Omar Boussaïd

Jérôme Darmont

Fadila Bentayeb

S Loudcher

Sabine Loudcher Rabaseda

Warehousing complex data from the Web

Keywords: Data warehousing, Web data, Complex data, ETL process, Dimensional modeling, XML warehousing, OLAP, Data mining, Performance

The data warehousing and OLAP technologies are now moving onto handling complex data that mostly originate from the Web. However, intagrating such data into a decision-support process requires their representation under a form processable by OLAP and/or data mining techniques.

We present in this paper a complex data warehousing methodology that exploits XML as a pivot language. Our approach includes the integration of complex data in an ODS, under the form of XML documents; their dimensional modeling and storage in an XML data warehouse; and their analysis with combined OLAP and data mining techniques. We also address the crucial issue of performance in XML warehouses.

Introduction

Decision-support technologies, including data warehouses and OLAP (On-Line Analytical Processing), are nowadays technologically mature. However, their complexity makes them unattractive to many companies; hence, some vendors develop simple Web-based interfaces [START_REF] Lawton | Making Business Intelligence More Useful[END_REF]. Furthermore, many decision-support applications necessitate external data sources. For instance, performing competitive monitoring for a given company requires the analysis of data available only from its competitors. In this context, the Web is a tremendous source of data, and may be considered as a farming system [START_REF] Hackathorn | Web farming for the data warehouse[END_REF].

There is indeed a clear trend toward on-line data warehousing, which gives way to new approaches such as virtual warehousing [START_REF] Belanger | Virtual data warehousing, data publishing, and call detail[END_REF] or XML warehousing [START_REF] Baril | XML Data Management: Native XML and XML-enabled Database Systems[END_REF][START_REF] Hümmer | XCube: XML for data warehouses[END_REF][START_REF] Nassis | Conceptual and Systematic Design Approach for XML Document Warehouses[END_REF][START_REF] Park | XML-OLAP: A Multidimensional Analysis Framework for XML Warehouses[END_REF][START_REF] Pokorný | XML Data Warehouse: Modelling and Querying[END_REF][START_REF] Vrdoljak | Designing Web Warehouses from XML Schemas[END_REF][START_REF] Zhang | X-warehouse: building query pattern-driven data[END_REF]. However, data from the Web are not only numerical or symbolic, but may be:

• represented in various formats (databases, texts, images, sounds, videos...);

• diversely structured (relational databases, XML documents...);

• originating from several different sources;

• described through several channels or points of view (a video and a text that describe the same meteorological phenomenon, data expressed in different scales or languages...);

• changing in terms of definition or value (temporal databases, periodical surveys...).

We term data that fall in several of the above categories complex data [START_REF] Darmont | An Architecture Framework for Complex Data Warehouses[END_REF]. Manag-ing such data involves a lot of different issues regarding their structure, storage and processing [START_REF]Processing and Managing Complex Data for Decision Support[END_REF]; and classical data warehouse architectures must be reconsidered to handle them. In this context, our motivation is to integrate complex data from the Web into a decision-support process, which requires the integration and the representation of complex data under a form that can be processed by on-line analysis and/or data mining techniques [START_REF] Darmont | Web multiform data structuring for warehousing[END_REF]. We propose a full, generic data warehousing and on-line analysis process (Figure 1) that includes two broad axes:

• data warehousing, including complex data integration and modeling;

• complex data analysis. Complex data warehousing and analysis process

To preserve the generic aspect of this process, we must exploit a universal formalism for modeling and storing any form of complex data. The XML (eXtensible Markup Language) formalism has emerged as a dominant W3C a standard for describing and exchanging semi-structured data among heterogeneous data sources. Its self-describing hierarchical structure enables a manipulative power to accommodate complex, disconnected, and heterogeneous data. Furthermore, XML documents may be validated against an XML Schema. It allows to describe the structure of a document and to constraint its contents. With its vocation for semi-structured data exchange, the XML language offers a great flexibility for representing heterogeneous data, and great possibilities for structuring, modeling, and storing them.

The approach we propose consists in representing complex data as XML documents and in physically integrating them into an Operational Data Storage (ODS), which is a buffer ahead of the actual data warehouse. Then, we recommend an additional layer to model complex data and prepare them for analysis. Complex data under the form of XML documents are thus multidimensionally modeled to obtain an XML data warehouse. Finally, complex data analysis can take place from this warehouse, with on-line analysis, data mining or a combination of two approaches.

One originality of our approach is that we do not envisage data mining only as a front-end, stand-alone analysis tool. We indeed exploit data mining techniques throughout the whole complex data warehousing process:

• at the data integration stage, e.g., to extract semantic information from complex data;

a http://www/w3.org

• in the multidimensional modeling phase, e.g., to discover pertinent measures or dimensions;

• when analyzing data, e.g., by coupling OLAP and data mining;

• in support to database administration, e.g., to automatically select pertinent indexes or materialized views.

The objective of this paper is to present the issues we identified on the path to designing and implementing this approach, as well as the solutions we devised to solve them. The remainder of this paper is organized as follows. Section 2 presents our approach for complex data integration. Section 3 details the X-Warehousing XML warehousing platform. Section 4 describes sample complex data analyses. Section 5 addresses performance problems in XML data warehouses. Finally, Section 6 concludes this paper and discusses open issues.

Complex data integration

Context and issues

Companies collect huge amount of heterogeneous and complex data. They aim at integrating these data in their Decision Support Systems (DSS), and some efforts are needed to structure them and to make them as homogeneous as possible. In data warehousing, the prime objective of storing data is to facilitate the decision process. To achieve the value of a data warehouse, incoming data must be transformed into an analysis-ready format. In the case of numerical data, data warehousing systems often provide tools to assist in this process. Unfortunately, standard tools are inadequate for producing relevant analysis axis when data are complex. In such cases, the data warehousing process should be adapted in response to evolving data and information requirements. We need to develop tools to provide the needed analysis.

In a data warehousing process, the data integration phase is crucial. Data integration is a hard task that involves reconciliation at various levels (data models, data schema, data instances, semantics). Indeed, the special nature of complex data poses different and new requirements to data warehousing technologies, over those posed by conventional data warehouse applications. Hence, to integrate complex data sources, we need more than a tool for organizing data into a common syntax.

Two main and opposed approaches are used to perform data integration over heterogeneous data sources. In the mediator-based approach [START_REF] Rousset | Knowledge representation for information integration[END_REF], the different data remain located at their original sources. User queries are executed through a mediator-wrapper system [START_REF] Goasdoué | The Use of CARIN Language and Algorithms for Information Integration: The PICSEL System[END_REF]. A mediator reformulates queries according to the content of the various accessible data sources, while the wrapper extracts the selected data from the target source. The major advantage of this approach is its flexibility, since mediators are able to reformulate and/or approximate queries to better satisfy the user. However, when the data sources are updated, modified data are lost, which is not pertinent in a decision-support context where historicity of data is important.

On the opposite, in the data warehouse approach [START_REF] Inmon | Building the Data Warehouse[END_REF][START_REF] Kimball | The data warehouse toolkit[END_REF], all the data from the various data sources are centralized in a new multidimensional database, the data warehouse. In a data warehouse context, data integration corresponds to the ETL (Extract, Transform, Load) process that accesses to, cleans and transforms the heterogeneous data before they are loaded into the data warehouse. This approach supports the dating of data and is tailored for analysis.

In this section, we present our approach for complex data integration based on both data warehouse technology and multi-agent systems (MAS). Our aim is to take advantage of the MAS, which are intelligent programs composed of a set of agents, each one offering a set of services, to achieve complex data integration. Indeed, we can assimilate the three steps of the ETL process to services carried out by specific agents.

Proposed solution

Complex data ETL process. The classical ETL approach proceeds in three steps. The first extraction phase includes understanding and reading the data source, and copying the necessary data in a buffer called the preparation zone. Then, the second transformation phase proceeds in successive steps: clean the data from the preparation zone; discard some useless data fields; combine the data sources; and build aggregates to optimize the most frequent queries. In this phase, metadata are essential to store the transformation rules and various correspondences. The third loading phase stores the prepared data into multidimensional structures (data warehouse or data marts).

To achieve complex data integration following the warehouse approach, the traditional ETL process is ill-adapted. We present here our approach to accomplish the ETL process in an original way. We propose a modeling process to achieve the integration of complex data into a data warehouse [START_REF] Boussaïd | Complex Data Integration based on a Multi-Agent System[END_REF]. We first design a conceptual UML model for a complex object [START_REF] Boussaïd | Integration and Dimensional Modelling Approaches for Complex Data Warehousing[END_REF]. The UML conceptual model is then directly translated into an XML Schema, which we view as a logical model. The obtained logical model may be either mapped into a relational, object-relational or XMLnative database.

Complex data UML model. First, we present a generic UML model that allows us to model not only low-level but also semantic information concerning the complex data to be analyzed. After we transform this UML model into an XML grammar (as a DTD -Document Type Definition-or an XML Schema), we generate the XML documents describing the complex data. Therefore, we integrate complex data as XML documents into an ODS as a first step in complex data warehousing.

We choose to integrate the characteristics of data rather than the original data themselves. We use XML to describe the characteristics of our complex data as it encloses not only the content of the complex data, but also the way they are structured. The basic characteristics (e.g., file size, file name, duration for films or sounds; resolution for images, and so on) can be extracted automatically. These characteristics capture low-level information concerning the original data. The generic model that we present (Figure 2) allows us to add semantic characteristics of data in order to enrich their description by manual annotations or by knowledge automatically extracted from data mining techniques.

The UML class diagram represents a complex object generalizing all complex data types. Note that our goal here is to propose a general data structure: the list of attributes for each class in this diagram is willingly not exhaustive. Our generic Generic complex data UML model model defines a complex object which is composed of complex data represented as subdocuments. The subdocuments have special predefined low-level characteristics that depend on the type of complex data they contain. The (meta)class Specific in our model is a generic class that allows to define new classes and relationships in the UML model, and thus enables modeling semantic characteristics of complex data. It allows not only to describe the semantic properties of data, but also any other useful characteristic. Every class linked to the class Specific in the UML model can take advantage from it, when instantiating the model (at implementation time), by defining its own new characteristics.

MAS-based ETL approach.

A MAS is a collection of actors that communicate with each other [START_REF] Sycara | Coordination of Multiple Intelligent Software Agents[END_REF]. Morover, each agent (actor) is able to offer specific services and has a well-defined goal. Each agent is able to perform several tasks, in an autonomous way, and communicates the results to a receiving actor (human or software). A MAS must respect the programming standards defined by the Foundation for Intelligent Physical Agents (FIPA) [START_REF] Fipa | The Foundation for Intelligent Physical Agents[END_REF].

Our MAS-based integration approach is a flexible and evolutive architecture on which we can add, remove or modify services, and even create new agents (Figure 3) [START_REF] Boussaïd | A Multi-Agent System-Based ETL Approach for Complex Data[END_REF]. To validate our approach, we have developed a MAS-based ETL prototype: SMAIDoC, which is freely available on-line [START_REF] Bdd-Eric | SMAIDoC download page[END_REF]. We have instantiated five agents that allow the integration of complex data. The purpose of this collection of agents is to perform several tasks. The first main agent in our prototype, MenuAgent, pilots the system, supervises agent migrations, and indexes the accessible sites from the platform. Some others default pilot agents help in the management of the agents and provide an interface for the agent development platform. Two agents named DataAgent and WrapperAgent, respectively, model the input complex data into UML classes. Finally, the XMLCreator agent translates UML classes into XML documents that are mapped into a relational database by the XML2RDBAgent agent or that stored as a collection of XML documents.

To develop our prototype, we have built a platform using JADE version 2.61 [38] and the Java language [START_REF]The Source for Java Technology[END_REF], which is portable across agent programming platforms.

Perspectives

From a technical point of view, we can extend the services offered by SMAIDoC, especially for extracting data from their sources and analyzing them. For example, the DataAgent agent could converse with online search engines and exploit their answers. We could also create new agents in charge of modeling data in the multidimensional way, and applying analysis methods such as OLAP or data mining.

Finally, we aim at studying a meta-data representation of the results of data mining techniques that generate rules, in mixed structures combining XML-Schema and the Resource Description Framework (RDF). These description languages are indeed well-suited for expressing semantic properties and relationships between meta-data.

Therefore, SMAIDoC is designed as an incremental and progressive platform and as a technical support for our complex data integration method, whose main objective is to describe and store complex data into the XML documents.

3 The X-Warehousing platform

Context and issues

In our approach for complex data integration, we chose XML to describe and to store data in an ODS. At this stage, it is possible to mine the stored XML documents directly with the help of adapted techniques such as XML structure mining, for instance (Section ??). Otherwise, in order to analyse these XML documents efficiently, it is interesting to warehouse them. Therefore, new efforts are needed to integrate XML in classical business applications. Feeding data warehouses with XML documents is also becoming a challenging issue, since the multidimensional organization of data is quite different from the semi-structured organization. The difficulty consists in carrying out a multidimensional design within a semi-structured formalism like XML.

Nevertheless, in the literature, we distinguish two separate approaches in this field. The first approach focuses on the physical storage of XML documents in data warehouses. XML is considered an efficient technology to support data within structures well-suited for interoperability and information exchange, and can definitely help in feeding data warehouses. Baril and Bellahsène introduce the View Model, onto which they build an XML warehouse called DAWAX (DAta WArehouse for XML) [START_REF] Baril | XML Data Management: Native XML and XML-enabled Database Systems[END_REF]. Hümmer et al. propose an approach that focuses on the exchange and the transportation of data cubes over networks, rather than multidimensional modeling with XML [START_REF] Hümmer | XCube: XML for data warehouses[END_REF].

The second approach aims at using XML to design data warehouses according to classical multidimensional models such as star and snowflake schemas. Pokorny uses a sequence of DTDs to explicit dimension hierarchies that are logically associated, about the same way referential integrity is achieved in relational databases [START_REF] Pokorný | XML Data Warehouse: Modelling and Querying[END_REF]. Golfarelli et al. introduce a Dimensional Fact Model represented by Attribute Trees [START_REF] Golfarelli | Designing the Data Warehouse: Key Steps and Crucial Issues[END_REF]. They also use XML Schemas to express multidimensional models, by including relationships in subelements. Trujillo et al. also provide a DTD model from which valid XML documents are generated to represent multidimensional models at a conceptual level [START_REF] Trujillo | Applying UML and XML for Designing and Interchanging Information for Data Warehouses and OLAP Applications[END_REF]. Nassis et al. propose a similar approach, where an Object Oriented (OO) standard model is used to develop a conceptual model for XML Document Warehouses (XDW) [START_REF] Nassis | Conceptual Design of XML Document Warehouses[END_REF]. An XML repository, called xFACT, is built by integrating OO concepts with XML Schemas. They also define virtual dimensions by using XML and UML package diagrams in order to help the construction of hierarchical conceptual views.

Since we are able to describe complex data in XML documents and we need to prepare them to future OLAP analysis, storing them in a data repository is not a sufficient solution. We rather need to express through these documents a more interesting abstraction level that is completely oriented toward analysis objectives.

To achieve this goal, we propose an approach, called X-Warehousing [START_REF] Boussaïd | X-Warehousing: an XML-Based Approach for Warehousing Complex Data[END_REF], which is entirely based on XML, to warehouse complex data. It allows to build a collection of homogeneous XML documents. Each document corresponds to an OLAP fact where the XML formalism structures data according to a multidimensional model.

Proposed solution

We include in our approach a methodology that enables the use of XML as a logical modeling formalism for data warehouses. This methodology starts from analysis objectives defined by users according to a multidimensional conceptual model (MCM). Therefore, we focus on analysis needs rather than on the data themselves. The X-Warehousing approach (Figure 4) accepts a reference MCM and XML documents in input. In fact, through the reference MCM, a user may design a data warehouse by defining facts, dimensions, and hierarchies. Despite the use of a star schema or snowflake schema, the MCM depicts an analysis context independently from its logical and physical representation. The MCM is then transformed into a logical model via an XML Schema (XSD file). In a second step, an attribute tree is automatically generated from this XSD file. An attribute tree is a directed, acyclic and weakly connected graph that represents a warehouse schema [START_REF] Golfarelli | Data Warehouse Design from XML Sources[END_REF]. Once the reference model is defined, we can submit XML documents to feed the designed warehouse. XML Schemas and attribute trees are also extracted from the input XML documents. We transform the reference model and the XML documents into attribute trees in order to make them comparable. In fact, two attribute trees can easily be merged together through a fusion process based on pruning and grafting functions [START_REF] Golfarelli | Data Warehouse Design from XML Sources[END_REF]. At this stage, two cases are possible:

(1) if an input document contains the minimum information required in the reference MCM, the document is accepted and merged with the MCM. An instance of the XML documents is created and validated against the resulted XML Schema. This new XML Schema represents the logical model of the final XML Cube; (2) if a submitted document does not contain enough information to represent an OLAP fact according to the reference MCM, the document is rejected and no output is provided. The goal of this condition is to obtain an homogeneous collection of data with minimum information to feed the final XML Cube.

The interest of our approach is quite important since organizations are treating domains of complex applications. In these applications, a special consideration is given to the integration of heterogenous and complex information in DSS. For example, in breast cancer researches [START_REF] Heath | The Digital Database for Screening Mammography[END_REF], experts require efficient representations of mammographic exams. Note that information about a mammogram comes from different sources like texts, annotations by experts, and radio scanners. We think that structuring such a set of heterogenous data within an XML format is an interesting solution for warehousing them. Nevertheless, this solution is not sufficient for driving future analyse. We propose to structure these data in XML with respect to the multidimensional reference model of a data warehouse. Output XML documents of the X-Warehousing process represent the physical model of the data warehouse. Each output document corresponds to the multidimensional structured information of an OLAP fact.

Modeling a warehouse with XML. According to the proprieties of the XML documents, we propose to represent the above conceptual data warehouse models (star schema and snowflake schema) with XML. More precisely, we use XML Schemas to define the structure of a data warehouse. To formulate a star schema of a data warehouse in XML, we define the notion of an XML star schema as follows.

Definition: XML star schema. Let (F, D) be a star schema, where F is a set of facts having m measure attributes {F.M q , 1 ≤ q ≤ m} and D = {D s , 1 ≤ s ≤ r} is a set of r independent dimension where each D s contains a set of n s attributes {D s .A i , 1 ≤ i ≤ n s }. The XML star schema of (F, D) is an XML Schema where: (1) F defines the XML root element in the XML Schema; (2) ∀q ∈ {1, . . . , m}, F.M q defines an XML attribute included in the XML root element; (3) ∀s ∈ {1, . . . , r}, D s defines as many XML subelements of the XML root element as the number of times it is linked to the set of facts F ; (4) ∀s ∈ {1, . . . , r} and ∀i ∈ {1, . . . , n s }, D s .A i defines an XML attribute included in the XML element D s .

Knowing that the XML formalism allows to embed multi-level subelements in one XML tag, we use this property to represent XML hierarchies of dimensions. Let H = {D 1 , . . . , D t , . . . , D l } be a dimension hierarchy. We can represent this hierarchy by writing D 1 as an XML element and ∀t ∈ {2, . . . , l}, D t is an XML subelement of the XML element D t-1 . The attributes of each D t are defined as XML attributes included in the XML element D t . Since a dimension may have some hierarchies, it is possible to describe everyone by an XML element with its embedded subelements. Therefore, we can also define the notion of XML snowflake schema, which is the XML equivalent of a conceptual snowflake schema: Definition: XML snow flake schema. Let (F, H) be a star schema, where F is a set of facts having m measure attributes {F.M q , 1 ≤ q ≤ m} and H = {H s , 1 ≤ s ≤ r} is a set of r independent hierarchies. The XML snowflake schema of (F, H) is an XML Schema where: (1) F defines the XML root element in the XML Schema;

Example of XML fact (2) ∀q ∈ {1, . . . , m}, F.M q defines an XML attribute included in the the XML root element; (3) ∀s ∈ {1, . . . , r}, H s defines as many XML dimension hierarchies, like subelements of the XML root element, as the number of times it is linked to the set of facts F .

Based on the properties of the XML formalism, XML Schemas enable to write a logical model of a data warehouse from its conceptual model. Our approach does not only use the XML formalism to design data warehouses (or data cubes), but also feeds them with data. We use XML documents to support information related to the designed facts. As an XML document supports values of elements and attributes, we assume that it contains information about a single OLAP fact. We say that an XML document supports an XML fact when it is valid against an XML star schema or an XML snowflake schema representing the logical model of a warehouse. Figure 5 shows an example of XML fact.

Building XML Cubes. The comparison of attribute trees is realized by fusion operations according to pruning and grafting adapted functions [START_REF] Boussaïd | X-Warehousing: an XML-Based Approach for Warehousing Complex Data[END_REF]. In some cases, when an input XML document does not contain enough information required by the analysis objectives, the fusion provides a poor output XML document, which represents an OLAP fact with missing data. It is naturally useless to feed the warehouse with such a document. In order to check wether an input XML document contains enough information to feed the warehouse or not, we introduce the minimal XML document content. The minimal XML document content is an information threshold entirely defined by users when submitting the MCM to express analysis objectives. At this stage, a user can declare for each measure, dimension, and dimension hierarchy wether it is mandatory or optional according to his objectives and to the information he needs to see in the final XML Cube. The minimal XML document content corresponds to the attribute tree associated to mandatory elements declared by the user when submitting the data cube model. It is naturally not possible to decide with an automatic process which element in a future analysis context may be optional or not. It is entirely up to the user to define the minimal XML document content. Nevertheless, by default, we suppose that all measures and dimensions attributes of a submitted data cube model are mandatory in the final XML Cube. Moreover, we require that not all measures can be optional elements in the data cube. Indeed, in an analysis context, OLAP facts without a measure could not be exploited by OLAP operators such as aggregation. Hence, users are not allowed to set all the measures to optional elements. At least one measure in the submitted data cube model must be mandatory.

At the fusion step, the attribute tree of an input XML document is checked. If it contains all the mandatory elements required by the user, it is merged with the attribute tree of the data cube model. Otherwise, it is rejected, the fusion process is canceled, and therefore no output document is created. To validate our approach, we have implemented it as a Java application [START_REF] Boussaïd | X-Warehousing: an XML-Based Approach for Warehousing Complex Data[END_REF].

Perspectives

A lot of issues need to be addressed in our X-Warehousing approach. The first perspective is a performance study of OLAP queries in order to achieve analysis on XML documents as provided in XML Cubes. We should also deal with experimental tests on the reliability of the developed application. This includes studies on complexity and time processing of loading input XML documents, building attribute trees, merging attribute trees and creating output XML documents. Second, we should solve the problem of updating the XML Cube when the reference MCM is modified in order to change analysis objectives.

We also carried out different scenarios concerning different XML representations of the physical model in order to study the behavior of aggregation queries on the XML cube. The obtained results seem to highlight the problem of performances in XML cubes. In the case of certain configurations, the results show that the response time of the roll-up aggregation is prohibitory, but that the physical model is scalable. For other configurations, the response time of aggregation seems more acceptable but linear. Therefore, the concerned configurations are not truly scalable.

These solutions have the merit to show that the conception of XML cubes is not trivial. Many problems must be solved. The generation of a new aggregate fact must preserve the same structure that the original one. The detailed facts derived from an aggregate fact must also respect the same XML grammar. This latter is definitely defined by the cube's XML Schema. When the roll-up or drill down operations are achieved, it is necessary to keep the trace of the OLAP facts' changes when they are transformed from a granularity level to another into the XML cube. This can be achieved through the indices mechanism already used in the classical databases. Some research already exists that uses the concept of the referential integrity (ID/IDREF) to tackle the problem of the response times [START_REF] Pokorný | XML Data Warehouse: Modelling and Querying[END_REF]. The idea consists in working with views of the XML documents that significantly reduce the facts by deleting non-useful information for given queries. The definition of the XML documents' views, the fragments of XML views or XML documents have been proposed in different articles [START_REF] Baril | XML Data Management: Native XML and XML-enabled Database Systems[END_REF]. Combining these mechanisms of indices and views would be the solution for better performances in XML cubes. The choice of a configuration for the physical model of an XML cube is an open problem.

Complex data analysis

After having presented the problems related to warehousing complex data and the solutions we propose to handle them, we address in this section the issue of complex data analysis.

The possible approaches to analyze complex data include data mining and OLAP analysis. Indeed, the integration of complex data into an ODS under the form of XML documents enables us to consider several ways to analyze them. The first way consists in exploring XML documents directly with data mining techniques. The second way consists in using OLAP analyses to aggregate complex data and to explore them in a multidimensional way. However, classical OLAP tools are ill-adapted to deal with complex data. It seems that OLAP facts representing complex data need appropriate tools and new ways of aggregation to be analyzed.

XML structure mining

Context and issues. The success met by XML is primarily due to its flexibility and its capacity to describe all kinds of data. Consequently, it becomes essential to set up suitable techniques to extract and to exploit information contained in XML documents. Mining the XML documents concerns the traditional mining techniques, in particular classification and clustering. There are two main approaches in XML mining. On one hand, XML content mining applies mining methods onto document contents. On the other hand, XML structure mining takes interest in information extraction from the structure of XML documents [START_REF] Garofalakis | Data mining and the web: past, present and future[END_REF]. Content mining is usually based on text mining techniques. Some authors also took interest in association rules extraction from the content of XML documents tags [START_REF] Braga | Mining association rules from XML data[END_REF]. Nevertheless, this work took very little the hierarchical aspect that exists between tags into account. Mining the structure of XML documents (intra and inter-document structure) relates to information contained in the hierarchical organization of tags [START_REF] Nayak | Data mining and XML documents[END_REF]. The advantage of this approach is that it takes the hierarchical structure into account. In this context, we finally quote some work related to the extraction of a DTD from a set of XML documents whose structure is similar [START_REF] Moh | DTD-Miner : A tool for mining DTD from XML documents[END_REF].

We are also interested in the extraction of knowledge from the structure of XML documents. In particular, we wish to release the existing bonds between tags of a set of homogeneously structured documents. Among the existing mining methods, association rules extraction appears the best-adapted in this case. Indeed, this technique proved its great effectiveness in the discovery of interesting relationships among a large amount of data.

Association rules extraction from the structure of XML documents poses specific problems, mainly due to the hierarchical organization of tags in XML documents. Firstly, XML documents are not directly usable for association rules extraction. Indeed, most frequent itemset search and association rule extraction algorithms are Structure mining method in XML Documents normally intended to be used within relational databases. They reach the items they need for the constitution of frequent itemsets thanks to query languages such as SQL (Structured Query Language). This type of use is not possible in the case of XML documents tags. To be able to use frequent itemset search and association rule extraction algorithms, it is necessary to extract tags from documents and to structure these data. Thus, it is essential to carry out a preprocessing step in order to preformat and retrieve data. Secondly, XML document tags are hierarchically organized, unlike tuples in a relational database. Thus, it is necessary to develop a strategy to manage and to take into account the tags' hierarchical structure during association rule extraction. Thirdly, in a well-formed XML document (a document that respects the XML syntax), the same tag may appear in various places in the hierarchy, but it always represents the same information. These tags must be managed specifically.

Proposed solution.

To stage these problems, we carry out an effective preformating of XML documents and we create a minimal DTD representing the hierarchy of all the tags met [START_REF] Duffoux | Fouille dans la structure de documents XML', 4èmes Journées Francophones d[END_REF]. Moreover, we show that this preformating and the minimal DTD make them exploitable by traditional extraction algorithms, and set up an adequate structure for hierarchy management. We obtain a restricted set of relevant rules while improving processing time. We apply an adapted version of the Apriori algorithm [START_REF] Agrawal | Mining association rules between sets of items in large databases[END_REF] for frequent itemset search. Lastly, association rules are extracted and results are presented in XML documents. (Figure 6.

In order to test our approach, we used two sets of XML documents: Medline (the American dictionary of medicine) and a set of French scientific articles. Then, we applied the adapted traditional algorithm for association rule extraction. We obtain a set of association rules we score thanks to the discriminating probabilistic indicator (IPD) quality measure. We achieve a clear improvement in terms of quality and processing time for the rules we obtain, compared to a system that does not use a minimal DTD [START_REF] Duffoux | Fouille dans la structure de documents XML', 4èmes Journées Francophones d[END_REF].

Our work can be useful for the creation of a management platform for XML documents (repairing and creating of a minimal DTD for documents that do not bear the same schema). This approach also constitutes a first stage of a broader step in XML mining. The association of structure and content mining should enable to widen and improve the XML content mining techniques, in particular for tags that are bounded. Lastly, in a step of complex data representation, this mining method can be relevant.

Perspectives. This approach highlights the interest of mining the XML document. An XML document encloses more information than an common text. Its structure supports some relevant information. We intend to resort to the structure mining as a preliminary task to enhance the content mining. These both mining tasks constitute the efficient XML mining that is different from the traditional text mining.

The structure mining may be perceived as an interesting way to discover the relevance of some tags, which they may be selected as measures or dimensions in the multidimensional modeling task assisted by data mining techniques [START_REF] Boussaïd | Integration and Dimensional Modelling Approaches for Complex Data Warehousing[END_REF]. In order to achieve this assisted modeling, we can exploit the associations among some tags discovered by our structure mining approach.

A data mining-based OLAP operator for complex data

Context and issues. OLAP is a powerful mean of exploring and extracting pertinent information from data through multidimensional analysis. In this context, data are organized in multidimensional views, commonly called data cubes. However, classical OLAP tools are not always able to deal with complex data. For example, when processing images, sounds, videos, texts or even XML documents, aggregating information with the classical OLAP does not make any sense. Indeed, we are not able to compute a traditional aggregation operation, such as sum or average, over such data. However, when users analyze complex data, they need more expressive aggregates than those created from elementary computation of additive measures. We think that OLAP facts representing complex objects need appropriate tools and new aggregation means since we wish to analyze them.

Furthermore, a data cube structure can provide a suitable context for applying data mining methods. More generally, the association of OLAP and data mining allows elaborated analysis tasks exceeding the simple exploration of a data cube. Our idea is to take advantage from OLAP, as well as data mining techniques and to integrate them into the same analysis framework in order to analyze complex objects. Despite the fact that both OLAP and data mining have long been considered two separate fields, several recent studies proved the capability of their association to provide interesting analysis process [START_REF] Imielinski | A Database Perspective on Knowledge Discovery[END_REF]. The major difficulty when combining OLAP and data mining is that traditional data mining algorithms are mostly designed for tabular datasets organized in individual-variable form [START_REF] Fayyad | Advances in Knowledge Discovery and Data Mining[END_REF]. Therefore, multidimensional data are not suited to these algorithms. Nevertheless, a lot of previous research motivated and proved an interest for coupling OLAP with data mining methods in order to extend OLAP analysis capabilities [START_REF] Goil | High Performance Multidimensional Analysis and Data Mining[END_REF][START_REF] Han | Toward On-line Analytical Mining in Large Databases[END_REF][START_REF] Sarawagi | Discovery-driven Exploration of OLAP Data Cubes[END_REF]. In addition, we propose another contribution to this field by developing a new type of online aggregation for complex data. It is a new OLAP Operator for Aggregation by Clustering (OpAC) [START_REF] Ben Messaoud | A New OLAP Aggregation Based on the AHC Technique[END_REF].

Proposed solution. To aggregate information about complex data, we must often gather similar facts into a single group and separate dissimilar facts into different groups. In this case, it is necessary to consider an aggregation by computing both descriptors and measures. Instead of grouping facts only by computing their measures, we also take their descriptors into account to obtain aggregates expressing semantic similarities. Our new operator for aggregating complex data (OpAC) combines OLAP with an automatic clustering technique. We use the Agglomerative Hierarchical Clustering (AHC) as an aggregation strategy for complex data. Our operator enables significant aggregates of facts expressing semantic similarities. More generally, the aggregates provided by OpAC give interesting knowledge about the analyzed domain. OpAC is adapted for all types of data, since it deals with data cubes modeled in XML [START_REF] Ben Messaoud | A Data Mining-Based OLAP Aggregation of Complex Data : Application on XML Documents[END_REF].

Furthermore, we also propose some evaluation criteria that support the results of our operator. These criteria aim at assisting the user and helping him/her in choosing the best partition of aggregates that will fit well with his/her analysis requirements. We also developed a Web application for our operator. We provided performance experiments and drove a case study on XML documents dealing with the breast cancer research domain [START_REF] Ben Messaoud | A Data Mining-Based OLAP Aggregation of Complex Data : Application on XML Documents[END_REF] .

The main idea of OpAC is to exploit the cube's facts describing complex objects to provide over them a more significant aggregation. In order to do so, we use a clustering method and automatically highlight aggregates that are semantically richer than those provided by the current OLAP operators. Hence, the clustering method provides a new OLAP aggregation concept. This aggregation provides hierarchical groups of objects resuming information and enables navigating through levels of these groups. Existing OLAP tools, such as the Slicing operator, can create new restricted aggregates in a cube dimension, too, but these tools always need a handmade assistance, whereas our operator is based on a clustering algorithm that automatically provides relevant aggregates. Furthermore, with classical OLAP tools, aggregates are created in an intuitive way in order to compare some measure values, whereas OpAC creates significant aggregates that express deep relations with the cube's measures. Thus, the construction of such aggregates is interesting to establish a more elaborate on-line analysis context. According to the above objectives, we choose the AHC as an aggregation method. Our choice is motivated by the fact that the hierarchical aspect constitutes a relevant analogy between AHC results and the hierarchical structures of dimensions. The objectives and the results expected for OpAC match perfectly with the AHC strategy. Furthermore, the AHC adopts an agglomerative strategy that starts by the finest partition where each individual is considered a cluster. Therefore, OpAC results include the finest attributes of a dimension. But, like almost all unsupervised mining methods, the main defect of the AHC is that it does not give an evaluation of its results, i.e. the partitions of clusters. It is quite tedious to choose the best partition, and it is more difficult when we deal with a great number of individuals. In the case of OpAC operator, we propose to use many criteria to help users to select the best partition of aggregates. According to the data mining literature, we can cause the intra and inter-clusters inertias or the Ward's method. In addition, we also propose a new criterion based on the cluster separability [START_REF] Ben Messaoud | A Data Mining-Based OLAP Aggregation of Complex Data : Application on XML Documents[END_REF].

The AHC is compatible with the exploratory aspect of OLAP. Its results can also be reused by classical OLAP operators. In fact, the AHC provides several hierarchical partitions. By moving from a partition level to a higher one, two aggregates are joined together. Conversely, by moving from a partition level to a lower one, an aggregate is divided into two new ones. These operations are strongly similar to the classical Roll-up and Drill-down operators. AHC is a well suited clustering method to summarize information into OLAP aggregates from complex facts.

Perspectives. This work has proved the interest of associating OLAP and data mining in order to enhance on-line analysis power. We believe that, in the future, this association will provide a new generation of efficient OLAP operators wellsuited to complex data analyses. To extend the on-line analysis toward the new capabilities such as explanation and prediction is an exciting challenge that we plan to achieve. In order to aim this objective, we intend to develop a new algebra based on the OLAP and data mining coupling to define some new on-line mining operators to deeply explore the complex data.

5 Performance issues in XML warehousing

Context and issues

While we advocated in the previous sections that XML data warehouses form an interesting basis for decision-support applications exploiting complex data, XMLnative database management systems (DBMSs) usually show limited performances when the volume of data is very large and queries are complex. This is typically the case in data warehouses, where data are historicized and analytical queries involve several join and aggregation operations. Hence, it is crucial to devise means of optimizing the performance of XML data warehouses. In such a context, indexing and view materialization are presumably some of the most effective optimization techniques.

Indexes are physical structures that allow direct data access. They avoid sequential scans and thereby reduce query response time. Materialized views improve data access time by precomputing intermediary results. Therefore, end-user queries can be efficiently processed through data stored in views, and do not need to access the original data. However, exploiting either indexes or materialized views requires additional storage space and entails maintenance overhead when refreshing the data warehouse. The issue is then to select an appropriate configuration of indexes and materialized views that minimizes both query response time and index and view maintenance cost, given a limited storage space (a NP-hard problem).

Most of the existing XML indexing techniques [START_REF] Bertino | XJoin Index: Indexing XML Data for Efficient Handling of Branching Path Expressions[END_REF][START_REF] Boulos | A New Design for a Native XML Storage and Indexing Manager[END_REF][START_REF] Bruno | Holistic twig joins: optimal XML pattern matching[END_REF][START_REF] Chien | Efficient Structural Joins on Indexed XML Documents[END_REF][START_REF] Chung | APEX: an adaptive path index for XML data[END_REF][START_REF] Goldman | DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases[END_REF][START_REF] He | Multiresolution Indexing of XML for Frequent Queries[END_REF][START_REF] Jiang | XR-Tree: Indexing XML Data for Efficient Structural Joins[END_REF][START_REF] Kaushik | Exploiting Local Similarity to Efficiently Index Paths in Graph-Structured Data[END_REF][START_REF] Milo | Index Structures for Path Expressions[END_REF][START_REF] Qun | D(k)-Index: An Adaptive Structural Summary for Graph-Structured Data[END_REF][START_REF] Zhang | On Supporting Containment Queries in Relational Database Management Systems[END_REF] are applicable only onto XML data that are targeted by simple path expressions. However, in the context of XML data warehouses, queries are complex and include several path expressions. Moreover, these indices operate on one XML document only, whereas in XML warehouses, data are managed in several XML documents and analytical queries are performed over these documents. The Fabric index [START_REF] Cooper | A Fast Index for Semistructured Data[END_REF] does handle multiple documents, but it is not adapted to XML data warehouses either, because it does not take into account the relationships that exist between XML documents in a warehouse (facts and dimensions). Fabric is thus not beneficial to decision-support queries. In consequence, we propose a new index that is specifically adapted to XML, multidimensional data warehouses [START_REF] Mahboubi | 6èmes Journées Francophones Extraction et Gestion des Connaissances[END_REF]. This data structure allows to optimize the access time to several XML documents by eliminating join costs, while preserving the information contained in the initial warehouse.

Eventually, the literature about materialized view selection is abundant in the context of relational data warehouses but, to the best of our knowledge, no such approach exists in XML databases and XML data warehouses in particular. Hence, we proposed an adaptation of a query clustering-based relational view selection approach [START_REF] Aouiche | Clustering-Based Materialized View Selection in Data Warehouses[END_REF] to the XML context [START_REF] Mahboubi | Materialized View Selection by Query Clustering in XML Data Warehouses[END_REF]. This approach clusters XQuery queries and builds candidate XML views that can resolve multiple similar queries belonging to the same cluster. XML-specific cost models are used to define the XML views that are pertinent to materialize.

Proposed solutions

Reference XML data warehouse. Several authors address the issue of designing and building XML data warehouses. They use XML documents to manage or represent the facts and/or dimensions of the warehouse [START_REF] Hümmer | XCube: XML for data warehouses[END_REF][START_REF] Park | XML-OLAP: A Multidimensional Analysis Framework for XML Warehouses[END_REF][START_REF] Pokorný | XML Data Warehouse: Modelling and Querying[END_REF]. We select XCube [START_REF] Hümmer | XCube: XML for data warehouses[END_REF] as a reference data warehouse model. Since other XML warehouse models from the literature are relatively similar, this is not a binding choice. The advantage of XCube is its simple structure for representing facts and dimensions in a star schema: one document for dimensions (Dimensions.xml) and another one for facts (Facts.xml).

XML data warehouse indexing. Building the indexes cited in Section 5.1 on an XML warehouse causes a loss of information in decision-support query resolution. Indeed, clustering or merging identical labels in the XML graph causes the disappearance of the relationship between fact measures and dimensions. We illustrate this problem in the following example. The Facts.xml document is composed of Cell elements. Each cell is identified by its attributes and one or more measures. Figure 7 shows the structure of the Facts.xml document and its corresponding 1index (we selected the 1-index [START_REF] Milo | Index Structures for Path Expressions[END_REF] as an example). The 1-index represents cells linearly, i.e., all labels for the same source are represented by only one label. Hence, recovering a cell characterized by its measures and its dimension identifiers is impossible.

An index should be able to preserve the relationships between dimensions and fact measures. Thus, our index' structure is similar to that of the Facts.xml document, except for the attribute element. As usual with XML indexes, our index structure is stored in an XML document named Index.xml (Figure 8). Each Cell element is composed of dimensions and one or more facts. A Fact element has two attributes, @id and @value, which respectively represent measure names and values. Each dimension element is composed of two attributes: @id, which stores the dimension name, and @node, which stores the value of the dimension identifier. Moreover, the dimension element has children attribute elements. These elements are used to store the names and values of the attributes from each dimension. They are obtained from the Dimensions.xml document. An attribute element is composed of two attributes, @name and @value, which respectively store the name and value Data migration from Dimensions.xml and Facts.xml to the index structure helps in storing facts, dimensions and their attributes in the same cell. This feature wholly eliminates join operations, since all the information that is necessary for a join operation is stored in the same cell. Finally, queries need to be rewritten to exploit our index. The rewriting process consists in preserving the selection expressions and the aggregation operations.

XML materialized view selection. The first step in our view selection strategy is to build, from a workload of representative queries, a clustering context. We extract from the queries representative attributes, i.e., attributes that are present in the selection predicates and grouping clauses. Then, we store the relationships between the query workload and the extracted attributes in a "query-attribute" matrix. The matrix' lines are the queries and the columns are the extracted attributes. The general term q ji of this matrix is set to one if extracted attribute a j is present in query q i , and to zero otherwise. This matrix represents our clustering context.

Then, since it is hard to search for all the syntactically relevant views (candidate views) because the search space is very large, we cluster together similar queries. Similar queries are the one having a close binary representation in the query-attribute matrix. Two similar queries can be resolved by using only one materialized view. We define similarity and dissimilarity measures that ensure that queries within a same cluster are strongly related to each others, whereas queries from different clusters are significantly different. The number of candidate views we obtain is generally as high as the input workload is large. Thus, it is not feasible to materialize all the proposed views because of storage space constraints. To circumvent this limitation, we devised cost models and objective functions that exploit them, and help in selecting only the most pertinent materialized views.

Finally, our view selection algorithm is based on a greedy search within the candidate view set V , with respect to an objective function F . In the first iteration, the values of F are computed for each view within V . The view v max that minimizes F , if it exists (F /S (v max) > 0), is then added to S. The values of F are then computed for each remaining view in V -S, since they depend on the selected views present in S. This helps in taking into account the interactions that probably exist between the views. We repeat these iterations until there is no improvement (F /S (v) ≤ 0), all the views have been selected (V -S = ∅) or storage space is full.

Perspectives

To validate our proposals, we performed many experiments with XML-native and relational, XML-compatible DBMSs. Our tests show that using either the index structure we propose or the materialized views our strategy helps in building significantly improves response time for typical analytical queries expressed in XQuery. Gains in performance indeed range from a factor 8,000 to 25,000, depending on the host system. Furthermore, our tests also demonstrate that, properly indexed, XML-native DBMSs can compete with, and even best relational DBMSs in terms of performance when XML documents are bulky. This is because relational DBMS engines combine XQuery to SQL and must convert the result from relations to XML. Native-XML DBMSs, on the other hand, preserve the hierarchical structure of XML data, which allows path scans to be efficiently processed by XQuery engines.

This research opens three broad axes of perspectives. First, we have to complement our experiments with other tests, using presumably other systems and data warehouse configurations. Our aim is to assert the gain in performance vs. the overhead for generating and refreshing indexes and materialized views, in each con-figuration. Second, it is widely acknowledged that indexes and materialized views are mutually beneficial to each other. We have designed a method for simultaneously selecting indexes and materialized views in the relational context, which we aim at adapting to the XML context. Finally, our performance optimization strategies could be better integrated in a host XML-native DBMS. This would certainly help in developing an incremental strategy for the maintenance of indexes and materialized views. Our selection strategy is indeed static, currently. Studies dealing with incremental data mining may be exploited to make it dynamic, so that a configuration of indexes and materialized views can be updated instead of being rebuilt from scratch. Moreover, the mechanism for rewriting queries would also be more efficient if it was part of the system.

Conclusion

Nowadays, data from the Web are complex. To handle this kind of data in a decision-support context, we propose a full, generic data warehousing and on-line analysis process. In this paper, we identified some problems related to both these processes and we suggested different solutions.

First of all, we exposed an approach to integrate complex data. We presented a generic UML model that allows to model not only low-level but also semantic information concerning the complex data to be analyzed. We integrated complex data as XML documents into an ODS as a first step in complex data warehousing. This complex data integration approach is based on both the data warehouse technology and multi-agent systems. Our integration approach indeed necessitates several tasks that may be assimilated to services offered by well-defined agents in a system intended to achieve such an integration. We developed the SMAIDoC system, which allows this integration. It is based upon a flexible and progressive architecture on which we can add, remove or modify services, and even create new agents.

Secondly, we proposed a methodology entirely based on the XML formalism to warehouse complex data. Our X-Warehousing approach does not simply populate a repository with XML documents, but also expresses an interesting abstraction level by preparing XML documents to future analyses. In fact, it consists in validating documents against an XML Schema, which models a data warehouse. We defined a general XML formalization for star and snowflake schemas. We also exploited the concept of attribute trees to help in the creation and the warehousing of homogeneous XML documents, by merging initial XML sources with a reference multidimensional model. Constraints on the created XML documents may be required and expressed by users. To validate our X-Warehousing approach, we implemented a Java application, which takes as input a reference multidimensional model and XML documents, and provides logical and physical models for an XML cube composed of homogeneous XML documents.

These proposed solutions constitute the first axis related to the complex warehousing process. We also proposed two approaches regarding the on-line analysis process of complex data. The first one applies a data mining technique to discover association rules among the tags of XML documents. Structure mining is indeed a relevant preliminary task for content mining over XML documents. Our second proposal carries on a new on-line analysis context for complex data. Our approach is based on coupling OLAP with data mining. The combination of the two fields can be a solution to capitalize their respective benefits. We have created OpAC, a new OLAP aggregation operator based on an automatic clustering method. Unlike classical OLAP operators, OpAC enables precise analyses and provides semantic aggregates of complex objects.

Finally, the implementation of our X-Warehousing method highlighted performance problems when storing warehouses in XML-native DBMSs. Hence, we proposed a new join index that is specifically adapted to XML, multidimensional data warehouses. This data structure allows to optimize the access time to several XML documents by eliminating join costs, while preserving the information contained in the initial warehouse. We also presented a view selection algorithm, which we combine with the index structure to improve the overall efficiency of our strategy. The experiments we performed show a significant improvement in response time for analytical queries.

All the solutions we have presented in this paper are a modest contribution to the problem of complex data warehousing and on-line analysis. Although we mentioned various perspectives for our work at the end of each of this paper's sections, a lot of scientific issues are still not solved.

Figure 1

 1 Figure 1Complex data warehousing and analysis process

Figure 2

 2 Figure 2Generic complex data UML model

Figure 3

 3 Figure 3MAS-based ETL architecture for complex data integration

Figure 4

 4 Figure 4Overview of the X-Warehousing approach

Figure 6

 6 Figure 6Structure mining method in XML Documents

Figure 7

 7 Figure 7Facts.xml structure (a) and its corresponding 1-index (b)

Figure 8

 8 Figure 8XML join index structure

Acknowledgements

The authors would like to thank Prof. Robert Wrembel and Prof. Jaroslav Pokorný, the editors, for inviting them to publish an article in this special issue.