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Strong law of large numbers for the capacity of the

Wiener sausage in dimension four

Amine Asselah ∗ Bruno Schapira† Perla Sousi‡

Abstract

We prove a strong law of large numbers for the Newtonian capacity of a Wiener sausage in
the critical dimension four, where a logarithmic correction appears in the scaling. The main
step of the proof is to obtain precise asymptotics for the expected value of the capacity. This re-
quires a delicate analysis of intersection probabilities between two independent Wiener sausages.
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1 Introduction

We denote by (βs, s ≥ 0) a Brownian motion on R4, and for r > 0 and 0 ≤ s ≤ t < ∞, the Wiener
sausage of radius r in the time period [s, t] is defined as

Wr[s, t] = {z ∈ R4 : z − βu ≤ r for some s ≤ u ≤ t}, (1.1)

where  ·  stands for the Euclidean norm. Let Pz and Ez be the law and expectation with respect
to the Brownian motion started at z ∈ R4. Let G denote Green’s function (G(z) = z−2/(2π2))
and HA denote the hitting time of A ⊂ R4 by the Brownian motion. The Newtonian capacity of a
compact set A ⊂ R4 may be defined through hitting time as

Cap(A) = lim
z→∞

Pz(HA < +∞)

G(z)
. (1.2)

A more classical definition through a variational expression reads

Cap(A) =

inf{

 
G(x− y)dµ(x)dµ(y) : µ prob. measure with support in A}

−1
.

Our central object is the capacity of the Wiener sausage, and formula (1.2), with A = W1[0, t]
(sampled independently of the Brownian motion inherent to the law Pz), casts the problem into an
intersection event for two independent sausages.

Our main result is the following law of large number for the capacity of the Wiener sausage.
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Theorem 1.1. In dimension four, for any radius r > 0, almost surely and in Lp, for any p ∈ [1,∞),
we have

lim
t→∞

log t

t
Cap(Wr[0, t]) = π2. (1.3)

The proof of (1.3) presents some similarities with the proof in the discrete case, which is given
in our companion paper [4], but also substantial differences. The main difference concerns the
computation of the expected capacity, which in the discrete setting had been essentially obtained
by Lawler, see [3] for details, whereas in our context it requires new delicate analysis.

It may seem odd that the fluctuations result we obtain in the discrete model [4] are not directly
transposable in the continuous setting. However, it was noticed some thirty years ago by Le Gall [13]
that it does not seem easy to deduce Wiener sausage estimates from random walks estimates, and
vice-versa. Let us explain one reason for that. The capacity of a set A can be represented as
the integral of the equilibrium measure of the set A, very much as in the discrete formula for the
capacity of the range R[0, n] of a random walk:

Cap(R[0, n]) =


x∈R[0,n]

Px


H+

R[0,n] = ∞

,

where on the right-hand side H+
A stands for the first return time to a set A for a random walk with

law Px, and R[0, n] is the range of another independent random walk. Whereas Lawler [12] has
established deep non-intersection results for two random walks in dimension four, the corresponding
results for the equilibrium measure of W1(0, t) are still missing.

As noted in [4], the scaling in Theorem 1.1 is analogous to that of the law of large numbers for the
volume of the Wiener sausage in dimension 2 (see [14]).

Remark 1.2. Our result is a result about non-intersection probabilities for two independent Wiener
sausages, and the asymptotic result (1.3) reads as follows. For any ε > 0, almost surely, for t large
enough,

(1− ε)
t

2 log t
≤ lim

z→∞
z2 · P0,z


W1/2[0, t] ∩ W1/2[0,∞) ∕= ∅

 β

≤ (1 + ε)

t

2 log t
. (1.4)

Estimates, up to constants, have been obtained in a different regime (where z and t are related
as z =

√
tx) by Pemantle, Peres and Shapiro [19], but cannot be used to obtain our strong law of

large numbers.

One delicate part in Theorem 1.1 is establishing convergence for the scaled expected capacity. This
is Proposition 3.1 of Section 3. From (1.2), the expected capacity of a Wiener sausage is equivalent
to the probability that two Wiener sausages intersect. Estimating such a probability has a long
tradition: pioneering works were produced by Dvoretzky, Erdös and Kakutani [6] and Aizenman
[1]; Aizenman’s results have been subsequently improved by Albeverio and Zhou [2], Peres [20],
Pemantle, Peres and Shapiro [19] and Khoshnevisan [10] (and references therein). In the discrete
setting, the literature is even larger and older, and analogous results are presented in Lawler’s
comprehensive book [12].

As a byproduct of our arguments, we improve a large deviation estimate of Erhard and Poisat [8],
and obtain a nearly correct estimate of the variance, which will have to be improved for studying
the fluctuations.
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Proposition 1.3. There is a constant c > 0, such that for any 0 < ε < 1, there exists κ = κ(ε)
such that for any t large enough

P

Cap(W1[0, t])− E[Cap(W1[0, t])] ≥ ε

t

log t


≤ exp


− c ε2tκ


. (1.5)

Moreover, there exists a constant C > 0, such that for t large enough,

var

Cap(W1[0, t])


≤ C (log log t)9

t2

(log t)4
. (1.6)

Remark 1.4. We do not know what is the correct speed in the large deviation estimate (1.5). The
analogous result for the volume of the sausage in d = 2 (or even the size of the range of a random
walk) is not known. On the other hand, the correct order for the variance should be t2/(log t)4, as
was proved in the discrete setting [4]. Thus our bound in (1.6) is off only by a (log log t)9 term.
Note that (1.6) is proved only at the end of the paper, as a byproduct of the proof of Theorem 1.1.

One key step of our investigation is a simple formula for the capacity of the sausage which is neither
asymptotic nor variational. In Section 2.2, we deduce a decomposition formula for the capacity of
the union of two sets in terms of the sum of capacities and a cross-term: for any two compact sets
A and B, and for any r > 0 with A ∪B ⊂ B(0, r),

Cap(A ∪B) = Cap(A) + Cap(B)− χr(A,B)− εr(A,B), (1.7)

with

χr(A,B) = 2π2 r2 · 1

|∂B(0, r)|



∂B(0,r)
(Pz(HA < HB < ∞) + Pz(HB < HA < ∞)) dz, (1.8)

and

εr(A,B) = 2π2r2 · 1

|∂B(0, r)|



∂B(0,r)
Pz(HA = HB < ∞) dz, (1.9)

where we use the notation B(0, r) for the ball of radius r and ∂B(0, r) for its boundary. In particular
εr(A,B) ≤ Cap(A∩B). The decomposition formula (1.7) is of a different nature to the one presented
in [4] for the discrete setting. As an illustration, a key technical estimate here concerns the cross
term χr(A,B) where A and B are independent sausages. In order to bound its first moment, we
prove an estimate on the probability of intersection of a Wiener sausage by two other independent
Brownian motions.

Proposition 1.5. Let β, γ and γ be three independent Brownian motions. For any α > 0 and
c ∈ (0, 1), there exist positive constants C and t0, such that for all t > t0 and all z, z′ ∈ R4, with√
t · (log t)−α ≤ z, z′ ≤

√
t · (log t)α,

P0,z,z′(W1[0, t]∩γ[0,∞) ∕= ∅, W1[0, t]∩γ[0,∞) ∕= ∅) ≤ C
(log log t)4

(log t)2
(1∧ t

z′2 ) (1∧
t

z2 ), (1.10)

where P0,z,z′ means that β, γ and γ start from 0, z and z′ respectively.

We note that the problem of obtaining a law of large numbers for the capacity of the Wiener sausage
has been raised recently by van den Berg, Bolthausen and den Hollander [22] in connection with
the torsional rigidity of the complement of the Wiener sausage on a torus.
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The paper is organised as follows. Section 2 contains preliminary results: in Section 2.1 we
gather some well-known facts about Brownian motion and Green’s function, and in Section 2.2
we prove (1.7) and compare the capacity of a Wiener sausage to its volume. In Section 3 we prove
the asymptotic for the expected capacity. In Section 4, we deduce our large deviation bounds,
Proposition 1.3. In Section 5 we provide some intersection probabilities of a Wiener sausage by
another Brownian motion, and deduce a second moment bound of the cross-terms χr appearing in
the decomposition (1.7). Finally, we prove Theorem 1.1 in Section 6.

2 Preliminaries

2.1 Notation and basic estimates

We denote by Pz the law of a Brownian motion starting from z, and simply write P when z is the
origin. Likewise Pz,z′ denotes the law of two independent Brownian motions starting respectively
from z and z′, and similarly for Pz,z′,z′′ . We denote by  · the Euclidean norm, and for any x ∈ R4

and r > 0, by B(x, r) the closed Euclidean ball of radius r centered at x. For u, v ∈ R, we use
the standard notation u ∧ v and u ∨ v for min(u, v) and max(u, v) respectively. We write |A| for
the Lebesgue measure of a Borel set A, and let ps(x, y) be the transition kernel of the Brownian
motion:

ps(x, y) =
1

4π2s2
e−

x−y2
2s = ps(0, y − x). (2.1)

Green’s function is defined by

G(z) :=

 ∞

0
ps(0, z) ds, and for any t > 0 we define Gt(z) :=

 t

0
ps(0, z) ds. (2.2)

The occupation time formula reads, for any t ≥ 0 and any bounded measurable function ϕ,

 t

0
E[ϕ(βs)] ds =



R4

ϕ(x)Gt(x) dx. (2.3)

We further recall, see Theorem 3.33 in [18], that for all z ∕= 0,

G(z) =
1

2π2
· 1

z2 . (2.4)

The following regularized version of Green’s function plays a key role:

G∗(z) :=



B(0,1)
G(z − y) dy =

 ∞

0
P(βs − z ≤ 1) ds, (2.5)

(with the second inequality following from (2.3)).

Furthermore, Green’s function is harmonic on R4\{0}, and thus satisfies the mean-value property
on this domain. In particular one has for z > 1, using (2.4) and that |B(0, 1)| = π2/2,

G∗(z) = |B(0, 1)| ·G(z) =
1

4z2 . (2.6)

Moreover, there exists a positive constant C so that for all z ∈ R4 we have

G∗(z) ≤ C

z2 ∨ 1
. (2.7)
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The gambler’s ruin estimate states that for any z ∈ R4, with z > r (see Corollary 3.19 in [18]),

Pz


HB(0,r) < ∞


=

r2

z2 . (2.8)

We also need the following well-known estimates (see Remark 2.22 in [18] for the first one and use
the scaling property of the Brownian motion together with either Exercice (3.10) in [21] or the
remark after (3.40) below, for the second one): there exist positive constants c and C, such that
for any t > 0 and r > 0,

P

sup
s≤t

βs > r


≤ C · exp(−c r2/t), (2.9)

and

P

sup
s≤t

βs ≤ r


≤ C · exp(−c t/r2). (2.10)

Using (2.9), we get for some positive constants c and C,

P



 sup
t

(log t)3
≤s≤t

βs2
s

> (log t)1/5



 ≤ C exp(−c(log t)1/10). (2.11)

Indeed, to deal with the time s in βs2/s, it is enough to divide the time period [t/(log t)3, t] into
a finite number of intervals [t/(log t)k/10, t/(log t)(k−1)/10], k = 1, . . . , 30, and use the left boundary
of each interval to bound time s. It also follows from (2.8) that

P



 inf
s≥ t

(log t)3

βs2 ≤
t

(log t)10



 ≤ C

(log t)4
. (2.12)

Indeed, either the Brownian motion starts at time t/(log t)3 inside a ball of radius
√
t/(log t)5/2

centered at the origin, or it starts outside such a ball, and hits the ball of radius
√
t/(log t)5

afterwards: both events satisfy the desired bound (for the first one, this can be seen by integrating
the density (2.1) over the ball, and the second one follows from (2.8)).

Finally, we recall a basic result (see Corollary 8.12 and Theorem 8.27 in [18]). For a set A ⊂ R4,
let d(z,A) := inf{z − y : y ∈ A}.

Lemma 2.1. Let A be a compact set in R4. Then, for any z ∈ R4\A,

Pz(HA < ∞) ≤ Cap(A)

2π2 d(z,A)2
.

2.2 On capacity

We first give a representation formula for the capacity of a set, which has the advantage of not
being given as a limit. If A is a compact subset of R4, with A ⊂ B(0, r) for some r > 0, then

Cap(A) = lim
z→∞

Pz(HA < ∞)

G(z)
= lim

z→∞

Pz


H∂B(0,r) < ∞



G(z)
·


∂B(0,r)
Py(HA < ∞) dρz(y)

= 2π2 r2 ·


∂B(0,r)
Py(HA < ∞) dλr(y), (2.13)
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where ρz is the law of the Brownian motion starting from z at time H∂B(0,r), conditioned on this
hitting time being finite, and λr is the uniform measure on ∂B(0, r). The second equality above
follows from the Markov property, and the last equality follows from (2.8) and the fact that the
harmonic measure of a ball (seen from infinity), which by Theorem 3.46 in [18] is also the weak
limit of ρz as z goes to infinity, is the uniform measure on the boundary of the ball.

The decomposition formula (1.7) for the capacity of the union of two sets follows immediately
using (2.13) and ordering of HA and HB.

Now we state a lemma which bounds the capacity of the intersection of two Wiener sausages by
the volume of the intersection of larger sausages.

Lemma 2.2. Let W and W be two independent Wiener sausages. Then, almost surely, for all t > 0,

Cap(W1[0, t]) ≤ C1 · |W4/3[0, t]|, (2.14)

and
Cap(W1[0, t] ∩ W1[0, t]) ≤ C1 · |W4[0, t] ∩ W4[0, t]|. (2.15)

with C1 = Cap(B(0, 4))/|B(0, 4/3)|. Moreover, there is a constant C2 > 0, such that for all t ≥ 2,

E

Cap2(W1[0, t] ∩ W1[0, t])


≤ C2 (log t)

2. (2.16)

Proof. We start with inequality (2.14). Let (B(xi, 4/3), i ≤ M) be a finite covering of W1[0, t]
by open balls of radius 4/3 whose centers are all assumed to belong to β[0, t], the trace of the
Brownian motion driving W1[0, t]. Then, by removing one by one some balls if necessary, one can
obtain a sequence of disjoint balls (B(xi, 4/3), i ≤ M ′), with M ′ ≤ M , such that the enlarged balls
(B(xi, 4), i ≤ M ′) still cover W1[0, t]. Since the capacity is subadditive, one has on one hand

Cap(W1[0, t]) ≤ M ′ · Cap(B(0, 4)),

and on the other hand since the balls B(xi, 4/3) are disjoint and are all contained in W4/3[0, t],

M ′|B(0, 4/3)| ≤ |W4/3[0, t]|.

Inequality (2.14) follows. Inequality (2.15) is similar: start with (B(xi, 4/3), i ≤ M) a finite covering

of W1[0, t] ∩ W1[0, t] by balls of radius one whose centers are all assumed to belong to β[0, t].
Then, by removing one by one some balls if necessary, one obtain a sequence of disjoint balls
(B(xi, 4/3), i ≤ M ′), such that the enlarged balls (B(xi, 4), i ≤ M ′) cover the set W1[0, t]∩W1[0, t],

and such that all of them intersect W1[0, t] ∩ W1[0, t]. But since the centers (xi) also belong to

β[0, t], all the balls B(xi, 4/3) belong to the enlarged intersection W4[0, t] ∩ W4[0, t]. So as before
one has on one hand

Cap(W1[0, t] ∩ W1[0, t]) ≤ M ′ · Cap(B(0, 4)),

and on the other hand
|W4[0, t] ∩ W4[0, t]| ≥ M ′|B(0, 4/3)|.

We now prove (2.16). We start with a first moment bound (see [9] for more precise asymptotics):

E

|W1[0, t] ∩ W1[0, t]|


≤ C log t. (2.17)

This estimate is easily obtained. Indeed, by definition

E

|W1[0, t] ∩ W1[0, t]|


=



R4

P

HB(z,1) < t

2
dz, (2.18)
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and then we use the bounds (2.8) inside B(0, t) and (2.9) outside. For the second moment, we write
similarly

E

|W1[0, t] ∩ W1[0, t]|2


=



R4



R4

P

HB(z,1) < t,HB(z′,1) < t

2
dz dz′. (2.19)

When z − z′ ≤ 2, one uses the trivial bound

P

HB(z,1) < t,HB(z′,1) < t


≤ P(HB(z,1) < t). (2.20)

When z − z′ > 2, we first use that

P

HB(z,1) < t,HB(z′,1) < t


= P


HB(z,1) < HB(z′,1) < t


+ P


HB(z′,1) < HB(z,1) < t


,

and hence taking the square on both sides gives

P

HB(z,1) < t,HB(z′,1) < t

2 ≤ 2P

HB(z,1) < HB(z′,1) < t

2
+ 2P


HB(z′,1) < HB(z,1) < t

2
. (2.21)

Let νtz denote the hitting distribution of the ball B(z, 1) by a Brownian motion starting from 0,
conditioned to hit this ball before time t. Then by the strong Markov property we get

P

HB(z,1) < HB(z′,1) < t


≤ P


HB(z,1) < t


Pνtz


HB(z′,1) < t


.

Substituting this, (2.20) and (2.21) into (2.19) gives by symmetry

E

|W1[0, t] ∩ W1[0, t]|2


≤ 4



R4



R4

P

HB(z,1) < t

2 Pνtz


HB(z′,1) < t

2
dz dz′

+ |B(0, 2)|


R4

P

HB(z,1) < t

2
dz.

Using (2.18) and translation invariance of the Brownian motion, we now obtain for all z,



R4

Pνtz


HB(z′,1) < t

2
dz′ = E


|W1[0, t] ∩ W1[0, t]|


.

Recalling (2.17), the proof concludes from the bound

E

|W1[0, t] ∩ W1[0, t]|2


≤ 4E


|W1[0, t] ∩ W1[0, t]|

2
+ |B(0, 2)|E


|W1[0, t] ∩ W1[0, t]|


.

3 On the Expected Capacity

3.1 Statement of the result and sketch of proof

The principal result of this section gives the precise asymptotics for the expected capacity.

Proposition 3.1. In dimension four, and for any radius r > 0,

lim
t→∞

log t

t
E[Cap (Wr[0, t])] = π2. (3.1)
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Remark 3.2. The scale invariance of Brownian motion yields in dimension four, for any r > 0,

E[Cap (Wr[0, t])] = r2 E

Cap


W1[0, t/r

2]


.

Thus, it is enough to prove (3.1) for r = 1.

The proof is inspired by the approach of Lawler in the random walk setting [11, Chapter 3], to
obtain an upper bound for the probability that two random walks meet. This approach is based
on the observation that the number of times when two random walks meet, conditionally on one
of them, is concentrated. One interesting point is that by pushing his method further, and taking
advantage of the continuous setting where some computation can be done explicitly and directly,
we obtain a true equivalent of the probability that two Wiener sausages meet. Before giving the
proof, let us explain its rough ideas and introduce the main notation.

The first step is to cast the expected capacity of W1[0, t] into a probability of intersection of this
Wiener sausage by another Brownian motion β, starting from infinity. More precisely we show in
Section 3.3 that

E[Cap (W1[0, t])] = lim
z→∞

1

G(z)
· P0,z


W1[0, t] ∩ β[0,∞) ∕= ∅


. (3.2)

This representation holds for deterministic sets (1.2), and here we need to justify the interchange
of limit and expectation. We next introduce the following stopping time

τ = inf{s ≥ 0 : βs ∈ W1[0, t]}, (3.3)

and note that {W1[0, t]∩ β[0,∞) ∕= ∅} = {τ < ∞}. Then, we introduce a counting measure of the
pairs of times at which the two trajectories come within distance 1: for s ≤ t, let

R[s, t] :=

 ∞

0
du

 t

s
1(βu − βv ≤ 1) dv. (3.4)

Observe that, almost surely, {τ < ∞} = {R[0, t] > 0}, and the following equality holds

P0,z(τ < ∞) =
E0,z[R[0, t]]

E0,z[R[0, t] | τ < ∞]
. (3.5)

The estimate of the numerator in (3.5) is established by direct and explicit computations. More
precisely we prove (see Section 3.3) that for all t > 0,

lim
z→∞

E0,z[R[0, t]]

G(z)
=

π2

2
t. (3.6)

The estimate of the denominator in (3.5) is more intricate. Consider the random time

σ = inf

s ≥ 0 : βs − β(τ) ≤ 1


. (3.7)

A crucial observation is that σ is not a stopping time (with respect to any natural filtration),
since τ depends on the whole Wiener sausage W1[0, t]. In particular conditionally on τ and σ, one
cannot consider the two trajectories β[τ,∞) and W1[σ, t], as being independent 1, and neither can
be β[τ,∞) and W1[0,σ]. To overcome this difficulty, the main idea (following Lawler) is to use
that both E0,z[R[σ, t] | β, (βs)s≤τ ] and E0,z[R[0,σ] | β, (βs)s≤τ ] are concentrated around their mean
values, which are of order log t, at least when σ and t − σ are large enough. As a consequence,
for typical values of σ, they are close to their mean values. The main part of the proof is then to
estimate the probability that σ is not typical with this respect.

1a mistake that Erdös and Taylor implicitly made in their pioneering work [7], and that Lawler corrected about
twenty years later [11].
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3.2 Proof of Proposition 3.1

Denote by (Fs)s≥0 and ( Fs)s≥0 the natural filtrations of β and β respectively. Recall the definition

(3.3) of τ , and then define the sigma-field Gτ := Fτ ∨ (Fs)s≥0. Then by taking conditional expec-

tation with respect to Gτ , we get using the strong Markov property for β at time τ , and (2.5), that
on event {τ < ∞}, with X := β(σ)− β(τ),

E0,z[R[0, t] | Gτ ] =

 t

0
G∗(βu − β(τ)) du

=

 σ

0
G∗(βu − β(σ)−X) du+

 t

σ
G∗(βu − β(σ)−X) du. (3.8)

We shall see next that these last two integrals above are asymptotically of the same order. As
already mentioned, to deal with the difficulty of σ not being a stopping time, the main idea is to
introduce the notion of good σ, when both integrals are close to their typical values. Then by using
a trick of Lawler, one is led to estimate only the probability for a deterministic time not to be good,
which can be done using the estimates gathered in the next section. Then we separate the proof
of the proposition in two parts, one for the lower bound in (3.1) and the other one for the upper
bound, and define in fact two notions of good σ accordingly.

3.2.1 Further notation and preliminary estimates

We introduce here some additional notation, and then state a few lemmas with all the basic esti-
mates we shall need. Before this, we need to extend β to negative times and therefore consider a
two-sided Brownian motion (βu)u∈R. Then for s ≤ t, and x ∈ R4, set

Dx[s, t] :=

 t

s
G∗(βu − βs − x) du, and Dx[s, t] :=

 t

s
G∗(βu − βt − x) du. (3.9)

Note that with X = β(σ)− β(τ), we get from (3.8),

E0,z[R[0, t] | Gτ ] = DX [0,σ] +DX [σ, t]. (3.10)

In the following lemmas we gather all the estimates we need on Dx and Dx. The first one deals
with the first and second moments of D0[0, t].

Lemma 3.3. One has

lim
t→∞

1

log t
E[D0[0, t]] =

1

4
,

and there exists a constant C > 0, such that for all t ≥ 2,

E

D0[0, t]

2


≤ C (log t)2. (3.11)

The second result shows that Dx[0, t] is uniformly close to D0[0, t], when x ≤ 1. Define

ζ =

 ∞

0

1

βu3 ∨ 1
du. (3.12)

Lemma 3.4. The following assertions hold. There exists a constant C > 0, so that for all t > 0,
almost surely,

sup
x≤1

|Dx[0, t]−D0[0, t]| ≤ C ζ. (3.13)

Moreover, there exists a constant λ > 0, such that E[exp(λ ζ)] < ∞.
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The third lemma gives a control of the fluctuations of Dx[s, t] and Dx[0, s], as s varies over [0, t].

Lemma 3.5. Let for 0 ≤ s ≤ s′,

ζs :=

 ∞

s

1

βu − βs3 ∨ 1
du, ζs :=

 s

−∞

1

βu − βs3 ∨ 1
du, and Ms,s′ := 1+ sup

s≤u≤v≤s′
βu−βv.

Define further for s ≥ 0 and r ≥ 0,

ξs(r) := sup
y≤r

 ∞

s

1(βu − βs − y ≤ r)

βu − βs − y2 ∨ 1
du, and ξs(r) := sup

y≤r

 s

−∞

1(βu − βs − y ≤ r)

βu − βs − y2 ∨ 1
du.

(i) For any s, ζs and ζs are equal in law to ζ0. Likewise, ξs(r) and ξs(r) are equal in law to ξ0(r),
for any r ≥ 0.

(ii) There exists a constant λ > 0, such that E

exp(λM2

0,1)

< ∞. Moreover, there exist positive

constants c and C, so that for all r ≥ 2, E[ξ0(r)2] ≤ Cr4, and

P(ξ0(r) > Cr log r) ≤ C exp(−cr), (3.14)

(iii) There exists a constant C > 0, so that for all 0 ≤ s′ ≤ s ≤ t, almost surely,

sup
x≤1

Dx[s
′, t]−Dx[s, t]

 ≤ C

s− s′ +Ms′,sζs + ξs(R)


,

with R = βs′ − βs, and likewise, for all 0 ≤ s ≤ s′ ≤ t, almost surely

sup
x≤1

 Dx[0, s]− Dx[0, s
′]
 ≤ C


s′ − s+Ms,s′

ζs + ξs(R)

.

The next result gives some large deviation bounds for D0[0, t], and shows that it is concentrated.

Lemma 3.6. For any ε > 0, there exists c = c(ε) > 0, such that for t large enough,

P(|D0[0, t]− d(t)| > ε d(t)) ≤ exp

− c(log t)1/3


, with d(t) := E[D0[0, t]].

Dealing with another starting point than the origin can also be obtained as a corollary of the
previous lemmas:

Lemma 3.7. There exist positive constants c and C, such that for all t ≥ 2, and all b ∈ R4,

Eb






sup
x≤1

Dx[0, t] + rtζ0 + ξ0(rt)

2


 ≤ C(log t)2,

and,

Pb


ζ0 >

1

4
log t


+ Pb


ξ0(rt) >

1

4
rt(log rt)

2


≤ C exp(−c(log t)1/3).

Moreover, for any ε > 0, there exists a constant c > 0, such that for all t large enough, and all b
such that t/(log t)10 ≤ b2 ≤ t(log t)1/5

Pb


sup
x≤1

Dx[0, t] > ε log t


≤ exp(−c(log t)1/3).
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Finally the last preliminary result we should need is the following elementary fact.

Lemma 3.8. There exists a constant C > 0, so that for all k, i ∈ N, and z ∈ R4,

P0,z


inf

k≤u≤k+1
inf

i≤s≤i+1
βu − βs ≤ 1


≤ C

 k+2

k

 i+2

i
P0,z


βu − βs ≤ 3


du ds.

The proofs of these lemmas (together with the proof of (3.2), and (3.6)) are postponed to Subsec-
tions 3.3, 3.4, and 3.5, and assuming them one can now start the proof of Proposition 3.1.

3.2.2 Proof of the lower bound in (3.1)

We fix some ε > 0, and define a time s ∈ [0, t] to be good if

sup
x≤1

Dx[0, s] ≤ (1 + ε)d(t) and sup
x≤1

Dx[s, t] ≤ (1 + ε)d(t),

where d(t) is defined in Lemma 3.6. Otherwise we say that s is bad. The estimates gathered so
far (see in particular Lemmas 3.4 and 3.6) show that the probability for a fixed time s to be bad
decays like a stretched exponential in log t. However, this is far from being sufficient for getting
the lower bound in (3.1). Indeed a subtle and difficult point here is that σ (and βσ) depend on
the whole trajectory (βu)u≤t, and as a consequence it is actually not possible to obtain directly
good estimates for the probability of σ being bad. So the idea of Lawler, see [12, page 101], in the
random walk setting, was to decompose the event {σ bad} into all the possible values for σ and τ ,
and replace the event {σ = i, τ = k} by the event that the two walks are at the same position at
times i and k respectively. The event {Si = Sk} for two independent walks S and S is independent
of the event {i bad}, and hence the probability factorises. One can then use the estimate for the
probability that a deterministic time is bad. What remains is a double sum which is equal to the
expected number of pairs of times the two walks coincide, but which is negligible compared to the
probability that a time i is bad.

In our case, a number of new (technical) difficulties arise, mainly due to the continuous time setting.
Indeed one is first led to discretise τ and σ. For τ this is not a serious problem, but doing it for σ
requires to relate the event {i ≤ σ ≤ i + 1} ∩ {σ bad} to the events that i or i + 1 are bad (more
precisely we relate them to the events {i bad−} or {i + 1 bad+}, see below for a definition). For
this we use Lemma 3.5 which relates Dx[s, t] with Dx[s

′, t] when s and s′ are close (and similarly
for Dx[0, s] and Dx[0, s

′]).

Let us now start with the details. We first express the event {s bad} in terms of other events which
are conditionally independent of (βu)[s]≤u≤[s]+1 (with [s] the integral part of s). Set rt :=

2√
λ

√
log t,

with the constant λ as in Lemma 3.5. Then for an integer i, and using the notation of Lemma 3.5,
define the events

{i bad−} :=


sup
x≤1

Dx[0, i] > (1 +
ε

2
) d(t)


∪

ζi > (log t)1/3


∪

ξi(rt) > rt(log rt)

2

,

{i bad+} :=


sup
x≤1

Dx[i, t] > (1 +
ε

2
) d(t)


∪

ζi > (log t)1/3


∪

ξi(rt) > rt(log rt)

2

.

From Lemma 3.3 we get that d(t) is of order log t for large t. Using this and Lemma 3.5 (part
(iii)) we obtain that for all t large enough and for any s ∈ [0, t − 1], letting i = [s], on the event
{sups≤tMs,s+1 ≤ rt},

{s bad} ⊆ {i bad−} ∪ {i+ 1 bad+}. (3.15)

11



Note that all these events depend in fact on t and ε, but since they are kept fixed in the rest of the
proof this should not cause any confusion.

Recall that for s ≥ 0, Fs = σ((βu)u≤s), and define F+
s := σ((βu)u≥s).

Now we first need to estimate the probability that an integer i is bad+, conditionally on Fi. For
this observe that for any i < t, one has by the Markov property, conditionally on Fi,

sup
x≤1

Dx[i, t] ≤ sup
x≤1

Dx[i, t+ i]
(law)
= sup

x≤1
Dx[0, t].

Therefore using Lemmas 3.4, 3.5 and 3.6 we get that there exists c > 0 so that for all t large enough
and all integers i ∈ [0, t], almost surely

P(i bad+ | Fi) ≤ exp(−c(log t)1/3). (3.16)

Using in addition Lemma 3.3 we also obtain that there exists C > 0 so that for all t ≥ 2, almost
surely

E






sup
x≤1

Dx[i, t] + rtζi + ξi(rt)

2  Fi



 ≤ C(log t)2. (3.17)

The corresponding estimates for the event {i bad−} are harder to obtain, since now the law of the
Brownian path between times 0 and i, conditionally on F+

i , is a Brownian bridge, and it is no
more possible to obtain estimates which are valid almost surely. One need now to assume that i
is sufficiently large, and to work on an event where βi is neither too small nor too large. More
precisely, we define for an integer i,

Ei =
 √

t

(log t)5
≤ βi ≤

√
i(log t)1/10


.

Then we gather the analogues of (3.16) and (3.17) in the following lemma whose proof is postponed
to Section 3.2.3.

Lemma 3.9. There exist positive constants c and C, so that for all t large enough, almost surely
on the event Ei,

P(i bad− | F+
i ) ≤ exp(−c(log t)1/3), (3.18)

and

E






sup
x≤1

Dx[0, i] + rtζi + ξi(rt)
2  F+

i



 ≤ C exp(2(log t)1/5). (3.19)

We resume now the proof of the lower bound. Since the event {σ good} is Gτ -measurable, one has
from (3.10) and the definition of {σ good}

E0,z[R[0, t]1(τ < ∞, σ good)] = E0,z [E0,z[R[0, t] | Gτ ] · 1(τ < ∞, σ good)]

≤ 2(1 + ε) d(t)P0,z(τ < ∞, σ good). (3.20)

Thus, we can write

P0,z(τ < ∞) ≥ P0,z(τ < ∞,σ good) ≥ 1

2(1 + ε)d(t)
· E0,z[R[0, t]1(τ < ∞, σ good)] . (3.21)
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The last term above is estimated through

E0,z[R[0, t]1(τ < ∞,σ good)] ≥ E0,z[R[0, t]]− E0,z[R[0, t]1(τ < ∞,σ bad, E)]− E0,z[R[0, t]1(Ec)] ,

with

E :=


t/(log t)3≤i≤t

Ei ∩

sup
s≤t

Ms,s+1 ≤ rt


.

Using (2.11), (2.12) and Lemma 3.5 (ii), we get

P(Ec) ≤ C

(log t)4
(3.22)

From (2.7) we obtain for z ≥ s,

E

G∗(βs − z)2


≤ E


C

βs − z4 ∨ 1


≤ C

z4 + C(log z)e−z2/(8s) ≤ C

z4 .

Therefore for z ≥ t using Cauchy-Schwarz we obtain

E0,z[R[0, t]1(Ec)] =

 t

0
E[G∗(βs − z)1(Ec)]ds ≤ CP(Ec)1/2

t

z2 ≤ C
t

z2(log t)2 . (3.23)

Next we estimate the expectation of R[0, t] on {σ bad}, using Lawler’s approach. This is also the
part requiring (3.16), (3.17) and Lemma 3.9. The first step is, as before, to take the conditional
expectation with respect to Gτ and use (3.8), which gives (with X = β(τ)− β(σ))

E0,z[R[0, t]1(τ < ∞,σ bad, E)]

= E0,z


DX [0,σ]1(τ < ∞,σ bad, E)


+ E0,z [DX [σ, t]1(τ < ∞,σ bad, E)] . (3.24)

Let us start with the second term, which is slightly easier to handle. Notice that on the event E ,
using Lemma 3.5, we get (assuming σ ≤ t− 1),

sup
x≤1

Dx[σ, t] ≤ sup
x≤1

Dx[[σ] + 1, t] + C(1 + rtζ[σ]+1 + ξ[σ]+1(rt)) =: H[σ]+1.

Note also that when t − 1 ≤ σ ≤ t, one can bound the left-hand side above just by a constant,
since G∗ is bounded (recall the definition (3.9)). Also we use the convention that Dx[s, t] = 0
when s > t. Then using (3.15), we get

E0,z [DX [σ, t]1(τ < ∞,σ bad, E)] ≤ E0,z


sup
x≤1

Dx[σ, t]


1(τ < ∞,σ bad, E)



≤
∞

k=0

[t]

i=0

E0,z [Hi+11([τ ] = k, [σ] = i,σ bad, E)]

≤
∞

k=0

[t]

i=0

E0,z [Hi+11([τ ] = k, [σ] = i, i bad−, E)] + E0,z [Hi+11([τ ] = k, [σ] = i, i+ 1 bad+)]

≤
∞

k=0

[t]

i=0

E0,z [Hi+1Ik,i1(i bad−, E)] + E0,z [Hi+1Ik,i1(i+ 1 bad+)] , (3.25)
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where we set for any k, i ∈ N,

Ik,i := 1


inf
k≤u≤k+1

inf
i≤v≤i+1

βu − βv ≤ 1


.

Note that (3.17) gives in fact that almost surely

E[H2
i+1 | Fi+1] ≤ C(log t)2. (3.26)

Therefore by conditioning first with respect to Fi+1 ∨ F∞, and then using Cauchy-Schwarz and
(3.16), we get for any 0 ≤ i ≤ t,

E0,z [Hi+1Ik,i1(i+ 1 bad+)] ≤ C exp(−c(log t)1/3)E0,z(Ik,i).

Similarly by conditioning first with respect to Fi+1 ∨ F∞ and then with respect to F+
i ∨ F∞, we

get using (3.26) and (3.18), for any t
(log t)3

≤ i ≤ t

E0,z [Hi+1Ik,i1(i bad−, E)] ≤ E0,z [Hi+1Ik,i1(i bad−, Ei)] ≤ C exp(−c(log t)1/3)E0,z [Ik,i] .

On the other hand, for i ≤ t/ log3 t, one can just use (3.26), which gives using Jensen’s inequality,

E0,z [Hi+1Ik,i1(i bad−, E)] ≤ E0,z [Hi+1Ik,i] ≤ C(log t)E0,z[Ik,i].

Finally using Lemma 3.8 and (3.25), we deduce that

E0,z [DX [σ, t]1(τ < ∞,σ bad, E)] ≤ Ce−c(log t)1/3 ·E0,z[R3[0, t+1]]+C log t·E0,z


R3[0,

t

(log t)3
+ 1]


,

where for any T > 0

R3[0, T ] :=

 T

0

 ∞

0
1(βs − βu ≤ 3) ds du.

By scaling R3[0, T ] is equal in law to 81R[0, T/9]. Therefore (3.6) gives for z large enough,

E0,z [DX [σ, t]1(τ < ∞,σ bad, E)] ≤ C
t

z2(log t)2 . (3.27)

The analogous estimate for the other expectation in (3.24) is similar. The only change is that one
can rule out the case of small indices i from the beginning. For this we use that by (3.6), for z
large enough,

E0,z


DX [0,σ]1


τ < ∞,σ ≤ t

(log t)2


= E0,z


R[0,σ]1


τ < ∞,σ ≤ t

(log t)2



≤ E0,z


R


0,

t

(log t)2


≤ C

t

z2(log t)2 .

One then follows the same argument as for (3.27), summing over indices i ≥ t/(log t)2 and us-
ing (3.19) this time to obtain

E0,z


DX [0,σ]1(τ < ∞,σ bad, E)


≤ C

t

z2(log t)2 . (3.28)

Inserting (3.27) and (3.28) into (3.24), and then using (3.21), (3.22) together with (3.23) we obtain
for all t large enough.

lim inf
z→∞

P0,z(τ < ∞)

G(z)
≥ π2

4(1 + ε)
· t

d(t)
·

1− C

log t


.

Since the above estimate holds for all ε > 0, we obtain, using in addition Lemma 3.3, (recall (3.2)
and (3.3))

lim inf
t→∞

log t

t
· E[Cap(W1[0, t])] ≥ π2.
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3.2.3 Proof of Lemma 3.9

The proof is based on the fact that conditionally on F+
i , the process (βu)0≤u≤i is a Brownian

bridge. Denote by Q(i)
0,b the law of a Brownian bridge starting from 0 and ending up in b at time i

(and abusing notation let it also denote the expectation with respect to this law). It follows from
Markov’s property, that for any bounded (or nonnegative) measurable function F , one has for all
b ∈ R4,

Q(i)
0,b[F (βu, u ≤ i/2)] = E


F (βu, u ≤ i/2)

pi/2(βi/2, b)

pi(0, b)


. (3.29)

Furthermore, using the explicit expression (2.1), we see that for any b satisfying b2 ≤ i(log t)1/5,
we have

sup
x∈R4

pi/2(x, b)

pi(0, b)
≤ 4 exp((log t)1/5).

One deduces first that for any b as above, and any nonnegative functional F ,

Q(i)
0,b[F (βu − βi, u ≤ i/2)] ≤ 4 exp((log t)1/5)E [F (βu − b, u ≤ i/2)]

≤ 4 exp((log t)1/5)E−b [F (βu, u ≤ i/2)] . (3.30)

Note also that u is in fact allowed to run over the whole interval (−∞, i/2] in (3.29) and (3.30).

By using next that under Q(i)
0,b, the law of (βi−u − βi)0≤u≤i is just Q

(i)
0,−b, one deduces as well that

for b as above,

Q(i)
0,b[F (βi−u − βi, 0 ≤ u ≤ i/2)] ≤ 4 exp((log t)1/5)E [F (βu, 0 ≤ u ≤ i/2)] . (3.31)

Therefore on the event Ei applying first (3.31) with F = (supx≤1
Dx[i/2, i])

2, and using Lem-
mas 3.3 and 3.4, we obtain that for any i ≤ t, almost surely

Q(i)
0,βi






sup
x≤1

Dx[i/2, i]

2


 ≤ 4 exp((log t)1/5)E






sup
x≤1

Dx[0, i/2]

2


 ≤ C exp(2(log t)1/5).

Likewise, using this time (3.30), and Lemma 3.7, one has on Ei

Q(i)
0,βi






sup
x≤1

 i/2

0
G∗(βs − βi − x) ds

2


 ≤ C exp(2(log t)1/5).

Combining the last two displays we get that on Ei

Q(i)
0,βi






sup
x≤1

Dx[0, i]

2


 ≤ C exp(2(log t)1/5). (3.32)

Similarly, using now Lemmas 3.4 and 3.6, on the event Ei we have

Q(i)
0,βi


sup
x≤1

Dx[i/2, i] >

1 +

ε

4


d(t)


≤ 4 exp((log t)1/5)P


sup
x≤1

Dx[0, i/2] >

1 +

ε

4


d(t)



≤ C exp(−c(log t)1/3), (3.33)
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for some constant c > 0. Moreover, it follows from (3.30) and Lemma 3.7, that on Ei, for t large
enough,

Q(i)
0,βi


sup
x≤1

 i/2

0
G∗(βs − βi − x) ds >

ε

4
d(t)


≤ 4 exp((log t)1/5) P−βi


sup
x≤1

Dx[0, i/2] >
ε

4
d(t)



≤ exp(−c(log t)1/3). (3.34)

Combining (3.33) and (3.34), we get that on Ei, for t large enough,

Q(i)
0,βi


sup
x≤1

Dx[0, i] > (1 +
ε

2
)d(t)


≤ exp(−c(log t)1/3). (3.35)

The last two events involved in the definition of {i bad−} are handled similarly. For instance,
for the event concerning ζi, denoting by ζi,1 the integral on (−∞, i/2) and by ζi,2 the integral on
[i/2, i], one has using (3.30) and (3.31), using that β is a two-sided Brownian motion for the third
inequality, and Lemmas 3.4 and 3.7 for the last one

Q(i)
0,βi


ζi > (log t)1/3


≤ Q(i)

0,βi


ζi,1 >

1

2
(log t)1/3


+Q(i)

0,βi


ζi,2 >

1

2
(log t)1/3



≤ P−βi

 i/2

−∞

1

βs3 ∨ 1
ds >

1

2
(log t)1/3


+ P


ζ0 >

1

2
(log t)1/3



≤ 2P−βi


ζ0 >

1

4
(log t)1/3


+ P


ζ0 >

1

2
(log t)1/3


≤ C exp(−c(log t)1/3).

Likewise, and as for (3.32), using also the last part of Lemma 3.4 one has almost surely on the
event Ei

Q(i)
0,βi


ζ2i


≤ C exp(2(log t)1/5).

The corresponding estimates involving ξi(rt) are entirely similar. Finally we obtain that for t large
enough, on the event Ei

Q(i)
0,βi

[i bad−] ≤ C exp(−c(log t)1/3),

and

Q(i)
0,βi






sup
x≤1

Dx[0, i] + rtζi + ξi(rt)
2



 ≤ C exp(2(log t)1/5).

3.2.4 Proof of the upper bound in (3.1)

This part is similar to the lower bound, except that we work on a slightly longer time period, to
avoid discussing the cases when σ or t − σ would not be of order t. So given ε ∈ (0, 1), which we
fix for the moment, we define a time s ∈ [0, t] to be good if

inf
x≤1

Dx[−εt, s] ≥ (1− ε)d(t) and inf
x≤1

Dx[s, (1 + ε)t] ≥ (1− ε)d(t),

and otherwise we say that s is bad.
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We write next
P0,z(τ < ∞) = P0,z(τ < ∞, σ good) + P0,z(τ < ∞, σ bad) .

Let us treat first the probability with the event {σ good}. We have

P0,z(τ < ∞, σ good) ≤ E0,z[R[−εt, (1 + ε)t]]

E0,z[R[−εt, (1 + ε)t] | τ < ∞,σ good]
.

By conditioning first with respect to Gτ , we get by definition of σ good, that

E0,z[R[−εt, (1 + ε)t] | τ < ∞,σ good] ≥ 2(1− ε) d(t).

Together with (3.6) this provides the upper bound, at least for t large enough,

lim sup
z→∞

P0,z(τ < ∞,σ good)

G(z)
≤ π2(1 + 2ε)

t

log t
.

Concerning the probability of the event {σ bad}, one can argue as for the proof of the lower bound,
by discretizing τ and σ, and summing over all possible values of [τ ] and [σ]. Since this part is
entirely similar to the arguments given in the proof of the lower bound in Section 3.2.2, and is
actually even simpler since we do not have to deal with the additional factor R[0, t], we omit the
details. This completes the proof of Proposition 3.1. □

3.3 Proofs of (3.2), (3.6), and Lemmas 3.3 and 3.8

Proof of (3.2). For any real ρ > 0, with dλρ denoting the uniform probability measure on the
boundary of B(0, ρ), we have shown in (2.13) that

Cap (W1[0, t] ∩ B(0, ρ)) = 1

G(2ρ)



∂B(0,2ρ)
P0,z


W1[0, t] ∩ B(0, ρ) ∩ β[0,∞) ∕= ∅

 W1[0, t]

dλ2ρ(z).

Taking expectation on both sides we obtain

E[Cap (W1[0, t] ∩ B(0, ρ))] = 1

G(2ρ)


P0,z


W1[0, t] ∩ B(0, ρ) ∩ β[0,∞) ∕= ∅


dλ2ρ(z).

By rotational invariance of β and β, we get that the probability appearing in the integral above is
the same for all z ∈ ∂B(0, 2ρ). Writing 2ρ = (2ρ, 0, . . . , 0) we get

E[Cap (W1[0, t] ∩ B(0, ρ))] = 1

G(2ρ)
P0,2ρ


W1[0, t] ∩ B(0, ρ) ∩ β[0,∞) ∕= ∅



=
1

G(2ρ)
P0,2ρ


W1[0, t] ∩ β[0,∞) ∕= ∅


+O

P(W1[0, t] ∩ Bc(0, ρ) ∕= ∅)

G(2ρ)


.

Using that the O term appearing above tends to 0 as ρ → ∞ and invoking monotone convergence
proves (3.2).

Proof of (3.6). Note first that by (2.5) and (3.4), one has E0,z[R[0, t] | β] = Dz[0, t], and thus by
(2.3) and (3.9),

E0,z[R[0, t]] =



R4

G∗(z − x)Gt(x) dx. (3.36)
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Then, (2.6) shows that for any fixed x, G∗(z− x)/G(z) converges to π2/2, as z → ∞. Moreover,
using Fubini we get


Gt(x) dx = t. We now explain why we can interchange the limit as z goes to

infinity and the integral in (3.36).

Set Fz = {x : z − x ≤ z/2}. Using that G∗ is bounded, (2.3) and (2.4), we obtain that for
positive constants C and C ′, for all z satisfying z ≥ 1,



Fz

G∗(z − x)

G(z)
Gt(x) dx ≤ C z2



x≥z/2
Gt(x) dx = C z2

 t

0
P(βs ≥ z/2) ds

≤ C24 z2
 t

0

E[βs4]
z4 ds ≤ C ′ t3

z2 ,

using also the scaling property of the Brownian motion for the last inequality. On the other hand
on R4\Fz, the ratio G∗(z − x)/G(z) is upper bounded by a constant (recall (2.6)) and hence one
can apply the dominated convergence theorem. We conclude that, for any t > 0, (3.6) holds.

Proof of Lemma 3.3. One has recalling (3.9), and then (2.6),

E[D0[0, t]] =

 t

0
E[G∗(βs)] ds =

π2

2

 t

0
E[G(βs)1(βs > 1)] ds + O

 t

0
P(βs ≤ 1) ds



=
π2

2

 t

0



x>1

G(x)

2π2s2
e−

x2
2s dx ds + O(1) =

1

4π2



x>1

1

x4 e
− x2

2t dx + O(1),

using that P(βs ≤ 1) ≤ 1 ∧ (C/s2), for some constant C > 0, at the second line, and applying
Fubini at the last line. Then a change of variable gives

1

4π2



x>1

1

x4 e
− x2

2t dx =
1

4π2

 ∞

1

2π2ρ3

ρ4
e−

ρ2

2t dρ =
1

2

 ∞

1√
t

1

r
e−

r2

2 dr

=
1

2

 1

1√
t

1

r
dr +O(1) =

log t

4
+O(1).

It remains to bound the second moment of D0[0, t]. Recalling (3.9), and by using the Markov
property, we get

E[D0[0, t]
2] = E

 t

0

 t

0
G∗(βs)G

∗(βs′) ds ds
′


= 2



0≤s≤s′≤t
E[G∗(βs)G

∗(βs′)] ds ds
′

≤ 2

 t

0
dsE


G∗(βs)E

 t

0
G∗(βs + βs′) ds′ | βs



≤ 2E[D0[0, t]] ·

sup
x∈R4

E[Dx[0, t]]


, (3.37)

with β a standard Brownian motion independent of β. Using the simplest form of a rearrangement
inequality (see for instance [17, Theorem 3.4]) shows that for any x ∈ R4 and all t > 0,

P(βt − x ≤ 1) ≤ P(βt ≤ 1).

Using next that if β and β are two independent standard Brownian motions, then βu − βs equals
in law βu+s, for any fixed positive u and s, we deduce that also for any x ∈ Z4,

P0,x(βu − βs ≤ 1) = P0,0(βu − βs − x ≤ 1) ≤ P0,0(βu − βs ≤ 1).
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Then by combining (2.5) and (3.9) we deduce that

E[Dx[0, t]] ≤ E[D0[0, t]] ,

for all x ∈ R4. Together with (3.37), this shows that

E[D0[0, t]
2] ≤ 2E[D0[0, t]]

2,

which concludes the proof, using the first part of the lemma.

Proof of Lemma 3.8. For A ⊂ R4, define A+ := ∪z∈AB(z, 1). We claim that there exists a
constant C > 0, such that for any z, and A,

Pz(HA ≤ 1) ≤ C

 2

0
Pz(βs ∈ A+) ds. (3.38)

Note that by applying this inequality first for β on the interval [k, k+1], with A = W1[i, i+1], and
then for β on the interval [i, i + 1] with A = B(βs, 2), for every s ∈ [k, k + 2], we get the lemma.
Thus only (3.38) needs to be proved. Consider β a Brownian motion starting from some z at time
0. Note first that almost surely,

1

HA ≤ 1, sup

0≤u≤1
β(HA + u)− β(HA) ≤ 1


≤

 2

0
1(βs ∈ A+) ds, (3.39)

just because when the indicator function on the left-hand side equals 1, we know that β remains
within distance at most 1 from A during a time period of length at least 1. Now, we can use the
strong Markov property at time HA to obtain

P

HA ≤ 1, sup

0≤u≤1
β(HA + u)− β(HA) ≤ 1


= P(HA ≤ 1) · P


sup

0≤u≤1
βu ≤ 1


.

Thus, (3.38) follows after taking expectation in (3.39), with C = 1/P

sup0≤u≤1 βu ≤ 1


, which

is a positive and finite constant.

3.4 Proofs of Lemmas 3.4, 3.5 and 3.7

For the proofs of these lemmas, it is convenient to introduce new notation. For A ⊂ R4 Borel-
measurable, ℓ(A) denotes the total time spent in the set A by the Brownian motion β:

ℓ(A) :=

 ∞

0
1(βs ∈ A) ds.

We also define the sets A0 = B(0, 1), and

Ai := B(0, 2i) \ B(0, 2i−1), for i ≥ 1.

Note that for any A and k ≥ 1, one has using the Markov property

E[ℓ(A)k] = k!E


s1≤···≤sk

1(βs1 ∈ A, . . . ,βsk ∈ A) ds1 . . . dsk


≤ k!


sup
x∈A

Ex[ℓ(A)]

k

. (3.40)

In particular there is λ > 0, such that E[exp(λℓ(A0))] < ∞. Using the scaling property of Brownian
motion and Markov’s inequality, this gives an alternative proof of (2.10) (in dimension d ≥ 3).
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Proof of Lemma 3.4. Let us start with the exponential moment of ζ. Observe that

ζ ≤
∞

i=0

ℓ(Ai)

23i
.

Using Jensen’s inequality and that ℓ(Ai) equals in law to 22(i−1)ℓ(A1) for all i ≥ 1, we obtain for
some constant C > 0,

E[ζk] ≤ E




 ∞

i=0

1

2i+2

ℓ(Ai)

22(i−1)

k


 ≤
∞

i=0

1

2i+2
E


ℓ(Ai)

22(i−1)

k

≤ 4k E


ℓ(A0)

k

+ E


ℓ(A1)

k

≤ Ck k!

using (3.40) for the last inequality. Thus ζ has some exponential moments.

Now we prove (3.13). Suppose that u > 2 and x ≤ 1. Then, by (2.6)

|G∗(u+ x)−G∗(u)| = 1

4


1

u+ x2
− 1

u2

 ≤
1 + 2 u

u+ x2 u2
≤ C

u3
.

Since G∗ is bounded on B(0, 3), there exists C > 0, so that for all u ∈ R4,

sup
x≤1

|G∗(u+ x)−G∗(u)| ≤ C

u3 ∨ 1
. (3.41)

Then, (3.13) follows from (3.9).

Proof of Lemma 3.5. Part (i) follows from standard properties of the Brownian motion. We
next prove (ii). The bound on M0,1 follows from (2.9). For the rest of the proof, it is convenient to
define for s ≥ 0, y ∈ R4 and r > 0,

ξs(y, r) :=

 ∞

s

1(βu − βs − y ≤ r)

βu − βs − y2 ∨ 1
du,

so that ξs(r) = supy≤r ξs(y, r). Then observe that ξs(y, r) is equal in law to ξ0(y, r) for any s ≥ 0.
Moreover, for any given y, ξ0(0, r) stochastically dominates ξ0(y, r). Indeed in the integral defining
ξ0(0, r) the part of the integral after the hitting time of the sphere of radius y is equal in law
to ξ0(y, r) by rotational and translation invariance of Brownian motion. Now using the scaling
property of Brownian motion, and a change of variables we can see that

ξ0(0, r)
(law)
=

 ∞

0

1(βu ≤ 1)

βu2 ∨ 1
r2

du ≤ Z +

log2(r)

i=0

Zi,

where

Z :=

 ∞

0

1(βu ≤ 1/r)

βu2 ∨ 1
r2

du
(law)
= ℓ(A0),

and for any i ≥ 0,

Zi :=

 ∞

0

1(2−i−1 ≤ βu ≤ 2−i)

βu2
du

(law)
=

 ∞

0

1(12 ≤ βu ≤ 1)

βu2
du ≤ 4ℓ(A0).

We deduce by a union bound that

P(ξ0(0, r) > (log2(r) + 2)r) ≤ (log2(r) + 2)P(ℓ(A0) ≥ r/4) ≤ C exp(−cr),
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for some positive constants c and C, using that ℓ(A0) has a finite exponential moment (see (3.40)).
The analogous result for ξ0(r) follows by a union bound. The bound on its second moment is
immediate once we observe that ξ0(r) ≤ ℓ(B(0, 2r)), since the latter is equal in law to 4r2ℓ(A0).

It remains to prove (iii). Applying Lemma 3.4 to the standard Brownian motion (βu − βs)u≥s or
(βu − βs′)u≥s′ we get that there exists a constant C > 0 so that almost surely

sup
x≤1

|Dx[s, t]−D0[s, t]| ≤ Cζs and sup
x≤1

|Dx[s
′, t]−D0[s

′, t]| ≤ Cζs′ .

From (2.7) there exists a positive constant C so that

|D0[s
′, t]−D0[s, t]| ≤ C(s− s′) + C

 ∞

s


1

βu − βs − Y 2 ∨ 1
− 1

βu − βs2 ∨ 1

 du,

where Y = βs′ − βs. We next divide the last integral in three pieces, one over times u when
βu − βs − Y  ≤ Y , one over times u when βu − βs ≤ Y  and βu − βs − Y  ≥ Y , and the
last piece over the remaining times. Using again the same argument as in the proof of Lemma 3.4,
one can bound each of these pieces respectively by Cξs(Y, Y ), Cξs(0, Y ) and Cζs. Finally one
can bound similarly |ζs− ζs′ |, proving the bound concerning the Dx’s. The other bound concerning
the Dx’s is entirely similar.

Proof of Lemma 3.7. Exactly for the same reason as the fact that ξ0(0, r) stochastically dom-
inates ξ0(y, r), for any y ∈ R4 (see the argument given in the proof of the previous lemma), one
can see that the law of ξ0(r) and ζ0 when the Brownian motion β starts from some b ∈ R4, are
stochastically dominated by these same random variables when β starts from the origin. Therefore
all the statements of Lemma 3.7 concerning these two quantities follow from Lemma 3.5.

Note that the law of Dx[0, t] under Eb is the same as the law of Dx−b[0, t] under E0. Moreover,
using (2.6) and that G∗ is bounded one can see that for some C > 0 independent of b

sup
x≤1

Dx−b[0, t] ≤ CD−b[0, t],

Then, the proof of Lemma 3.3 reveals that for any b ∈ R4,

E[Db[0, t]
2] ≤ 2E[D0[0, t]]

2.

Thus, the proof of the first statement follows from Lemma 3.3. Finally, we prove the last claim of
the lemma. So assume that b is such that t/(log t)5 ≤ b2 ≤ t(log t)1/5. Note that by the above
arguments, it just amounts to showing that for some constant c > 0 (possibly depending on ε, but
not on b),

P(Db[0, t] > ε log t) ≤ exp(−c(log t)1/3),

for t large enough. For b ∈ R4 we writeH(b) = H∂B(0,b). Then by standard properties of Brownian
motion, and using rotational invariance of the function G∗, one has for any b ∈ R4,

Db[0, t] =

 t

0
G∗(βs − b) ds

(law)
=

 H(b)+t

H(b)
G∗(βs) ds.

Moreover, (2.9) and (2.10) show respectively that

P(H(b) ≤ t/(log t)6) ≤ exp(−c(log t)), and P(H(b) ≥ t(log t)2) ≤ exp(−c(log t)).
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Note furthermore that

 t(log t)2

t/(log t)6
G∗(βs) ds = D0[0, t(log t)

2]−D0[0, t/(log t)
6].

Therefore Lemma 3.3 and 3.6 show that for t large enough

P(Db[0, t] > ε log t) ≤ P

D0[0, t(log t)

2] > (1 + ε)d(t)

+ P


D0


0,

t

(log t)6


< (1− ε)d(t)



+ exp(−c(log t)) ≤ exp(−c(log t)1/3).

This concludes the proof of the lemma.

3.5 Proof of Lemma 3.6

The idea of the proof is to show that D0[0, t] is close to a sum of order log t terms which are
i.i.d. with enough moments, and then apply standard concentration results. This idea was guiding
Lawler’s intuition in the discrete setting, as he explains in [12, page 98]. However, he showed, by
direct computation, that the variance of D0[0, t] is of order log t, as its mean. Here we obtain more
precise estimate in the continuous setting.

Actually, we do not use the full strength of Lemma 3.6. However, having just a control of the
variance would not be sufficient for the proof; we need at least a good control of the fourth centered
moment. Since this is not more difficult nor longer to obtain, we prove the stronger result stated
in Lemma 3.6.

First, let us define the sequence of stopping times (τi)i≥0 by

τi := inf{s ≥ 0 : βs > 2i},

for all i ≥ 0. Then, set for i ≥ 0,

Yi :=

 τi+1

τi

G(βs) ds, and for n ≥ 0 Dn :=

n

i=0

Yi.

Note that in dimension four, for any positive real λ and x ∈ R4, one has λ2G(λx) = G(x).
Therefore using the scaling property of the Brownian motion, we see that the Yi’s are independent
and identically distributed. The following lemma shows that Y0 has sufficiently small moments,
and as a consequence that Dn is concentrated. We postpone its proof.

Lemma 3.10. There exists a positive constant λ, such that E[eλ
√
Y0 ] < ∞. As a consequence

there exist positive constants c and C, such that for all ε > 0 and n ≥ 1,

P(|Dn − E[Dn]| > εE[Dn]) ≤ C exp(−c (εn)1/3).

Now we see that as t goes to infinity, D0[0, t] is close to DNt , where Nt is defined for all t > 0, by

Nt = sup{i : τi ≤ t},

if τ0 ≤ t, and Nt = 0 otherwise. Indeed, recall that G∗(z) = G(z), whenever z > 1, so that

D0[0, t] :=

 t

0
G∗(βs) ds = DNt − Z1(t)− Z2(t) + Z3(t), (3.42)
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with

Z1(t) =

 τ0∨t

τ0

1(βs ≤ 1)G(βs) ds, Z2(t) =

 τNt+1

τ0∨t
G(βs) ds,

and

Z3(t) =

 t

0
1(βs ≤ 1)G∗(βs) ds.

Since, G∗ is bounded on B(0, 1), we see that Z3(t) ≤ Z3(∞) ≤ C ℓ(A0), for some constant C > 0,
with the notation introduced at the beginning of Section 3.4. Moreover, by definition Z2(t) ≤ YNt .
These bounds together with (3.40) and the next lemma show that Z1(t), Z2(t) and Z3(t) are
negligible in (3.42).

Lemma 3.11. There exists λ > 0, such that

E[eλ
√

Z1(∞)] < +∞,

and for any ε > 0, there exist c > 0 and C > 0, such that

P(YNt ≥ ε log t) ≤ C exp(−c


log t).

Moreover, E[YNt ] = o(log t).

Let us postpone the proof of this lemma and continue the proof of Lemma 3.6.

Actually the proof is almost finished. First, all the previous estimates and (3.42) show that D0[0, t]
and DNt have asymptotically the same mean, i.e.

lim
t→∞

1

d(t)
E[DNt ] = 1.

Moreover, using the strong Markov property at times τi, one obtains

E[DNt ] =

∞

i=0

E[Yi1(i ≤ Nt)] =

∞

i=0

E[Yi1(τi ≤ t)]

=

∞

i=0

E[Yi]P(τi ≤ t) = E[Y0]E[Nt].

Then all that remains to do is to recall that Nt is concentrated. Indeed, letting nt = log t/(2 log 2),
it follows from (2.9) that for any ε > 0,

P(Nt ≥ (1 + ε)nt) = P

sup
s≤t

βs > t(1+ε)/2


≤ C exp(−ctε), (3.43)

and it follows from (2.10) that

P(Nt ≤ (1− ε)nt) = P

sup
s≤t

βs ≤ t(1−ε)/2


≤ C exp(−ctε), (3.44)

for some positive constants c and C. So for all ε < 1 we obtain E[Nt] ≥ (1−ε)nt for all t sufficiently
large. Therefore,

d(t) ∼ E[DNt ] ≥ c0 (1− ε)nt,
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with c0 = E[Y0]. Note also that E[Dn] = c0n, for all n ≥ 0. Then with all the estimates obtained
so far (in particular with Lemma 3.10 and (3.40)), we deduce that for t large enough,

P(D0[0, t] ≥ (1 + ε)d(t)) ≤ P

D(1+ ε

4)nt
≥


1 +

ε

2


d(t)


+ P


Nt ≥


1 +

ε

4


nt



+ P

Z3(t) ≥

ε

2
d(t)


≤ C exp(−c(log t)1/3),

and likewise for the lower bound (using also Lemma 3.11):

P(D0[0, t] ≤ (1− ε)d(t)) ≤ P

D(1− ε

4)nt
≤


1− ε

2


d(t)


+ P


Nt ≤ (1− ε

4
)nt



+ P

Z1(t) + Z2(t) ≥

ε

2
d(t)


≤ C exp(−c(log t)1/3),

which concludes the proof of Lemma 3.6. □
At this point it just remains to prove Lemma 3.10 and 3.11.

Proof of Lemma 3.10. We first extend the definition of the τi’s and Ai’s to negative indices:

τ−i := inf{s ≥ τ0 : βs ∈ ∂B(0, 2−i)}, and A−i = B(0, 2−i+1) \ B(0, 2−i),

for i ≥ 1. We also set

ℓ0(A−i) :=

 ∞

τ0

1(βs ∈ A−i) ds.

In particular, compare it with the notation introduced in Section 3.4, and note that ℓ0(A−i) ≤
ℓ(A−i) . Then similarly as in the proof of Lemma 3.4, one has

Y0 =

 τ1

τ0

G(βs) ds ≤


i≥1

1(τ−i+1 < τ1)2
2iℓ0(A−i) + τ1.

Note that τ1 has an exponential tail by (2.10), so it suffices to bound the moments of the first sum.
More precisely it amounts to proving that its k-th power is bounded by Ck (k!)2. First,

E










i≥1

1(τ−i+1 < τ1)2
2iℓ0(A−i)




k


 =


i1,...,ik

4
k

j=1 ij E




k

j=1

1(τ−ij+1 < τ1)ℓ0(A−ij )



 .

Next, by Holder’s inequality we get

E




k

j=1

1(τ−ij+1 < τ1)ℓ0(A−ij )



 ≤
k

j=1

E

1(τ−ij+1 < τ1)ℓ0(A−ij )

k
1/k

.

Now by scaling and rotational invariance of the Brownian motion, for any x ∈ ∂B(0, 2−i+1), and
y ∈ ∂B(0, 1),

Ex[ℓ(A−i)
k] = 4−k(i−1) Ey[ℓ(A−1)

k] ≤ 4−k(i−1) E[ℓ(A−1)
k].

Therefore using the strong Markov property, we get

E

1(τ−ij+1 < τ1)ℓ0(A−ij )

k


≤ P(τ−ij+1 < τ1) 4
−k (ij−1) E[ℓ(A−1)

k].
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From (3.40) we deduce that there is a constant C > 0, such that

E










i≥1

1(τ−i+1 < τ1)2
2iℓ0(A−i)




k


 ≤ Ck k!


i1,...,ik

k

j=1

P(τ−ij+1 < τ1)
1/k

= Ck k!






i≥1

P(τ−i+1 < τ1)
1/k




k

≤ Ck k!






i≥1

1

22i/k




k

≤ Ck (k!)2,

using (2.8) for the second inequality. This concludes the proof of the first part of the lemma.

It remains to prove the second part. Let ε > 0 be fixed. Since Y0 is integrable, there exists L ≥ 1,
such that E[Y01(Y0 > L)] ≤ ε/4. Then using Bernstein’s inequality (see for instance Theorems
3.4 and 3.5 in [5]) and the first part of the lemma at the third line, we obtain for some positive
constants C and c,

P



n

i=0

(Yi − E[Yi])

 > ε(n+ 1)


≤ P(∃i ≤ n : Yi > L) + P



n

i=0

(Yi1(Yi < L)− E[Yi])

 > ε(n+ 1)



≤ (n+ 1)P(Y0 > L) + P



n

i=0

(Yi1(Yi < L)− E[Yi1(Yi < L)])

 >
ε

2
(n+ 1)



≤ C


n exp(−λ

√
L) + exp


−c

ε2n

E

Y 2
0


+ Lε


.

The desired result follows by taking L = (εn)2/3, and εn large enough.

Proof of Lemma 3.11. We start with the first part. Exactly as in the proof of Lemma 3.10, and
using the same notation, one has

Z1(∞) =

 ∞

τ0

1(βs ≤ 1)G(βs) ds ≤ C


i≥1

1(τ−i+1 < ∞)22iℓ(A−i),

and the result follows exactly as in the previous lemma.

Concerning the second part, recall the notation introduced at the end of the proof of Lemma 3.6.
Then using (3.43), (3.44) and Lemma 3.10, we get

P(YNt ≥ ε log t) ≤ P(|Nt − nt| ≥ ε log t) + P (∃i ∈ [nt − ε log t, nt + ε log t] : Yi ≥ ε log t)

≤ C exp(−c tε) + 2ε log t · P(Y0 ≥ ε log t)

≤ C exp(−c tε) + Cε(log t) exp(−c


ε log t).

Finally we compute the expectation of YNt as follows: for any fixed ε > 0,

E[YNt ] =


i≥0

E[1(τi ≤ t < τi+1)Yi]

≤


i≤nt−ε log t

E[1(t < τi+1)Yi] +


i≥nt+ε log t

E[1(τi ≤ t)Yi] + 2ε(log t)E[Y0],

where for indices i between nt − ε log t and nt + ε log t, we used the simple bound E[1(τi ≤ t <
τi+1)Yi] ≤ E[Yi] = E[Y0]. Then using Cauchy-Schwarz and (3.44) for the first sum above, and the
Markov property and (2.9) for the second sum, we get

E[YNt ] ≤ C nt exp(−ctε)E

Y 2
0

1/2
+ E[Y0]



j≥ε log t

exp(−c2j) + 2ε(log t)E[Y0],
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and the result follows.

4 Upward Large Deviation

Using our estimate on the expected capacity, we obtain a rough estimate on the upward large
deviation, which we use in the next section when bounding the square of the cross-terms (recall
their definition (1.8)). Our estimate improves a recent inequality of Erhard and Poisat: inequality
(5.55) in the proof of their Lemma 3.7 in [8]. They estimated the probability that the capacity of
the sausage exceeds by far its mean value and obtained polynomial bounds.

Proposition 4.1. There exist positive constants c and t0, such that for any a ∈ (0, 1), there is
κ = κ(a) > 0, satisfying

P

Cap (W1[0, t])− E[Cap (W1[0, t])] > a

t

log t


≤ exp


−c a tκmin(1,

a

log t
)


,

for all t ≥ t0. Moreover, there exists a constant κ > 0, such that the inequality holds true for any
a ≥ 1 and t ≥ 2.

Remark 4.2. The proposition shows in particular that the process

log t
t Cap(W1[0, t]), t ≥ 2


, is

bounded in Lp, for all p ≥ 1. It also implies (1.5) of Proposition 1.3, since for t large enough
a/ log t < 1, and the log t can be absorbed in tκ by choosing a smaller κ.

Proof of Proposition 4.1. Let a > 0 be fixed. Using that the capacity is subadditive, one has
for any t ≥ 2 and L ≥ 1,

Cap (W1[0, t]) ≤
2L−1

k=0

Cap


W1


k

t

2L
, (k + 1)

t

2L


. (4.1)

To simplify notation, we write

X = Cap (W1[0, t]) , and Xk = Cap


W1


k

t

2L
, (k + 1)

t

2L


, for k ≥ 0.

Note that the (Xk) are independent and identically distributed. Then choose L such that 2L = [tκ],
with κ < 1, some positive constant to be fixed later. For t large enough, Proposition 3.1 gives

E[X] ≥ 4π2(1− 2−10a)
t

log t
, and E[X1] ≤ 4π2(1 + 2−10a)

t/2L

log(t/2L)
.

Plugging this into (4.1) we obtain

X − E[X] ≤
2L−1

k=0

(Xk − E[Xk]) + 4π2 t

log t

 (1 + 2−10a)

1− log(2L)/ log t
− (1− 2−10a)


.

Furthermore when a ≤ 1, by choosing κ small enough (depending on a), one can make the last
term above smaller than at/(2 log t), and when a ≥ 1, it is easy to check that this is also true with
κ = 1/1000. Thus for this choice of κ,

P

X − E[X] ≥ a

t

log t


≤ P




2L−1

k=0

(Xk − E[Xk]) ≥
a

2

t

log t



 . (4.2)
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Now we claim that X1/(t/2
L) has a finite exponential moment. Indeed, thanks to Lemma 2.2, it

suffices to compute the moments of the volume of a Wiener sausage. But this is easily obtained,
using a similar argument as for the local time of balls, see (3.40). To be more precise, for z ∈ R4,
set

σz := inf{s ≥ 0 : βs − z ≤ 1}.
Then for any t ≥ 1 and k ≥ 1, one has using the strong Markov property at times σzi , and
translation invariance of the Brownian motion,

E[|W1[0, t]|k] =


· · ·


P(σz1 ≤ t, . . . ,σzk ≤ t) dz1 . . . dzk

= k!


· · ·


P(σz1 ≤ · · · ≤ σzk ≤ t) dz1 . . . dzk

≤ k!E[|W1[0, t]|]k.

Next recall a classical result of Kesten, Spitzer, and Whitman on the volume of the Wiener sausage,
(see e.g. [15] or [16] and references therein).

lim
t→∞

1

t
· E[|W1(0, t)|] = Cap(B(0, 1)) = 2π2.

As a consequence, for some constant C, we have E[|W1[0, t]|k] ≤ Ckk!tk, and there exists λ0 > 0,
such that

sup
t≥1

E

exp


λ0

Cap(W1[0, t])

t


< +∞. (4.3)

Now from (4.2) and (4.3) it is quite standard to deduce the result of the proposition. But let us
give some details for the reader’s convenience. First, using a Taylor expansion, one has for any
x ∈ R, and any integer n ≥ 0, e

x −
n

i=0

xi

i!

 ≤ e|x|
|x|n+1

(n+ 1)!
.

Applying this with n = 2, shows that for any λ ≥ 0, and any nonnegative random variable Y with
finite mean,

e
λ(Y−E[Y ]) −

2

i=0

λi(Y − E[Y ])i

i!

 ≤ λ3

3!
|Y − E[Y ] |3 eλ|Y−E[Y ]|.

Therefore, if we assume in addition that E[eY ] is finite and that λ ≤ 1/2, we obtain

E[eλ(Y−E[Y ])] ≤ 1 +
λ2

2
E[(Y − E[Y ])2] + C1λ

3 ≤ eC2λ2
,

for some constants C1 and C2 (that only depend on E[eY ]). Finally we apply the previous bound
to Y = λ0X0/(t/2

L), with λ0 as in (4.3). Using Chebychev’s exponential inequality, we get for any
λ ∈ [0, 1/2],

P




2L−1

k=0

(Xk − E[Xk])

t/2L
≥ a

2

2L

log t



 ≤ exp

− λλ0a

2 log t
2L

 2L−1

k=0

E

exp


λλ0

Xk − E[Xk]

t/2L



≤ exp


−


λλ0a

2 log t
− C2λ

2


2L


,

and the result follows by optimizing in λ.
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5 Intersection of Sausages and Cross-terms

5.1 Intersection of Wiener sausages

Our aim in this section is to obtain some bounds on the probability of intersection of two Wiener
sausages. Then, in the next section, we apply these results to bound the second moment of the
cross-term in the decomposition (1.8) of the capacity of two Wiener sausages.

We consider two independent Brownian motions (βt, t ≥ 0) and (βt, t ≥ 0) starting respectively

from 0 and z, and denote their corresponding Wiener sausages by W and W . We estimate the
probability that W1/2[0, t] intersects W1/2[0,∞), when z is of order

√
t up to logarithmic factors.

Note that in Section 3 we also consider the same question but when z is sent to infinity first. This
section can be read independently of Section 3, and does not use its notation.

Such estimates have a long history in probability. Let us mention three occurrences of closely
related estimates, which are however not enough to deduce ours. Aizenman in [1] obtained a bound
for the Laplace transform integrated over space. Pemantle, Peres and Shapiro [19] obtained the
existence of positive constants c and C, such that for all z ∈ R4, almost surely, for all t large
enough,

ct

log t
inf

y∈β[0,t]
z − y−2 ≤ P0,z


W1/2[0, t] ∩ W1/2[0,∞) ∕= ∅

 β

≤ Ct

log t
sup

y∈β[0,t]
z − y−2.

Lawler has obtained similar results for random walks. Finally, our result reads as follows.

Proposition 5.1. For any α > 0, there exist positive constants C and t0, such that for all t > t0
and z ∈ R4, with t/(log t)α ≤ z2 ≤ t · (log t)α,

P0,z


W1/2[0, t] ∩ W1/2[0,∞) ∕= ∅


≤ C ·


1 ∧ t

z2


· (log log t)

2

log t
. (5.1)

We divide the proof of Proposition 5.1 into two lemmas. The first one deals with z large.

Lemma 5.2. For any α > 0, there exist positive constants C and t0, such that for all t > t0 and
all z ∈ R4 nonzero, with z ≤

√
t · (log t)α,

P0,z


W1/2[0, t] ∩ W1/2[0,∞) ∕= ∅


≤ C · t

z2 · log log t
log t

. (5.2)

The second lemma improves on Lemma 5.2 in the region z small.

Lemma 5.3. For any α > 0, there exist positive constants C and t0, such that for all t > t0 and
all z ∈ R4, with t · (log t)−α ≤ z2 ≤ t,

P0,z


W1/2[0, t] ∩ W1/2[0,∞) ∕= ∅


≤ C · (log log t)

2

log t
. (5.3)

Proof of Lemma 5.2. Let r :=


t/ log t. Assume that z > 2r, otherwise there is nothing to
prove. Using (2.8), we see that estimating (5.2) amounts to bounding the term

P0,z


W1/2[0, t] ∩ W1/2[0,∞) ∕= ∅, W1[0, t] ∩ B(z, r) = ∅


.
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Using now Proposition 4.1, we see that it suffices to bound the term

P0,z


W1/2[0, t] ∩ W1/2[0,∞) ∕= ∅, d(z,W1[0, t]) ≥ r, Cap(W1[0, t]) ≤ 8π2 t

log t


.

By first conditioning on W1[0, t], and then applying Lemma 2.1, we deduce that the latter display
is bounded, up to a constant factor, by

E

1(d(z,W1[0, t]) ≥ r)

d(z,W1[0, t])2


· t

log t
.

Furthermore, on the event {d(z,W1[0, t]) ≥ r}, for t sufficiently large we have

1

2
d(z,β[0, t]) ≤ d(z,β[0, t])− 1 ≤ d(z,W1[0, t]) ≤ d(z,β[0, t]),

with β[0, t] the trace of β on the time interval [0, t]. Now by using again (2.8) and the bound
z ≤

√
t(log t)α, we get for some constant C independent of z,

E

1(d(z,β[0, t]) ≥ r)

d(z,β[0, t])2


= 2

 1/r

0
u · P (d(z,β[0, t]) ≤ 1/u) du

≤ 2

 1/r

1/z
u · P (d(z,β[0, t]) ≤ 1/u) du+

1

z2

≤ C
log(z/r)

z2 ≤ C(α+
1

2
)
log log t

z2 ,

which concludes the proof.

Proof of Lemma 5.3. Set t1 = 0, t2 = z2 and for k ≥ 3, denote tk = 2tk−1. Let K be the
smallest integer such that 2K−1 ≥ (log t)α. In particular t ≤ 2K−1z2 = tK+1 by hypothesis.
Then,

P0,z


W1/2[0, t] ∩ W1/2[0,∞) ∕= ∅


≤

K

k=1

P0,z


W1/2[tk, tk+1] ∩ W1/2[0,∞) ∕= ∅


.

We now bound each term of the sum on the right hand side. The first one (corresponding to k = 1)
is bounded using directly Lemma 5.2: for some positive constant C,

P0,z


W1/2[0, z2] ∩ W1/2[0,∞) ∕= ∅


≤ C · log log t

log t
.

Now for the other terms, we first observe that for some positive constant C, for all z, satisfying
z ≥ 1,

E


1

βtk − z2


≤ C

t2k
·


1

z − x2 e
− x2

2tk dx ≤ C

tk
. (5.4)

Furthermore, it follows from (2.9), that for all k ≤ K,

P[βtk − z >
√
tk(log tk)

α] ≤ P[βtk >
√
tk((log tk)

α − 1)] ≤ C exp(−c(log t)α), (5.5)

using that by hypothesis z ≤
√
tk, and that log tk and log t are of the same order. Then, we

obtain, for some positive constant C, for t large enough,

P0,z


W1/2[tk, tk+1] ∩ W1/2[0,∞) ∕= ∅


≤ E


P0,z−βtk


W1/2[0, tk+1 − tk] ∩ W1/2[0,∞) ∕= ∅
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≤ C E


1

βtk − z2


· tk · log log t

log t
≤ C · log log t

log t
,

using Lemma 5.2 and (5.5) for the second inequality and (5.4) for the third one. We conclude the
proof recalling that K is of order log log t.

We now give the proof of Proposition 1.5.

Proof of Proposition 1.5. Define the stopping times

σ := inf{s : W1[0, s] ∩ γ[0,∞) ∕= ∅}, and σ := inf{s : W1[0, s] ∩ γ[0,∞) ∕= ∅}.

Note that

P0,z,z′ (W1[0, t] ∩ γ[0,∞) ∕= ∅, W1[0, t] ∩ γ[0,∞) ∕= ∅) = P0,z,z′(σ < σ ≤ t) + P0,z,z′(σ < σ ≤ t).

By symmetry, we only need to deal with P0,z,z′(σ < σ ≤ t). Now conditionally on γ, σ is a stopping
time for β. In particular, conditionally on σ and βσ, W1[σ, t] is equal in law to βσ +W ′

1[0, t − σ],
with W ′ a Wiener sausage, independent of everything else. Therefore

P0,z,z′(σ < σ ≤ t) ≤ E0,z


1(σ ≤ t)P0,z,z′(σ < σ ≤ t | σ, γ,βσ)



≤ E0,z


1(σ ≤ t)P0,z′−βσ(W

′
1[0, t− σ] ∩ γ[0,∞) ∕= ∅ | σ)



≤ E0,z


1(σ ≤ t)P0,z′−βσ(W

′
1[0, t] ∩ γ[0,∞) ∕= ∅)


.

To simplify notation, write D = z′ − βσ. Note that one can assume D >
√
t · (log t)−3α−1, since

by using (2.8) and the hypothesis on z′ we have

P0,z


σ ≤ t,D ≤

√
t · (log t)−3α−1


≤ t

z′2 · (log t)6α+2
≤ (log t)−4α−2,

and the right hand side in (1.10) is always larger than (log t)−4α−2 by the hypothesis on z and z′.
Then by applying Proposition 5.1 we get for positive constants C1 and C2,

E0,z


1


σ ≤ t, D >

√
t

(log t)3α+1


P0,z′−βσ


W ′

1[0, t] ∩ γ[0,∞) ∕= ∅


≤ C1 E0,z


1(σ ≤ t)


1 ∧ t

D2


· (log log t)

2

log t

≤ C1 P0,z (W1[0, t] ∩ γ[0,∞) ∕= ∅ ) ·

1 ∧ 16t

z′2


· (log log t)

2

log t
+ C1P0,z


σ ≤ t, D ≤ z′

4


· (log log t)

2

log t

≤ C2
(log log t)4

(log t)2
·

1 ∧ t

z2


·

1 ∧ t

z′2


+ C1P0,z


σ ≤ t, D ≤ z′

4


· (log log t)

2

log t
.

Now define

τz,z′ :=


inf{s : βs ∈ B(z′, z′/4)} if z − z′ > z′/2
inf{s : βs ∈ B(z′, 3z′/4)} if z − z′ ≤ z′/2.

Note that by construction z−βτz,z′ ≥ max(z−z′, z′)/4, and that on the event {D ≤ z′/4},
one has σ ≥ τz,z′ . Therefore by conditioning first on τz,z′ and the position of β at this time, and
then by using Proposition 5.1, we obtain for some positive constants κ, C3 and C4,

P0,z


σ ≤ t, D ≤ z′/4


≤ P0,z


τz,z′ ≤ σ ≤ t



≤ C3


1 ∧ t

z − z′2


· (log log t)

2

log t
· P(τz,z′ ≤ t)
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≤ C3


1 ∧ t

z − z′2


· (log log t)

2

log t
· e−κ·z′2/t

≤ C4


1 ∧ t

z2


1 ∧ t

z′2


· (log log t)

2

log t
,

where we used (2.9) in the third line and considering two cases to obtain the last inequality:
z′ ≥ z/2, in which case we bound the exponential term by the product and z′ < z/2, in
which case using the triangle inequality gives z − z′ ≥ z/2. This concludes the proof.

5.2 A second moment estimate

Here we apply the results of the previous section to bound the second moment of the cross-term χ
from the decomposition (1.7). Recall that for any compact sets A and B with A ∪B ⊂ B(0, r), we
have defined

χr(A,B) = 2π2 r2 · 1

|∂B(0, r)|



∂B(0,r)
(Pz[HA < HB < ∞] + Pz[HB < HA < ∞]) dz,

Proposition 5.4. Let β and β be two independent Brownian motions and let W and W be their
corresponding Wiener sausages. Then, there is a constant C such that for any t > e, with r(t) =√
t · log t,

E

χ2
r(t)(W1[0, t],W1[0, t])1


W1[0, t] ∪ W1[0, t] ⊂ B(0, r(t))


≤ C

t2(log log t)8

(log t)4
. (5.6)

Remark 5.5. Note that on the event when W1[0, t] is not included in the ball B(0, r(t)), one can
use the deterministic bound χr(A,B) ≤ 4π2r2, which directly follows from the definition (1.8) and
holds for any sets A and B. Thus by using (2.9), one can see that the upper bound in (5.6) also
holds if one removes the indicator function on the left-hand side.

Proof. For any compact sets A and B and any r such that A ∪B ⊂ B(0, r), we bound χr(A,B)2

as follows. For some constant C > 0,

χr(A,B)2 ≤ C
r4

|∂B(0, r)|2



∂B(0,r)×∂B(0,r)


Pz,z′(HA < HB < ∞, HA < HB < ∞)

+ Pz,z′(HB < HA < ∞, HB < HA < ∞) + Pz,z′(HA < HB < ∞, HB < HA < ∞)

+ Pz,z′(HB < HA < ∞, HA < HB < ∞)

dz dz′, (5.7)

where H and H refer to the hitting times of two independent Brownian motions γ and γ starting
respectively from z and z′ in ∂B(0, r). To simplify notation, let A = W1[0, t], B = W1[0, t], and
r = r(t). Also, with a slight abuse of notation, in the lines below we let Pz,z′ be the law of γ and

γ conditionally on W1[0, t] and W1[0, t]. Then by using (2.8), we obtain

Pz,z′(HA < HB < ∞, HA < HB < ∞)

= Pz,z′


HA < HB < ∞, HA < HB < ∞, HB(0,

√
t

(log t)3
)
= ∞, HB(0,

√
t

(log t)3
)
= ∞


+O


1

(log t)8


.
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Now, to bound the probability on the right-hand side, we use the Markov property at times HA

and HA for γ and γ respectively. We then have using Proposition 1.5 twice, and for some constant
C,

Pz,z′


HA < HB < ∞, HA < HB < ∞, HB(0,

√
t

(log t)3
)
= ∞, HB(0,

√
t

(log t)3
)
= ∞



≤ Pz,z′(HA < HB < ∞, HA < HB < ∞, γ(HA) ≥
√
t

(log t)3
, γ( HA) ≥

√
t

(log t)3
)

≤ C Pz,z′


HA < ∞, HA < ∞

 (log log t)4

(log t)2
+O


(log t)−8


(5.8)

≤ C


1 ∧ t

z′2


·

1 ∧ t

z2


(log log t)8

(log t)4
+O


(log t)−8


= O


(log log t)8

(log t)8


.

Note that to apply Proposition 1.5 at the third line above, one also need the hypothesis that
γ(HA) and γ( HA) are not larger than

√
t(log t) for instance. But these events have negligible

probability by (2.9), so one can indeed apply the proposition. By symmetry, we get as well

Pz,z′(HB < HA < ∞, HB < HA < ∞) = O

(log log t)8

(log t)8


. (5.9)

The last two terms in (5.7) can be bounded as follows. One can first condition on A = W1[0, t] and

B = W1[0, t], and then using the inequality ab ≤ a2 + b2 for a, b > 0, together with (5.8) and (5.9),
this gives

Pz,z′(HA < HB < ∞, HB < HA < ∞) ≤ Pz,z(HA < HB < ∞, HA < HB < ∞)

+ Pz′,z′(HB < HA < ∞, HB < HA < ∞) = O

(log log t)8

(log t)8


.

(5.10)

By symmetry it also gives

Pz,z′


HW1[0,t]

< HW1[0,t] < ∞, HW1[0,t] <
HW1[0,t]

< ∞

= O


(log log t)8

(log t)8


. (5.11)

Then the proof follows from (5.7), (5.8), (5.9), (5.10), and (5.11).

6 Proof of Theorem 1.1

The proof of the strong law of large number has four elementary steps: (i) the representation formula
(2.13) of the capacity of the sausage in terms of a probability of intersection of two sausages, (ii)
a decomposition formula as we divide the time period into two equal periods, and iterate the
latter steps enough times (iii) an estimate of the variance of dominant terms of the decomposition,
(iv) Borel-Cantelli’s Lemma allows us to conclude along a subsequence, and the monotony of the
capacity which yields the asymptotics along all sequence.

Since all the technicalities have been dealt before, we present a streamlined proof. We only give
the proof when the radius of the sausage is equal to one, as the same proof applies for any radius.
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The decomposition. We let r = r(t) =
√
t · log t. When dealing with the random set W1[0, t],

(1.7) holds only on the event {W1[0, t] ⊂ B(0, r)}, and yields

Cap (W1[0, t]) = Cap


W1


0,

t

2


+Cap


W1


t

2
, t


− χr


W1


0,

t

2


,W1


t

2
, t



− εr


W1


0,

t

2


,W1


t

2
, t


.

What is crucial here is that Cap(W1[0,
t
2 ]) and Cap(W1[

t
2 , t]) are independent. We iterate the

previous decomposition L times and center it, to obtain (with the notation X = X −E[X]), on the
event {W1[0, t] ⊂ B(0, r)},

Cap(W1[0, t]) = S(t, L)− Ξ(t, L, r)−Υ(t, L, r), (6.1)

where S(t, L) is a sum of 2L i.i.d. terms distributed as Cap(W1[0, t/2
L]), where

Ξ(t, L, r) =

L

ℓ=1

2ℓ−1

i=1

χr


W1


2i− 2

2ℓ
t,
2i− 1

2ℓ
t


,W1


2i− 1

2ℓ
t,
2i

2ℓ
t


, (6.2)

and

Υ(t, L, r) =

L

ℓ=1

2ℓ−1

i=1

εr


W1


2i− 2

2ℓ
t,
2i− 1

2ℓ
t


,W1


2i− 1

2ℓ
t,
2i

2ℓ
t


. (6.3)

In both (6.2) and (6.3), the second sum (with ℓ fixed) is made of independent terms.

Variance Estimates. We choose L such that (log t)4 ≤ 2L ≤ 2(log t)4, so that L is of order
log log t. Let now ε > 0 be fixed. By (2.9) and Chebychev’s inequality, for t large enough,

P

|Cap(W1[0, t])| > ε

t

log t


≤ P(W1[0, t] ∕⊂ B(0, r)) + P


|Υ(t, L, r)| > ε

2

t

log t



+P

|S(t, L)− Ξ(t, L, r)| > ε

2

t

log t



≤ e−c(log t)2 + P

|Υ(t, L, r)| > ε

2

t

log t



+8(log t)2
var(S(t, L)) + var(Ξ(t, L, r))

ε2t2
. (6.4)

Then we use the triangle inequality for the L2-norm and the Cauchy-Schwarz inequality, as well as
Proposition 5.4 (see also (5.5)), to obtain

var(Ξ(t, L, r)) ≤ CL ·
L

ℓ=1

2ℓ−1 t
2 · (log log t)8
22ℓ(log t)4

≤ Ct2 · (log log t)
9

(log t)4
. (6.5)

To deal with var(S(t, L)), we can use Proposition 4.1 which gives a constant C > 0, such that for
any t ≥ 2

E

Cap(W1[0, t])

2


≤ C
t2

(log t)2
,

Thus there exists a constant C ′ > 0, such that for t large enough,

var(SL(t)) ≤ C ′ 2L
(t/2L)2

log2(t/2L)
≤ 2C ′ t2

(log t)6
. (6.6)
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The term Υ is controlled by invoking Lemma 2.2, and using that εr(A,B) ≤ Cap(A ∩B). Since it
is the sum of at most L2L such terms, we deduce

var(Υ(t, L, r)) ≤ E

Υ(t, L, r)2


= O(L2L(log t)2) = O((log t)10), (6.7)

so that

P
Υ(t, L, r)

 >
ε

2

t

log t


= O


(log t)12

t2


. (6.8)

Plugging (6.5) (6.6) and (6.8) into (6.4), we obtain

P

|Cap(W1[0, t])− E[Cap(W1[0, t])]| ≥ ε

t

log t


= O


(log log t)9

(log t)2


.

From Subsequences to SLLN. Consider the sequence an = exp(n3/4), satisfying that an+1−an
goes to infinity but an+1 − an = o(an). Since the previous bound holds for all ε > 0, by using
Borel-Cantelli’s lemma and Proposition 3.1, we deduce that a.s.

lim
n→∞

Cap(W1[0, an])

E[Cap(W1[0, an])]
= 1. (6.9)

Let now t > 0, and choose n = n(t) > 0, so that an ≤ t < an+1. Using that the map t →
Cap(W1[0, t]) is a.s. nondecreasing (since for any sets A ⊂ B, one has Cap(A) ≤ Cap(B)), we can
write

Cap(W1[0, an])

E[Cap(W1[0, an+1])]
≤ Cap(W1[0, t])

E[Cap(W1[0, t])]
≤ Cap(W1[0, an+1])

E[Cap(W1[0, an])]
. (6.10)

Moreover, applying Proposition 3.1 again gives

E[Cap(W1[an, an+1])] = E[Cap(W1[0, an+1 − an])] = O


an+1 − an
log(an+1 − an)


= o


an

log an


.

Then using that for any sets A and B, one has Cap(A) ≤ Cap(A ∪ B) ≤ Cap(A) + Cap(B), we
deduce that

lim
n→∞

E[Cap(W1[0, an+1])]

E[Cap(W1[0, an])]
= 1,

which, together with (6.9) and (6.10), proves the almost sure convergence.

The convergence in Lp follows from the boundedness result proved in Section 4, see Remark 4.2. □

Finally we note that the bound on the variance (1.6) follows from (6.1), (6.5), (6.6) and (6.7).
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