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A second-order geometry-preserving finite volume method for

conservation laws on the sphere

Abdelaziz Beljadid1,3, Philippe G. LeFloch2, and Abdolmajid Mohammadian1

Abstract

We consider nonlinear hyperbolic conservation laws posed on curved geometries —refered
to as “geometric Burgers equations” after Ben-Artzi and LeFloch— when the underlying
geometry is the two-dimensional sphere and the flux vector field is determined from a po-
tential function. Despite its apparent simplicity, this hyperbolic model exhibits complex
wave phenomena that are not observed in absence of geometrical effects. We formulate a
second-order accurate, finite volume method which is based on a latitude/longitude trian-
gulation of the sphere and on a generalized Riemann solver and a direction splitting based
on the sphere geometry. Importantly, this scheme is geometry-preserving in the sense that
the discrete form of the scheme respects the divergence free condition for the conservation
law on the sphere. A total variation diminishing Runge-Kutta method with an operator
splitting approach is used for temporal integration. The quality of the numerical solutions
is largely improved using the proposed piecewise linear reconstruction and the method per-
forms well for discontinuous solutions with large amplitude and shocks in comparison with
the existing schemes. With this method, we numerically investigate the properties of discon-
tinuous solutions and numerically demonstrate the contraction, time-variation monotonicity,
and entropy monotonicity properties. Next, we study the late-time asymptotic behavior of
solutions, and discuss it in terms of the properties of the flux vector field. We thus provide
a rigorous validation of the accuracy and efficiency of the proposed finite volume method
in presence of nonlinear hyperbolic waves and a curved geometry. The method should be
extendable to the shallow water model posed on the sphere.

1. Introduction

This paper is devoted to nonlinear hyperbolic problems involving conservation laws or,
more generally, balance laws and which are posed on curved geometries such as a surface.
Our objective is to design robust and efficient numerical approximation methods which allow
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to compute discontinuous solutions and preserve the fundamental structure of the partial
differential equations, especially geometry-related properties. Hence, our goal is to design
and numerically investigate geometry-preserving high-order accurate finite volume methods
and to study the late-asymptotic evolution of solutions of hyperbolic systems on the sphere.
We advocate the use of a (geometric) formulation of the finite volume method based on the
intrinsic (or covariant) form of the equations, rather then the coordinate expression which
is more commonly used. In this manner, by properly taking into account the effects induced
by the geometry, we can design methods that are, both, accurate and robust.

Compressible fluid dynamics provide a large variety of problems which involve geomet-
rical features. The prototype example is the system of shallow water on the sphere with
topography, which describe fluid flows on the surface of the Earth for instance, in connec-
tions with weather predictions [20]. Motivated by numerous applications in fluid dynamics,
the study of hyperbolic conservation laws posed on curved manifolds were recently initiated
in the mathematical and numerical literature. We build here on the work by Ben-Artzi
and LeFloch [7] who proposed to rely on an analogue of the inviscid Burgers equation for
curved geometry and, more generally, various classes of hyperbolic conservation laws on
manifolds. Since Burgers equations has played such an important role in the development of
shock-capturing schemes for compressible fluid problems, it is also expected that the class
of “geometric Burgers models” should provide an ideal simplified setup in order to design
and test geometric-preserving shock-capturing scheme. The mathematical properties of en-
tropy solutions to conservation laws on manifolds (including on spacetimes, that is, with
time-dependent (Lorentzian) metrics) were then extensively investigated by LeFloch and
co-authors [1, 2, 7, 6] and [25]–[28]. Subsequently, hyperbolic conservation laws on evolving
surfaces were studied by Dziuk, Kroöner, and Müller [13] and by Giesselman [15]. More gen-
erally, computational methods for evolving surfaces were developped in Dziuk and Elliott
[12] and the references therein.

Calhoun et al. (2008) used rectangular quadrilateral and hexahedral grids for solving
partial differential equations using circular and spherical domains and grid mappings on
the sphere and three-dimensional ball. The authors used the wave-propagation algorithms
[31, 24] to discretize hyperbolic systems. Berger et al. (2009) used the quadrilateral grids
introduced in Calhoun et al. (2008) to solve shallow water equations (SWEs) on the sphere
with adaptive mesh refinement. The authors used the “f -wave” method which was proposed
by Bale et al. (2002). The wave-propagation algorithm is defined in this method based on
a direct decomposition of flux differences into eigenvectors of approximate Jacobian matrix
of the system. LeVeque (2002) provides more discussion about this method.

Giraldo (2001) developed a spectral element method for shallow water system on the
sphere. In this method, the generalized icosahedral grid which was introduced by the same
author in [14] is used. The SWEs are transformed to Cartesian coordinates using a special
mapping and the equations are discretized in conservative form. Giraldo et al. (2002)
studied the SWEs on the sphere using Cartesian coordinates augmented with a Lagrange
multiplier. The authors developed and evaluated a nodal high-order discontinuous Galerkin
method for shallow water system on the sphere. To compute the numerical fluxes, they
used the simple Lax-Friedrichs method. In the dissipative term the maximum wave speed
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of SWEs which represents the maximum eigenvalue of the Jacobian of the system, is used.
Giraldo and Warburton (2005) developed a nodal triangle-based spectral element method for
shallow water system on the sphere. Giraldo (2006) developed a triangle-based discontinuous
Galerkin method which combines the finite element with finite volume techniques. In its
methodology, the author used the Rusanov flux [35] for the numerical fluxes where the
viscosity coefficient is chosen locally for each Riemann problem and mentioned that more
sophisticated Riemann solvers could be used for the study of the shock wave phenomena.
Katta et al.(2015) studied two finite volume methods to solve linear transport problems on
the cubed sphere grid system. These numerical methods are based on the central-upwind
scheme and high-order reconstructions.

The numerical methods described above are based on solving the classical Riemann
problem for hyperbolic systems of conservation laws. The classical Riemann problem for
hyperbolic systems is a Cauchy problem with piecewise constant initial data, that is the
Cauchy problem with initial condition consisting of two constant states at the left and right
of each cell-interface. Note that the resolution is greatly improved when switching from
piecewise constant data to piecewise-linear data. This leads to the generalized Riemann
problem (GRP), where one-sided function values and their spatial derivatives obtained from
high-order reconstructions could be used in the resolution. Ben-Artzi and Falcovitz (2003)
provide more details about the resolution of GRP and they show how the solution of GRP
could be used as a basic tool in the construction of robust numerical methods. Note that
the techniques which are developed to solve the GRP are less employed to design numerical
methods. There are many advantages and future interests for the development of numerical
schemes using the Generalized Riemann solvers instead of the techniques solving the classical
Riemann problem.

We are interested in discontinuous solutions with large amplitude and shocks for hyper-
bolic systems. Scalar conservation laws will thus be our starting point in the present study
and, next, will extend our methodology and conclusions to other hyperbolic equations, such
as the shallow water system. To ensure good accuracy of discontinuous solutions with large
amplitude and shocks, the numerical methods require the use of sophisticated Riemann
solvers. In our case, the Generalized Riemann solvers are used. In the resolution of the
GRP, the values of the function and its slopes on the two sides of each cell-interface are
used.

The numerical analyses are performed for some aspects which are not understood by
analytical methods for discontinuous solutions of hyperbolic systems on the sphere. We
numerically investigate the large-time asymptotic behaviors of solutions and some stability
properties of the numerical scheme. We thus focus on geometric Burgers models and we
adopt the methodology proposed in [6] which relies on second–order approximations based
on generalized Riemann problems. We propose a scheme which uses a new piecewise lin-
ear reconstruction based on the values of the solution at the center of the computational
cells and the values of the Riemann solutions at the cell interfaces, using the second-order
approximations based on a generalized Riemann solver. In the proposed scheme, we use a
total variation diminishing Runge-Kutta method (TVDRK3) with operator splitting for the
temporal integration. This geometric finite volume method therein is further developed
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and numerically investigated. We observe that certain global quantities are conserved by
entropy solutions to scalar conservation laws posed on curved geometries. Our aim is there-
fore to exhibit these global invariants and investigate to which extend they are preserved
by (or remain monotone decreasing for) the approximation solutions generated by the geo-
metric method. As has been mentioned before, we are also interested in investigating the
large-time asymptotics of solutions which is not understood by analytical method and will
be here studied numerically. As we show it in this paper, by distinguishing between several
classes of flux vector fields and initial conditions, we can exhibit a variety of nonlinear wave
phenomena. Our numerical tests show that the proposed method is consistent with the
maximum principle, the entropy stability property and the time-variation dimin-
ishing property. The contraction property is violated by the scheme and is satisfied
only by its first-order version. Our analysis will distinguish between foliated flux fields
and “generic” (or fully coupled) flux fields. This classification and the character of linearity
of the flux are sufficient to predict the late-time asymptotic behavior of the solutions.

An outline of this paper is as follows. In Section 2, we describe the geometric conservation
laws and the properties of their entropy solutions. In Section 3 we propose a new classifi-
cation of flux fields. Section 4 is devoted to classes of solutions of particular interest. In
Section 5 we give the description of the geometric finite volume method. Section 6 presents
numerical experiments of the spatial and temporal orders of accuracy of the scheme, and
numerical tests are performed for nonlinear foliated fluxes, fully coupled flux vector fields,
as well as further tests in order to study the asymptotic convergence of solutions. Finally,
Section 7 contains concluding remarks.

2. Geometric Burgers models on the sphere

2.1. Geometric hyperbolic conservation laws on manifolds

Fix any compact n-manifold M endowed with a volume form ω with L∞ regularity.
Given a flux vector field F = F (x, u) ∈ TxM depending on the real parameter u, where x
is an arbitrary point on M and TxM is the tangent space to M at the point x, we consider
the geometric hyperbolic balance law

∂tu+ divωF (·, u) = 0 in R+ ×M, (2.1)

with unknown u : R+ ×M → R, where (with some abus of notation) divωX = 1
ω
∂j(ωX

j)
with ω = ωdx1dx2 . . . dxn in local coordinates x = (xj)1≤j≤n and X = (Xj) is an arbitrary
vector field, where we use the short-hand notation ∂j := ∂/∂xj. We impose that the flux is
geometry-compatible, in the sense that

divωF (·, u) = 0, (2.2)

where u ∈ R is an arbitrary constant which is equivalent to saying that constants are (trivial)
solutions of the conservation law. Then, weak solutions are understood in the following sense:
for every test-function θ = θ(t, x),∫∫

R+×M

(
∂tθ(t, x)u(t, x) + ∂jθ(t, x)F j(x, u(t, x)

)
ω(x)dtdx = 0, (2.3)
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where F j denote the components of the vector field F in an arbitrary coordinate chart
x = (xj)1≤j≤n. Here, we have identified the volume form ω with its expression ωdx in local
coordinates (and, for simplicity in order to state (2.3), we have assumed that the manifold
is covered by a single chart).

To any equation (2.1) with flux field satisfying the condition (2.2), we can associate a
unique semi–group of entropy solutions characterized as follows: given any u0 ∈ L∞(M),
there exists a unique entropy solution u ∈ L∞(R+ ×M) to the initial value problem

∂tU(u) + divωG(·, u) ≤ 0, U ′′ ≥ 0,

u(0) = u0,
(2.4)

in which for every convex function U : R→ R we have introduced the corresponding entropy
flux G = G(x, u) ∈ TxM such that ∂uG := U ′ ∂uF . The inequalities in (2.4) are refered to
as the entropy inequalities.

Moreover, this semi-group of entropy solutions satisfies several fundamental properties:

• The entropy stability property: for all p ∈ [1,∞) and t ≥ 0

‖u(t)‖Lpω(M) ≤ ‖u(0)‖Lpω(M), (2.5)

which also implies the maximum principle (by letting p→ +∞):

‖u(t)‖L∞(M) ≤ ‖u(0)‖L∞(M), (2.6)

where the p-norm is denoted by ‖.‖Lpω(M) which is defined for p ∈ [1,∞) and ‖.‖L∞(M)

is the infinity-norm.

• The L1 contraction property: given any two entropy solutions u, v and for all times
t ≥ 0

‖v(t)− u(t)‖L1
ω(M) ≤ ‖v(0)− u(0)‖L1

ω(M). (2.7)

• The time-variation diminishing property: given any entropy solution u

‖∂tu‖Mω(M)(t) ≤ ‖∂tu‖Mω(M)(0), t ≥ 0, (2.8)

in which ‖ · ‖Mω(M) is the total variation of the corresponding measure (which in the
smooth case is nothing but the standard L1 norm).

We thus have a natural generalization of Kruzkov’s theory [22] to a manifold [1, 2, 25, 28].
Geometry-independent bounds hold, which are very useful in designing and testing discrete
approximation schemes. The low regularity of the volume form allows us to also include
shock wave in the geometry (which is relevant to model earthquakes in the context of the
shallow water system, for instance).
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2.2. The models of interest in this paper

This paper is devoted to the conservation laws on the sphere. We denote by S2 the unit
sphere endowed with a volume form ω and ∇ω is the covariant derivative operator. We now
express the conservation law in the form

∂tu+∇ω · (F (·, u)) = 0, (2.9)

or equivalently, in local coordinates, we can pose the problem on the unit sphere with a
weight function ω = ω(x)

∂tu(t, x) +
1

ω(x)
∇ ·
(
ω(x)F (x, u(t, x))

)
= 0. (2.10)

Flux vector tangent to the sphere can always be expressed in the form

F (x, u) = n(x) ∧ Φ(x, u), x ∈ S2, u ∈ R, (2.11)

where Φ = Φ(x, u) is a u-dependent vector field defined in the ambient space R3, n = n(x)
denotes the unit normal vector to the sphere and the symbol ∧ denotes the cross product. As
explained earlier, we are primarily interested in geometry-compatible flux vectors satisfying,
by definition,

∇ · (F (·, ū)) = 0, (2.12)

where u is an arbitrary real constant.
Especially, the broad class of gradient-type flux vector fields is defined by

Φ(x, ū) = ∇h(x, ū), x ∈ S2, ū ∈ R, (2.13)

in which h = h(x, ū) is an arbitrary scalar function and ∇ denotes the gradient operator in
R3. Under these conditions, the flux vector field reads

F (x, ū) = n(x) ∧∇h(x, ū), x ∈ S2, ū ∈ R (2.14)

and we then refer to (2.9) as the geometric Burgers equations on the sphere and are
determined by a scalar function h : R3 × R→ R.

We will refer to the function h as the scalar potential of the equation. For instance, if
h is chosen to be a linear function in the space variable, then Φ is independent of x but its
projection on the tangent space of the sphere is still “non-trivial”.

3. Classes of flux vector fields

3.1. Foliated flux vector fields

A flux field F (x, u) depends on both the state variable u and the space variable x.
For convenience, we adopt the notation xj = xj from now on. Roughly speaking, the
dependency in x drives the propagation of the waves, while the dependency in u may induce
the formation of shocks in the solutions. Some aspects of the influence of the parameters x
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and u on the evolution of the solution are observed and analyzed in various cases studied in
the numerical tests. To conduct a rigorous numerical analysis, it is useful to introduce some
new definitions, which allows us to have the classification of the flux vectors and the type of
evolution of solutions. Consider first the dependency in the variable x ∈ S2. Our analysis
has found that the following parameterized level sets ΓC,u =

{
x ∈ R3

/
h(x, u) = C

}
play a

central role and that the following definition is most relevant.

Definition 3.1. A gradient flux vector field F (x, u) = n(x)∧∇h(x, u) defined on the sphere
S2 and associated with a potential function h is called a foliated flux field if the associated
family of level sets

{
ΓC,u

}
C∈R in R3 is independent of the parameter u, in the sense that for

any two u1, u2 one can find C1, C2 such that ΓC1,u1 = ΓC2,u2 .

As will be confirmed later by our numerical tests, when the foliated condition above
holds, the directions of propagation associated with Equation (2.10) depend on the spatial
variable x only, and are independent on the variable u; hence, the level sets are determined
by the spatial variable only and remain unchanged over time, even under the evolution of
the solution. A typical subclass of interest is obtained when h has the following splitting
form.

Definition 3.2. All gradient flux vector field F (x, u) = n(x) ∧ ∇h(x, u) defined on the
sphere S2 and associated with a potential function h of the form

h(x, u) = ϕ(x)f(u) (3.1)

(for an arbitrary ϕ) are foliated and are referred to as foliated flux field based on split-
ting.

In the latter situation, we obtain decoupled “dynamics” on each level set. If the family
of level sets is locally a family of curves, then the conservation laws reduces to a family of
one-dimensional equations on each curve.

3.2. Notion of independent domains

When the flux is not foliated, we will consider that we are in a “generic” situation and
will use the terminology “generic flux field” and, in this case, the potential function
h = h(x, u) does not have the specific structure exhibited above. Yet, this function can be
decomposed into some homogeneous terms and the evolution of the solution is influenced by
all those terms, especially, the direction of propagation changes during the evolution, until
the solution finally converges asymptotically to some limiting state.

The following notion of “independent domain” on the sphere, presented now, will be of
importance in our forthcoming study of the asymptotic convergence of solutions.

Definition 3.3. Given a gradient flux field, a subset of the sphere S2 is called an indepen-
dent domain if within the family of level sets

{
ΓC,u

}
C∈R, one can find one level set that is

independent of the parameter u and coincides with the boundary of this domain.
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Such independent domains may exist for foliated flux field as well as generic flux fields.
For example, the circle on the sphere defined by x1 = 0 splits the sphere in two independent
domains for the foliated flux based on the potential function h1(x, u) = x1u

2. The same is
true for the generic flux field based on the potential function h2(x, u) = x1u

2 + x1x2u
3.

3.3. Genuine nonlinearity and late-time asymptotics

Consider now the dependency of the scalar potential h in u. A special situation is
obtained when the function h is linear in u, and in which case we use the terminology
“linear flux”. The classification that we introduced to distinguish between foliated flux
and generic flux, and the character of linearity of the flux are expected to be sufficient
to predict the late-time asymptotic behavior of the solutions. The following conjecture is
proposed.

Conjecture 3.4. Under the notation and assumptions (2.11) and (2.13) and for any ini-
tial condition, the following three late-time asymptotic behaviors are expected for entropy
solutions of Equation (2.10):

• For a linear foliated flux on the entire sphere, the solutions are simply transported
within the level sets.

• If the flux is foliated with nonlinear behavior on the entire sphere, the solution converges
to its constant average in each level set.

• The generic flux generates large variations in solutions, which finally converge to con-
stants within independent domains on the sphere.

In case of fluxes which are linear, foliated or generic only on parts of the sphere, we obtain
a combination of the late-time asymptotic behavior of the solutions which depends also on
the interaction between the fluxes at boundaries of these parts of the sphere.

This conjecture will be validated numerically in Section 6 using a number of numerical
examples.

4. Special classes of solutions

4.1. Wave structure

There are many solutions of particular interest which may have a very rich wave structure,
including spatially periodic solutions and steady state solutions. Since for the foliated flux,
the system of equations of interest can be reduced to a family of one-dimensional equations
on level sets, this type of flux is considered to construct some particular and interesting
solutions. The foliated flux with linear behavior is used to obtain the spatially periodic
solutions. The foliated flux with nonlinear behavior is employed to construct large families
of non-trivial stationary solutions which are used to test the numerical scheme.
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4.2. Spherical coordinates

The position of each point on the sphere is specified by its longitude λ ∈ [0, 2π] and
its latitude φ ∈ [−π/2, π/2]. The coordinates are singular at the south and north poles,
corresponding to φ = −π/2 and φ = π/2, respectively. The Cartesian coordinates are
denoted by x = (x1, x2, x3)T ∈ R3 with the corresponding standard basis vectors i1, i2 and
i3. The spherical coordinates under consideration lead to the following unit normal vector
to the sphere.

n(x) = cosφ cosλi1 + cosφ sinλi2 + sinφi3,

and for each point on the sphere with coordinates (λ, φ), we obtain the following unit tangent
vectors in the directions of longitude and latitude

iλ = − sinλi1 + cosλi2,

iφ = − sinφ cosλi1 − sinφ sinλi2 + cosφi3.

The equation of conservation law (2.10), can be rewritten using the spherical coordinates in
the following form:

∂tu+
1

cosφ
(
∂

∂φ
(Fφ cosφ) +

∂Fλ
∂λ

) = 0, (4.1)

where Fλ and Fφ are the flux components in spherical coordinates. They are given for each

three-dimensional flux of the form Φ(x, u) = f̃1(x, u)i1 + f̃2(x, u)i2 + f̃3(x, u)i3 as follows:

F (x, u) = Fλ(λ, φ, u)iλ + Fφ(λ, φ, u)iφ,

Fλ(λ, φ, u) = f̃1(x, u) sinφ cosλ+ f̃2(x, u) sinφ sinλ− f̃3(x, u) cosφ,

Fφ(λ, φ, u) = −f̃1(x, u) sinλ+ f̃2(x, u) cosλ.

(4.2)

4.3. Solutions for linear foliated flux

We consider the family of linear fluxes defined on the basis of the scalar potential
h(x, u) = h(x)u with h(x) = −cxd

3
for an integer d ≥ 1 and a real number c chosen ar-

bitrarily. For this case, it is easy to derive the analytical solution for any initial condition
u0(λ, φ)

u(x, t) = u0(λ− cφt, φ),

cφ = cdxd−1
3 .

(4.3)

The level sets of this type of fluxes are the circles on the sphere defined by constant latitudes.
For d = 1 the solution is simply transported within those level sets with the same angular
speed and it is globally preserved in a rotating frame. For d > 1 the solution is transported
within the level sets with different angular speeds and it is preserved in a moving frame
along each level set but the solution is not globally preserved. We note that more general
forms of the solutions for linear fluxes can be obtained by considering other functions h(x).
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4.4. Non-trivial steady state solutions

In this section, we present some general classes of non-trivial steady state solutions which
will be used in the numerical tests. As mentioned before, foliated fluxes are used to construct
non-trivial stationary solutions. More precisely, based on the expected asymptotic behavior
for nonlinear foliated flux, the solution of Equation (2.10) evolves along each level set and
for a long period of time, this solution converges asymptotically to a constant value on
each level set. Thus, it is straightforward (but fundamental) to deduce that for this type
of flux, any stationary solution of Equation (2.10) must be constant along each level set.
This result is important and further simplifies the problem to find the stationary solutions.
However, for the solutions which are used in our numerical tests, it will be proved that they
are stationary. In our numerical tests, we will consider the flux vector fields based on the
potential function h(x, u) = ϕ(x)f(u), where f is a function of the state variable u and ϕ is
a scalar function defined in R3. The level sets are the intersections of the sphere with the
sets defined as ϕ(x) = c, where c are arbitrary constants. The following Corollary describes
for the above-mentioned type of flux, a family of non-trivial steady state solutions

Corollary 4.1. (A family of steady state solutions). Consider the foliated flux vector
F (x, u) = n(x) ∧ Φ(x, u) with Φ = ∇h and h(x, u) = ϕ(x)f(u), where f is a function of
the state variable u and ϕ is a scalar function of class C1 defined in R3. For any function
ũ which depends on one variable, the function defined as u0(x) = ũ(ϕ(x))is a stationary
solution to the conservation law (2.10) associated to the flux F (x, u).

This result can be proved using the claim 3.2 in [6]. Since we are interested in discontinu-
ous solutions, the results of Corollary 4.1 will be used to construct discontinuous stationary
solutions for some selected flux vectors. In particular, if the same assumptions of the Corol-
lary 4.1 are considered with f(u) = u2/2, then for any function ũ which depends on one
variable, the function defined as u0(x) = χ(ϕ(x))ũ(ϕ(x)) is a stationary solution to the
conservation law (2.10), where the discrete function χ takes the values ±1. We will be
particularly interested to a linear splitting flux vector defined on the basis of the scalar
potential h(x, u) = (x.a)f(u), where as already mentioned x.a denotes the scalar product of
the vector x and some constant vector a ∈ R3.

5. Geometric finite volume method on the sphere

5.1. Discrete form of the divergence operator

Following [6], we design a Godunov-type, finite volume scheme that is based on an intrin-
sic approach and provides an accurate treatment of the geometry. Second-order accuracy is
obtained with the technique developed by Ben–Artzi and Facolvitz [5], LeFloch and Raviart
[29], and Bourgeade et al. [10]. Earlier work was done by Berger et al. [9], Giraldo and
collaborators [16, 17, 18, 19], and Rossmanith and collaborators [33, 34] based on high res-
olution schemes and approximate Riemann solvers by embedding the sphere in a “cubic
mesh” in R3. It should be noted that the computational grid used in this paper is more
suitable to apply the proposed techniques. In the following, we present the discrete form
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of the geometry-compatible finite volume scheme which was formulated in [6]. In order to
ensure a suitable discrete form, an important condition obtained from the theory established
by Ben-Artzi and LeFloch [7] called the “zero-divergence” was used in the construction of
the scheme.

The grid used in the numerical scheme is shown in Figure 1. Three types of computational
cells are used to discretize the sphere. In large area of the sphere, rectangular computational
cells are considered. When we go from the equator to the north or south poles, for some
special latitude circles, the number of computational cells is reduced by a ratio of 2 by
changing the equatorial longitude step in order to respect the condition of stability and to
have a homogeneous precision in the entire domain of the sphere. In the intermediate part of
the sphere where the equatorial longitude step is changed, computational cells with five sides
are used as shown in Figure 1. For this type of computational cells, two sides are collinear.
The triangular computational cells are used near the north and south poles which are a
special case of the standard rectangular cells with zero length for one side. For the three
cases of computational cells, each cell is defined as Ω := {(λ, φ), λ1 6 λ 6 λ2, φ1 6 φ 6 φ2}.
The divergence operator is discretized using the geometry compatibility condition and the
flux is approximated using the following formula:

(∇ · (F (x, u(t, x))))approx =
Ii
ωi
, (5.1)

where Ii = (
∮
∂Ω
F (x, u).ν(x)ds)approx which is obtained using the divergence theorem, ν(x)

is the unit normal vector to the boundary ∂Ω of the cell, ds is the arc length along ∂Ω, and
ωi is the area of the cell. The parameter Ii is calculated for each side e of the cell in terms
of the scalar potential h using the following expression:(∮ e2

e1

F (x, u).ν(x)ds
)approx

=

∮ e2

e1

(n(x) ∧ Φ(x, u)).ν(x)ds

= −
∮ e2

e1

Φ(x, u).(n(x) ∧ ν(x))ds

= −
∮ e2

e1

∇h(x, u).τ(x)ds = −
∮ e2

e1

∇∂Ωh(x, u)ds

= −(h(e2, u
m
12)− h(e1, u

m
12)),

(5.2)

where e1 and e2 are, respectively, the initial and final endpoints of the edge e, τ(x) is the
unit tangent vector to the boundary ∂Ω, um12 is the solution of the Riemann problem in the
orthogonal direction to the interface e, and the operator ∇∂Ω is the derivative along the
boundary ∂Ω.

It should be noted that the computational grid shown in Figure 1 has a structure which
is favorable in order to apply the standard splitting approach, as will be described in the
section below. We can then solve the generalized Riemann problem at each interface of
discontinuity by using the variables λ and φ separately. This grid structure also provides a
discrete form of the scheme which exactly satisfies the “null-divergence” condition.
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Figure 1: Types of grids used on the sphere

5.2. Equations for the splitting approach

The different approximations used in the numerical scheme are based on the splitting of
the equations. Without loss of generality, the following scalar potentials are used to explain
the procedure and the different equations of the splitting approach. We used three splitted
fluxes which is sufficient to have the possibility to split between the spatial variables x1, x2

and x3.
h(x, u) = h1(x)f1(u) + h2(x)f2(u) + h3(x)f3(u), (5.3)

which leads to the corresponding gradient flux vector:

Φ(x, u) = ∇h(x, u)

=
3∑
j=1

∂hj(x)

∂x1

fj(u)i1 +
3∑
j=1

∂hj(x)

∂x2

fj(u)i2 +
3∑
j=1

∂hj(x)

∂x3

fj(u)i3.
(5.4)

Using Claim 2.2 in [6], the above expression of Φ(x, u) as a gradient ensures the validity of
the geometry compatibility condition. Equations (4.2) are used to obtain the following flux
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components in spherical coordinates:

Fλ(λ, φ, u) = Φ1(x, u) sinφ cosλ+ Φ2(x, u) sinφ sinλ− Φ3(x, u) cosφ,

Fφ(λ, φ, u) = −Φ1(x, u) sinλ+ Φ2(x, u) cosλ,
(5.5)

where Φi(x, u) =
∑3

j=1
∂hj(x)

∂xi
fj(u), i = 1, 2, 3.

The geometry compatibility condition is equivalent to the following relation in spherical
coordinates which is valid for any constant value ū ∈ R:

∂(Fφ(λ, φ, ū) cosφ)

∂φ
+
∂Fλ(λ, φ, ū)

∂λ
= 0. (5.6)

From (5.5) and (5.6) we derive

− sinλ
3∑
j=1

∂h
′
j1(x) cosφ

∂φ
fj(ū) + cosλ

3∑
j=1

∂h
′
j2(x) cosφ

∂φ
fj(ū)

+ sinφ
3∑
j=1

∂h
′
j1(x) cosλ

∂λ
fj(ū)

+ sinφ
3∑
j=1

∂h
′
j2(x) sinλ

∂λ
fj(ū)− cosφ

3∑
j=1

∂h
′
j3(x)

∂λ
fj(ū) = 0,

(5.7)

where h
′
ji(x) =

∂hj(x)

∂xi
, i = 1, 2, 3 j = 1, 2, 3. Using the conservation law in spherical coordi-

nates (4.1), the flux components given by Equations (5.5), and the geometry-compatibility
property formulated by Equation (5.7), one obtains the following equivalent formulation of
the conservation law, which is easier to work with:

∂u

∂t
−

3∑
j=1

h
′

j1(x)
∂fj(u)

∂φ
sinλ+

3∑
j=1

h
′

j2(x)
∂fj(u)

∂φ
cosλ

+ tanφ(
3∑
j=1

h
′

j1(x)
∂fj(u)

∂λ
cosλ+

3∑
j=1

h
′

j2(x)
∂fj(u)

∂λ
sinλ)

−
3∑
j=1

h
′

j3(x)
∂fj(u)

∂λ
= 0.

(5.8)

Equation (5.8) can be rewritten in the form of balance law which includes a source
term. The resulting equation and the splitting approach are used to obtain the Generalized
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Riemann Problem values at cell interfaces. We obtain the following “λ split” equations:

∂u

∂t
+
∂g(x, u)

∂λ
= Sλ,

g(x, u) = tanφm

[
3∑
j=1

h
′

j1(x)fj(u) cosλ+
3∑
j=1

h
′

j2(x)fj(u) sinλ

]

−
3∑
j=1

h
′

j3(x)fj(u),

Sλ = tanφm

[
3∑
j=1

fj(u)
∂h

′
j1(x) cosλ

∂λ
+

3∑
j=1

fj(u)
∂h

′
j2(x) sinλ

∂λ

]

−
3∑
j=1

fj(u)
∂h

′
j3(x)

∂λ
,

(5.9)

where the latitude of the midpoint denoted by φm is used at each cell interface for the
function g. In the following, the notation λm is used for the longitude of the midpoint of
each cell interface.

For the “φ split” equations, one obtains

∂u

∂t
+
∂κ(x, u)

∂φ
= Sφ,

κ(x, u) = −
3∑
j=1

h
′

j1(x)fj(u) sinλ+
3∑
j=1

h
′

j2(x)fj(u) cosλ,

Sφ = −
3∑
j=1

fj(u) sinλ
∂h

′
j1(x)

∂φ
+

3∑
j=1

fj(u) cosλ
∂h

′
j2(x)

∂φ
.

(5.10)

The right-hand side terms Sλ and Sφ of the previous equations are the result of the explicit
differentiation of the flux functions g(x, u) and κ(x, u). Equations (5.9) and (5.10) are used
to obtain the Generalized Riemann Problem values at cell interfaces as explained in the
following section.

5.3. Second-order approximations based on generalized Riemann problems

We now present the algorithm used to solve the Generalized Riemann Problem at each
cell interface. Since the same method is applied for the equations (5.9) and (5.10), we present
the procedure for the case of the “λ split” equations. In the second-order method based on
the Generalized Riemann Problem, it is assumed that for any time step tn, the solution is
approximated by a piecewise linear function.

Subject to the initial data for u, the proposed linear reconstruction is used as explained
in detail in the next section to obtain the boundary values of u denoted by uL and uR and its
λ-slopes denoted by uL,λ and uR,λ at each cell interface of midpoint of coordinates (λm, φm).
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The boundary values are used to obtain the solution ũm of the Riemann problem. The
Generalized Riemann Problem method uses a linear temporal approximation to obtain the
value of the solution of Riemann problem um at time tn + ∆t/2. The approximation of this
solution is obtained as:

um = ũm +
∂u

∂t
(λm, φm, tn)

∆t

2
. (5.11)

In Equation (5.11), the derivative term is obtained by using the value of the slope of u in
the longitude direction at the cell interface which is denoted by um,λ

∂u

∂t
(λm, φm, tn) = −um,λ

∂g(x, u)

∂u
|(λm,φm,ũm) . (5.12)

The parameter um,λ is obtained by the associated Riemann problem. In the following we
recall briefly the procedure used to solve the Riemann problem to obtain the values of ũm

and the slope um,λ.
For uL ≤ uR, we consider the “convex envelope” of g and the solution ũm is obtained as

follows:
ũm = argv∈[uL,uR] min(g(x, v) | (λm, φm)). (5.13)

There are three cases for this solution and for the slope um,λ:
(i) A wave moving to the right:

ũm = uL, um,λ = uL,λ. (5.14)

(ii) A wave moving to the left:

ũm = uR, um,λ = uR,λ. (5.15)

(iii) A sonic point:

uL < ũm < uR, ∂ug(x, u) |(λm,φm,ũm)= 0. (5.16)

Note that for the sonic case, it is easy to conclude, using the equations (5.12) and (5.16),
that the time-derivative of u reduces to ∂u

∂t
(λm, φm, tn) = 0. The geometry-compatibility

condition remains valid also for the second-order scheme. Indeed, if we consider the condition
u ≡ const in the computational cell and its neighbors, the slopes and the time-derivatives
of the generalized Riemann solution vanish and the solution remains constant. Under the
condition uL > uR, the same procedure is used by considering the “concave envelope” of g
and the value ũm that maximizes the function g(x, v) with v ∈ [uR, uL]. Finally, the same
procedure is used for the case of the “φ split” equations using the boundary values of u and
its φ-slopes uL,φ and uR,φ at each cell interface.

The same algorithm used for the first step of TVDRK3 method to solve the Generalized
Riemann Problem is used for the second and third steps of the method. In the case of the
second step of the method, the data u(1) which is obtained from the first step is used instead
of the date u. The data u(2) which is obtained from the second step is used to solve the
Generalized Riemann Problem in the case of the third step of TVDRK3 method.
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5.4. The proposed piecewise linear reconstruction
In this section, we describe the proposed piecewise linear reconstruction in the case of

rectangular computational cells where we do not have change of the structure of meshes.
The indices i and j are used along the longitude and latitude respectively to locate the
position of the centers of computational cells. At each time level tn, data cell average value
uni,j in each cell (i, j) of center (λi, φj) is locally replaced by a piecewise linear function. The
notation uni−1,j and uni+1,j are used for the values of the function u at the neighboring cells at
the left and right of the cell (i, j). These notations are used with obvious periodicity along
the longitude for i = 1 and i = N , where N is the number of computational cells having
the same latitude φj as the computational cell (i, j). In the case where the mesh structure
changes, we consider the same method of reconstruction where we consider the average of
the values at the two neighboring cells. For example, at places where there are more cells
for latitude φj+1 than for φj, the value uni,j+1 which will be used in equation (5.20) is the
average of the values at the two neighboring cells at latitude φj+1.

The proposed reconstruction leads to the following local function:

uni,j(λ, φ) = uni,j + (λ− λi)αni,j + (φ− φj)βni,j, (5.17)

where αni,j and βni,j are the slopes in the directions of longitude and latitude, respectively. We
consider the notation un±

i+ 1
2
,j

for the corresponding right and left values of u at the interface

(i+ 1
2
, j) in the longitude direction which are obtained by using the proposed piecewise linear

reconstruction at time tn. In the same way the notation un±
i,j+ 1

2

is used for the right and left

values at the interface (i, j+ 1
2
) in the latitude direction for the function u at time tn. These

values are used to obtain the associated Riemann values which are denoted by un
i+ 1

2
,j

and

un
i,j+ 1

2

at the interfaces (i+ 1
2
, j) and (i, j + 1

2
), respectively.

The slope αni,j is obtained by using the following steps:

ũn
i+ 1

2
,j

= un−1
i+ 1

2
,j

+ (
∂u

∂t
)n−1
i+ 1

2
,j

(tn − tn−1),

α̃ni,j =
1

∆λ
(ũn

i+ 1
2
,j
− ũn

i− 1
2
,j

),

αni,j =
1

∆λ
minmod((uni+1,j − uni,j)),∆λα̃ni,j, (uni,j − uni−1,j)),

(5.18)

where un−1
i+ 1

2
,j

is the solution of the Riemann problem at the interface (i + 1
2
, j) which is

obtained in the previous step tn−1 using the procedure explained in Section 5.3. The value
of ũn

i+ 1
2
,j

computed using the first equation in (5.18) based on the data from step tn−1 is an

approximation of the solution of the Riemann problem at the interface (i+ 1
2
, j) at time tn .

The time-derivative (∂u
∂t

)n−1
i+ 1

2
,j

in (5.18) is computed in the previous step tn−1 using Equation

(5.12). In the third equation of (5.18) we use the multivariable minmod function defined as

minmod(σ1, σ2, σ3)

=

{
σmin(|σ1|, |σ2|, |σ3|), if sign(σ1) = sign(σ2) = sign(σ3) = σ,

0. otherwise.
.

(5.19)
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In the same way the slope βni,j is obtained by using the following steps:

ũn
i,j+ 1

2
= un−1

i,j+ 1
2

+ (
∂u

∂t
)n−1
i,j+ 1

2

(tn − tn−1),

β̃ni,j =
1

∆φ
(ũn

i,j+ 1
2
− ũn

i,j− 1
2
),

βni,j =
1

∆φ
minmod((uni,j+1 − uni,j)),∆φβ̃ni,j, (uni,j − uni,j−1)),

(5.20)

where un−1
i,j+ 1

2

is the solution in the previous step tn−1 of the Riemann problem at the cell

interface (i, j + 1
2
) which is obtained by using the same procedure explained in Section 5.3

for the case of the “φ split” equations. The value of ũn
i,j+ 1

2

is obtained by using the first

equation in (5.20). This value is an approximation of the solution of the Riemann problem
at the interface (i, j + 1

2
) at time tn. The value of the time-derivative (∂u

∂t
)n−1
i,j+ 1

2

is obtained

in the previous step tn−1 using an equation similar to (5.12), and by using the slope um,φ of
u in the latitude direction at the cell interface.

5.5. Description of the scheme

In this section, we summarize the steps used in the finite volume method. At each time
level tn, data cell average values uni,j are used to obtain the linear reconstruction based on
the slopes computed using equations (5.18) and (5.20). It should be mentioned that for the
first step of the scheme we do not have any data of the state variable u from any previous
step. In order to start the method, for the proposed piecewise linear reconstruction, the
third equations in (5.18) and (5.20) are used to obtain the slopes αni,j and βni,j, respectively,

without using the parameters α̃ni,j and β̃ni,j. For this case, the data cell average values uni,j
are used with a two-variable minmod function. In general at each time level tn, equations
(5.18) and (5.20) are used to obtain the slopes αni,j and βni,j, respectively, using the data of u
at time level tn and the solution of the Generalized Riemann Problem at the previous time
step tn−1.

For the first step of TVDRK3 method, the obtained linear reconstruction from the data
cell average values uni,j are used to obtain the boundary values uL and uR, and the slopes
uL,λ and uR,λ at each cell interface. The generalized Riemann values at the cell interfaces
at time level tn are obtained using Equation (5.11) as already explained in Section 5.4.

The splitting approach is used and Equations (5.9) and (5.10) are solved to obtain the

values u
(1)
i,j in the first step TVDRK3 method. For the second step of TVDRK3 method, the

data cell average values u
(1)
i,j are used to obtain the linear reconstruction, the boundary values

and the generalized Riemann values at the cell interfaces using Equation (5.11). Equations

(5.9) and (5.10) are solved to obtain the values u
(2)
i,j . The same procedure is used for the third

step of TVDRK3 method. The data cell average values u
(2)
i,j are used to obtain the linear

reconstruction, the boundary values, the generalized Riemann values at the cell interfaces
and the cell average values un+1

i,j of the state variable at the next step tn+1.

17



6. Numerical experiments

6.1. Numerical analysis of the spatial and temporal orders of accuracy of the scheme

6.1.1. Spatial order of the scheme

Two numerical tests are performed in order to determine experimentally the spatial order
of accuracy of the proposed scheme. We used the nonlinear foliated flux defined from the
scalar potential h(x, u) = (x.a)f(u) with f(u) = u2/2. In the first test, we consider the
flux with a = i1 and, as initial data, the three (steady state) functions: u1(0, x) = x1,
u2(0, x) = x1 cosh(x1), and u3(0, x) = x3

1 sinx1. For the second test, we use the flux with
a = i1 +i2 +i3 and, as initial data, the three steady state solutions: v1(0, x) = sinh θ/(1+θ2),
v2(0, x) = (1− θ)eθ, and v3(0, x) = θ3 with θ = x1 + x2 + x3.

To determine numerically the spatial convergence rate, we use a very small time step ∆t =
0.0001 in order to render the temporal errors negligible. Different sizes of the computational
cells are used to obtain the evolution of the error. We use the longitude step ∆λ and the
latitude step ∆φ with the same order, and to evaluate the errors, we use the mesh-size
weighted L1-norm. Figure 2 shows the evolution of the L1-error in a log-log scale up to the
time T = 5 for the first and second tests. For both choices of flux and for all the initial
conditions under consideration, we observe that for small sizes of the computational cells the
spatial convergence rate is approximately equal to 2. This result confirms the second-order
of spatial accuracy of the scheme studied in this paper.
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Figure 2: Evolution of L1-error in log-log scale until time T = 5 (dx = log(∆λ)) for the nonlinear foliated
flux defined on the basis of the scalar potential h(x, u) = (x.a)f(u). Left: For the nonlinear foliated flux
defined by using a = i1. Right: For the nonlinear foliated flux defined by using a = i1 + i2 + i3.

6.1.2. Impact of the splitting approach on the temporal order of the scheme

In this section, we study the impact of the splitting approach on the third-order of
the TVD Runge-Kutta method used for time integration in the scheme. The experimental
determination of the temporal accuracy is more challenging since the combined effects of
spatial and temporal errors are, in general, difficult to distinguish. The use of a very small
size of the computational cells to reduce the spatial errors is not possible since the stability
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condition limiting the ratio value ϑ∆t/Lcell should be satisfied for each cell, where Lcell is
the minimum distance inside the cell from its center, and ϑ is the wave speed. We will use
the algorithm used by Bona et al. [8] to numerically obtain the order of temporal accuracy
of the proposed method.

For a fixed size of mesh ∆λ = ∆φ, we consider a reference solution at time T denoted
by uref which is obtained by using a very small time step ∆tref . This reference solution will
differ from the exact solution by an error that is almost purely from the spatial discretization.
This solution is used in the numerical tests in order to cancel the spatial errors. For a fixed
spatial size ∆λ of the computational cell, a modified error at time T denoted by Ẽ is defined
using the L1-norm. This modified error is computed for values of time steps ∆t that are
larger than ∆tref , using the following formulas:

Ẽ(T,∆t) =
∥∥∥u(n)(∆λ,∆t)− u(n)

ref (∆λ,∆tref )
∥∥∥
L1
/
∥∥u(a)

∥∥
L1 , (6.1)

where u(a) is the analytical solution and u(n) is the numerical solution obtained by using a
time step ∆t and the same spatial step ∆λ used for the reference solution u

(n)
ref .

For small values of ∆t which are larger than ∆tref , the temporal rate of convergence
of the proposed scheme can be visible because when we subtract the reference solution
u

(n)
ref (∆λ,∆tref ) from the approximate solution u(n)(∆λ,∆t), the spatial errors are almost

canceled. In order to experimentally check the order of accuracy of the proposed temporal
scheme which combines the TVDRK3 method with the splitting approach a numerical test
is performed using the nonlinear foliated flux defined based on the scalar potential h(x, u) =
(x.a)f(u) with f(u) = u2/2 and a = i1. The proposed scheme is applied to the system (4.1)
subject to the initial condition (steady state solution) u(0, x) = x3

1.
The temporal rate of convergence at time T = 5 is shown in Table 1 for ∆tref = 0.0001.

The results confirm that the splitting method has less impact on the third order accuracy
of the TVD Runge-Kutta method used for temporal integration.

Table 1: Temporal rate of convergence of the proposed scheme at T = 5.

∆t 1E-03 2E-03 4 E-03 6 E-03 1 E-02
Rate 3.00 3.00 3.00 2.99 2.98

6.2. First test case with linear foliated flux

Referring to Section 4.3, here we perform two tests cases using linear fluxes based on
different scalar potentials h(x, u) = h(x)u. We consider a grid with an equatorial longitude
step ∆λ = π/96 and a latitude step ∆φ = π/96, and a time step ∆t = 0.01. In the first
numerical test (Test 1-a), the function h(x) = −x3 is considered, which leads to the following
flux vector:

Fλ(λ, φ, λ) = cosφu, Fφ(λ, φ, λ) = 0. (6.2)

19



We consider the initial condition with a discontinuity along the curve x1 = 0, defined as:

u(0, x) =

{
cosφ, x1 ≥ 0,

− cosφ, otherwise.
(6.3)

For this case, the solution is transported with the same angular speed along the level sets
which are the circles defined by φ = φc, where φc ∈ [−π/2, π/2]. Figure 3, on the left, shows
the solution at time t = 50 and confirms that it is globally preserved in rotating frame on
the sphere.
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Figure 3: Solutions of Test 1-a (left) and Test 1-b (right) at time t = 50 with ∆t = 0.01, ∆λ = π/96, and
∆φ = π/96.

Now we consider the second test (test 1-b) in which the flux vector is defined on the
basis of the scalar potential h(x, u) = −x2

3
u, and the same initial condition is used as in the

first test. For this test, again the solution is transported along the same level sets but with
different angular speeds. As shown in Figure 3, on the right, the solution is preserved at
time t = 50 on each level set in a moving frame but not globally preserved on the sphere.

6.3. Second test case with nonlinear foliated fluxes

In this section several aspects will be analyzed for a nonlinear foliated flux of the form
F (x, u) = f(u)n(x) ∧ i1 with f(u) = u2/2. The evolution of L1- error of the proposed
scheme is analyzed using discontinuous steady state solutions. The entropy stability property
(2.5), the time-variation diminishing property (2.8), and the contraction property (2.7), are
analyzed for the first and second order of the scheme. The late-time asymptotic behaviors
of the solutions are analyzed using this flux and different initial conditions.

First, we consider the following discontinuous steady state solution of Equation (2.10)
which is taken as an initial condition (test 2-a).

u1(0, x) =

{
1, x1 ≤ 0,

−1, otherwise.
(6.4)
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In this test we compute the numerical solution by using the computational cell with
equatorial longitude step ∆λ = π/96 and latitude step ∆φ = π/96, and a time step ∆t =
0.03.

1

0.5

0

0.5

1

X
3

1

0.5

0

0.5

1

X1

1

0.5

0

0.5

1

X2

X Y

Z

Time
E

rr
o

r
5 10 15 20 25 30

2.0E04

4.0E04

6.0E04

8.0E04

1.0E03

Proposed scheme
Centralupwind scheme

Figure 4: Solution of Test 2-a on the entire sphere (left) at time t = 100. Evolution of L1-error of the
solution until time t = 30 for Test 2-b (right) using the proposed scheme and Central-upwind scheme with
γ = 0.1. The grid with ∆λ = π/96 and ∆φ = π/96 is used for the two tests cases.

A two-dimensional view of the solution at time t = 100 is presented in Figure 4 (left)
which confirms that the solution remains unchanged over the entire sphere. The numerical
solution is in good agreement with the initial condition and it remains steady state. Now
we consider a new test (Test 2-b) using the following steady state solution, with more
discontinuities, which is defined in three domains separated by two closed curves on the
sphere defining these discontinuities.

u2(x) =


γx3

1, −1 ≤ x1 ≤ −0.5,

0.5γx2
1, −0.5 < x1 < 0.5,

−0.25γx1, 0.5 ≤ x1 ≤ 1,

(6.5)

where the parameter γ is introduced in order to control the amplitude and shocks of the
solution.

The numerical solution is computed by using the same computational grid as that con-
sidered in the previous test and a time step ∆t = 0.03. Figure 4, on the right, shows the
evolution of L1-error of the solution (6.5) with γ = 0.1 until time t = 30 using the proposed
scheme and the extension of the central-upwind scheme developed by Kurganov and Petrova
in [23] to the spherical case. The proposed scheme performs much better than the central-
upwind scheme especially for the discontinuous solutions with large amplitudes and shocks.
For γ = 0.3 at time t = 5, we obtain the L1-error of 9.3× 10−4 for the proposed method and
the error of 1.7× 10−3 for the central-upwind scheme.

Figure 5 shows the numerical solution on the equator of the sphere at time t = 5 using
the initial condition (6.5) for the two cases γ = 0.1 (left) and γ = 0.3 (right). The numerical
solution is in good agreement with the analytical steady-state solution (6.5).
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According to the scalar potential h(x, u) = x1u
2/2, the circle defined on the sphere by

x1 = 0 splits the sphere into two independent domains, the first domain includes the points
with x1 ≥ 0 and the second includes the points with x1 < 0. The average values of the
initial condition in the first and second domains are denoted by uI and uII , respectively.

The numerical test for large simulation time is performed using the same computational
grid with equatorial longitude step ∆λ = π/96 and latitude step ∆φ = π/96, and we used a
time step ∆t = 0.03. The use of the same grid influences the computed solution and allows
us to obtain other types of steady state solutions, where we observe that they are captured
by the numerical scheme using this computational grid.

Figure 6, at the left, shows that the parameters ‖u(t)− uI‖L1 and ‖u(t)− uII‖L1 in the
first and second domains of the sphere, respectively, are decreasing over time and tend to
zero for a large simulation time. The solution converges asymptotically to different constant
values in those domains and the convergence is faster in the second domain than the first
domain.

Figure 6, on the right, presents the two-dimensional view of the solution for a large
simulation time and shows that the solution has almost reached an asymptotic convergence.

Following our numerical experiments, the parameter ‖u(t)‖Lpω(M) using Lp norm for p =
1, 2, 3, 4, 5, 10 and ∞, is decreasing with time which confirms that the entropy stability
property (2.5) is verified for all those norms.

Several tests were performed using the following functions in order to verify the time-
variation diminishing property (2.8). As shown in Figure 7, this property holds for both
cases of the first and second order of the scheme.

u1(0, x) =

{
sinλ, x1 ≥ 0,

− sinλ, otherwise,
(6.6)

u2(0, x) =

{
x3, λ ≤ π,

x3 cosλ, otherwise,
(6.7)
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u3(0, x) =

{
x2, x1 ≤ 0,

−x2e
x1 , otherwise,

(6.8)

u4(0, x) =


1
θ−1

, θ < 0,
1

1+θ2
, 0 ≤ θ ≤ 2/

√
3,

−3/7, otherwise,

(6.9)

where θ = x1 + 2x2 + x3.
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Figure 7: Time-variation diminishing property (2.8) for the first order of the scheme (left) and for the second
order of the scheme (right) until time t = 50 with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

We now proceed to the analysis of the contraction property (2.7) for the numerical
scheme using the L1-norm. We start by giving an example of two functions which verify the
contraction property for the first-order scheme but they do not verify this property for the
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second-order method. We consider the functions v1 and w1 defined by:

v1(0, x) =

{
x1 + x2

3, x1 > 0,

−x1 − x2
3, otherwise,

w1(0, x) = |x1|.
(6.10)

Figure 8, on the left, shows the evolution of the ratio E(v, w) defined by the following
formula and confirms that this parameter is decreasing only in the case of the first-order
scheme.

E(v, w) = ‖v(t)− w(t)‖L1
ω(M)/‖v(0)− w(0)‖L1

ω(M). (6.11)

Several tests are performed to verify the contraction property (2.7) for the first-order
scheme using the five pairs of functions given in Appendix I-1. Figure 8, on the right,
shows the evolution of the ratio E(v, w) for the five pairs of functions. This parameter is
decreasing for all cases, which confirms that the contraction property (2.7) is valid for all
pairs of functions considered.
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Figure 8: Contraction property (2.7) with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96. Left : for the case of the
first and second order schemes. Right: for the case of the first-order scheme using several functions.

6.4. Third test case with nonlinear foliated fluxes – alternative forms

We consider the nonlinear foliated flux F (x, u) = f(u)n(x) ∧ (i1 + i2 + i3) which corre-
sponds to the scalar potential h(x, u) = (x1 + x2 + x3)f(u) with f(u) = u2/2. Following
the Corollary 4.1, for this flux any function of the form u0(x) = ũ(x1 + x2 + x3) is a steady
state solution of Equation (2.10), where ũ is an arbitrary real function depending on one
variable. In this section the tests are performed using the following discontinuous steady
state solution:

u1(0, x) =

{
k θ

3+1
5−θ , −

√
3 ≤ θ ≤ 0,

k(θ2 − θ − 1/5), otherwise,
(6.12)

where θ = x1 +x2 +x3 and θ ∈ [−
√

3,
√

3]. The parameter k is used to control the amplitude
and shocks of the solution (6.12).
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The present test (3-a) is performed with the above function as an initial condition, using
a grid with an equatorial longitude step ∆λ = π/96 and a latitude step ∆φ = π/96, and
a time step ∆t = 0.02. Figure 9 (left) shows the evolution of L1-error of the solution until
time t = 30 using three cases of values of the parameter k and confirms that the proposed
scheme performs well for discontinuous solutions.

The numerical test for large simulation time is performed using the same computational
grid which influences the computed solution and allows us to obtain other steady state
solutions. Figure 9, on the right, shows the evolution of the parameter ‖u1(t)− u1‖L1 using
the solution (6.12) with k = 1, where u1 is the average value of this solution on the sphere.
For a large simulation time, the numerical solution converges to a constant value on the
entire sphere.

Time

E
rr

o
r

0 10 20 30
0.0E+00

2.0E03

4.0E03

6.0E03

k=0.1

k=0.2

k=0.3

Time

E
(u

)

0 10000 20000 30000 40000 50000
0

0.05

0.1

0.15

0.2

0.25

0.3
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∆φ = π/96 for the three cases k = 0.1, k = 0.2 and k = 0.3. Right: Evolution of ‖u1(t)− u1‖L1 for large
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The entropy stability property (2.5) is analyzed using the entropy solution (6.12) with
the Lp-norm for p = 1, 2, 3, 4, 5, 10 and ∞. As shown in Figure 10, this property is checked
for all those norms. The time-variation diminishing property (2.8) is now checked for the
first and second order schemes using the L1-norm and the following functions:

u1(0, x) =

{
x2 + θx1, −

√
3 ≤ θ ≤ 0,

−x2 + θx3, otherwise,

u2(0, x) =


x1 + x2 cosλ, 0 ≤ λ ≤ π/2,

− x1, π/2 < λ < π,

x1 + x3 sinλ, otherwise,

(6.13)

u3(0, x) =

{
θex3 + eθ, −

√
3 ≤ θ ≤ 0,

− 1 + θ log θ, otherwise,

u4(0, x) =

{
x2 sinh(x1) + 1

x21+4
, −1 ≤ x1 ≤ 0,

− cosh(x1)/4, otherwise.

(6.14)
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Figure 10, on the right, presents the evolution of the parameter ‖∂tu‖M(t) for the first-
order scheme. Figure 11, on the left, shows the evolution of this parameter for the second-
order scheme. This parameter decreases over time, which shows that the time-variation
diminishing property (2.8) is valid for all the functions arbitrarily chosen for the first and
second order schemes.
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Figure 10: Stability property for Test 3-a (left) and property (2.8) for the first-order scheme until time
t = 50 (right) with k = 1, ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

The contraction property (2.7) is now validated for the first-order scheme using the five
pairs of functions given in Appendix I-2. As shown in Figure 11, on the right, the ratios
E(v, w) defined by Equation (6.11) are decreasing, which confirms that the contraction
property (2.7) is valid for all those pairs of functions.
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Figure 11: Property (2.8) for the second-order scheme until time t = 50 (left) and contraction property (2.7)
for the first-order scheme (right) with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

In the following other non-trivial steady state solutions with more general forms will be
considered to test the accuracy of the scheme. We consider the nonlinear foliated flux based
on the potential function h(x, u) = ϕ(x)f(u). For this case, the function u0(x) = ũ(ϕ(x))
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is a stationary solution to the conservation law (2.10), where ũ is a function which depends
on one variable. Arbitrary functions ϕ are selected in order to obtain non-trivial stationary
solutions with level sets which have different and more complex forms on the sphere. These
steady state solutions are very relevant to test the accuracy of the numerical scheme.

The numerical tests are performed for four cases using the functions ϕ1(x) = −x2
1+x2+x3,

ϕ2(x) = −x2
1 + x3

2 + x3, ϕ3(x) = sin πx1 + x2 + x3 and ϕ4(x) = − sin πx1 + sinπx2 + x3, and
the initial conditions u0(x) = γϕk(x) with k = 1, 2, 3, 4 and γ = 0.1. The present numerical
examples are performed using a grid with an equatorial longitude step ∆λ = π/96 and a
latitude step ∆φ = π/96, and a time step ∆t = 0.01. Figures 12 and 13 show the solutions
for the four cases at time t = 5 using Euler scheme for temporal integration. The solutions
remain nearly unchanged in time for all the numerical examples considered. The L1-error
is computed by summation over the grid cells on the entire sphere. Table 2 presents the
L1-errors and the full range umax−umin of the solutions for the four numerical tests at time
t = 5. For all numerical examples, the L1-error is negligible compared to the full range

Table 2: Accuracy test of the scheme using general forms of nonlinear foliated fluxes.

Function ϕ L1-error umax − umin
ϕ1 1.18 e− 04 0.29
ϕ2 5.30 e− 05 0.24
ϕ3 5.60 e− 04 0.45
ϕ4 1.25 e− 03 0.55

of the solution umax − umin. The results clearly demonstrated the ability of the scheme to
capture accurately non-trivial steady state solutions with more complex geometric forms.
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6.5. Fourth test case using generic fluxes

In this section, we consider fluxes which are not foliated. First, we consider the flux
defined using the following potential function:

h(x, u) = x3
3u

2 + x3x1u
6 (6.15)

The numerical test is performed using the following steady state solution as initial condition:

u(0, x) =

{
1, x3 ≥ 0

−1, otherwise
(6.16)

We used a grid with an equatorial longitude step ∆λ = π/96 and a latitude step
∆φ = π/96, and a time step ∆t = 0.01. Figure 14 (left) shows the solution which re-
mains unchanged at time t = 5 over the entire sphere. This numerical test confirms that
the numerical solution is in good agreement with the analytical steady-state solution (6.16)
for the generic flux based on the potential function (6.15).

In the second numerical test, we consider the generic flux defined using the following
potential function:

h(x, u) = θu2 + x1θ
2u4, (6.17)

where θ = x1 + x3 cos(πx2)− sin(πx3).
For this flux vector field, we consider the following initial condition

u(0, x) =

{
1, θ ≤ 0

−1, otherwise
(6.18)

This function is a steady state solution of the system (2.10) using the flux vector field
based on the potential function (6.17). This solution has a more complex form along the
discontinuity curve.
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The numerical test is performed using a grid with an equatorial longitude step ∆λ = π/96
and a latitude step ∆φ = π/96, and a time step ∆t = 0.01. The numerical solution at time
t = 5 is shown in Figure 14 (right). The numerical solution is in good agreement with the
analytical steady-state solution (6.18) for the generic flux based on the potential function
(6.17).
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Figure 14: Left: The numerical solution at time t = 5 of Equation (2.10), using the generic flux based on
the potential function (6.15) and the initial condition (6.16). Right: The numerical solution at time t = 5
of Equation (2.10), using the generic flux based on the potential function (6.17) and the initial condition
(6.18).
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Figure 15: Left: Initial condition (6.19). Right: The numerical solution at time t = 50000 with ∆t = 0.01,
∆λ = π/96 and ∆φ = π/96.

The third numerical test is performed using the generic flux based on the potential
function (6.15) and the following initial condition:

u(x, 0) =
sin(πx3)√

1− x2
3

(6.19)
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The two-dimensional view of the initial condition (6.19) and the corresponding solution
for a long simulation time are shown in Figure 15. As was mentioned in the conjecture
(3.4) for generic fluxes, the solution converges to a stationary solution which is constant on
independent parts on the sphere. For the present numerical test, we obtain two independent
domains on the sphere. The circle on the sphere defined by x3 = 0 splits the sphere in
two independent domains. The numerical solution presents large variations because of the
generic behavior of the flux and it asymptotically tends to constant values in two independent
domains. For large simulation time, the solution converges to the constant values 0.6366
and −0.6366, respectively in the domain on the sphere defined by x3 ≥ 0 and x3 < 0 which
is in good agreement with the analytical average values 2/π and −2/π of the conservation
law (2.10).

In the following, we consider a generic flux defined on the basis of the parameterized
scalar potential which is composed on two different terms in order to ensure the generic
behavior.

h(x, u) = h1(x)f1(u) + h2(x)f2(u),

h1(x) = x1, h2(x) = x2,

f1(u) = su2/2, f2(u) = µu3/3, s+ µ = 1.

(6.20)

Setting the value of the parameter s allows us to observe several characters of solutions
and to study the impact of each part of the scalar potential on the late-time asymptotic
behaviors of solutions. First we consider the initial condition u2 used in Test 2-b and defined
by Equation (6.7). Test 2-b corresponds to the particular case s = 1, where the solution
evolves to two constant values in two independent domains. If the parameter s = 0.95
is used with the same initial condition u2, both terms of the potential function have an
impact on the solution which converges to one constant value in the entire sphere. Figure
16 shows the convergence curves related to the evolution of the parameter ‖u2(t)− u2‖L1

for different values of the parameter s. For all values considered for the parameter s, the
solution converges to one constant value in the entire sphere as shown in Figure 16. The
evolution of the solutions and their asymptotic convergence are highly influenced by the
magnitude of the different components of the potential function and the initial condition.

The entropy stability property (2.5) is now verified for the generic flux corresponding to
s = 0.5. Figure 16, on the right, shows the evolution of the parameter ‖u2(t)‖Lpω(M) for p =
1, 2, 3, 4, 5, 10 and p =∞. The solution u2 satisfies the entropy stability property for all Lp

norms considered. For the generic flux with s = 0.5, the time-variation diminishing property
(2.8) is verified for the second-order scheme using the five initial conditions u0, u1, u2, u3 and
u4, defined previously in the second test. Figure 17, on the left, presents the evolution
of the parameter ‖∂tu‖M(t) and confirms that this parameter decreases with time, which
shows that the time-variation diminishing property holds for those functions. The five
pairs of functions defined in Appendix I-1 are used to check the contraction property (2.7)
for the first-order scheme using the generic flux with s = 0.5. Figure 17 shows that the
ratio parameter E(v, w) is decreasing for the five pairs of functions which confirms that the
contraction property holds for these pairs of functions.
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Figure 16: Convergence and stability for Test 4 with ∆λ = π/96 and ∆φ = π/96. Left: Evolution of the
parameter E(u) = ‖u2(t)− u2‖L1 for generic flux with different values of the parameter s with ∆t = 0.05.
Right: Entropy stability property (2.5) for the generic flux with ∆t = 0.01.
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Figure 17: Time-variation diminishing property (2.8) (left) and contraction property (2.7) for the first-order
scheme (right) for the generic flux with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

6.6. Fifth test case: revisiting the asymptotic convergence property

The aim of this section is to complete the analysis of the behavior of the solutions of
Equation (2.10) for a nonlinear foliated flux. A numerical example is performed in order to
cover all cases of asymptotic convergence of the solutions for nonlinear foliated fluxes. In
the cases already seen in Test 2 and Test 3 for the asymptotic convergence of the solutions
for nonlinear foliated flux, we observe numerically that the solution converges to constant
values on independent domains on the sphere. This is a particular case of what is generally
observed if the numerical scheme is more accurate and capable of simulating the solutions for
a large simulation time. Then, in order to cover the other behaviors, we give more attention
to the accuracy of the used scheme. To achieve this goal we consider the same second-order
geometry-compatible finite volume scheme by considering a computational grid in which the
sides are a part of the level sets and their equipotential curves. We consider the nonlinear
foliated flux defined on the basis of the scalar potential function h(x, u) = −x3u

2/2. For this
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flux the level sets are the curves defined by φ = φc, where φc is a real constant in [−π/2, π/2].
The obtained level sets coincide with the sides of computational cells which ensures a very
good accuracy of the scheme. The following initial condition u1(0, x) is considered:

u1(0, x) =


x2 + sinh(x1) cosλ, 0 ≤ λ ≤ π/2,

−x2, π/2 < λ < π,

x2 + cosh(x3) sinλ, otherwise.

(6.21)

The two-dimensional view of the initial condition and the corresponding solution for
a long simulation time are shown in Figure 18. The solution converges to a non-trivial
stationary solution which is constant on each level set. Each constant convergence value is
the average value on the corresponding level set of the function taken as an initial condition.
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Figure 18: Initial condition u2 (left) and solution u2 at time t = 50000 (right) with ∆t = 0.05, ∆λ = π/96
and ∆φ = π/96.

6.7. Sixth test case:Williamson test case using the advection of Cosine Bell

In this section, we consider the solid-body rotation test proposed by Williamson et al.
(1992). In this numerical test, the shallow water system is reduced to the scalar conservation
law (2.10), where we consider the scalar level function u(λ, φ) := h(λ, φ). This system is
subject to wind forces and the flux vector due to the advecting wind is linear in u and
defined as follows

Fλ(λ, φ, u) = u0u(cosφ cosα + sinφ cosλ sinα),

Fφ(λ, φ, u) = −u0u sinλ sinα,
(6.22)

where for the unity sphere, the magnitude of the velocity is given by u0 = 2π/T , T is
the time required for the solid-body to complete one revolution around the sphere. The
parameter α should be set to define the direction of the wind vector field.
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This type of numerical example is used in [6] to test the GRP numerical scheme which
leads to accurate results. In our case, the numerical test will be used to demonstrate the
advantage of the proposed minmod reconstruction based on the values of the solution at
the center of the computational cells and the values of the Riemann solutions at the cell
interfaces, using the second-order approximations based on a generalized Riemann solver.

In this numerical example, we consider the following function as initial condition

h(λ, φ) =

{
(h0/2)(1 + cos(πr/R0)), r < R0,

0, otherwise,
(6.23)

where for the unity sphere R0 = 1/3, the height of the bell is h0 = 1, and the parameter r
is defined by:

r = arcos(sinφc sinφ+ cosφc cosφ cos(λ− λc)) (6.24)

In the numerical tests, we consider the values λc = 0 and φc = 0 for the coordinate of the
center of the cosine bell and T = 12. For the orientation of the flow, we consider a deviation
of π/12 from the equator.

First, the numerical test is performed using the GRP numerical scheme for two cases of
minmod reconstructions. In the first case, we use the GRP scheme and the proposed minmod
reconstruction based on the values of the solution at the center of the computational cells and
the values of the Riemann solutions at the cell interfaces. For the second case, we consider
the same minmod reconstruction without using the values of the Riemann solutions at the
cell interfaces. The ratios τ = ‖δu1‖L1 / ‖δu2‖L1 of the mesh-size weighted L1-norm of the
error of the solutions u1 and u2 respectively for the two cases are computed using the time
step ∆t = 0.01. A numerical test is performed using a grid with an equatorial longitude
step λ = π/100 and a latitude φ = π/100. For this case we obtain the value τ = 0.6839
at time t = 12. For the computational grid using λ = π/84 and φ = π/84, we obtain
τ = 0.6823 at time t = 12 with ∆t = 0.01. These numerical tests demonstrate that the
Generalized Riemann numerical scheme performs very well when used with the proposed
minmod reconstruction. Finally, a numerical example is performed using a computational
grid with λ = π/136 and φ = π/136 and a time step ∆t = 0.005. Figure 19 (right) shows
the solution after one revolution around the sphere which is in a good agreement with the
initial condition shown in the same figure.

7. Concluding remarks

In this paper, numerical analyses are performed for discontinuous solutions of a class
of nonlinear hyperbolic conservation laws posed on the sphere. We propose a geometry-
compatible finite volume scheme using a new piecewise linear reconstruction based on the
values of the solution at the center of the cells and the values of the Riemann solutions at the
the cell-interfaces. These values are obtained using the second-order approximations based
on a generalized Riemann solver. A total variation diminishing Runge-Kutta method with
an operator splitting approach are used for time integration. With the proposed piecewise
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Figure 19: The cosine-bell advection test. Left : Initial condition (6.23). Right: The solution at time t = 12
with ∆t = 0.005, ∆λ = π/136 and ∆φ = π/136.

linear reconstruction, the numerical solutions are largely improved and the method performs
well in terms of stability and accuracy for discontinuous solutions with large amplitude and
shocks compared to some well-known schemes. The numerical analysis shows the second
order accuracy of the scheme and that the employed splitting approach has a less impact
on the third order of the accuracy of the TVD Runge-Kutta method used for temporal
integration.

The first- and second-order versions of the proposed geometry-compatible finite volume
scheme were investigated, and we numerically established several important properties en-
joyed by discontinuous solutions defined on a curved geometry, including the contraction,
time-variation monotonicity, and the entropy monotonicity properties. Furthermore, we
carefully investigated the late-time asymptotic behavior of solutions, by distinguishing vari-
ous types of flux potential. The following main conclusions were established for the class of
nonlinear hyperbolic conservation laws and the finite volume schemes under consideration:

• The entropy stability property is valid in all Lp norms with p ∈ [1,+∞), and the
time-variation diminishing property is satisfied by the first- and second-order schemes.

• The contraction property is satisfied by the first-order scheme but, as might be have
been expected, this property is not valid for the second-order method.

• Two classes of flux were distinguished according to the structure of the flux potential.
We introduced the notions of foliated flux and generic flux. The late-time asymptotic
behavior of solutions was found to strongly depend on the flux (foliated or generic) as
well as its (linearity or) nonlinearity. Specifically, when the flux is foliated and linear,
the solutions are transported in time within the level sets of the potential. When the
flux is foliated and is genuinely nonlinear, the solutions converge to their (constant)
average within each level set.

• For generic flux, the solutions evolve with large variations which depend on the geom-
etry and converge to constant values within certain “independent” domains defined on
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the sphere. The number of constant values depends on curves that “split” the sphere
into possibly several independent domains.

We end with a main conclusion concerning the performance of numerical schemes for
foliated flux, for which the level sets play an essential role in understanding the evolution
of solutions; this is especially true for genuinely nonlinear foliated flux. For such flux, we
strongly recommend the use of a suitable computational mesh whenever possible in terms of
implementation, not only in terms of space constraints and the desired accuracy which are
commonly used for the choice of the mesh but also according to the flux vector field. More
precisely, we recommend the use of a subset of the level sets of the nonlinear foliated flux
as the construction lines of the computational cells. When this adjustment is respected, the
steady state solutions for the nonlinear foliated flux can be captured with more accuracy
and better results can be obtained for general solutions.

The extension of the techniques used in this study for the scalar conservation laws posed
on the sphere to multidimensional systems and shallow water systems is not straightforward.
Other techniques should be used to solve the multidimensional Generalized Riemann prob-
lem. This will the subject of our next study [4], where the concept of geometric compatibility
condition that we used for the scalar conservation law will be replaced by the C -property
relative to stationary solutions for shallow water system which was introduced by Vázquez-
Cendón (1999). The numerical scheme that respect this property is well-balanced and it
perfectly preserves the “lake at rest” steady-state solutions. We expect the extension of the
techniques used in this study to shallow water systems, leads to numerical scheme for SWEs
on the sphere which has the following advantages

(i) A strong link will be obtained between the numerical scheme and the governing SWEs.
The C -property will be considered in analytical way in order to obtain a discrete form
of the scheme that respects exactly “lake at rest” condition. A suitable discretization
technique should be developed by properly taking into account the effects induced by
the geometry of the two-dimensional surface of the sphere.

(ii) The quality of the solutions with large amplitude and shocks will be improved by using
the resolution of the GRP and the minmod reconstruction based on the generalized
Riemann values of the solutions at the interfaces and the values at the center of the
cells.

8. Appendix I

In this appendix we present the pairs of functions used in Section 6 in order to analyze
the contraction property (1.5) for the first-order scheme
I-1: Pairs of functions used in the second test case to check the contraction
property (1.5)
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v1(0, x) =

{
x2 sinh(x1)− x3 cosh(x1), x1 ≤ 0,

x3 + x1, otherwise,

w1(0, x) =

{
x2x

3
1 + ex1 , x1 ≤ 0,

− cosx1 + x2
3x1, otherwise,

(8.1)

v2(0, x) =

{
x2 cosx1, x1 ≤ 0,

−x2, otherwise,

w2(0, x) =

{
x3 cosx1, x1 ≤ 0,

−x3 + x3x1 log(x1), otherwise,

(8.2)

v3(0, x) =

{
x2

3 cos(πx1) + x2, x1 ≤ 1/2,

−x2 + x3(2x2
1 − x1), otherwise,

w3(0, x) =

{
x2x3 cos(πx1) + x3(x4

1 − x1), x1 ≤ 1,

x2x3, otherwise,

(8.3)

v4(0, x) =

{
x2e

x1+x3 , x1 ≤ 0,

−x2e
x3 , otherwise,

w4(0, x) =

{
x2x3
1−x1 , x1 ≤ 0,

x2
1 − x2x3, otherwise,

(8.4)

v5(0, x) =

{
cosh(x1 + x2), x1 ≤ 0,

− cosh(x2), otherwise,

w5(0, x) =

{
cosh(x3), x1 ≤ 0,

− cosh(x3), otherwise.

(8.5)

I-2: Pairs of functions used in the third test case to check the contraction
property (1.5)

v1(0, x) =

{
x2θ + cosh(θ), −

√
3 ≤ θ ≤ 0,

x2θ − cosh(θ), otherwise,

w1(0, x) =

{
x2, −

√
3 ≤ θ ≤ 0,

−x2, otherwise,

(8.6)

v2(0, x) =

{
1, 0 ≤ λ ≤ π,

cosλ, otherwise,

w2(0, x) =

{
arcsin(x2), 0 ≤ λ ≤ π,

cosλ arcsin(x2), otherwise,

(8.7)
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v3(0, x) =

{
eθx1x2x3, −

√
3 ≤ θ ≤ 0,

−x1x2x3, otherwise,

w3(0, x) =

{
x2x3, −

√
3 ≤ θ ≤ 0,

−x2x3 + e−1/θ, otherwise,

(8.8)

v4(0, x) =

{
θ2+1
2−θ , −

√
3 ≤ θ ≤ 0,

x2θ − 1/2, otherwise,

w4(0, x) =

{
eθ

θ−1
, −

√
3 ≤ θ ≤ 0,

cosh(θ)
1+θ

+ x3θ, otherwise,

(8.9)

v5(0, x) =

{
θ, θ ≤ 1,
x1 log(θ)

θ
− θ, otherwise,

w5(0, x) =

{
θ − 2θ3, θ ≤ 1,
1
θ

+ x2 log(θ), otherwise.

(8.10)
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Ann. Inst. H. Poincaré, Nonlin. Anal. 6 (1989), 437-480.

37



[11] D.A. Calhoun, C. Helzel and R.J. LeVeque, Logically rectangular finite volume grids
and methods for ‘circular’ and ‘spherical’ domains. SIAM Rev. 50 (2008), 723–752.

[12] G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal.
27:262–292, 2007.
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