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Abstract 

This paper explores the effect that changing access patterns has on the performance of database 

management systems. Changes in access patterns play an important role in determining  the  

efficiency  of  key  performance  optimization  techniques,  such  as  dynamic  clustering, 

prefetching,  and  buffer  replacement.  However,  all  existing  benchmarks  or  evaluation  

frameworks  produce  static  access  patterns  in  which  objects  are  always  accessed  in  the  same  

order repeatedly. Hence, we have proposed the Dynamic Evaluation Framework (DEF) that 

simulates access pattern changes using configurable styles of change. DEF has been designed 

to be open and fully extensible (e.g., new access pattern change models can be added easily). 

In this paper,  we  instantiate  DEF  into  the  Dynamic  object  Evaluation  Framework  (DoEF)  

which  is designed for object databases, i.e., object-oriented or object-relational databases such 

as multi-media databases or most XML databases. 

The  capabilities  of  DoEF  have  been  evaluated  by  simulating  the  execution  of  four  

different dynamic  clustering  algorithms.  The results confirm our  analysis  that  flexible  

conservative  re-clustering is the key in determining a clustering algorithm’s ability to adapt to 

changes in access pattern.  These  results  show  the  effectiveness  of  DoEF  at  determining  the  

adaptability  of  each dynamic  clustering  algorithm  to  changes  in  access  pattern  in  a  

simulation  environment.  In  a second  set  of  experiments,  we have used  DoEF  to  compare  the  

performance  of  two  real-life  object stores  :  Platypus  and  SHORE.  DoEF has  helped  to  reveal  

the  poor  swapping  performance  of Platypus. 

 
Keywords: Performance evaluation, Dynamic access patterns, Benchmarking, Object-oriented 

 
and object-relational databases, Clustering. 

 
 

 
Introduction 

 

 
Performance evaluation is critical for both designers of Database Management Systems (DBMSs), for 

 
architectural or optimisation choices, and users, for efficiency comparison or tuning. Traditionally, this 



 
 
 

is achieved with the use of benchmarks, i.e., synthetic workload models (databases and operations) and 

sets of performance metrics. Although in real life, almost no application always accesses the same data 

in the same order repeatedly, none of the existing database benchmarks incorporate the possibility of 

change in the access patterns. The ability to adapt to changes in access patterns is critical to database 

performance.  In  addition,  highly  tuning  a  database  to  perform  well  for  only  one  particular  

access pattern can lead to poor performance when different access patterns are used. Thus, a database 

tuned to a particular trace (a particular instance of a real application usage) is likely to perform 

poorly when a different trace is used. In addition, the performance of a database on a particular trace 

provides little insight into the reasons behind its performance, and thus is of limited use to database 

researchers or engineers, who are interested in the identification and improvement in the 

performance of particular components of the system. 
 

Thus, the aim of our work is to provide a means for them to explore the performance of databases 

under  different  styles  of  access  pattern  change.  In  contrast,  benchmarks  of  the  TPC  family  aim  

to provide standardised  means of comparing systems for vendors and customers. In this paper, we 

take a first look at how dynamic application behavior can be modeled and propose the Dynamic 

Evaluation Framework (DEF). DEF makes the first attempt at exploring the issue of evaluating the 

performance of DBMSs in general and such optimization techniques as dynamic clustering algorithms 

in particular, with respect to changing query profiles. DEF contains a set of protocols which in turn 

define a set of styles of access pattern change. DEF by no means has exhausted all possible styles of 

access pattern change.  However,  we  have  designed  DEF  to  be  fully  extensible  and  its  design  

allows  new  styles  of change to be easily incorporated. Finally, DEF is a generic platform that can be 

specialized to suit the particular needs of a given family of DBMS (e.g., relational, object, or object-

relational). In particular, it  is  designed  to  be  implemented  on  top  of  an  existing  benchmark  so  

that  previous  benchmarking research and standards can be reused. 

 
 

In  this  paper,  we  show  the  utility  of  DEF  by  creating  an  instance  of  DEF  called  the  Dynamic 

 
object Evaluation Framework (DoEF) (He and Darmont, 2003) which is designed for object databases. 



Note that, in the remainder of this paper, we term Object Database Management Systems (ODBMSs) 

both  object-oriented and  object-relational  systems,  indifferently. ODBMSs  include  most  multimedia 

and  XML  DBMSs,  for  example.  DoEF  is  built  on  top  of  the  Object  Clustering  Benchmark  

(OCB) (Darmont, Petit, and Schneider, 1998; Darmont and Schneider, 2000), which is a generic 

object-oriented benchmark that is able to simulate the behavior of other main object-oriented 

benchmarks. DoEF uses both the database built from the rich schema of OCB and the operations 

offered by OCB. Since OCB’s generic model can be implemented within an object-relational system 

and most of its operations are relevant for such a system, DoEF can also be used in the object-

relational context. 
 

To  test  the  effectiveness  of  DoEF,  we  have  conducted  two  sets  of  experiments.  First  we  

have benchmarked four state of the art dynamic clustering algorithms (Bullat and Schneider, 1996; 

Darmont, Fromantin,  Regnier,  Gruenwald,  and  Schneider,  2000;  He,  Marquez,  and  Blackburn,  

2000).  There  are three reasons for choosing to test the effectiveness of DoEF using dynamic 

clustering algorithms: (1) ever  since  the  “early  days”  of  object  database  management  systems,  

clustering  has  been  proven  to be  one  of  the  most  effective  performance  enhancement  techniques  

(Gerlhof,  Kemper,  and  Moerkotte, 1996);  (2)  the  performance  of  dynamic  clustering  algorithms  

is  very  sensitive  to  changing  access patterns;  and  (3)  despite  this  sensitivity,  no  previous  

attempt  has  been  made  to  benchmark  these algorithms in this way. Then we tested the utility of 

DoEF by benchmarking two transactional object stores:  Platypus  (He,  Blackburn,  Kirby,  and  

Zigman,  2000);  and  SHORE  (Carey,  DeWitt,  Franklin, Hall, McAuliffe, Naughton, Schuh, 

Solomon, Tan, Tsatalos, White, and Zwilling, 1994). 
 

Our first paper about DoEF (He and Darmont, 2003) made two key contributions: (1) it 

proposed the  first  evaluation  framework  that  allowed  ODBMSs  and  associated  optimisation  

techniques  to  be evaluated in a dynamic environment; (2) it presented the first performance 

evaluation experiments of dynamic clustering algorithms in a dynamic environment (by simulation). 

This paper expands on this material by presenting a more generic view of our evaluation framework, 

by providing a more thorough description of the configurable styles of change, and by reporting the  

 

 

 



   results of new experiments that validate the effectiveness of DoEF at contrasting the dynamic             

  performance of two real-life  ODBMSs. 

The  remainder  of  this  paper  is  organised  as  follows.  We first  present a  brief  description  of 

existing DBMS benchmarks. Second we present an overview of the OCB benchmark. The next 

two sections describe in detail the DEF framework and its object-oriented instance DoEF, 

respectively.  Next we presents  a  brief  description  of  the  state  of  the  art  clustering  algorithms  and  

object  stores  we  have used in this paper. We present and discuss experimental results achieved with 

DoEF in the next section, and finally conclude the paper and provide future research directions. 

 
 
Existing Benchmarks 

 

We briefly describe here the prevalent benchmarks, besides OCB that is detailed in the next section, 

which have  been  proposed  in  the  literature  for  evaluating  the  performances  of  DBMSs.  Note  that  

none  of these benchmarks incorporate any dynamic application behavior. 

In  the  world  of  relational  databases,  the  Transaction  Processing  Performance  Council  (TPC),  

a non-profit institute founded in 1988, defines standard benchmarks, verifies their correct 

application, and  publishes  the  results.  The  TPC  benchmarks  include  TPC-C  (TPC,  2002a)  for  

OLTP,  TPC-H (TPC, 2003a) and TPC-R (TPC, 2003b) for decision support, and TPC-W (TPC, 

2002b) for web commerce. All these benchmarks feature an elaborate database and set of operations. 

Both are fixed, the only parameter being the database size (scale factor). 

 
 

In contrast, there is no standard object-oriented database benchmark. However, the OO1 bench- 

 
mark  (Cattell,  1991),  HyperModel  benchmark  (Anderson,  Berre,  Mallison,  Porter,  and  Scheider, 

1990),  and  the  OO7  benchmark  (Carey,  DeWitt,  and  Naughton,  1993)  may  be  considered  as  de  

facto standards.  They  are  all  designed  to  mimic  engineering  applications  such  as  CAD,  CAM,  or  

CASE applications. They range from OO1, that has a very simple schema (two classes) and only 

three simple operations, to OO7, that is more generic and provides both a much richer and more 

customisable schema  (ten  classes),  and  a  wider  range  of  operations  (fifteen  complex  operations).  

However, even OO7’s schema is static and still not generic enough to model other types of 

applications like financial, telecommunications  and  multimedia  applications  (Tiwary,  Narasayya,   

 

 

 



and  Levy,  1995).  Furthermore, each step in adding complexity makes these benchmarks harder to 

implement. 

 
Object-relational  benchmarks,  such  as  the  BUCKY  benchmark  (Carey,  DeWitt,  Naughton,  As- 

 
garian, Brown, Gehrke, and Shah, 1997) and Benchmark for Object-Relational Databases (BORD) 

(Lee,  Kim,  and  Kim,  2000),  are  query-oriented  benchmarks  that  are  specifically  aimed  at  

evaluating the  performances  of  object-relational  database  systems.  For  instance,  BUCKY  only  

features  operations  that  are  specific  to  object-relational  systems,  since  typical  object  navigation  

has  already  been tested by other benchmarks (see above). Hence, these benchmarks focus on 

queries involving object identifiers, inheritance, joins, class references, inter-object references, set-

valued attributes, flattening queries, object methods, and various abstract data types. The database 

schema is also static in these benchmarks. 

Finally,  Carey  and  Franklin  have  designed  a  set  of  workloads  for  measuring  the  performance  

of their  client-server  Object-Oriented  Database  Management  Systems  (OODBMSs)  (Carey,  

Franklin, Livny, and Shekita, 1991; Franklin, Carey, and Livny, 1993). These workloads operate at 

the page grain instead  of  the  object  grain,  i.e.,  synthetic  transactions  read  or  write  pages  instead  

of  objects.  The workloads  contain  the  notion  of  hot  and  cold  regions  (some  areas  of  database  are  

more  frequently accessed  compared  to  others),  attempting  to  approximate  real  application  

behaviour.  However, the hot region never moves, meaning no attempt is made to model dynamic 

application behaviour. 

 
 
 
 
The Ob ject Clustering Benchmark (OCB) 

 

OCB is a generic, tunable benchmark aimed at evaluating the performances of OODBMSs. It was first 

oriented toward testing clustering strategies (Darmont et al., 1998) and was later extended to become 

fully generic (Darmont and Schneider, 2000). The flexibility and scalability of OCB is achieved 

through an  extensive  set  of  parameters.  OCB  is  able  to  simulate  the  behavior  of  the  de  facto  

standards  in object-oriented benchmarking, namely OO1 (Cattell, 1991), HyperModel (Anderson et 

al., 1990), and OO7 (Carey et al., 1993). Furthermore, OCB’s generic model can be implemented  

 

 

 



within an object-relational  system  easily  and  most  of  its  operations  are  relevant  for  such  a  

system.  We only  provide here an overview of OCB. Its complete specification is available in (Darmont 

and Schneider, 2000). The two main components of OCB are its database and workload. 

 
 

 
 Database 

 

The  OCB  database  is  made  up  of  NC  classes  derived  from  the  same  metaclass  (Figure  1).  

Classes are defined by two parameters: MAXNREF, the maximum number of references in the 

instances and BASESIZE,  an  increment  size  used  to  compute  the  InstanceSize.  Each  CRef  (class  

reference)  has  a type: TRef. There are NTREF different types of references (e.g., inheritance, 

aggregation...). Finally, an Iterator is maintained within each class to save references toward all its 

instances. 
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Fig. 1. OCB database schema 
 
 

 

Each  object  possesses  ATTRANGE  integer  attributes  that  may  be  read  and  updated  by  

transactions.  A  Filler  string  of  size  InstanceSize  is  used  to  simulate  the  actual  size  of  the  object.  

After instantiating  the  schema,  an  object  O  of  class  C  points  through  the  ORef  references  to  

at most C.MAXNREF  objects.  There  is  also  a  backward  reference  (BackRef)  from  each  

referenced  object toward the referring object O. 

 
The database generation proceeds through three steps. 

 

1.  Instantiation of the CLASS metaclass into NC classes and selection of class level references. Class 

references are selected to belong to the [Class ID - CLOCREF, Class ID + CLOCREF] interval. 

This models locality of reference at the class level. 



 
 
 
 
 

2.  Database consistency check-up: suppression of all cycles and discrepancies within the graphs that 

 
do not allow them, e.g., inheritance graphs or composition hierarchies. 

3.  Instantiation  of  the  NC  classes  into  NO  objects  and  random  selection  of  the  object  

references. Object references are selected to belong to the [OID - OLOCREF, OID + 

OLOCREF] interval. This models locality of reference at the instance level. 

 
 

The main database parameters are summarized in Table 1. 
 
 

 
Parameter  name  Parameter                                               Default  value 

NC                           Number of classes in the database                       50 

MAXNREF(i)         Maximum number of references, per class            10 

BASESIZE(i)           Instances base size, per class                            50 bytes 

NO                          Total number of objects                                    20,000 

NREFT                   Number of reference types                                    4 

ATTRANGE           Number of integer attributes in an object             1 

CLOCREF              Class locality of reference                                     NC 

OLOCREF              Object locality of reference                                   NO 

Table  1. OCB database main parameters 
 
 
 
 
 
 
 
 Workload 

 
 
The operations of OCB are broken up into four categories. 

 
 

–  Random Access:  Access to NRND  randomly selected objects. 

 
–  Sequential Scan:  Randomly select a class and then access all its instances. A Range Lookup  addi- 

 
tionally performs a test on the value of NTEST  attributes, for each accessed instance. 

–  Traversal: There are two types of traversals in OCB. Set-oriented accesses (or associative accesses) 

perform  a  breadth-first  search.  Navigational  Accesses  are  further  divided  into  Simple  

Traversals (depth-first searches), Hierarchy  Traversals  that always follow the same reference 

type, and Stochastic Traversals  that select the next link to cross at random. Each traversal 

proceeds from a randomly chosen root object, and up to a predefined depth. All the traversals 

can be reversed by following the backward links. 



 
 
 

–  Update:  Update  operations  are  also  subdivided  into different types.  Schema  Evolutions  are  

random  insertions  and  deletions  of  Class  objects  (one  at  a  time).  Database  Evolutions  are  

random insertions and deletions of objects. Attribute Updates  randomly select NUPDT  objects to 

update, or randomly select a class and update all of its objects (Sequential Update). 

 
 

 
The Dynamic Evaluation Framework (DEF) 

 

The  primary  goal  of  DEF  is  to  evaluate  the  dynamic  performance  of  DBMSs.  To  make  the  work  

of DEF  more  general,  we  have  made  two  key  decisions:  define  DEF  as  an  extensible  framework;  

and reuse existing and standard benchmarks when available. 

 
 
 
 Dynamic  Framework 

 

We  start  by  giving  an  example  scenario  that  the  framework  can  mimic.  Suppose  we  are  

modeling an  on-line  book  store  in  which  certain  groups  of  books  are  popular  at  certain  times.  

For  example, travel guides to Australia during the 2000 Olympics may have been very popular. 

However, once the Olympics is over, these books may suddenly or gradually become less popular. 

Once the desired book has been selected, information relating to the book may be required. Ex- 

ample required information includes customer reviews of the book, excerpts from the book, picture of 

the cover, etc. If the data are stored in an ODBMS, retrieving the related information is translated 

into an object graph navigation with the traversal root being the selected book. After looking at the 

related information for the selected book, the user may choose to look at another book by the same 

author. When information relating to the newly selected book is requested, the newly selected book 

becomes the root of a new object graph traversal. 

 
Next,  we  give  an  overview  of  the  five  main  steps  of  the  dynamic  framework  and  in  the  process 

 
show how the above example scenario fits in. 

 
 

1.  H-region parameters specification: The dynamic framework divides the database into regions 

 
of homogeneous access probability (H-regions). In our example, each H-region represents a different 



 
 
 
 
 

group  of  books,  each  group  having  its  own  probability  of  access.  In  this  step,  we  specify  the 

 
characteristics of each H-region, e.g., its size, initial access probability, etc. 

2.  Workload  specification. H-regions are responsible for assigning access probability to pieces of 

data (tuples or objects). However, H-regions do not dictate what to do then. We term the selected 

tuple or object workload root. In the remainder of this paper we will use the term “root” to mean 

workload root. In this step, we select the type of workload to execute after selecting the root. 

3.  Regional protocol specification. Regional protocols use H-regions to accomplish access pattern 

change.  Different  styles  of  access  pattern  change  can  be  accomplished  by  changing  the  H-

region parameter  values  with  time.  For  example,  a  regional  protocol  may  initially  define  one  

H-region with a high access probability, while the remaining H-regions are assigned low access 

probabilities. After a certain time interval, a different H-region may become the high access 

probability region. This, when translated to the book store example, is similar to Australian 

travel books becoming less popular after the 2000 Olympics end. 

4.  Dependency  protocol  specification. Dependency protocols allow us to specify a relationship 

between  the  currently  selected  root  and  the  next  root.  In  our  example,  this  is  reflected  in  

the customer deciding to select a book which is by the same author as the previously selected 

book. 

5.  Regional  and  dependency  protocol  integration  specification.  In  this  step,  regional  and 

dependency  protocols  are  integrated  to  model  changes  in  dependency  between  successive  roots. 

An example is a customer using our on-line book store, who selects a book of interest, and then is 

confronted with a list of currently  popular books by the same author. The customer then selects 

one of the listed books (modeled by dependency protocol). The set of currently  popular books by 

the same author may change with time (modeled by regional protocol). 

 

 

The  first  three  steps  we  have  described  are  generic,  i.e.,  they  can  be  applied  on  any  

selected benchmark and system type (relational, object-oriented, or object-relational). The two last 

steps are similar when varying the system type, but are nonetheless different because access paths and  



 
 
 
 
 

Methods are substantially different in a relational system (with tables, tuples, and joins) and an object- 
 
 
oriented system (with objects and references), for instance. 

 
Next, we further detail the concept of H-region and the generic regional protocol specification. 

 
 
 
 H-regions 

 

H-regions are created by partitioning the objects of the database into non-overlaping sets. All objects 

in the same H-region has the same access probability. Here we use the term access probability to mean 

the likelihood that an individual object of the H-region will be accessed at a given moment in time. 

The parameters that define an H-region are listed below. 

 

 
–  HR-SIZE: The size of the H-region is specified as a fraction of the database size. Constraint: The 

 
sum size of all regions must equal 1. 

–  INIT-PROB-W:  The initial probability  weight  that is assigned to the region. The actual proba- 

bility is derived from the probability weight, by dividing the probability weight of the region by 

the sum probability weight of all regions. 

 
–  LOWEST-PROB-W:  The lowest probability weight this region can go down to. 

 
–  HIGHEST-PROB-W:  The highest probability weight this region can go up to. 

 
–  PROB-W-INCR-SIZE:  The  amount  by  which  the  probability  weight  of  this  region  increases  or 

 
decreases when change is requested. 

–  OBJECT-ASSIGN-METHOD: This determines the way objects are assigned into this region. The 

options  are  random  selection  and  by  class  selection.  Random  selection  picks  objects  

randomly from anywhere in the database. By class  selection places attempts to assign objects of 

the same class into the same H-region, as much as possible. It first sorts objects by class ID and 

then picks the first N  objects (in sorted order), where N  is the number of objects allocated to 

the H-region. 

 
–  INIT-DIR:  The initial direction that the probability weight increment moves in. 

 
 
The  access  probability  of  an  H-region  can  never  be  below  LOWEST-PROB-W  or  above 
 
 HIGHEST-PROB-W. 



 
 
 
 
 

 Regional  Protocols 
 

Regional  protocols  simulate  access  pattern  change  by  first  initializing  the  parameters  of  every  

H-region,  and  then  periodically  changing  the  parameter  values  in  certain  predefined  ways.  This  

paper documents  three  styles  of  regional  change:  moving  window  of  change,  gradual  moving  

window  of change, and cycles of change. Although these three styles of change together provide a 

good spectrum of  ways  in  which  access  pattern  can  change,  they  are  by  no  means  exhaustive.  

Other  researchers  or framework users are encouraged to create new regional protocols of their own. 

 
 

Moving Window of Change Protocol.  This regional protocol simulates sudden changes 

in access pattern. In our on-line book store, this is translated to books suddenly becoming popular 

due to some event, and once the event passes, the books become unpopular very fast. For instance, 

books that are recommended in a TV show may become very popular in the few days after the show, 

but may quickly become unpopular when the next set of books are introduced. This style of change is 

accomplished by moving a window through the database. The objects in the window have a much 

higher probability of being chosen as root when compared to the remainder of the database. This is 

done  by breaking up the database into N  H-regions of equal size. One H-region is first initialised to 

be the hot region (where heat is used to denote probability of reference), and then after  H  root 

selections, a different H-region becomes the hot region. H  is a user-defined parameter that reflects the 

rate of access pattern change. 

 

 
–  The database is broken up into N  regions of equal size. 

 
– All H-regions have the same value for HIGHEST-PROB-W, LOWEST-PROB-W  and  
 
        PROB-W- INCR-SIZE. 

 
–  Set  the  INIT-PROB-W  of  one  of  the  H-regions  to  equal  HIGHES-PROB-W  (the  hot  region) 

 
and the rest of the H-regions get their INIT-PROB-W  assigned to LOWEST-PROB-W. 

 
–  Set PROB-W- INCR-SIZE  of every region to equal HIGHEST-PROB-W  - LOWEST-PROB-W. 

 
–  The INIT-DIR  parameter of all the H-regions are set to move downwards. Initially, the window 

 
is placed at the hot region. After every  H  root selections, the window moves from one H-region 



 
 
 

to  another.  The  H-region  that  the  window  is  moving  from  has  its  direction  set  to  down.  

The H-region that the window is moving into  has its direction set to up. Then, probability 

weights of the H-regions are incremented or decremented depending on the current direction of 

movement. 

 
 

Gradual Moving Window of Change Protocol.  The way this protocol differs from the 

previous one  is  that  the  hot  region  cools  down  gradually  instead  of  suddenly.  The  cold  regions  

also  heat  up gradually  as  the  window  is  moved  onto  them.  In  our  book  store  example,  this  style  

of  change  may depict travel guides to Australia gradually becoming less popular after the Sydney 

2000 Olympics. As a consequence, travel guides to other countries may gradually become more 

popular. Gradual changes of heat may be more common in the real world. 

This  protocol  is  specified  in  the  same  way  as  the  previous  protocol  with  two  exceptions.  First, 

PROB-W- INCR-SIZE is now user-specified instead of being the difference between HIGHEST-PROB-W 

and LOWEST-PROB-W. The value of PROB-W- INCR-SIZE  determines how vigorously access pat- 

tern  changes  at  every  change  iteration.  We  use  the  term  change  iteration  to  mean  the  changing  of 

access  probabilities  of  the  H-regions  after  every  H  (defined  in  the  previous  section)  root  selections. 

The  second  exception  is  in  the  way  the  H-regions  change  direction.  The  H-region  that  the  window 

moves into  has its direction toggled. The direction of the H-region that the window is moving from  is 

unchanged. This way, the previous H-region is able to continue cooling down gradually or heating up 

gradually. When the access probability of a cooling H-region reaches its LOWEST-PROB-W  it stops 

cooling and similarly a heating up H-region stops heating up when it reaches its HIGHEST-PROB-W. 

 
 

Cycles  of  Change  Protocol.  This style of change mimics something like a bank where 

customers in  the  morning  tend  to  be  of  one  type  (e.g.,  social  category),  and  in  the  afternoon  of  

another  type. This, when repeated, creates a cycle of change. Cycles of change can be simulated using 

the following steps. Members of a set are not ordered. 

 
 

–  Break up the database into three H-regions. The first two H-regions represent objects going through 

 
the cycle of change. The third H-region represents the remaining unchanged part of the database. 



 
 
 
 
 

The HR-SIZE  of the first two H-regions are equal to each other and user-specified. The HR-SIZE 

 
of the third H-region is equal to the remaining fraction of the database. 

 
–  Set  the  LOWEST-PROB-W  and  HIGHEST-PROB-W  parameters  of  the  first  two  H-regions  to 

 
values that reflect the two extremes of the cycle. 

 
–  Set  the  PROB-W- INCR-SIZE  of  the  first  two  H-regions  to  both  equal  HIGHEST-PROB-W  - 

 
LOWEST-PROB-W. Set the PROB-W- INCR-SIZE  of the third H-region to equal zero. 

 
–  The INIT-PROB-W  of the first H-region is set to HIGHEST-PROB-W  and the second to LOW- 

 
EST-PROB-W. 

 
–  Set the INIT-DIR of the hot H-region to down and the INIT-DIR of the cold H-region to up. 

 
–  Again, the H  parameter is used to vary the rate of access pattern change. 

 
 
 
The Dynamic Ob ject Evaluation Framework (DoEF) 

 

In this section we describe DoEF, which is an instance of DEF. In DoEF, the workload type is selected 

from  those  defined  in  OCB.  For  sequential  scans,  the  class  of  the  root  object  is  used  to decide 

which objects are scanned; for traversals, the root object becomes the root of the traversal; and for 

updates, either the class of the root object or just the root object is used to decide which objects are 

updated (depending on the particular update workload selected). 

 
Next, we detail the steps in DEF that are specific to the object-oriented context, i.e., the specifi- 

 
cation of the depedency protocols and their integration with the regional protocols. 

 
 
 

Dependency  Protocols 

There  are  many  scenarios  in  which  a  person  executes  a  query  and  then  decides  to  execute  

another query based on the results of the first query, thus establishing a dependency between the two 

queries. In  this  paper,  we  have  specified  four  dependency  protocols:  random  selection  protocol,  by  

reference selection protocol, traversed objects selection protocol, and same class selection protocol. 

Again, these protocols are not meant to be exhaustive and other researchers or benchmark users are 

encouraged to extend DoEF beyond these dependency protocols. 



 
 
 
 
 

Random Selection Protocol.  This method simply uses some random function to select the  

 
current root. This protocol mimics a person starting a completely new query after finishing the  
 
previous one. 

 
ri  = RAN D1() 

 
ri  is the ID of the ith  root object. The function RAN D1() can be any random function. An example 

 
of RAN D1() is a skewed random function that selects a certain group of root objects with a higher 

 
probability than others. 

 
 

By  Reference  Selection  Protocol.  The current root is chosen to be an object referenced 

by the previous root. An example of this protocol in our on-line book store scenario is a person having 

finished with a selected book, who then decides to look at the next book in the series (assuming the 

books of the same series are linked together by structural references). 

 
ri+1  = RAN D2(Ref Set(ri , D)) 

 
Ref Set(ri , D) is a function that returns the set of objects that the ith  root references. RAN D2(), 

 
like RAN D1() can be any random function. Two types of references can be used: structure references 

(S-references) and D-references. Structure references are simply the references obtained from the object 

graph. D-references are a new type of reference used for the sole purpose of establishing dependencies 

between roots of traversals. The parameter D is used to specify the number of D-references per object. 

Note if structure references are specified, then parameter D is not used. 

 
 

Traversed  Ob jects  Selection  Protocol.  The current root is selected from the set of 

objects that are referenced in the previous traversal. An example is a customer in the first query 

requesting a list of  books  along  with  their  authors  and  publishers  (thus  requiring  the  book  objects  

themselves  to  be retrieved), who then decides to read an exerpt from one of the books listed. 

 
ri+1  = RAN D3(T raversedSet(ri , C )) 

 
T raversedSet(ri , C )  returns  the  set  of  objects  referenced  during  the  traversal  that  began  with 

 
the  ith   root.  RAN D3(),  like  RAN D1()  can  be  any  random  function.  The  parameter  C  is  used  to 

 
restrict  the  number  of  objects  returned  by  T raversedSet(ri , C ).  C  is  specified  as  a  fraction  of  the 



 
 
 
 
 

objects traversed. This way, the degree of locality of objects returned by T raversedSet(ri , C ) can be 

 
controlled (smaller C  means higher degree of locality). 

 
 

Same  Class  Selection  Protocol.  In same class selection, the currently selected root must 

belong to  the  same  class  as  the  previous  root.  Root  selection  is  further  restricted  to  a  subset  of  

objects  of the  class.  The  subset  is  chosen  by  a  function  that  takes  the  previous  root  as  a  

parameter.  That  is, the subset chosen is dependent on the previous root object. An example of this 

protocol is a customer deciding  to  select  a  book  from  our  on-line  book  store  which  is  by  the  same  

author  as  the  previous selected book. In this case, the same class selection function returns books by 

the same author as the selected book. 

 
ri+1  = RAN D4(f (ri , C lass(ri ), U )) 

 
C lass(ri ) returns the class of the ith  root. RAN D4(), like RAN D1() can be any random function. 

The  parameter  U  is  user-defined  and  specifies  the  size  of  the  set  returned  by  function  f ().  U  

is specified  as  a  fraction  of  the  total  class  size.  U  can  be  used  to  increase  or  decrease  the  

degree  of locality  between  the  objects  returned  by  f ().  f ()  always  returns  the  same  set  of  objects  

given  the same set of parameters. 

 
 

Hybrid  Setting.   The  hybrid  setting  allows  an  experiment  to  use  a  mixture  of  the  

dependency protocols outlined above. Its use is important since it simulates a user starting a fresh 

random query after having followed a few dependencies. Thus, the hybrid setting is implemented in 

two phases. The first randomisation phase  uses the random selection protocol to randomly select a 

root. In the second dependency  phase, one of the dependency protocols outlined in the previous 

section is used to select the next root. R iterations of the second phase are repeated before going 

back to the first phase. The two phases are repeated continuously. 

 
The  probability  of  selecting  a  particular  dependency  protocol  during  the  dependency  phase  is 

 
specified  via  the  following  settings:  RANDOM-DEP-PROB  (random  selection),  SREF-DEP-PROB 

 
(by reference selection using structure references), DREF-DEP-PROB (by reference selection using D- 



 
 
 
 
 

references), TRAVERSED-DEP-PROB  (traversed objects selection), and CLASS-DEP-PROB  (same 

 
class selection). 

 
 
 
Integration  of  Regional  and  Dependency  Protocols 

 

Dependency  protocols  model  user  behavior.  Since  user  behavior  can  change  with  time,  dependency 

protocols should also be able to change with time. The integration of regional and dependency protocols 

allows  us  to  simulate  changes  in  the  dependency  between  successive  root  selections.  This  is  

easily accomplished by exploiting the dependency protocols’ property of returning a candidate set of 

objects when  given  a  particular  previous  root.  Up  to  now,  the  next  root  is  selected  from  the  

candidate  set by  the  use  of  a  random  function.  Instead  of  using  the  random  function,  we  

partition  the  candidate set using H-regions and then apply regional protocols on these H-regions. 

When integrating with the traversed  objects  dependency  protocol,  the  following  property  must  

hold:  whenever  given  the  same root object, the same set of objects is always traversed. This way, 

the same previous root will return the same candidate set. 

 
 
 
Tested Systems and Algorithms 

 

 
In this section, we briefly describe the dynamic clustering algorithms and object stores we have used 

 
in the experimental section of this paper. 

 
 
 
Dynamic  Clustering  Algorithms 

 

Dynamic clustering is the periodic on-line re-organisation of objects in an ODBMS. The aim is to allow 

the  physical  placement  of  objects  on  disk  to  more  closely  reflect  the  pervading  pattern  of  

database access. Objects that are likely to be accessed together in the near future are placed in the 

same page, thereby reducing the number of disk I/Os. 

 
 
 
Dynamic,  Statistical  and  Tunable  Clustering  (DSTC).  DSTC  (Bullat  and  Schneider,  1996)   

 
Is a  dynamic  clustering  algorithm  that  has  the  feature  of  achieving  dynamicity  without  adding   



 
 
 
 
 

high statistics  collection  overhead  and  excessive  volume  of  statistics.  However, it  does  not  take   

 
care  to reduce I/O generated from the clustering process itself. 

The clustering algorithm is not very selective when deciding which pages to re-cluster. The effect 

is a page is re-clustered even if there is a slight benefit in re-clustering it. However, the slight benefit 

gained  from  re-clustering  is  often  outweighed  by  the  cost  of  loading  the  page  into  memory  for  

re-clustering. This situation (re-clustering of slightly badly clustered pages) will become more 

frequent as access pattern changes more rapidly. It is for this reason we expect that DSTC will 

perform poorly when access pattern changes rapidly. 

 
 

Detection  &  Reclustering  of  Ob jects  (DRO).   Learning  from  the  experiences  of  

DSTC  and StatClust (Gay and Gruenwald, 1997), DRO (Darmont et al., 2000) is designed to produce 

less clustering I/O  overhead  and  use  less  statistics.  DRO  uses  various  thresholds  to  limit  the  pages  

involved  in  re-clustering to only the pages that are most in need of re-clustering. We term this 

flexible conservative re-clustering. Experiments conducted using OCB show that DRO outperforms 

DSTC (Darmont et al., 2000).  The  improvement  in  performance  is  mainly  attributed  to  the  low  

clustering  I/O  overhead  of DRO. In order to limit statistics collection overhead, DRO only uses 

object frequency  and page usage rate  information. In contrast, DSTC stores object transition  

information, which is much more costly. Since  DRO  chooses  only  a  limited  number  of  the  worst  

clustered  pages  to  re-cluster (flexible conservative re-clustering) it should perform better than 

DSTC when access pattern changes rapidly. This is because when access pattern changes rapidly, the 

benefits in re-clustering pages become lower and  thus  there  will  be  more  pages  which  only  benefit  

slightly  from  re-clustering.  DRO  does  not  re-cluster these pages whereas DSTC does. This leads 

DSTC to generate larger clustering overhead for very slight improvements in clustering quality. 

 
 

Opportunistic Prioritised Clustering Framework (OPCF).  OPCF (He et al., 

2000) is a framework for translating any static clustering algorithm (where re-clustering occurs off-

line) into a dynamic clustering algorithm. OPCF creates algorithms that have the following key  

 

 

 



properties: read and write I/O opportunism and prioritization of re-clustering. Read and write I/O 

opportunism refers to limiting re-clustering to pages that are currently in memory (in the case of 

read opportunism) and dirty (in the case of write opportunism). This approach reduces the I/O 

overhead associated with re-clustering. Prioritization of re-clustering refers to choosing a limited 

number of the worst clustered pages to be re-clustered first. This also reduces clustering overhead by 

reducing the number of pages re-clustered. Therefore OPCF clustering algorithms also perform 

flexible conservative re-clustering. Two dynamic clustering algorithms produced from the OPCF 

framework are presented in (He et al., 2000): dynamic graph partitioning algorithm (GP) and 

dynamic probability ranking principle algorithm (PRP). 

Since  OPCF,  like  DRO,  performs  flexible  conservative  re-clustering,  it  should  also  perform  

well when access pattern changes very rapidly. We will use the term flexible clustering algorithms to 

refer to DRO and the OPCF dynamic clustering algorithms. 

 
 

Analysis of dynamic clustering algorithms.  In this section we analyze the relative 

performances of the dynamic clustering algorithms based on the characteristics of the algorithms. 

For the moving window  of  change  protocol  we  expect  the  relative  difference  in  performance  

between DSTC and the flexible clustering algorithms to increase with increasing rate of change. This is 

because DSTC does not do flexible conservative re-clustering and thus incurs high re-clustering 

overheads.  

     The relative difference between the different flexible clustering algorithms should not change by 

much with increasing rate of change since they are all limit the clustering overheads to a bounded 

amount. In terms of the shapes of the curves, we expect DSTC to perform linearly worse with 

increasing rate of change. This is because it does not bound the clustering overhead. In contrast the 

flexible dynamic clustering algorithms’ performance will increase with increasing rate of change but 

flat after a certain point (we call  this  the  saturation  point).  This  is  because  these  algorithms  bound  

the  clustering  overhead. 

In terms of the gradual moving window of change protocol, we expect the relative differences 

between  the  algorithms  to  stay  similar  as  the  rate  of  change  increases.  The  reason  is  this  

change protocol  is  very  mild  and  therefore  do  not  cause  the  flexible  clustering  algorithms  to   

 

 



reach  their saturation point. In terms of the shapes of the curves, we expect the performance of all 

the algorithms to perform close to linear with increasing rate of change of access pattern. This is 

because increases in the rate of change of access pattern causes the benefit of re-clustering to 

diminish, this increase is constant and does not reach a saturation point due to the mild style of 

change. 

 
 

 
Ob ject  stores 

 

Platypus.  Platypus  (He  et  al.,  2000)  is  a  flexible  high  performance  transactional  object  store,  

designed to be used as the storage manager for persistent programming languages. The design 

includes support  for  SMP  concurrency:  stand-alone,  client-server  and  client-peer  distribution  

configurations; configurable logging and recovery; and object management that can accommodate 

garbage collection and clustering mechanisms. In addition to these features, Platypus is built for 

speed. It features a new recovery algorithm derived from the popular ARIES (Mohan, Haderle, 

Lindsay, Pirahesh, and Schwarz, 1992)  recovery  algorithm,  which  removes  the  need  for  log  

sequence  numbers  to  be  present  in  store pages; a zero-copy memory-mapped buffer manager with 

controlled write-back behaviour; and a novel fast and scalable data structure (splay trees) used 

extensively for accessing metadata. 

 
 

SHORE.  SHORE (Carey et al., 1994) is a transactional persistent object system that is designed 

to serve the needs of a wide variety of target applications, including persistent programming 

languages. It has a peer-to-peer distribution configuration. Like Platypus, it also has a focus on 

performance. 

 
 

Analysis  of  dynamic  ob ject  stores.  In  this sect ion we analyze the relat ive 

performances of  Platypus and SHORE.   Since they handle swapping differently we expect 

Platypus to show better performance than SHORE when ra te  of  access  pat te rn  change is  

smal l  but its lead d iminishes as the rate of access pattern change increases. The reason lies in the 

change in access locality when the rate of access pattern  change.  When  the  rate  of  access  pattern  

change  is  low,  access  locality  is high (due to small and slow moving hot region), and thus most  

 

 



object requests can be satisfied from the  buffer  cache.  However  as  the  rate  of  access  pattern  

change  increases,  access  locality  diminishes which results in  more buffer cache misses. Thus, the 

reason behind Platypus’ poor performance lies in its poor swapping performance. Platypus’s poor 

swapping performance is due to the low degree of concurrency (coarse grained locking) between the 

page server and the client process when swapping is in progress (a deficiency in the 

implementation). 

 
 
 
 

Experimental Results 
 

This section details two sets of experiments we have conducted to evaluate the effectiveness of DoEF. 

In the first set of experiments four state of the art dynamic clustering algorithms are benchmarked. 

In the second set two real object stores are benchmarked. 

For dynamic clustering algorithms we have conducted two sets of experiments: moving and gradual 

moving window of change regional protocol experiments; and moving and gradual moving S-reference 

protocol experiments. For the real object stores, we also conducted two sets of experiments: moving 

window of change protocol experiments; and moving window of change traversed objects experiment. 

There are two reasons for choosing these set of protocols to test: the space constraints prohibit us from 

showing results obtained using all combinations of protocols; and after testing many of the possible 

combinations we found for the particular clustering algorithms and real OODBs we have tested, the 

experiments presented gives the greatest insight into the effectiveness of DoEF. 

 
 

 
Dynamic  Clustering  Experiments 

 

These experiments use DoEF to compare the performance of four state of the art dynamic clustering 

algorithms: DSTC, DRO, OPCF-PRP, and OPCF-GP. The parameters we have used for the 

dynamic clustering algorithms are shown in Table 2. In the interests of space, we do not include 



 
 
 
 
 

their  description  in  this  paper.  However, they  are  wholly  described  in  their  respective  papers.  The 

 
clustering techniques have been parameterized for the same behavior and best performance. 

 
 
 

 
Parameter Value 

n                    200 

np                          1 
p                    1000 

Tf a                       1.0 

Tf e                       1.0 

Tf c                        1.0 
w                   0.3 

 
 
 

 
Parameter Value 

MinUR         0.001 

MinLT          2 

PCRate        0.02 

MaxD           1 

MaxDR        0.2 

MaxRR         0.95 

SUInd           true 

 
 
 
 
 
 
 
 
Parameter PRP  value GP  value 

N                   200                 200 

CBT              0.1                  0.1 

NPA              50                   50 

NRI               25                   25 
 
 

(a) DSTC 

 
 

(b) DRO 

 
 

(c) OPCF 
 

Table  2. DSTC, DRO, OPCF-PRP, and OPCF-GP parameters 
 
 
 
 
 
 

The  experiments  are  conducted  on  the  Virtual  Object-Oriented  Database  simulator  (VOODB) 

(Darmont  and  Schneider,  1999).  VOODB  is  based  on  a  generic  discrete-event  simulation  

framework. Its purpose is to allow performance evaluations of OODBMSs in general, and 

optimisation methods like  clustering  in  particular.  VOODB  has  been  validated  for  two  real-world  

OODBMSs,  O2   (Deux, 1991) and Texas (Singhal, Kakkad, and Wilson, 1992). The VOODB 

parameter values we have used are depicted in Table 3 (a). Simulation is chosen for this experiment 

for two reasons. First, it allows rapid development  and  testing  of  a  large  number  of  dynamic  

clustering  algorithms  (all  previous  dynamic clustering papers compared at most two algorithms). 

Second, it is relatively easy to simulate accurately, read, write and clustering I/O (the dominating 

metrics that determine the performance of dynamic clustering algorithms). 

Since DoEF uses the OCB database and operations, it is important for us to document the OCB 

settings we  have  used  for  these  experiments.  The  values  of  the  database  parameters  we  have  used 

are  shown  in  Table  3  (b).  The  sizes  of  the  objects  we  have  used  varies  from  50  to  1600  bytes,  

with the  average  size  being  233  bytes.  A  total  of  100,000  objects  are  generated  for  a  total  

database  size of 23.3 MB. Although this is a small database size, we have also used a small buffer  



 
 
 

size (4 MB) to keep the database to buffer size ratio large. Clustering algorithm performance is 

indeed more sensitive to database to buffer size ratio than database size alone.  The operation we have 

used for all the experiments is the simple, depth-first traversal with traversal depth 2. The simple 

traversal is chosen since it is the only traversal that always accesses the same set of objects given a 

particular root. This establishes  a  direct  relationship  between  varying  root  selection  and  changes  in  

access  pattern.  Each experiment involved executing 10,000 transactions. 

 
 
 

The main DoEF parameter settings we have used in this study are shown in Table 4. These DoEF 

settings are common to all experiments in this paper. The HR-SIZE  setting of 0.003 (remember this is 

the database population from which the traversal root is selected) creates a hot region about 3% the size 

of the database (each traversal touches approximately 10 objects). This fact is verified from statistical 

analysis of the trace generated. The HIGHEST-PROB-W  setting of 0.8 and LOWEST-PROB-W 

setting  of  0.0006,  produces  a  hot  region  with  80%  probability  of  reference  and  the  remaining  

cold regions with a combined reference probability of 20%. These settings are chosen to represent 

typical database  application  behaviour.  Gray  cites  statistics  from  a  real  videotext  application  in  

which  3% of the records got 80% of the references (Gray and Putzolu, 1987). Carey uses a hot 

region size of 4% with a 80% probability of being referenced in the HOTCOLD workload we have 

used to measure data caching  tradeoffs  in  client-server  OODBMSs  (Carey  et  al.,  1991).  Franklin  

uses  a  hot  region  size  of 2% with a 80% probability of being referenced in the HOTCOLD workload 

we have used to measure the effects of local disk caching for client server OODBMSs (Franklin et al., 

1993). In addition to the results reported in this paper, we also tested the sensitivity of the results 

to variations in hot region size and probability of reference. We found the algorithms show similar 

general tendencies at different hot region sizes and probability of reference. It is for this reason and 

in the interests of space we omit these results. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 



The dynamic clustering algorithms shown on the graphs in this section are labeled as follows: 
 
 

       
 
Parameter description          Value 
 
System Class                       Centralized 

Disk page size                    4096 bytes 

Buffer size                             4 MB 

Buffer replacement                LRU-1 

policy 

Pre-fetching policy                None 

Multiprogramming level           1 

Number of users                     1 

Object initial placement    Sequential 

 
 
 
 
Parameter  description                         Value 

Number of classes in the database              50 

Maximum number of                                  10 

references, per class 

Instances base size, per class                     50 

Total number of objects                          100000 

Number of reference types                          4 

Reference types random distribution      Uniform 

Class reference random distribution       Uniform 

Objects in classes random distribution   Uniform 

Objects references random distribution  Uniform 
 
 

(a) VOODB parameters 

 
 

(b) OCB parameters 
 

Table  3. VOODB and OCB parameters 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter  name                     Value 

HR-SIZE                                      0.003 

HIGHEST-PROB-W                 0.80 

LOWEST-PROB-W                  0.0006 

PROB-W- INCR-SIZE               0.02 

OBJECT-ASSIGN-METHOD  Random object assignment 

Table  4. DoEF parameters 



 
 
 

 
–  NC: No Clustering; 

 
–  DSTC: Dynamic Statistical Tunable Clustering; 

 
–  GP: OPCF (greedy graph partitioning); 

 
–  PRP: OPCF (probability ranking principle); 

 
–  DRO: Detection and Re-clustering of Objects. 

As  we  discuss  the  results  of  these  experiments,  we  focus  our  discussion  on  the  relative  ability  

of each algorithm to adapt to changes in access pattern, i.e., as rate of access pattern change 

increases, we seek to know which algorithm exhibits more rapid performance deterioration. This 

contrasts from discussing which algorithm gives the best absolute performance.  All the results  

presented  here  are in  terms  of  total  I/O.  Total  I/O  is  the  sum  of  transaction  read  I/O,  clustering  

read  and  clustering write I/O. Thus, the results give an overall indication of the performance of each 

clustering algorithm, including each algorithm’s clustering I/O overhead. 

 
 

Moving  and  Gradual  Moving  Regional  Experiments.  In these experiments, we 

have used the regional protocols moving window of change and gradual moving window of change  to 

test each of the dynamic  clustering  algorithms’  ability  to  adapt  to  changes  in  access  pattern.  The  

regional  protocol settings we have used are shown in Table 4. We vary the parameter H , rate of 

access pattern change. The results for these experiments are shown in Figure  2.  There are three main  

results from this experiment. Firstly, when rate of access pattern change is small (when parameter H is 

less than 0.0006 in  Figure  2  (a)  and  all  of  Figure  2  (b)),  all  algorithms  show  similar  

performance  trends  (rate  of performance degradation). This implies at moderate levels of access 

pattern change all algorithms are approximately equal in their ability to adapt to the change. 

Secondly, when the more vigorous style of change is applied (Figure 2 (a)), all dynamic clustering 

algorithms’ performance quickly degrades to worse than no clustering. Thirdly, when access pattern 

change is very vigorous (when paramter H is greater than 0.0006 in Figure 2 (a)), DRO and OPCF 

algorithms GP and PRP show a better trend performance (rate of performance degradation), 

implying DRO and OPCF are more robust to access pattern change. This supports our analysis 

described in analysis of dynamic clustering algorithms section. 
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Fig. 2. Regional dependency results. The x-axis is in log2  scale. 
 
 
 
 

Moving and Gradual Moving S-Reference Experiments.  In these experiments, we 

explore the effect that changing pattern of access has on the S-reference dependency protocol. This is 

accomplished by using the integrated regional dependency protocol method. We integrated S-

reference  dependency  with  the  moving  and  gradual  moving  window  of  change  regional  protocols. 

For this experiment, we use the hybrid dependency setting. R is set to 1. The first phase (random 

phase) of the hybrid setting requires a random dependency function. The random function  we  use  

partitions  the  database  into  one  hot  and  one  cold  region.  The  hot  region  is  set  to be  3%  of  the  

database  size  and  has  an  80%  probability  of  reference  (typical  database  application behavior 

(Gray and Putzolu, 1987; Carey et al., 1991; Franklin et al., 1993)). S-reference dependency is the 

only dependency protocol used. The regional protocol settings are as described in Table 4. 

 
 

The results for these experiments are shown in Figure 3. In the moving window of change results 

(Figure  3  (a)),  DRO  and  the  OPCF  algorithms  (GP  and  PRP)  are  again  more  robust  to  

changes in  access  pattern  than  DSTC  for  moving  window  of  change.  However,  in  contrast  to  the  

previous experiment, DRO and OPCF algorithms never perform worse than NC by much, even when 

parameter H  is  1  (access  pattern  changes  after  every  transaction).  The reason is that the cooling   



 
 
 

and  heating of  S-references  is  a  milder  form  of  access  pattern  change  than  the  pure  moving  

window  of  change regional protocol of the previous experiment. In the gradual moving window of 

change results shown in  figure  3  (b),  all  dynamic  clustering  algorithms  show  approximately  the  

same  trend  performance. This is similar to the observation made in the previous experiment. This 

supports our analysis described in analysis of dynamic clustering algorithms section. 
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Fig. 3. S-reference dependency results. The x-axis is in log2  scale. 
 
 
 
 
 
 
 
 

Ob ject  Store  Experiments 
 
 
 
In  this  section,  we  report  the  results  of  using  DoEF  to  compare  the  performance  of  two  real  object 

 
stores: SHORE and Platypus. 

SHORE has a layered architecture that allows users to choose the level of support appropriate for 

a particular application. The lowest layer of SHORE is the SHORE Storage Manager (SSM), which 

provides basic object reading and writing primitives. Using the SHORE SSM, we have constructed PSI- 

SSM, a thin layer providing PSI (Blackburn, 1998) compliance for SSM. By using the PSI interface, 

the  same  DoEF  code  could  be  used  for  both  Platypus  and  SHORE.  The buffer replacement policy 



 
 
 
 
 

that SHORE uses is CLOCK. We use SHORE version 2.0 for all of the experiments reported in this 

 
paper. 

The Platypus implementation we have used for this set of experiments has the following features: 

physical  object  IDs;  the  NOFORCE/STEAL  recovery  policy  (Franklin,  1997);  zero-copy  memory 

mapped  buffer  cache;  the  use  of  hash-splay  trees  to  manage  metadata;  PSI  compliance;  the  

system is  SMP  re-entrant  and  supports  multiple  concurrent  client  threads  per  process  as  well  as  

multiple concurrent client processes. Limitations of the Platypus implementation at the time of writing 

include: the failure-recovery process is untested (although logging is  fully implemented); virtual 

address space reserved  for  metadata  is  not  recycled;  the  store  lacks  a  sophisticated  object  

manager  with  support for garbage collection and dynamic clustering, and lacks support for 

distributed store configurations. Platypus uses the LRU replacement policy. 

In  this  sets  of  experiments,  the  SHORE  and  Platypus  implementations  do  not  include  

dynamic clustering  algorithms.  In  contrast  to  the  previous  experiment,  we  are  interested  here  in  

comparing the other factors (besides clustering) that affect system performance. The experiments in 

this section are  conducted  using  Solaris  7  on  an  Intel  machine  with  dual  Celeron  433Mhz  

processors,  512  MB of  memory  and  a  4  GB  hard  disk.  The  OCB  database  and  workload  settings  

we  have  used  for  this experiment are the same as for the previous set of experiments, with the 

exception that a total of 400,000 objects is generated instead of 100,000. The reason for using a 

larger database size is that the real object stores are configured with a larger buffer cache, therefore we 

need to increase the database size in order to test the swapping. The size of the objects we have used 

vary from 50 to 1200 bytes, with the average size being 269 bytes. Therefore, the total database size 

is 108 MB. 

 
 

Moving  Window  of  Change  Regional  Experiment.   In  this  experiment,  we  use  

the  moving window  of  change  protocol  to  compare  the  effects  that  changing  pattern  of  access  has  

on  Platypus and  SHORE.  The  regional  protocol  settings  we  have  used  are  the  same  as  shown  in  

Table  4.  The buffer  size  is  set  to  61  MB.  Note  that  both  Platypus  and  SHORE  have  there  own  

buffer  managers with user-defined buffer sizes. 



 
 
 

   The  results  for  this  experiment  are  shown  in  Figure  4.  The  results  show  the  trend  predicted  in 

the analysis of ob jec t  s to res  section,  namely  the  performance  of  Platypus  start  well  in  front  

of  SHORE  but  its  lead  rapidly diminishes as the rate of access pattern change increases. 
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Fig. 4. Moving window of change regional protocol results. The x-axis is in log2  scale. 

 
 
 
 
 
 

Moving Window of Change Traversed Ob jects Experiment.  In this experiment, 

we compare the  performance  of  Platypus  and  SHORE  in  the  context  of  moving  traversed  

objects  dependency protocol. This is accomplished by using the integrated regional dependency 

protocol method outlined in.  We  have  integrated  traversed  objects  dependency  protocol  with  the  

moving  window regional protocol. For this experiment, we use the hybrid dependency setting. R is 

set to 1. The random function we use partitions the database into one hot and one cold region. The hot 

region is set to be 0.01 fraction of the database size, and the cold region is assigned the remaining 

portion  of  the  database.  99%  of  the  roots  are  selected  from  the  hot  region.  The  C  parameter  is  

set to  1.0.  Traversed  objects  dependency  is  the  only  dependency  protocol  we  have  used.  The  

regional protocol  parameters  we  have  used  are  identical  to  those  used  in  the  previous  experiment,  

with  the exception  HR SIZE  is  set  to  0.05.  In  this  experiment,  the  buffer  size  we  have  used  is  

only  20  MB as opposed to 61 MB in the previous experiment, because this experiment has a  

 

 

 



smaller working set size, thus, at 61 MB, swapping would not occur (even when  H  is one). The 

reason behind the small working set size lies in the fact that the random function we have used does 

not move its hot region. The results for this experiment are shown in Figure 5.  The results again show 

the performance of Platypus  diminishes  at  a  faster  rate  than  SHORE.  The  reason  for  this  

behavior  can  again  be explained  by  Platypus’  poor  swapping  performance.  However, the saturation  

occurs later than for the moving window of change protocol since the degree of locality in this 

protocol is higher. 

 

. 

 
 
 
 

30 
 

28                    Platypus 
SHORE 

26 
 

24 
 

22 
 

20 
 

18 
 

16 
 

14 
 

12 
 

10 
0.125                     0.25                       0.5                          1 

Parameter H (rate of access pattern change) 

 
Fig. 5. Traversed objects results. The x-axis is in log2  scale. The minimum and maximum coefficients 

of variation are 0.005 and 0.037, respectively. 
 
 
 
 
 
 

 
Conclusion 

 

In this paper, we have detailed the specification of a new framework for database benchmarking, DEF, 

which  allows  DBMSs’  designers  and  users  to  test  the  performances  of  a  given  system  in  a  

dynamic setting. This is where the originality of our work lies, since almost all real world 

applications exhibit access  pattern  changes,  but  no  existing  benchmark  attempts  to  model  this  

behavior.  We  have  also instantiated  DEF  in  an  object-oriented  context  under  the  name  of  DoEF,  

to  illustrate  how  such  a specialization could be performed. 

 

 



We have designed DEF to be readily extensible along two axes. First, since this is, to the best of 

our knowledge, the first attempt at studying the dynamic behavior of DBMSs, we have taken great 

care to make the incorporation of new styles of access pattern change as painless as possible, mainly 

through the definition of H-regions. We actually view the DEF software as an open platform that is 

available to other researchers for testing their own ideas. The DoEF code we have used in both our 

object clustering simulation experiments and our implementation for Platypus and SHORE is freely 

available for download. 

 
 

Second, although we have considered an object-oriented environment in this study with DoEF, we 

can also  apply  the  concepts  developed  in  this  paper  to  other  types  of  databases.  Instantiating 

DEF for object-relational databases, for instance, should be relatively easy. Since OCB can be quite 

easily adapted to the object-relational context (even if extensions would be required, such as 

abstract data types or nested tables, for instance), DEF can be used in the object-relational context 

too. 

 
 

As  stated  in  the  introduction,  the  main  objective  of  DEF  is  to  allow  researchers  and  

engineers to  explore  the  performance  of  databases  (identify  components  that  are  causing  poor  

performance) within  the  context  of  changing  patterns  of  data  access.  Our  experimental  results  

involving  dynamic clustering  algorithms  and  real  object  stores  have  indeed  demonstrated  DoEF’s  

ability  to  meet  this objective. Within the dynamic clustering context, two hypothesis have been 

confirmed by our experiments: (1) dynamic clustering algorithms can deal with moderate levels of 

access pattern change but performance rapidly degrades to  be  worse  than  no  clustering  when  

vigorous  styles  of  access  pattern  change  are  applied;  and  (2) flexible  conservative  re-clustering  is  

the  key  in  determining  a  clustering  algorithm’s  ability  to  adapt to changes in access pattern. In the 

performance comparison between the real object stores Platypus and SHORE, the use of DoEF 

allowed us to identify Platypus’ poor swapping performance. 

 
 

This study opens several research perspectives. The first one concerns the exploitation of DEF to 

keep on acquiring knowledge about the dynamic behavior of various DBMSs. Furthermore,  

 

 



comparing the  dynamic  behavior  of  different  systems,  though  an  interesting  task  in  itself,  may  

inspire  us  to develop new styles of access pattern change. New styles of access pattern change 

identified in this and other ways may be incorporated into DEF. 

 

Finally,  the  effectiveness  of  DEF  at  evaluating  other  aspects  of  database  performance  can  

also be  explored.  Data  clustering  is  indeed  an  important  performance  optimization  technique,  but  

other strategies such as buffer replacement and pre-fetching should also be evaluated. 
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