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We apply the same argument on {0%u} and get the desired regularity. The estimate on
u is gained by taking limit of the estimate on u". O

If we analyse carefully the proof of Proposition 7.13, we can conclude that if the triple
(F',u,u,) is only supposed to be in L([0, T], E4) x E$™ x E?, the Cauchy problem (7.35)
determines also a unique solution in C([0, 7], ES™). We prefer to state this result sepa-
rately in the following proposition:

Proposition 7.14. — Let d > 3 and assume that the triple (F,ug,uy) is only supposed
to be in L'([0,T), EY) x ES™ x B4 And assume that g®® is a C® metric defined on
0,T] x R and coercive with constant C > 0, and H*® = ¢*# — m®® is in the class
C([0,T]; ESTYY. Then the Cauchy problem (7.35) has a unique solution u in C([0,T], E$™)
and OFu € C([0,T); E4*17%) for 0 < k < d. Furthermore, it satisfies the following estimate:

t
(7382)  Jlu(t, )| ggn < CIVu(0,)||paeho PO 4 € / [F (7, )| pa €l Po) %,
0

where
D(t) = maas [0, )| g

Apply Lemma 7.11 and taking the same regularization argument as in the proof of
Proposition 7.13, the following existence result for linear Klein-Gordon equation holds.

Proposition 7.15 (Existence for KG equation). — Let d > 3 and the triple
(vo,v1, F) be in class EE x B4 x LY[0,T], E%).  Assume that g*° is a C metric
defined on [0,T] x R3 and coercive with constant C > 0, and H* = g% — m®8 is in the
class C[0,T]; ES™). Then the following Cauchy problem
gaﬁaaaﬁv —fv=F, ¢>0,

(7.39) v(0,7) = vo(x), Ow(0,) = vy ()

has a unique solution in class C([0,T); BT NCY([0,T); E%). Furthermore, it satisfies the
following estimate

”U(t, -)HEg,ﬂ + Haﬂ)(t, ')”Ed + CHU(t, ')HEd
(7403) < C(HVU,(O, )HEd + CH/U(O, -)HEd)eCfol Dy(r,-)dr

t
+c/ 1F (s, )| e €€ P g,
0
[o(t, M g + cllo(t, g < CIVU(0, )|z + €l[0(0, )| ga) e o Parim

(7.40D) t t
4 [P ) e P drds,
0
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where
Di(t) == max [|0"QRHP(t,)|| oo (g3

1]+]12|<k
a,B

7.5. Nonlinear estimates

To estimate the solution of quasi-linear system, we will need the following estimates on
nonlinear terms.

Lemma 7.16. — Let F' be a C* function from R™ to R and u a C* application form
R* to R™ with components denoted by u = (uy, Uz, -+ ,Uy). Let Z be a family of one order
linear differential operate Z = {Z,} with « € A, where A is a subset of N*. Then the
following identity holds for all multi-index I = (ov1, cvg, -+, aqp)) with |I| > 1:

(7.41) ZNF(u)= Y  P'Fu) > Hf[ZKﬁuj.

I<|LI< | i Kji=I j=1i=1
Here
m
Pt =TJor
i=1
is a product of partial differential operator with L = (l1,---1,,) and the convention:
Z'w=1, if |I|=0

15 applied. Furthermore, in a product if the set of index 1s empty, this product is regarded
as 1. For example,

L
[[7%w =1, ;=0
=1

Proof. — We observe that, in the right-hand side and for a fixed L, the sum is taken over
all the proper |L|-partition of index I. That is, over all the proper L-partition of abstract
index .# with || = I. We denote by

Hji =S with - {Kj;} = 1({H:})
and we denote by Z2,(.#,|L|) the set of all proper |L|-partition of .#. Then (7.41) can be
written as
m
Z(Fw)= > PP 3 120w (R =104
L<|LI<|| {AGiyeZp(S,|L]) j=1 1=1
Now we associate each term in the right-hand side to a pair (L, {-%;}): in the sum, each
term P"F(u) [T}, [T, Z%iu; corresponds to an operator PL. The quantity {Kj;} is a
partition of I which is a restriction of I on a abstract partition {.%#};}. Note that for fixed
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L the sum is taken on Z,(.#,|L|), so we have constructed a bijection from the terms in
the right-hand side to the following set

2(I) = {(LAA DA € Zp( I, L), 1 < |L] < [A]}

We will prove (7.16) by induction on the order of || with associated abstract multi-index
S ={ay,as,...,a,}. We check by direct calculation that this identity is valid for |I| = 1.
Suppose that it holds for |I| < n, we consider |I'| = n+ 1. Let .#’ be the associated n + 1

order abstract multi-index composed by {a1,as ..., an, any1} and the restriction of I’ on
# is coincide with I.
Then
A (F(u))
m
SE ORI U ST U D DI 1 ) T
1<|LI< ]| {AGireZp(7 L)) j=1 i=1
Y Zrtnn(PFE@W) Y HH 2%t
1<|LI< | {A5i e Zp(7 L)) j=1 i=1
m lj
+ Y P'F(u) > Zpanen) | T] 25w
I<|LI< {H5:}€Pp(S,L)) j=1i=1
=. Tl -+ TQ.

For T, we observe that

L

= Y PR Y T2,

1<|L|<|1]| k=1 {4@,}e@p(1 L|) j=1 i=1
> D PHFRw) ) HHZ u
I<ILI<|] k=1 {45} Pp(S|L]) 5=1 =1

with Ly, = (I3, 1y, ... [}, ..., [,) with I = [ for j # k and [} = [ + 1 and J}; = Jj; with
(7,7) # (k,l},) and ‘%/k/lﬁc = any1. Here, Kj; is the restriction of I on JZj; while K7, is the
restriction of I on ;.

For TQ,

m

T,= > P'Fu) > Zptowen LT 2% s

1<|LI<|1] {H5:}eZp(S |LI) =11

m

= 2 P 3y 25w

1<|LI<|]| (A5} Pp(F|L|) 1<Jo<mJ 1i=1
0

where ' = J; when (j,1) # (Jo, %) and J# "}, = %oio U {ans1}
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Now, we associate to each term in 7} and 75 a pair o(L’, {J%};}) in the same manner.
This defines an injection from the terms contained in 7} and 75 to the set

27 ={" DN < |V < | I A{A} € Zp(|L], )}

The injectivity porperty is by checked from the fact that for two terms if L' = L', the
different terms correspond to a different partition (by our definition of sum over partitions).

Denote by o7 the image of the terms in T} and 75 under this injection. This is a subset of
2(7"). We will prove that o7 = 2(.#") which leads to the equality in the case |I'| = n+1.
To do so, let

(L A e 2(7), L'=(1,1....1,)

Then we see that as a,, 1 € &’ there is one and only one (j, i) such that a,, 1 € Ji/ , since
U i = & and they are disjoint to each other. We will prove that (L', {.%] }) E .

We deﬁne L=(ly,la,... ) with[; = for j # jo and [;, = I}, — 1. We construct {5}
as follows: J¢j; = 5 if (j,1) # (Jo, ig) and Higio = Hio N {nt1}¢. Such constructed pair
(L, %) to be in 2(.7).

When %}, = @, we see that (L', {#;}) corresponds to a term in 73. More precisely in

Joto
the following term:

lj

Zp(ny(PPF@) > T2

A ePp(S,|L) J=1 1=1

m m 1
=P4F(u)Y Zojouwe > T[22

k=1 {H5:}ePp( |L]) j=1 i=1

where we can see it by fixing k = jo and {.#;} in the sum.
When %, # @, (L', {#;}) corresponds to a term in T5:

m lj
PYF(u) Z 21 (o) H H 2%y

{ A5} Zp(S|LI) j=11=1

= P'F(u) Z Z HHZKNUJ

(AP |Ll) 20z p G=1 =1
we see it by fixing (i;, jo) and {#};} in the sum. O
Lemma 7.17. — Let F be a C* function from R™ to R and u a C* application form
R* to R™. Then the following identity holds for any multi-index I, Iy with |I,]| + |I5] > 1:

[11]+] 12|

m 1
(7.42) Q" (F Z > PR Y JTIofe"

>4 K1ji=I1 j=11=1

Yo b=l
>4, Koji=I2



76 PHILIPPE G. LEFLOCH AND YUE MA

where L = (ly,ly, - -+ , 1) is a m-dimensional vector with its components taking value in N
and P the partial differential operator

m

Pt =TJor

i=1
and the convention:
onQlu=1, if|ll| =L =0

18 applied.
Proof. — The proof is an application of (7.41). Let D! = 81 Q" with D = {,,Q,}. We
denote by

D, =0, fora=0,1,2,3, D,=Q,_3, fora=4,5,6.
We denote the components of I; and Iy by

[1:(617627"'ﬁn1)7 122(717727"' 7’7712)
Then [ is determined by

] — (Oé17a27"'an17an1+1"' 7an1+ng)

with a; = f; for i =1,2,n; and q;yp, =y + 3 for i = 1,2, n,.
Remake that D is a family of first-order linear differential operator. Then by (7.41)

m

(7.43) ona(Fw) = > Y Prw][][Z2%w

1<|LIS| S, Ki=1 j=1i=1
Then, since »_;; K;; = I is a partition of /. Then
DEii — 9K K
with Zﬂ Ky = I, a partition of I; and Z Ks;i = I, a partition of I. This gives
l]

b)) = Y Y P [[T]0F 0%

].S‘L‘S‘I' Z]zKljz—Il j=11i=1
ji K25i=12

Then the desired result is proven. O

The result of Lemma 7.17 will be applied in the following case where F(-) is supposed
to vanish at 0 in second order.

Lemma 7.18. — Let F be a C*° function defined in a compact neighborhood V' of 0 in
R™ and F(0) = VF(0) = 0. Let d > 3 and suppose that u map from R* to V with its
components u; in L°°([0,T]; EY). Then the following estimates hold for any couple of index
(I, Iy) with |I| + |I2| < d:

[11]+|12]

(144)  [0R" (F@) (1) oy < COEVA) S Jult, o fort € [0.7],
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where C(F,V,d) is a constant determined by F', V and d, and ||u(t, )| ga := max; ||u;(t, )| ga-

Proof. — When |I] + |I5| = 0, by the condition F(0) = VF(0) =0,
[Fu)] < C(RV) Y fuyl?
j=1

which leads to the desired result.
For |I1| 4+ |I2| > 1, proof is based on Lemma 7.17. We take the expression:

[T1|+|12|

m
(R = 3 Z PrEw) Y T[T[0% 0%,
S =l >ji Kiji=n j=11i=1
2,1 Koji=I2

and observe that for [L] = 77" [; = 1, PLYF(0) = 0. Then we have, in the compact
neighborhood V of 0,

|0;F (u)| < C(F, V)[ul,
where C'(F,V) is determined by V and F' and |u| := max; |u;|. Then,

010" (F(u))] < Z |0;F (u)||0" Q2|

|11|+\12|

m 1
+ Z S OPEw S I 10
(7.45) 2=l %zgng j=1i=1

< C(F, V)|u| |8thu’

[I1|+| 12| m 1
SO SUD VLTS b 111 (R
=2 T, =l 2,8 K1je=T1 j=1i=1
i Koji=Ia
The first term in the right-hand side is estimated as follows:
H’LL 811912 ')HLQ(R3) < ||U(t, ')‘|L°°(R3)H611Q12u(t7 ')HLZ(]R"’)
< Cllult, )lz=llu(t, ) xae < Cllult, ) |5,

where the Sobolev’s inequality is applied.
The second term in the right-hand side of (7.45) is estimated as follows: we observe the
term:

m 1
> [l

Xji K=l j=1 1=1
2,1 Koji=I2
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Recall that |L| =}, [l; > 2, then we see that in the product there are at least two factors

and
Y Kiyi=ThL, Y Kyi=1I
ji ji
is a partition of (11, ) in [L| = 3_;1; pieces with |L| > 2. Note that
S Kyl =141 > Kyl = | 1.
ji ji

We observe that there among the index K ; there is at most one, denoted by Kj;j,, is of
order higher than |/;]/2. In an other world,

|Kuji| < [|L]/2], if i #i0,5 # Jo,

where [z] denotes the biggest integer less than or equal to z. The same result holds for the
index Ksj;. Then we conclude that in the decomposition of (Iy,I3) there is at most one
pair of index, denoted by (K14, K2i0j, ), i of order higher than d/2. In an other world,

| Kjil + [ Koyl < [d/2], if i # ig, j # Jo.
Then if we take the L? norm, we will find that

m 1
[TI]o" @ ut,-)

j=11i=1

L2(R3)

o~
<

Kl]z K2]’L H Klz J K27, Ji H
H@ Q2 (t O oo QY F2i0don (2, +)|| 1 (&%)

M)

IN
e E

<
~
W
S
= e
S R
Iy
S

IA
’:]3

<.
LN

o

O'H

HH@KWQK% () e - Nl (2, )l
o
l

< t )| pretara ||ult, )| pe-

s
1

.
N
T
<
-
b
o

Here, we have applied (7.3a). Now recall d > 3, then 2 + [d/2] < d. Then, we get

m
j=1

=1 1=

l;
L
< )2,

L2(R3)

9 i, )
1

Also, we observe that in the compact neighborhood V', sup,cy |PYF(u)] < C(F,V)

with C'(F,V,|L|) a constant determined by F and V and |L|. Then the desired result is

proven. O]

Now, we combine Lemma 7.18 with the global Sobolev inequality (7.8).



THE VALIDITY OF THE THEORY OF MODIFIED GRAVITY 79

Lemma 7.19. — Based on the same assumptions on F and u as in Lemma 7.18, for
|| + |I2| < d—2, the following estimate holds:

11|+ o |42

e, SCE VD) > fult, )|k

k=2

(7.46) 107 Q" (F(u)) (¢, -)

We also need the following estimate in the following discussion.

Lemma 7.20. — Let d > 3 and assume that H(-) be a C™ function defined in a compact
neighborhood V' of 0 in R™ and assume that u is a map from R3 to V with its components
u; in class L=([0,T); E%). Then the following estimate holds for d > |I,| + |Io| > 1:

|11 |42
(747) (|14 7) 0 (H(w)) (¢ )| sy < CUH Vi) S Jult ), 1€ 0.7
k=1
Proof. — We apply the expression (7.42):
[I1]|+]| 12| m
onaR(Hw) = Y > PrH@m) > J[IJo*e
=1 Z;n 1 ]_l Zji Kyj;=I1 j=11i=1

2ji Koji=I2

Note that PLH (u) is bounded by a constant C'(H,V,|L|) determined by V. The estimate

of [|01Q% (H (u))(t, ||LQ(R3 reduced into the estimate of
m l_]
H a0 T[T ||
j=1 i=1 L2(R3)

where Kj; and Ks;; is a possible partition of (13, I5). We take the same argument to that
the proof of Lemma 7.18. Suppose that |Kyj.,| + |K2joio| > [K1ji| + |K2j;| for all pares
(4,1), ie. (Kijyigs K2joio) is the pair of index with highest order. Then, we find

| Kji| + | Koyl < [d/2],  if i # io, J # Jo
and
[ K1joiol + [K2joie| = 1,
and we also have
m
H(1 +r) T 0% (¢, )
j=1i=1
I

< T T 1005, 17000 050001, )
Zio izig

L2(R3)

3

J*

<.

In view of (7.10b) and (7.11b), the desired result is proven. O
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Lemma 7.21. — By taking the same assumption on H and uw as in Lemma 7.20, and
assuming furthermore that H(0) = 0. Then for all |I1| + || < d — 2, the following
estimate holds:

[I1]+]12]+2
(7.48) 107025 (H () (1, )| sy < CCHVid) 3 e, )

k=1
Proof. — When I = I, = 0, we recall the that the condition H(0) = 0 implies
1H ()| oo sy < CH, V) [u]| oo sy < C(H, V) Julle -
When |I1| + 15| > 1, we apply (7.47) combined with Lemma 7.7:
MO () ey <€ 3 12200 () (1) e

|J1|+‘J2|<2
<C Z Ha%haI{QJéQIQ(H(u))(t’.)HLQ(Rg)'
1 |+ T4 <2

TR

Here, we observe that when |I;| > 1, by applying (7.7a) successively (][] times), we see
that |I]| > 1, this leads to the fact that |J;| + |I7]| 4+ |J2| + |I5] > 1. Then we apply (7.47).
When |[;| = 0, then |I5| > 1 then we can also apply (7.47). O

Lemma 7.22. — Let F be a C*™ function defined in a compact neighborhood Vi of 0 in
R™ and H be a C* function defined in a compact neighborhood Vy of 0 in R™. Assume that
F(0) =0 and V(F) = 0. Let u be a map from R* to Vi with its components u; in class
L>([0,T]; E%) and v be a map form R* to Vo with its components vy in class L°°([0, T]; E?).
Then the following estimate holds for |I1| + |Iz| < d with d > 3:

|0 Q" (H(u)F(v))(t,

’ HL2 (R3)

0<HFVd(Z||u ||Ed)(z||v M) telT]

Proof. — The proof is based on Lemmas 7.18, 7.19, 7.20, and 7.21:
"R (Hw)F(v)) = Y 0"Q%(H(u) - H(0))0"1Q%(F(v)) + H(0)0" Q" (F(v)).

J1+Ji=0
Jo+Jh=Iy

(7.49)

When d > |Ji| + [J| > d/2, |Ji| + | Jo| < [d/2) <d—2:
[0 (H (u) = H(0)) (t, )02 (F(©)) (t, )| 12 g
< ||o7 Q" (H(u) — H(0))(t 07107 (F(v) (¢

[J1]+[J2|+2 BARSPA

SCMH FV.d) Y ult )l D ol ),

k=1 k=2

a')HLQ(Rs)
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where Lemma 7.21 and Lemma 7.19 are applied (on function H(u) — H(0) and F(v)). The
term H(0)0" Q2 (F(v)) is estimated by (7.44).
When |Ji| + o] > d/2 > 1, |J] 4+ |5 < [d/2] < d—2:
(0607 (B () (1, )% 0% (F () (1)
< [0 P () (1) g |1+ P (F) ()]
= (|47t (H () ()| ooy 10725 (F ) &,
|31+ 75]+2

sc<H,F,v,d>(|Jlf2|uu<t,->||’gg)( S et

k=1 k=2
where Lemma 7.20 and Lemma 7.19 are applied. ]

We will need the following estimate on multi-linear functions.

Lemma 7.23. — Let d > 3 be an integer and u;,v;, i = 1,2,---m be functions in class
L>([0,T); EY). Then the following estimates hold for m > 2 and |I | + || < d:

’ 811912 (ﬁuz — ﬁ Ui) (t, )
i=1 i=1

SC(V,d)IIU(t,-)—U(tw)llEdi DO (] AT

k=1 ki1+ko=k

L2(R3)
(7.50)

where ||u]| xa := max; ||u;|| xa and ||v]|xa := max; ||v;|| xa.

Proof. — We observe the following indentity

m m m

Hui —gvi = Z(uk —Uk)Huijj.

=1 k=1 i<k >k

Then, for each term, we have

gt <(uk — o) [ ]1 Uj)

i<k i>k
= E Rt QI (4 — ) H Of1i QY 2iqy; H of1i Q2.
i Kii=11 J>k Jj<k
i Koi=I

To estimate the product
O QI (g, — ) [ 0" Q0 [ [ 05 250y,
i>k I<k
we apply the same reasoning as in the proof of Lemma 7.18, there is at most one pair

of multi index of order bigger that d/2. Then (7.50) is proven by applying the classical
Sobolev’s inequality. O
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Lemma 7.24. — Let d > 3 be an integer and u;,v;, 1 = 1,2,---m be functions in class
L>=([0,T]; E%). Then the following estimates hold for m > 2 for 1 < |I}| + || < d:

H(l + 7)ok (ﬁ u; — ﬁv) (t

C(V,d)]lu(t,- IIEdZ Z e, I 1ot . ¢ € (0,71,

k=1 k1+ko=

L?(R?)

(7.51)

where [|ul| g¢ := max; ||| g and ||v][xa = max; HUZHE%
Proof. — We observe the following indentity

m m
[Jwi 11w = Z we=v) [Tw [T
i=1 i=1

i<k >k

Then, for each term, we have

onar <(Uk —u) [Jw]] Uj)

i<k i>k
- E R QR2k (1, — ) H OF1 2y H Of1 Q2
i K1=I Jj>k Jj<k
> Kaj=1Ig

To estimate the product
R Q2k (14, — ) H o QKquj H o QKQjUj,
>k j<k
we also apply the same reasoning as in the proof of Lemma 7.18, there is at most one pair
of multi index of order bigger that d/2. We discuss three cases.

Case 1: |Kyg| + | Kol > |Kyj| + |Kyj| for j = 1,2 ---m. Hence, (K, Ko) takes the
highest order. For j # k, |K1;| + | K2 < [d/2] < d—2 and |Kyx| + |Ko| > 1, and we have

H (1+ 7)1 0" QR (g, — vy) [] 059 %, [T 05920

>k j<k

L2 (&)

< ” (1+ r)ilaKleK% (up — vg) HL2(R3) H aKlenguj H 8K1jQK2jUj

>k i<k
[[ o ", [T 0%
i>k <k

Here, we used (7.10a) on the first factor. Note that m > 2 then there exists a jo # k. So
the second factor is bounded by applying (7.48) and the fact that |Ky;| + [Ky| < d — 2.

L (R3)

< Cllue — villpg

Lo (R3)
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Case 2: |Kyi|+|Ko| < [d/2] < d—2 and there exists j, < k such that |Ky;,|+|Ky;,| >
’Klj‘ + ‘ng‘. Then, we have

H (L+ 7)1 QR (g, — ) [T 0" Q2w [T 0% Q%0

>k j<k L2(R3)
< |05 (ke — vi) || e sy [T IO 05| sy TT 10" Q2 05|
ik ijf]%
x [[(1+ 7)1 K0 QR0 o HLQ(R3)
< Cllu = ollsg [T lwill g TT Nl g 1011
i>k ijf]%

where (7.10b) and (7.11b) are applied.

Case 3: |Kix|+|Ka| < [d/2] < d—2 and there exists j, > k such that | Ky, |+ | K| >
| K| + |K2;]. The proof is exactly the same as in the last case provided we exchange the
roles of u; and v;. O

Finally, we are able to estimate the difference of two quadratic functions.

Lemma 7.25. — Let d > 3 be an integer. Let F' be a C* function defined in a compact
neighborhood V' of 0 in R™ with F(0) = VF(0) = 0. Assume that u and v are maps from
R* to V with their components in L=([0,T]; E?). Then the following estimate hold for all
pair of index (I, Iy) with |I| + || < d:

[11]+]12]—-1

(7.52) (|05 Q" (F(u) = F(0)) || oy < CUVid)[Ju = v]] xa ST ulilol.
k=1 ki1+ko=k

Proof. — When I} = I, = 0, we apply the mean value theorem: there is a 6 € [0, 1] such
that

|F(u) = F(v)| < |VF(0u+ (1= 0)v)|u— .
Then by the condition VF(0) = 0,
|F(u) — F(v)| < |VF(Ou+ (1 —0)v)|u—v| < C(F,V)[0u+ (1 — 0)v|lu—v].
Then

IF@)(t,) = F(0)(t, ) z2qasy < CCF V)= ol e 160+ (1= 6)0] ey
< CWV)llut, ) = (e Y pa(llult ) pe + o, ) s2).
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For the case for |I;| 4 |I3| > 1, we recall the expression (7.42) :
Q% (F(u) — F(v))

[T1|+[12] m

-3 % (rew ¥ I

=1 Zj L=l 25Ky =0 j=11=1
>4, Koji=1I2

m
SEUND I 1 ) L

> 5iKy =11 j=11i=1
>, Kaji=I2

= 0;F (u)(0" Q" u; — 9" Q")
J

~

[ 11]+[12] m m
LYY PRw) Y (HHaKmKwuj_HHaKszwj)
=2

>, =l YiiK =11 N j=1i=1 j=1i=1
>4, Koji=I2
11|+ 2] m
L L Kiji () K2ji

+ > > (PPFu)—-P'F@w) Y [IIJo* e,

=1 Z]. lj:l > 4Ky =0 j=1 i=1

g, Koji=1I2
= T1 + TQ + Tg.

To estimate T3, we take into consideration of the condition VF(0) = 0 with leads to
|0, F (u)(t, )] < C(V)]ul.
S0 0 F(u)(t, Yqzs) < COV)ult, sy < CCF, V) ult, ) Then
173t )2y < CUE V)l ) = ot )l xallult, )|l xe.

To estimate T,, we need to apply Lemma 7.23. To do so, we observe the following
relation:

m m m m
(7.53) 91" <Hu? _ HU;J') — Z <HHaKlinK2jiuj _ HHaKmQKmUj)
i=1 i=1

gk =11 j=1i=1 j=1l1i=1
>, Koji=I2

Then
[T1|+] 12| m m
T, = Z Z PLF(u)o" QP (Hué’ — Hvé-j)
=2 Y. 1=l j=1 j=1

Recall that | PLF(u)] is bounded by a constant C'(F, V, |L|) determined by the neighborhood
V, the function F' and the order |L|. Then we apply (7.50).
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The estimate of T3 is as follows:
(7.54)

[11]+|12

| m
Talle@sy < > > |PPF@) = PP RO | ey Y [TTTTO 20| o s

=1 Zjlj:l ik p=h  j=11i=1
>, Koji=I2

As in the estimate on T5, we see that

m 1l +|12|
S ITIII 0ol ey < 3 lott e
SaiKig=l  j=1i=1 =1
>4, Koji=I2
and
[PEF(u)(t, ) = PEF(0)(t, )| ooy < CE VL ILDult, ) = ot )|
< OV, LD lu(t, ) = v(t, )| pa
and then
d—1
T3¢, )l z2qesy < CV)lult, ) = o(t, Nlpa Y ol
k=1
which leads us to the conclusion (7.52). O

The following L*° type estimate is a direct application of Lemma 7.25 and the global
Sobolev inequality (7.8):

Lemma 7.26. — Let F', G, u and v take the assumption as in Lemma 7.25, then for any
|| + |I2] < d — 2, the following estimate holds:

0" Q" (F(u)(t. ) = F)(t )t )], asy

7.55 a1
(7:59) < CFVid)ut,) —o(t, e Y Y Nt )5l )52

k=1 k1+ko=k

Lemma 7.27. — Let d > 3 be an integer. Let H be a C* function which is defined in a
compact neighborhood V of 0 in R™ and let u,v be maps from R* to V with their components
in class L>=([0,T], E%). Then the following estimate holds for 1 < |I}| + |I| < d:

1+ )2 0" Q2 (H () = H ()t )]
(7.56) [11]+] 12|
<CW)llult,) —vlt, e >, Y et ) [0,

k=0 ki+ko=k

Proof. — The proof is quite similar to that of Lemma 7.25.
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When |I1] + |I5] > 1, we apply the same calculation:
" Q"% (H(u) — H(v))

[I1|+] 12|

DN CRIEND I 1 1)
=1 Zjlj:l 25Ky =01 j=11i=1
2]1K2j2_12
m
CPHE) Y HHaKlszﬁvj)
25Ky 5=I1 j=11i=1
2,1 Koji=I2
[11]+|12] m m
E ' E P"H(u) E ' (HHaKuiQKmuj_HH@KWQKMU],)
=1 Zj 1=l > 4Ky =N Jj=11=1 j=1i=1
>4, Kaji=I2
[11]+|12] m
+ > > (P*H(w)-PrH®v) > J[J[o* ",
=1 Z L=l > 4Ky =0 j=1 i1=1
i Koji=I2
=. T1 + TQ.

The estimate of T} and T3 are similar to the estimate made in the proof of Lemma 7.25.
T) is estimated by apply Lemma 7.24 and T5 is by applying the following estimate

| P*H (u) — PH(v) < C(H,V, [LD)lu = vl < OV L)) [[u = vl xa
and the fact that (by applying (7.47))

o

L

o

j=11=1

L
< CV)llolk,
L2(R3)

We also need a L™ estimate on H(u) — H(v):

Lemma 7.28. — Letd > 3. Assume that H be a C* function defined in a compact neigh-
borhood V of 0 in R™ and assume that u,v are maps from R* to V with their components
in the class L°°([0,T); E%). Then the following estimate holds for |I| + || < d — 2:

10" Q" (H (u) — H(0))(, )| o= (r2)

(7'57) |I1|+|12]+1
< C(H,V,d)llult, ) = v(t, e Y Z Jut, ||v(t,-)||’,;§1
k=0 k1+ko=

Proof. — When I, = I, = 0, then there exists 6 € [0, 1] such that
|H(u) — H(v)| < |VH(Ou+ (1 —0)v)||lu—v| < C(H,V)|u—0|.
which proves (7.57).
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For |I | + |I2| > 1, we apply Lemma 7.7 combined with (7.56). O

Lemma 7.29. — Let F be a C* function defined in a compact neighborhood Vi of 0 in
R™ and H be a C* function defined in a neighborhood V5 of 0 in R™. Let d be an integer
and d > 3. Assume that F(0) = 0,VF(0) =0. Let uy and uy be maps from R* to V; with
their components in L>([0,T]; E%) and vy, vy be maps from R* to Vi with their components
in class L>=([0,T]; EY). Then the following estimate holds for |I1| + |Is| < d and d > 3.
Then, we have

07 Q% (E (1) F(01) = H (o) F(02)) (1) | o

7.58 d—1
(7% < OV (lur(t,) = ua(t, Vgg, + lor(t, ) = valt, )llpa) Y MA(E),

k=1
where

M(t) := max{[Jur; (&, ) gy, luz; (¢ ) s, 015 () lpes o2, (¢ )l e}

Proof. — We have
" Q"™ (H(up)F(v) )
= 00" (H(w)F(v1) — H(ui)F(v2) + H(u1) F(v2) — H(u2) F(v3))
= 0" (H(w)(F(v1) — F(vs))) + 0" Q" (F(va)(H(wi) — H(uy)))
=T +T5.

The term 77 is estimated as follows:

Ty = 0" Q" (H (u))(F(vi) — Z OO (H(ur)) 012 (F(v1) — F(vs)).

When |Ji| + |Jo] < [d/2] < d — 2, by applying (7.48) and (7.52)
|97 (H () 0" Q% (F(vr) = F(o2)) ()
= [[o" Q" (H (u)(t)

) HLOO(R3)

||L2(]R3)

107 Q%(F (v1) = F(02))(¢, )] o e

[J1]+]J2]+2
<o v Xl )
k=0
[J7 1+ T3] -1

(Hw(t,)—vz( I DD L THINCRT )

k=1 ki1+ko=



88 PHILIPPE G. LEFLOCH AND YUE MA

When [ 4] + o] > /2 > 1, |J{] + |J5| < [4/2], we apply (7.47):
HaJIQJQ (H(u1>>8J{QJé<F(’U1) - F(U2))<t7 ')HLQ(RLS)
<11+ 7)1 (H () (8, )| 2 |07 Q2 (F(01) = F(v2))(t, ) e

[J1|+]J2] [J1]+[J5]+1
<ow) Y lull’ye - C(H, F,V,d)|[or(t, ) = va(t, )| e > Z [or (8, )| a0 (8, ) 12
k=1 k=1 k1+ko=
|I1|+|I2]+2

< C(H, PV, d)|or(t:) = va(t, Mg Y Do s st ) vat )15

k=1 k1+ko+ks=k

The term 75 is estimated similarly by applying (7.44), (7.56), (7.46) and (7.57). We
omit the details, but we write out the estimate

|11 |+|I2]+1

12 (t )z < M (t) = ua(t, gy D D llullg luall ool

k=2 ki1+kot+ks=k

8. Proof of the local existence

8.1. Iteration and uniform bound

In this section we will begin the proof of Theorem 6.3. The proof of this theorem will
occupy the following two subsections and follows a classical iteration procedure:

(= + H7 (h5)) 0o O higf ™ = Fag (b5 O, %) — 1670467056

(8.1a) -1 . o
— 1204050508 — K Vi (0F) (maﬁ + hab)v
(8.1b) (m™? 4+ HP (12)) 00 O iy = 2(m™P + HYP () O B30 0,
(M + HP (h5)) Do Dgr 0,y — 22t
(8.1¢) i "
= 17 Vylon) = g (M7 + H*P (W) 0,056
where

e -1 s

2s 2
-1 o (e - 1) -1 o
W) = s ()= e -

2rets

and with initial data
hzg(ovx) = h’Oaﬁa ¢Z(Oa l’) = ¢0(x)7 QZ(Oa l’) = QO(x)a
athgg(oa l’) = hla,@? at¢2(07$) = ¢1([I§') atQZ<07 1}) = Ql(x)
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Recall the function H*?(h) are defined in (6.7) and the associated estimates are in (6.8).
We take (hzg) and set
Sy = (hajg, & 0n)-
We also denote by Fy(S5), Fp(SF) and Fr(SF) the terms in the right-hand side of (8.1a),
(8.1b) and (8.1c).
We take S§ = (hgé), o§, 05) as the solution of the following homogeneous Cauchy problem:

Ohas =0, O¢ =0, Dg—?’%zo,

he9(0,2) = hoag,  05(0,2) = ¢o(x), 0§(0,2) = go(a),
(9th2§(0,96) = hiag, 0:95(0,2) = ¢1(z)  0p05(0,2) = 01(x).

We see that the source terms and metric coefficients in (8.1) are sufficiently regular and
the initial data are in the corresponding class required in Propositions 7.13, 7.14 and 7.15.
Then, by the theory of local existence for linear equations, this iteration procedure is well
defined in a fixed time interval [0, 7], where the metric coefficients and source terms are in
the corresponding class and |H (h%)%| < 1/2. We see that is iteration defines a sequence
of triple S}y := (hyy, ¢, 0n). In order to get the local existence, we will prove that Sy

n
converges in the following norm:

ECna .
= max{ 15 (6 ) gaer 650 Mg, N5 per, 5250 g},

for all ¢ € [0, 77], in which 7" > 0 will be defined.
We suppose that for certain d > 3, for all k < n and all ¢t € [0, 7],

(8.2) 1S5 (8, )l g < Ae,

we will show that [|Si, (¢, )| xe+r < Ae with T" and A well chosen.
First, we observe that when (8.2) holds with Ae < ¢, with €, small enough, the metric
g';; = m + hg; are coercive with constant C(ep), where C'(¢p) is determined by e.
Now, by combining (8.2) with Lemma 7.18, the following estimates on the source terms
follow.

Lemma 8.1. — Assume that (8.2) holds with d > 3. Suppose that 0 < Ae < €q, where €
1s a constant sufficiently small. Then the following estimates holds for k < n:
(8.3a)

| Fap (g, Ohgs, ORE) (t, )|t + [10ai0s07i (L, )| ma + 100070505 (t, )l e < Cleo, d)(Ae)?,

(8.3b) (M + H*Y (1) 0o 90 0 (£, )| pa < Cleo, d)(Ae)?,
(8.3¢) €225 (m®® 4+ HP' (h5)) 00 505 0 (t, ) || e < Cleo, d)(Ae)?,
(8.3d)

5=V, (@i)(t, )lme < Cleo, d)(Ae)?, I8 Valf) (mag + higg) (¢, )lsa < Cleo, d)(Ae)”.
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These are classical estimate when we establish the local theory of existence for quasi-
linear wave equations with quadratic nonlinearity. The only thing important is (8.3d),
where the x appears in the left-hand side in order to get estimates independent of .

Proof. — These estimates are applications of (7.44) and (7.49) combined with (8.2). The
only thing we need to be pay attention is that to guarantee the C'* regularity of the
function H*?(-), we need to restrict its defined in a compact neighborhood V' of 0 in R*®
with

<
V=l < «)

with eq sufficiently small. This can be guaranteed by taking € < €y in (8.2).
We observe that F,z(hii, Ohk, Ohl) is quadratic with respect to Ohff and C'*° with respect
to h¥. Then we apply (7.49). The estimate on the term

(m*? + HYP ()0 630 5

is established in the same manner.
The estimate of (8.3d) is checked by using the estimate

K2 gflle < Ae,
which follows from (8.2). O

Now we begin the discussion of the commutators such as [QQQIQ,Halﬁl(h’g)aa/agf]hzg

which appears in the estimates of HhZéLHH x4

Lemma 8.2. — There exists a positive constant €y such that if (8.2) holds with d >
Ae < €y < 1, then the following estimates hold for all couple of index (I, 13) with 1
||+ |I2| < d:

(8.4a) (07", HYP (1) 0o O hiei (¢

3
<

) )”Ed S 0(60, d)AGHthH_l(t’ ')”Eld;'_l’

(8.4b) [107", HYP (B3O Oy (8, )| pa < O, d) A€l @y (2, ) g,

(8.4c) 0" Q" HP (1) dar D)@ 1 (£, )| pu < Cleo, d) Ael g (2, )| s

Proof. — The estimate of these three commutators are similar, and we only prove the first
statement. Let (I1,3) be a pair of multi-indices, |I1| + |I2] < d. Recall the estimate of
commutator (7.3e):

‘[611912’ Halﬁ’(‘?a/(‘?/g/ hm%j-l‘ < Z |aJ19J2HO/’B,| |8 Na ajlﬂhhn n+1|
h+q:q
[Ja|+]T5<|I2]
a/,ﬁ’,a”,a
+ Z |6J{QJ§Ha’/3’| |8a,aﬁlaJ1QJ2hzg)t+l|
J1+J! =11

Jo+Jh=Iy
|1 1+1751>0

:ITl + Tg.
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We begin with T and distinguish between two cases.

Case 1: 1 < |[Ji|+|Jy] <d—1, 1 <[Ji| + || <d— 1. In this case, we have
/ I o B 1k K,n+1
H8J1QJ2H B (hn)aa/aﬁlaJIQJQhaﬁJr HLQ(RS)
< |07 Q7 H ()| oo ) | 0o D 07 Q2 5

< Cleo, Al (t, ) oo,

l12es)

where we used Ae < 1 and (7.48).

Case 2: J| =1,,J5 =15, J; = Jo = 0. Recall that d > 3 then |J;| + |Jo] < d — 3:
ot (g opa ey
< ||+ 7)ol HYP (hE)||
< Cleos AR g,

22 e

n+1
|00 Oy

L2(R3)‘ ”34

where we used Ae <1 and (7.47).
The estimate of term T} is quite simpler. Recall that in the expression of 7T}, the sum is
taken over the index satisfying the following conditions:

S+ J =1, |hl+|h] <|Ll -1
So
(] +15]) + (1o + [13]) <d =1
which leads to
[Jil+ [ <d -1
So

Hag{QJé Ha’ﬂ’aa,/aaa£1 Qthzg—i—l H@i{QJQHa’ﬁ’

Loo || Oar0aOR Q2 RS

lp2es) < (P

As in the estimate of Ty, we see that with |Ji| + |J5| < d — 1,
|ofi/s g™ ) < Cleo, d) Ae.

Loo(R3

The second factor on hZ’gH is bounded directly by ||h2g+1|| yi+r1. S0 we conclude with
E

(8.4a). O

Now we need to discuss the bound of the initial data EJ (OJLZEH), E? (0,¢5,,) and
E] (0, 05,). We will see that these norms are controlled by ||So| ya+1:

gn,C

Lemma 8.3. — When |[|So| ya+1 is supposed to be bounded by ¢ < € for e sufficiently
small, there exists a positive constant determined by eq and d such that

Ej (0,h5,,) + Ef (0,6%) + EY (0, 0%) < Cleg, d)e.

gn+1 1,k 1/2
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Proof. — We recall that

10l a1 == max{ | hoasll xarrs [Bragllxa, £ ZH Ao || cann,

R RICE T RTINS L R [d/2)-1/2

loollyar, 579572 gyl xa}.

We observe that when 0 < k < 1 the norm [|0f921 Q"2 0%(0, -)|| 2(gs) is determined directly
by 0o and p; thus, bounded by x~l#/2=1/2 < x=1/2,

When 2 < k < d, we need to use the equation.

We will prove that for 0 < |k| <d—2and |[;|+ || <d—-1—-k

10.0,0E08 Q41 (0, )55y < Cleo, dhe
(8.5) 100,001 Q"2 0%(0, ) || L2 ey < Ceq, d)sl2H/27 1l
10:0:0F I 2670, )| L2 sy < C'leq, d)w'/2 A4

This is proven by induction on k. We see that for £ = 0, 1, the estimates hold by direct
verification. Suppose that (8.5) holds for (k — 1, k) we will prove the case k + 1.

The estimate of ||0,0,0f™ 9l Q2¢%||12(rs), is a bit complicated. We see that by
Lemma 7.12,

0400 0RO g | ey < 1057 ORQP (1~ HO) ™ (m® 4 H),040") | e
+ 2| oF ol (1= H")"'H*9,0,0") || r2(r3)
+ 2 0F 000" 12
+[|0F 1o Q" (1 — H®) Fr) |2 (e

Then we see that
10:0,07 02 Q2 0% || L2 msy < C(eo, d) kY2102,
We observe that by Lemma 7.12,

||8t8t(3k611§2[2h”6||p R3) < |oFo QL2 (1- HOO)_l(m“b + H“b)ﬁaﬁbhgﬁ) | 22 (R3)
+2]1079; Q" (1 = H*) ' H*0,0.h55) | r2 o)
+ 0701 Q" (1 — H®) Far) || 12es)

Then by the bounds prescribed by [|So[|¢*! and (8.5), we see that [|0;0,0/' Q™= h% 4| L2 @) is
bounded by C/(ep, d)e.

In the same manner, we see that for 0 < k < d — 2

10:0,0£01 Q2 ¢ || 12(msy < C(eg, d)r ™ M/DIAT/ e,

Now we are ready to estimate the L? type norm of S¥.
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Lemma 8.4. — There exists a positive constant €q such that if (8.2) holds for Ae < eg < 1
and d > 3, then

(8:68) RS pwes + IO (1, < Cleo, d) (ce® 0Dt 1 Ac(eCleodAt _ 1))
(8:6D) (195 41(t Yl s + 194651 ( ) lss < Clep, d) (ecC0 DAt 4 Ag(eCoDA _ 1))

o aa (8 Mgz + 11060541 (8, Mpa + 57201 (8 )]
< C(Eo,d) <€eC(Eo,d)Aet + AE(GC’(eO,d)Aet . 1))’

where C(ey, d) is a positive constant determined by ¢y and d.

(8.6¢)

Proof. — This is an application of the L? estimate (7.20). We consider the estimate for
R To do so, we derive the equation (8.1a) with respect to a product 91Q with
|]1| + |]2| S d:

(m®? + HYY (1)) 0005 0" Q= RE™ = 0" Q" Fy(hf, 07, 0f) — (0102, HYY 005 |5,
where Fyy denotes the terms in the right-hand side of (8.1a), which is

Fr(hy,, &)y, 0n) = Fap(hyy; Ohyy, 0hy) — 1670407,05¢y, — 120003050, — £~ Va(en) (mas + hig).
Then by (7.20),

d K,n CM K,n
% ( ahQIzh +1) <CH8thFHHL3 R3)+CH 8IIQ12 H 8 85,]h +1||L2(]R3)

+CZ||VHC“ 7 (hr) t, 0 QR

)| o oy B (B

By Lemma 8.1 and (8.2), and the (equi-)coercivity of g, guaranteed by Ae < ¢,

d

Bt 0" QRhEEt) < Cleo, d)(A€)? + Cleo, d)Ae > | Ed(t, b ™)

ap
+ Cleg, d)AeE,, (t, 0" QPR

Taking the sum over the index (Iy, Is) with || + |2 < d and «, §:
dtz (t, hip ) < Cleo, d)(A€)* + Cleo, d)Ae Y EL (t, hipth),

which leads to
(8.7) ZE;Z ,hzg”rl ) < ZEd hn+1 Cleod)Act | Ae(ec(eo,d)Aet ~1)

Note that by Lemma 8.3, E¢ (0, haﬂ) is controlled by Hh(]HXngl and ||y || xa, so it can be

controlled by C(e, d)e, where C(ep, d) is a constant depending only on d and €.
The estimate of Egn (t,¢r ) is exactly the same, and we omit the details.
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The estimate of on ¢ ; is similar. By the same energy estimate, we arrive at the
following estimate:
(8.8)

d -7
—FE, 2(t, 019205 1) < ClO" Q2 Frl|ams) + C||[0"Q"2, H? 0,04/

At 9n Ont1 HLQ(R3)

+CZHVH@’B’ (W) | oo gty B2 (8,02 05,

where Fp denotes the right-hand side of (8.1c). Then, also by Lemma 8.1 and (8.4c) and
the same calculation in the estimate of h} "

EY 1t 05)) S EL L 1a(0, 0 )eC 0D 4 Ae(eC0 DAt — 1),
]

Now we begin to make the choice of the couple (Ag, Ty) such that when A < Ay, T' < T,
(8.6) implies

s (t M pass + 10 (8 ) e < Ae,
(8.9) rosm )HEd“ + |04 (L, )| e < Ae,

lon s, Mpars + 100 a ()l pa + 672l 01 (t ) e < Ae
on the time interval [0, 7.

Lemma 8.5. — There exists a couple of positive constants (eg, Ao(€o, d)), where €y is a
universal constant and Ao(eo,d) is determined by d and €y such that when (8.2) is valid
with A > Ay and Ae < ¢y < 1 on the time interval [0,T] with

In (14 (2C(eo,d)) ")
C(eo, d)Ae ’
where C(eg, d) is a constant determined by €y and d. Therefore, (8.9) hold.

TST()I:

Proof. — By Lemma 8.4, we chose Ag(¢y,d) and T such that when A > Ay(e,d) and
t<T
C(eo, d)(eec(eo’d)Aet + Ae (ec(eo’d)AEt —1)) < Ae.

This can be guaranteed by

1
Cleod)ATy _ | <
‘ = 20(eo, d)’
oCleod)AcTy A
- 20(60, d)

which is equivalent to

In (1 + (2C (e, d))_l)
Ts C(eg,d)Ae

A Z 20(60, d) + 1
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14(20(co,d)) )
Cleo,d)Ae

Then we are about to estimate the &_; norm of thLH.

Then we can take Ay = 2C(€g,d) + 1 and T = i

Lemma 8.6. — There exists a positive constant €y such that if (8.2) holds with d >
3, A > Ay, Ae < € on the time interval [0,T], T < Ty, where (Ao, To) are constants
determined in Lemma 8.5. Then the following estimate holds:
(8.10) IhEE ™ (t, e, < Cleo)T*(Ae)* + C(T + 1)e.
Proof. — We will apply (7.18), and we note that

Ohei ™ = Fyp — H*P 0505 hisy ™
Then by (7.18), we have

t t
1heg ™ (2, ey < Ct/ HFH(T,-)He_ldTJrCtZ/ 1 00O iy ™ (7, ey d
0 B 0

+ O (Ihes ™0, ) leoy + VRGO, ) ley)

Then we can apply on each term the global Sobolev inequality (7.8) to get estimates on
the €_; norms:
IFtlle_, < CllFrllx2 < CllFullp: < Cleo)(Ae)?,

where we used (8.3a) and (7.8). We have
[ 0B 2t ey < L |y O B o
< O H | g |55
< Cleg)(Ae)?.

Here, we used Lemma 8.5.

The initial terms ||hzg+1((), z)|le_, and ||Vh2’g+1||93_1 are determined by the initial data
ho and hy, hence, can be controlled by Ce, where C'is a universal constant. So we conclude
with the desired result. ]

Now we can conclude that, with suitable choice of A and T" and sufficient small €, the
sequence {S,,} is bounded with respect to the norm ||- || xa+1. More rigorously, the following
proposition.

Proposition 8.7. — There exists a couple of positive constant (A, T) depends only on €,
€ and d such that if (8.2) holds on [0,T], then
(8.11) 155 (E, ) paer < Ae < e < 1,

which means that the sequence of triple {S%} is bounded in the Banach space EZ*t. Fur-
thermore, if € — 0T,
T — oo.

Note that the choice of (A, T') are independent of x.
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Proof. — By Lemma 8.5, we take already A > Ag(€g,d) and T' < Tj such that (8.9) holds.
In order to prove (8.11), we need only to guarantee, by (8.10), the following inequality:

Ce0)T?(A€)* + C(T + 1)e < Ae.

This can be guaranteed by
T<— —1,
< ;
~ 2C(e) A€
So we require that % — 1 > 0. Taking into consideration of the conditions in Lemma 8.5:
A > Ag(ep,d) = 2C(€g,d) + 1
In (14 (2C(eo,d))™")
C(€o, d)Ae
together withe the condition Ae < e¢g. So we see that when e sufficiently small such that
Ao(€o, d) < ege™ 2,

we can take A = ege /3 and T = min{A(2C)~! — 1, (2C(eg) Ae) "2, Ty}. Then there exist
a constant C’(eg, d) such that T' > C’(ey, d)e*/3. This proves the desired result. O

T2

TST():

8.2. Contraction property and local existence

To establish theorem 6.3, we need to prove that the sequence {S/} is contracting.

Proposition 8.8. — Let (8.11) holds with (A, T) determined in by Proposition 8.7. As-
sume that d > 4. Then there exist a time interval [0, T*] determined by ey, e and d such
that the sequence {S,} is contracting in the following sense:

(8.12) 1Sn+1 = Shllzes (o,r#1:xay < ANSH(E,+) — Sp_1 ()l o o,07:x8) -
with a fized 0 < A < 1. Furthermore, when ¢ — 07, we can take T* such that T*(e) — +o0.

We emphasize that here the lower bound of the life-span-time 7™ given here does not
depend on the coefficient k.

The rest of this section is mainly devoted to the proof of this proposition. To do so, we
start by taking the difference of between the iteration relation for the pair (S),,,S)) and
that of (S, Sk_,). This leads to the following differential system

ny»~n—1
(" 4 2 (07)) 000 (i = ) = (HO7 () = P (02) Db

(8.13a) + Fy(SE) — Fyu(SE_)),

(m*™ 4+ HOP () DO (140 = ) = (7 () = HP (7)) 0w D0,

(8.13b) " ) h
+ FP(Sn) - FP(Sn—l)a
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(Mm% 4+ HY (h)) 000 (0541 — 0F) = (HY' (W) — HY® (1£)) 0O

(8.13¢)
+ Fr(Sy) — Fr(S,1)

with zero initial data
BESEN0,0) — hED(0,2) = 0, 8, (RS — B2 (0,2) = O,
¢Z+1(07‘/E) - (bfL(O,x) = 07 ( n+1 n) - 07
QZ-H(O»*T) - QZ(Oa 33’) = 07 (Qn-H - Qn) ) =0
(

For simplicity of expression, we denote by Dy(S,,,S,_1) the right-hand side of (8.13a), by
Dp(Sy, Sn—1) the right-hand side of (8.13b) and by Dg(S,, Sn_1) the right-hand side of
(8.13c). We need to estimate

557 = fllge 6 = lgs e = il

(8.14) 1
[

n,n
045 H871 ’

First we recall the uniform bound of the sequence constructed in the last subsection:
(8.15) [Sh(t, M gan < Ae < ep <1

with d > 3 for 0 < ¢t < T. We observe that this condition is equivalent to (8.9) for all
n € N*.
Now we will make a series of estimates to bound the norm listed in (8.14).

Lemma 8.9. — Let {S} be the sequence constructed by (8.1) which satisfies the uniform
bound condition (8.15) with d > 4. Then the following estimate holds for |I,|+ |I5] < d—1:

(8.16) |07 Q" D (Sy., Si)(¢ < Cleo, ) Ae||S3(L, ) = Spa () |-

Mooy
Proof. — This is guaranteed by (7.58) and (8.2). Recall that
Dy(Sn, Su-1) = —(H*P' (hE) — H¥P'(h_)) O O hizs
+ (Faﬁ(h27ah27ah2) - a ( n— 17ahn 17ah’{ ))
— 167 (0a0, 050}, — Oath_105¢n_1) — 12(0a0,030;, — Dadh_10s0) 1)
— 57 (Va5 (s + B35 = Valeioy) (mas + A5 )
=. T1+T2—|—T3+T4.
We observe that ||T}[| g« is bounded by C(eo, d)Ae|[hy — hy_y || x4 -
||8IIQI2T1||L2(R3) < Z HahQJQ (Ho‘lﬁl(h“) Ho/ﬁx( ))aleJQa aﬁ/

Ji+J{=0
Jo+Jh=Io

o HLQ(]R3)'
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When [Jy| + bl < d =3, d 1> |J]| +|J}] = 2,

[07Q%= (H*P (hy) — H (hyy_1)) 0% 00 055 || Lo
< [0 (H () = H (15 )| ooy |7 2750100
< Cleo, )y = hyy il g, s | o

< Cleo, d)Aellhy — hyy il g,

< Cleo, d)Ael|Sy — S7 i |l

(P o | 2 e

Where (7.57) is applied.
When d — 1 > |Ji| + |J2| > d — 2, we have 0 < |J{| + |J5| < 1. Then recall that d > 4,
| 1|+ |J5] +1 < d—2. Then

[0 %= (H* () — HYP (hiy 1)) 07107200 0515 | ooy
< ||(L+ )0 (HYP (b)) — HYP (hi_) || &) 10712720, 05 b5 |
< C’(607 d)HhZ - h;{;leE?I HaJ{QJéaa’aﬁ/thlan
< Cleo, IS, = Siallpelihgs g
< C(eo, d)Ael| Sy = Sl g,

where (7.8), (7.56) and (7.7a) are applied. Note that since of the term with second order
derivative (’9a/85/h';’§, we can only bound the £ norm, i.e. one order of regularity is lost.

The E¢ term Ty and T3 are bounded by (7.52) and (8.15).
We should pay additional attention to the term Tj:

57 (Vi) (mas + 153) = Vil@h) (mas + b5 ™))

The E4 norm of this term can be bounded by C(ey, d)(Ae)?. This is garanteed by (7.44)
and the assumption

k2| 0f] | xa < C(eo, d) Ae

deduced from (8.15). O

Lemma 8.10. — Let {Si} be the sequence constructed by (8.1) which satisfies the uni-
form bound condition (8.15). Then the following estimate holds for |I| + |Io| < d —1:

(817) |07 Q" H (h)0u0s) (hop™ = hig) || sy < Cleo)Aellhis™ = hif gy
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Proof. — We perform the same calculation as in the proof of Lemma 8.2:
(00", HYP 0,05 (g™ — hiyg)|
< Y RQEHY 0w 0,0 (T = 1))

Ji+J =1

[Jal+]T51<|12]
ol 8"l a

D 00000 QR (5 - )
J+J =0

Jo+Jb=Iy
|J11+1J51>0

:ITl —+ Tg.
To estimate T, we observe that since |Jj| + |J5] + |Jo] + |J5| < d — 2, by (7.48) and
(8.15),
107197 HYP (B2 || oo rey < Cleo, d) Ae
and also since |J;| + |Jo] < d — 2:
IO J2 K,n+1 K,n
|0ar a0 V2 (R ™ — B

Moy < CIRGE™ = 15 |l g

Then we see that
K,n+1 K,m
HT1||L2(R3) < C(€O)A€Hho¢ﬂ+ - haﬂ HE?,

The estimate on 75 is established in a bit complicated. We see that in Ty, |J;|+|J2| < d—2

SO
n+l

I1 0 J2 K,n+1 K,n K K,
008,07 Q7 (RS — B ) < Clne™ = g | pa
When 1 < |Jj| +|J5| <d—1

HaJ{QJéH(X//BI<thL) HL‘X’(R3) < C(Eo, d)AE,

where we used (7.48) combined with (8.15). O

e

Now we are ready to estimate the term [|hS5 ™" — hngEg

Lemma 8.11. — Let {Si} be the sequence constructed by (8.1) which satisfies the uni-
form bound condition (8.15) with d > 4. Then the following estimate holds:

d K,n Kk,
_Ed_l(ta (hoc’,ﬁ+1 - hab )) < O(Eo, d)AGHS"(t’ ) B S”_l(t7 >HE»‘§

(8.18) dt 9n
+ Ceo, d) AeES (¢, (hgig“ —hg)).

Proof. — We differentiate the equation (8.13a) with respect to a product d1Q2 with
|I1| + |I2] < d — 1. Recall the relation of commutation, we get

(M H (1)) 000" Q" (W = W) = 020" (H () = H (1)) s
+ 0" Q" (Fy(S5) — Fu(Si_y))
— [0" Q" HY 0005 (5 = hi).
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Then we apply (7.20),
4
dt
< Cl|o" Q= Dy (S, Sp)| pagesy + 10"Q" HP (1)) (hs ™ — hi5)
+ Z HVH(Jz/ﬂ/(hZ)HLOO(RS)Egn (t, ahQIz (hzgl-‘rl N hzg))

Oél,ﬁ/
Note that by (7.48) and (8.15),

|V H? (s

By (1,078 (035 = 132)

122 e

)HLOO(R3) < O(Eo, d)AE

Then by Lemma 8.9 and 8.10,
d K, K,n
ot o1 Q" (i ™ — b)) < Cleo, d)Ae||Salt, ) — Su-1(t, M g
K41 K,M
+ C(€o, d)Ae”haﬁ —hgs ”E;l,
+ Oleo) Ae By, (t, 07 Q" (hy 5™ — b))

Then by taking the sum over all the pair of multi-index (Iy, Iy) with || + |Io] < d — 1,
and observe that (by (8.15)):

11257 g < Clea G (57 = 1))
and the desired result is proven. O

The estimates on ((ﬁfL 1 ¢g) and (g’fl 1= gg) are established in the same manner.

Lemma 8.12. — Let {Si} be the sequence constructed by (8.1) which satisfies the uni-
form bound condition (8.15) with d > 4. Then the following estimates hold:

d
s100)  aiter (b 0ha— o)

< C’(607 d)AEHSn(tv ) - Snfl(tv >HEZ + 0(607 d)A€E;l;1<t7 (¢Z+1 - ¢Z))7

d . ) H
(8.19D) B et (0h — )

S 0(607 d)AEHSn(ta ) - Sn—l(t> )HEZZ + 0(607 d)AEEj;,lifl/z(ta (QZ-H - Q;;))
At this juncture, we can finally estimate the &_; norm of (h';g‘“ - hgg)

Lemma 8.13. — Let {Si} be the sequence constructed by (8.1) which satisfies the uni-
form bound condition (8.15) with d > 4. Then the following estimate holds:

(8.20) I = helle_, < Clen)t®Ac]S = S -
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Proof. — We are going to apply (7.18). To do so we need to establish the following
estimates:

(8.21) [HP (B3) 0 O (his ™ = B ) ||, < Cleo) Aellhig™ = Wil gg

(8.22) 1Da(2 S5, < Cleo) eS8t = Sty
We see that (8.21) follows from (8.16) and (7.8). To establish (8.21), we see that
I g0 1557 = ) < N Gl oo (05 — )

< Cleo)Aellhis™ = higllms,

where (7.7) is applied. O

le, e oy

Proof of Proposition 8.8. — We integrate (8.18), (8.19a) and (8.19b) and get the following
estimates:

(8.23) Eg (¢, (hy 5™ = heg)) < (9D —D)[[S8 = Sh_ | o oz
(8.23b) By (b, (s — ¢) < (0D —1)||s7 — SS—lHLOO([O,T*];E,%)
(8.23¢) Ej;,lfl/z (t, (0hr —0))) < (ec(go’d)Aet - 1) HSS - Sr’:—l”Loo([o,T*];Eg)

Recall that the metric g, is coercive with constant C'(ey). We have

||S;+1(t7 ) - S’Z(ta )HE,‘%

< Cleo, d)max{ By (1, (hy5"™ — b)), By (8 (9 — 0h)) Bo 1t (05n — 63D}
>~ 05 gn ) a,B af ) Han ) n+1 nll) ) Qn+1 Qn

97L7571/2

Then we conclude with

(8.24)  |ISh ) — Sl peeqorpimey < Cleo, d) (eC0DATT —1)||55 — 5§—1||Loo([0,T*];Eg)-

Then if we choose

then
A= elloded 1 —1/9 <1,

which satisfies the contraction condition. Furthermore, recall that in Proposition 8.7 we
can take A = epe /3 and T > C'(e, d)e/? when e sufficiently small. So here we can
also take T* = " (e, d)e~'/3 for € sufficiently small. This leads to the limit of 7*(e) when
e—0t. O

Now we apply Banach’s fixed point theorem and see that {S%} converges to a triple
St = (h®, ¢", o) in the sense of L>=([0,T*], EY). Then we will prove that S* is a solution
of (8.1).
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Proposition 8.14. — When d > 4, the function S* constructed above is a solution of
(8.1) and, furthermore, for k <d

hig € C([0,To), BY), 0fhis € C(0,To), BE),

¢" € C([0,To], BR), 9fhig € C([0,To), EE ),

0" € C([0,To), ER), 9¢his € C([0,To), ER ),
with, in addition, ||[S*(t, )| pa < Ae with 0 <t <T*.

Proof. — The proof is based on taking the limit in both side of (8.1). The convergence
of {S%} in sense of L°°([0,T*]; E?) can guarantee the convergence of both sides of (8.1).
Recall that the sequence {atathgg} also converges in the sense L>°([0,T*]; E4~2) and so
does {0;0,¢%} and {0;0,05 }.

The convergence of {Sf} in Eff guarantees the following convergence (remark that k < 1:
(8.25)

hig — hig in L([0,T°]; B),  Vhyg — Vhi, in L2([0,T7]; B4,

¢f — ¢" in L=([0,T*]; E}), V¢ — V¢ in L>([0,T*]; B4,

o — 0" in L=([0,T7]; Ef) N L=([0,T*; ETY), Vi — Vo* in L=([0,T*]; ET1).
Here, V denotes the spacetime divergence. By Sobolev embedding (d — 1 > 2), {hl},
{V¢r} and {0} converges in L*°([0, 7] x R?). Furthermore, we have
(8.26)

Oi0:hyy — 0,0.hlsg in Lo([0, T, EY7?),  0,0:hy — 0,0,hiss in L([0,T7); B47%)

0 0.9 — 9,0,¢" in L2([0,T*]; E4™2),  0,0,0F — 0,0,¢" in L>=([0,T*]; E*?)
O10:hy — 0y0,hlsg in Lo([0,T7); BY?),  0,0:hl5 — 0,0,k in L([0,T); B47%).
These convergence properties are sufficient to guarantee the convergence of both side of

(8.1) since both side depend linearly the terms with second order derivatives. And the
lower order terms converge in L sense. [

Proof of Theorem 6.3. — We have checked that the triple S* is a local solution of (6.6).
Furthermore, we notice that the lower bound of life-span-time 7™ constructed in Proposi-
tion 8.14 does not depend on x. The estimates are established by taking the limit of the
(8.15). O

9. Comparing the f(R) theory to the classical theory

9.1. Statement of the main estimate

In this section, we compare the solutions given by the f(R) theory with the solutions of
the classical Einstein theory. We denote by S° := (h,p, ¢) the triple determined by the
following Cauchy problem:

(9.1a) (m®? + H*P (1)) 0 0g hap = Fap(h, Oh, Oh) — 16700050,
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(9.1b) (m*? + H*P (1)) 005 = 0
with initial data

hap(0,2) = hougs, Othap(0,2) = hi1,s,
¢(0,2) = ¢o, 09(0,7) = ¢1.

This limiting problem is defined by replacing p” by 0 in our formulation (6.3). As before,
if the initial data satisfies the corresponding constraint conditions, then gog = mag + hap
and ¢ satisfy the classical Einstein’s field equation coupled with the massless scalar field
¢. For the convenience of discussion we introduce the norm

9.2)

HSOHXSH ‘= max (HhOaﬂ”X?lv thaﬂ”Xda H¢O”de__,+1a ”¢1HXd>

Proposition 9.1 (Local existence theory for the classical gravity system)
Suppose that (hoas, hiag) € X&' x X4 and (¢o, 1) € X' x X and with d > 4, and
denote by Sy = (ho, h1, ¢o, d1) and assume that for a sufficiently small €,

I0]| o1 S €< e < 1.

Then there exist positive constants A, T* determined from €q, € and d such that the Cauchy
problem (9.1) with initial data Sy has a unique solution (hag, ¢) in the time interval [0, T*].
Here

hap € C([0,T7]; Bf), ¢ € C((0,T"]; ER).

When € — 0%, we can take

lim 7% = +o0.

e—0t
Furthermore, the local solution satisfies the following estimates in the time interval [0, T*]:
(9-3) [hepl| go + [l g < Ae

The proof is similar to that of Theorem 6.3: we make an iteration and estimate the
sequence constructed by this iteration and we prove that with suitable choice of (A, T%),
this sequence is contracting. The details of the argument are omitted.

Let So = (Rqg, Mg, @0, ¢7) be an initial data which satisfies the Einstein’s constraint
equation (2.29) and Sy = (hoag, P1ag, G0, @1, 00, 01) be an initial data which satisfies the
nonlinear constraint equations (5.7) and (5.8). Define the following function D (S, S1):

®Z(SOa Sl) = max{llhgaﬁ - hOO‘BHngM

h(l)ocﬁ o hlaﬁwa H¢8 - qbOHXf,“’

T leo

168 = oz lenl g e
Denote by
SO(t) = (S,4(1), 6°()) € C([0, T*J; X4)NCH ([0, T); Xi ) C ([0, T7]; X)nC™ ([0, T); Xi0).
the local solution of Cauchy problem (9.1) with initial data S°(0) = Sy, and
S5(t) = (hisg, 0", 0%) € C([0,T7]; X)) N CH([0, T]; X 1) x C([0,T*); Xp) N CH([0,T]; X371)
x C([0,T7]; X&) 1 CH([0, T); X3 0 ([0, T X4,
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We introduce the “distance” from S° to S*:

DS, 5% Zl!h — isgllg, + 116° — 6"l g

and we are ready to state the key estimate derived in the present work.
Theorem 9.2 (Comparison estimate). — There ezists a positive constant €y such that
of

max{|[S1[| a1, [|Solxar} Se<e <1

(with d > 4), then in the common interval of existence [0,T*] (which depends only on €, €
and d), the following estimates hold:

(9.4) DS 8%)(t) < Clep, d) (DS, 5%)(0) + (E;{;% (0, g"ﬂ))2 + 52 (Ae)?).

9.2. Derivation of the comparison estimate

The proof of Theorem 9.2 requires better estimates on | of || xa-1. First we establish an

improved bound on the L? norm of 8,011Q%2¢". The following lemma is immediate from
(6.16¢).

Lemma 9.3. — Let S® = (hs, 9", 0") be the solution of Cauchy problem (6.6) with d > 4.
Then the following estimate holds for all |I1| + || < d — 2:

(9.5) k120,01 Q" 05| L2 msy < Ceo, d) Ae.

Lemma 9.4. — There ezists a positive constant €y such that if (8.2) holds for d > 4 and
Ae < ¢, then
2

(9.6) lo"(t, )| Ba-2 < £2Ceo, d)t(Ae)’ + Cleo, d)r(Ey2,.(0, 07)) "

Proof. — We derive an energy-type estimate by differentiating (6.6¢) with respect to 97127
with |I;] + |I2| < d — 2. Similarly as in the proof of Lemma 7.11, we have

00" Q"2 0" (g°°0,050" Q"2 0" — 3k 7101 Q")

_ %30 (4% (000" Q%)% — g™0,0" O 0" ,0" Q2 o) — %80((3%;)_1/28]19]2 95)2
+ 0, (g7 0" Q2 " 950" Q2 0") + %&gaﬁaa@h9129“858[19129”
- agaﬁaoah O Q”Qg@h 02 o".

For simplicity, we set v = 0"1Q'2p* and obtain

v (0" QR Fg(h™, ", o))
= %(‘)t (goo(&w)2 — g“baavabv) — %&((3/{)_1/21})2 + 0, (g“ﬁﬁtvﬁﬂv)

1
+ §atgaﬁaavagv - 8ago"38tvagv.
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Integrating this equation in the region [0,#] x R® and using Stokes’ formula, we obtain

t
/ / O (0N QR Fg(h®, ¢", oF))dudt
0 R3

(9.7) :%(E 1/2@,011912@%))2_%(19 2(0,0110% 7))’

g7’i7 9757

t
1
+// (§at9aﬁaavﬁﬁv—8agaﬁ(9tvégv)dxdt
o Jr3

Then by (7.44), (7.49), (9.5) and (6.16), we see that

t

/ / 8tv(3119[2FR(h””,¢“,g”))dmdt‘ < C(eg, d)t(Ae)®k/?
0 Jr3

then, by (6.16) and since d > 4,

1029 ) < Cleo) sl s < Cleo)Ae

and thus

t 1
/ / (iﬁtgo‘ﬂ@av@@v - 8ago‘56tv65v)dxdt’ < O(ey, d)t(Ae)’k.
0o Jrs

Combining the above two estimates together with (9.7), we find (with 0 < x < 1)
(Egﬁ_uz (t, 811 QI2 QH))2 S (Eg’,{—uz (0, (911 QIZ QR))Q + C(Go, d)t(AE)gFLl/Q.
In view of the definition of £, -1/2(t,u), this leads us to

I{_l ||811Q12 Q"{(t, )||%2(R3) S C(Eo, d) (E 1/2 (0, 8119[2 Q’{))Q + C(Eo, d)t(AE)Slfl/Q.

g7’€7

[

Proof of Theorem 9.2. — By taking the difference of (6.6a) and (9.1a), and the difference
of (6.6b) and (9.1b), we obtain

(ma/ﬂ/ + Ha/ﬂ/(h()))aa’aﬂ’ ((hgﬂ o hZﬁ)
(9-8a) = —(H""(h°) — HYP (h")) 0w O hig + (Fag(h®, OR°, OR°) — Fog(h",0h", Oh"))
— 167?(8a(;§08g¢0 — 8a¢”85¢“) +1204,0"050" + k™ 'V3(0") (mag + h’;ﬁ)
and
(9 8b) (ma/ﬂ' + Halﬁl(h0)>aa/aﬁ/ (qu - ¢n)
. _ _(Ha/ﬁ/(ho) _ Ha,ﬁ/(hﬁ)>8a/aﬁ/¢ﬁ _ Q(mo/ﬁ/ + Ha,ﬁ/(hﬁ)>8a/¢naﬁQn-

We are going to derive (9.4) from these two equations. The proof is quite similar to that
of Lemmas 8.11 and 8.12.
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Step I. L?-Type estimates. Let us begin with the £% 2 norm of (hgﬁ — hgﬂ). Let (I, I5)
be a pair of multi-indices with |[I;| + |lo| < d — 2. We differentiate (9.8) with respect to
oh Q2.

(M7 + HY' (h)) 00 950" Q" (RO — REp)
= —ohQqk ( (HYP(R%) — HYP (h")) 00 O gﬁ) + 01 Q" (F,5(h°, 000, 0h°) — Fos(h®,0h",0h"))
— 16701 Q" (0,8°03¢" — 0a0"058") — [0 Q" HYP (h) 00 0/] (hO5 — Rl s)
+ 120207 (9,0"0507) + k'O Q" <Vh(g’i) (as + hgﬁ))
=Ty + Ty +Ts+ Ty + T + Ts.
Then combined with (7.20),
d

%Eg(t, OO (Wl — hiy))

(9.9) 6 .
<O NT e+ C S [ HY (O] s B, 970 (0, — 1)),

i=1 a,B

We will need to control the L? norm of these T fori = 1,--- ,6. The term T} fori = 1,2, 3,4
can be bounded as follows:

Tl > sy < Cleo, AR — B¥|| gar + IR0 = B¥[| a1 67 — 67| par)
< C(eo, d)AeDI1(S0, S%)(1).

The proof is exactly the same to the one of (8.16) and (8.17) and we omit the details.
The key terms T5 and Ty are bounded as follows:

|75 ]| 2(rey < Cleo, d)(Ae)?,
ITsll 2wy < Cleo, )i/ (Ae)® + Cleo, d) (EL2,,,(0, 07))".

(9.10)

(9.11)

The estimates on T5 and Tg is related to the refined estimates (9.5) and (9.6). More
precisely, T5 is estimated by (7.44), (6.16b) and (9.5). The term T§ is estimated by (7.44)
and (9.6).
Next, we combine together the above estimates on 7; and observe that
HHO‘/ﬁ/(hO)HLw < Cleg)Ae
and
Ey(t, 0" Q" (hd5 — hiig)) < Cleo, d)DIH(SY, 5%)(¢).
We can thus deduce from (9.9) that
d
012 Byt (s = i) < Cleo, d)AeDT(S, 87)(2) + Ceo, d)r'/(Ae)?

+ Cleo, d) (B 2,2(0,07),
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where we recall the definition

DS, 57)( ZHh = higllpg + 116" — 6"l

The estimate on the norm [|¢° — ¢ x4 is similar to that of h” — h* (even simpler). We
claim that the following estimate on the right-hand side of (9.8b):

(9.13a) [ (7 (hY) — HYP (h*)) 0o 00"

-2

< Cleo) Ae|h = | s,

(9.13b) | (m*® + H*(h")) 00" 030" || pan < Cleo)r"?(A€)?.

The first can be proved exactly as in the proof of (9.12). The second one is proven as
follows: for any (I, Is) with |I;]| + || < d — 2,

[0792% ((m*” + H* (1)) a" 050" | 12 s

< Y 1979k + B ) || e s 107127 (00670507 | s

S+ =1
Jo+Jh=1Iy

<Cleod) Y [|0792%(0.0"950") || poqen
1<

< Cleo,d) Y. > HaKIQ%aawafiQKéaﬁgﬂHLQ(RS)

=i
Ki+K|=J]

e}
[T+ T,1<d—2 I
1 2 Ko+K)=J)

Then, when |K;| + |K3| < d — 3,

07120, 0" Q950" | ooy < |0 Q200" | Lo oy
< C(eo, d) Ael|0"|| pa—
< Cep, d)r"*(Ae)*.

|9% 120307 2 g

When | K|+ |K3| = d — 2 and K| = K}, = 0, recall that d > 4:

020,005 050, g < 0050, g 00
< C(EO,d>A6HQH”Ed71 < C(eg, d)rY?(Ae)?

So we conclude with (9.13b), and combined with (7.20),

iE;”(t, (6° = ¢7)) < Cleo, d)AeD™1(S°, S7)(t) + Ceo, d)k'/*(Ae)”.

(9.14) =
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Step II. Estimate of the £_; norm. To do so we rewrite the equation (9.8a) into the
following form:
(9.15)
O((hds — hig) = —H*P (h°)0a 0 ((hdg — hiig) — (HYP (R°) — H*P (R")) 0O hilg
+ (Fap(h®,0n°,00°) — Fog(h®, 0", 0h")) — 167 (000 050" — 040" 05¢")
+120,0"950" + &7 Vi (0") (Magp + hiyg)
= T0+T1+T2+T3+T4+T5+T6.

By (7.18) we need to control the €_; norm of the terms 7; for i = 1,--- 6. By (7.8), we need
only to control the X? norm of these terms. Recall the condition d > 4, then d —2 > 2. So
we only need to control the X¢~2 norm of these terms. Note that in the Step I we have
already controlled this norm for the terms 7; with ¢ > 1. Now we only need to control the
X? norm of Ty. Let (I, I3) be a pair of multi-indices with |I;]| 4 |I5| < 2. Then, we have

Hail 912 (Ha,ﬁ/(ho)aalaﬁl(hgzﬁ - hgﬁ)) ||L2(R3)
< Z 0717 (HP (1)) 812720, 05 (W25 — hEy))

Ji+J =0
Jo+Jh=Iy

> 1020 (HY (BO)) || o s 107 2% OO (s = B3| 2

Ji+J =1
Jo+Jh=1Iy

< Cleo)[Ih°[lxs[IR" — h™[l g, < Cleo) A€l — h¥ o

(P

IN

Then by (7.18), the following estimate on €_; norm holds:
thﬁ(ta ) - h’gﬁ(t? ')HS_l

t
< C(eo)tAe/ DI1(S0 §%)(r)dr + C(1+ 1) (1S5 — houpll o).
0 H

(9.16)

Step III: Conclusion. Now by integrating (9.12) and (9.15), we get the following esti-
mate:

t
(9 17&) Eg_Q(t7 hgzﬁ - hgﬂ) S E(gi_2(0, hgz,B - ]’LZB) + C(EO, d)AE/[; @d_1<50’ SK)(T)CZT

+ Cleo, d)™*(Ae)*t + C(eo, d)t (B2, ,2(0,0%))”,

d—2 0 kK d—2 0 _ kK ' d—=1/Q0 ¢k
(9.17h) Eg(t¢" —¢7) < EF(0, (¢ ¢))+C(eo,d)Ae/0D (8, 5%)(r)dr

+ C(eg, d)xY?(Ae)?t.
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Recall that g is coercive with constant C'(¢y) when ¢, is sufficiently small. Then, we have

DIH(S0 — 57 (1)

018 S Cleod) YB3ty — ig) + Cleoyd) 3 IISs(0 ) = ot e
o, B

+ Cleo, d)ES2(t,¢° — ¢") < Cleo, d)*D1(S” — S7)(2).
Then by combining (9.16), (9.17a), (9.17b) and (9.18), the following estimate holds:
DS, 87)(t) < Cleo, d) (L +T7)DH(S°, 57)(0) + Cleo, )T (B, 2,0, o)
(919) + C(Eo, d)T*H1/2(A6)3

+ Cleo, d)(1+ T%) Ac / "DA1(S0 ) (),

which yields
DS, 5%)(t)
< Cleo, d)(1+T7) (DH(5, 5)(0) + (B2, a(0,07)° o+ 11/2(A0) ) eClo AT

g,k—1/2

]
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