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Abstract
The liveness problem for timed automata asks if a given automaton has a run passing infinitely
often through an accepting state. We show that unless P=NP, the liveness problem is more
difficult than the reachability problem; more precisely, we exhibit a family of automata for which
solving the reachability problem with the standard algorithm is in P but solving the liveness
problem is NP-hard. This leads us to revisit the algorithmics for the liveness problem. We
propose a notion of a witness for the fact that a timed automaton violates a liveness property.
We give an algorithm for computing such a witness and compare it with the existing solutions.
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1 Introduction

Timed automata [1] are one of the standard models of timed systems. There has been an
extensive body of work on the verification of reachability/safety properties of timed automata.
In contrast, advances on verification of liveness properties are much less spectacular. For
verification of liveness properties expressed in a logic like Linear Temporal Logic, it is best
to consider a slightly more general problem of verification of Büchi properties. This means
verifying if in a given timed automaton there is an infinite path passing through an accepting
state infinitely often.

Testing Büchi properties of timed systems can be surprisingly useful. We give an example
in Section 6 where we describe how with a simple liveness test one can discover a typo
in the benchmark CSMA/CD model. This typo removes practically all the interesting
behaviors from the model. Yet the CSMA/CD benchmark has been extensively used for
evaluating verification tools, and nothing unusual has been observed. Therefore, even if one
is interested solely in verification of safety properties, it is important to “test” the model
under consideration, and for this Büchi properties are indispensable.

Verification of reachability properties of timed automata is possible in practice thanks to
zones and their abstractions [4, 3, 9]. Roughly, the standard approach used nowadays for
safety properties performs a breadth first search (BFS) over the set of pairs (state, zone)
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reachable in the automaton, storing only pairs with the maximal abstracted zones (with
respect to inclusion). In jargon: the algorithm constructs a zone graph with subsumption.

In this paper we give a strong evidence that verification of Büchi properties is inherently
more difficult than verification of reachability properties. For a long time it has been
understood that for liveness, there is a problem with the approach outlined above as
it is no longer sound to keep only maximal zones with respect to inclusion (i.e. to use
subsumption) [11, 13]. It is possible to use the zone graph without subsumption, but this
one is almost always too big to handle. One could hope though that some modification
of the notion of zone graph with subsumption can give an algorithm for Büchi properties
that is provably not much more costly than that for safety properties. We show that this is
impossible. We present a family of examples where reachability is much easier to decide than
verification of Büchi properties. This proves that unless P=NP, there is no hope to obtain
an algorithm for Büchi properties that has provably similar complexity to the standard
reachability algorithm (which constructs zone graph with subsumption).

Our goal in this paper is to rethink the foundations of verification of Büchi properties
for timed automata, and propose some algorithmic solutions. The first question we address
is this: what can be a witness to the fact that an automaton has no Büchi accepting run?
As we have mentioned above, for safety properties such a witness is a zone graph with
subsumption. We propose a similar notion of a witness for Büchi properties that allows
only “safe” subsumptions. As the next contribution, we give an algorithm for computing
such a witness. Due to the hardness result mentioned above, we cannot hope to have as
efficient an algorithm as for reachability. We propose an algorithm that will iteratively
apply the reachability algorithm. It will first construct the zone graph with subsumption,
stopping if it finds a Büchi run. If all subsumptions in this graph are safe according to our
definition then this graph forms a witness for non-existence of a Büchi run. Otherwise the
algorithm recursively refines strongly connected components of the zone graph with unsafe
subsumptions. This algorithm computes the zone graph without subsumption in the worst
case - this as we show is anyway necessary in some cases. The expected advantage is that in
many cases our algorithm can stop sooner. We have implemented our algorithm and run
it on a set of benchmarks from [11]. On these examples indeed the algorithm mostly stops
after the first iteration, and constructs witnesses of size very close to those for safety. To
complete the picture we also give a set of particularly hard examples for our algorithm.

Related work: Verification of liveness properties is decidable thanks to the region construc-
tion [1]. The use of zones and (certain) abstractions for this problem was developed in [13].
Later Li [12] has shown that existence of a Büchi run is preserved by every abstraction based
on simulation. In particular, this is the case for the a4LU

abstraction [3] that is the coarsest
abstraction depending only on lower and upper bounds in clock guards (LU-bounds) [7].
Thanks to these results the liveness checking can be done on an abstract zone graph using
a4LU

abstraction (but without subsumption). The question of whether subsumption can
be used to improve the liveness verification was raised in [13]. Laarman et al. [11] recently
proposed a nested DFS based algorithm for checking Büchi properties of timed automata.
They study in depth when it is sound to use subsumption in the nested dfs algorithm.
Our conditions on the use of subsumption are expressed in terms of zone graphs and are
independent of a particular algorithm. This allows us to focus on the task of finding a witness
graph efficiently, in particular we can use BFS based algorithms for the task. We give a more
detailed comparison of the two algorithms in Section 6.
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Organization of the paper: In the next section we present the basic definitions, as well as
the algorithms for constructing the abstract zone graph, and the abstract zone graph with
subsumption. We also describe the nested DFS algorithm from [11]. In Section 3 we give
our notion of a witness for non-existence of a Büchi run in a given automaton. Section 4
presents a theorem implying the above stated algorithmic difference between verification of
liveness and reachability properties. In Section 5 we propose an algorithm for finding such
witnesses and prove its correctness. Section 6 reports some experimental results.

2 Preliminaries

In this section we present the basic definitions. In particular, we define abstract zone graphs,
and the use of subsumption. We also present the standard algorithm for constructing an
abstract zone graph with subsumption. This can be used to answer reachability properties.
We finish this section with the nested DFS algorithm for liveness properties from [11].

Let R≥0 denote the set of non-negative reals. A clock is a variable that ranges over R≥0.
Let X = {x1, . . . , xn} be a set of clocks. A valuation is a function v : X → R≥0. The set
of all clock valuations is denoted by RX≥0. We denote by 0 the valuation that associates 0
to every clock in X. A clock constraint φ is a conjunction of constraints of the form x ∼ c
where x ∈ X, ∼∈ {<,≤,=,≥, >} and c ∈ N. Let Φ(X) denote the set of clock constraints
over the set of clocks X. A valuation v is said to satisfy a constraint φ, written as v |= φ,
when every constraint in φ holds after replacing every x by v(x). For δ ∈ R≥0, let v + δ be
the valuation that associates v(x) + δ to every clock x. For R ⊆ X, let [R]v be the valuation
that sets x to 0 if x ∈ R, and that sets x to v(x) otherwise.

I Definition 1 (Timed Büchi Automata [1]). A Timed Büchi Automaton (TBA in short) is a
tuple A = (Q, q0, X, T, F ) in which Q is a finite set of states, q0 is the initial state, X is a
finite set of clocks, F ⊆ Q is a set of accepting states, and T ⊆ Q × Φ(X) × 2X ×Q is a
finite set of transitions of the form (q, g, R, q′) where g is a clock constraint called the guard,
and R is a set of clocks that are reset on the transition from q to q′.

The semantics of a TBA A = (Q, q0, X, T, F ) is given by a transition system of its
configurations. A configuration of A is a pair (q, v) ∈ Q× RX≥0, with (q0,0) being the initial
configuration. There are two kinds of transitions:

delay: (q, v)→δ (q, v + δ) for δ ∈ R≥0;
action: (q, v)→t (q′, v′) for t = (q, g, R, q′) ∈ T such that v |= g and v′ = [R]v.

A run of A is a (finite or infinite) sequence of transitions starting from the initial configuration:
(q0,0) δ0,t0−−−→ (q1, v1) δ1,t1−−−→ · · · , where (q, v) δ,t−→ (q′, v′) denotes a delay δ followed by action
t starting from (q, v + δ). A configuration (q, v) is said to be accepting if q ∈ F . An infinite
run satisfies the Büchi condition if it visits accepting configurations infinitely often. The run
is Zeno if its accumulated duration is finite, i.e.,

∑
i≥0 δi ≤ c for some c ∈ R≥0. Else it is

non-Zeno. The problem we are interested is termed the Büchi non-emptiness problem.

I Definition 2. The Büchi non-emptiness problem for TBA is to decide if a given TBA A
has a non-Zeno run satisfying the Büchi condition.

The Büchi non-emptiness problem is known to be Pspace-complete [1]. Standard
solutions to this problem construct an untimed Büchi automaton and check for its emptiness.
There are various methods to handle the non-Zeno requirement [15, 8]. In this paper, we will
assume that the automata are strongly non-Zeno [13], that is, every infinite accepting run is
non-Zeno. The strongly non-Zeno construction could lead to an exponential blowup [8, 6] to
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the abstract zone graph (which is defined below), but we prefer to employ this commonly
used assumption in order not to divert from the main subject. We will now describe a
translation which reduces the Büchi non-emptiness problem to checking non-emptiness of an
untimed Büchi automaton.

Abstract zone graphs: As the semantics of a TBA is an infinite transition system, al-
gorithms for TBA consider special sets of valuations called zones. A zone is a set of
valuations described by a conjunction of two kinds of constraints: either xi ∼ c or xi−xj ∼ c
where xi, xj ∈ X, c ∈ Z and ∼∈ {<,≤,=, >,≥}. For example (x1 > 3 ∧ x2 − x1 ≤ −4) is a
zone. Zones can be efficiently represented by Difference Bound Matrices (DBMs) [5].

The zone graph ZG(A) has as nodes pairs (q, Z) consisting of a state of the TBA and a
zone. The initial node is (q0, Z0) where Z0 = {0+δ | δ ∈ R≥0}. For every t = (q, g, R, q′) ∈ T ,
and every set of valuationsW , we define the transition⇒t as: (q,W )⇒t (q′,W ′) where W ′ =
{v′ | ∃v ∈ W, ∃δ ∈ R≥0 : (q, v) t−→ δ−→ (q′, v′)}. If W is a zone, then so is W ′. In the zone
graph, from every node (q, Z) there is a transition (q, Z) ⇒t (q′, Z ′) corresponding to the
transitions t from q. The transition relation ⇒ is the union of ⇒t over all t ∈ T .

Although the zone graph ZG(A) groups together valuations, the number of zones is still
infinite [4]. For effectiveness, zones are further abstracted. An abstraction operator is a
function a : P(R|X|≥0 )→ P(R|X|≥0 ) such that W ⊆ a(W ) and a(a(W )) = a(W ) for every set of
valuations W ∈ P(R|X|≥0 ). The abstraction is finite if a has a finite range. An abstraction
operator defines an abstract symbolic semantics: (q,W ) ⇒t

a (q′, a(W ′)) when a(W ) = W

and (q,W )⇒t (q′,W ′). We define a transition relation ⇒a to be the union of ⇒t
a over all

transitions t. For a finite abstraction operator a, the abstract zone graph ZGa(A) consists as
nodes pairs (q,W ) of the form W = a(W ). The initial node is (q0, a(Z0)) where (q0, Z0) is
the initial node of ZG(A). Transitions are given by the ⇒a relation. Such a graph ZGa(A)
can be seen as a Büchi automaton with the accepting states (q,W ) for q ∈ F .

Abstractions for timed automata are parameterized by the maximum constants appearing
in the guards of the automaton. The structure of the automaton determines two functions
L : X 7→ N and U : X 7→ N. For a clock x, the value L(x) denotes the maximum constant
occurring in guards of the form x ≥ c or x > c; and the value U(x) denotes the maximum
constant occurring in guards x ≤ c or x < c. This can be further refined by considering LU
bounds for each state of the automaton [2]. In this paper we will use the abstraction operator
a4LU

[3] and the abstract zone graph ZGa4LU (A) induced by it. It was shown in [7] that the
a4LU

abstraction induces the smallest zone graphs, for a given bound function LU . Moreover,
we know from [12] that ZGa4LU (A) is sound and complete for Büchi non-emptiness: TBA A
has a run satisfying the Büchi condition iff ZGa4LU (A) has one. This gives an algorithm for
the Büchi non-emptiness problem: given a TBA A, compute the (finite) Büchi automaton
ZGa4LU (A) and check for its emptiness.

There is a challenge due to the use of the a4LU
abstraction. There are zones Z for which

a4LU
(Z) is non-convex and hence it is better to avoid storing a4LU

(Z). Therefore, the
solution to compute ZGa4LU (A) works with a graph consisting of (state, zone) pairs and
uses the a4LU

abstraction indirectly [7]. The algorithm for computing ZGa4LU (A) is shown
in Figure 1. Since we consider only ZGa4LU (A) in the rest of the paper, we will denote
the transition relation ⇒a4LU

by →, as shown in Figure 1, for convenience. For a node
n ∈ ZGa4LU (A) we write n.q and n.Z for the state and zone present in node n respectively.

Using subsumption to compute smaller graphs: Although ZGa4LU (A) is the smallest
abstract zone graph for a given LU , its size could be (and usually is) exponential in the size
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1 procedure abstract_zone_graph(A)
2 V := {(q0, Z0)}, Waiting := {(q0, Z0)}
3 → := ∅ // edge relation
4 while (Waiting 6= ∅)
5 take and remove (q, Z) from Waiting
6 for each t = (q, g, R, q′) ∈ A
7 compute (q, Z)⇒t (q′, Z′)
8 if ∃(q′, Z1) ∈ V s.t a4LU

(Z′) = a4LU
(Z1)

9 add (q, Z)→ (q′, Z1)
10 else
11 add (q′, Z′) to V and Waiting
12 add (q, Z)→ (q′, Z′)
13 return (V , →)
14

15 procedure subsumption_graph(A)

16 V := {(q0, Z0)}, Waiting := {(q0, Z0)}
17 → := ∅ // edge relation
18  := ∅ // subsumption relation
19 while (Waiting 6= ∅)
20 take and remove (q, Z) from Waiting
21 for each t = (q, g, R, q′) ∈ A
22 compute (q, Z)⇒t (q′, Z′)
23 if ∃(q′, Z1) ∈ V s.t a4LU

(Z′) = a4LU
(Z1)

24 add (q, Z)→ (q′, Z1)
25 else if ∃(q′, Z1) ∈ V s.t. Z′ ⊆ a4LU

(Z1)
26 add (q′, Z′) to V
27 add (q, Z)→ (q′, Z′) (q′, Z1)
28 else
29 add (q′, Z′) to V and Waiting
30 add (q, Z)→ (q′, Z′)
31 return (V , →,  )

Figure 1 Algorithm on the left computes ZGa4LU (A). The algorithm on the right uses subsump-
tion. Methods for testing Z′ ⊆ a4LU (Z1) and a4LU (Z′) = a4LU (Z1) are given in [7].

1 procedure ndfs()
2 Cyan := Blue := Red := ∅
3 dfsBlue(s0)
4 report no cycle
5

6 procedure dfsRed(s)
7 Red := Red ∪ {s}
8 for all s→ t do
9 if (Cyan v t) then report cycle

10 if (t 6v Red) then dfsRed(t)

11

12 procedure dfsBlue(s)
13 Cyan := Cyan ∪ {s}
14 for all s→ t do
15 if (t /∈ Blue ∪ Cyan and t 6v Red)
16 then dfsBlue(t)
17 if (s ∈ F ) then
18 dfsRed(s)
19 Blue := Blue ∪ {s}
20 Cyan := Cyan \{s}

Figure 2 Nested DFS algorithm with subsumption [11] to compute a subgraph of ZGa4LU (A).

of A. An essential optimization that makes analysis of timed automata feasible is the use
of subsumption. For two nodes t and s of ZGa4LU (A) we say t is subsumed by s, written
as t v s, if t.q = s.q and t.Z ⊆ a4LU

(s.Z). The node s simulates t. Hence, at least for
testing reachability, it is enough to keep in the graph only the maximal nodes with respect
to subsumption. The algorithm incorporating subsumption is shown in Figure 1.

Subsumption optimization is known to give substantial gains for the reachability prob-
lem [10]. However, subsumption is not a priori correct for liveness, and the question of how
it can be used for liveness was raised in [13]. An algorithm proposed in [11] (illustrated in
Figure 2) gives a restricted way of using subsumption in a nested dfs algorithm for detecting
accepting cycles. If we know that from a node s there is no reachable accepting cycle, then
no node t v s needs to be explored. The red nodes in the nested dfs algorithm play the role
of node s (cf. Lines 10 and 15 in algorithm). Another optimization occurs in Line 9 - if there
is a path from a node t to node s subsuming it, then a cycle can be concluded.

The goal of this paper is to find subsumption graphs of ZGa4LU (A) that are sound and
complete for liveness, and to design efficient algorithms to compute them.

FSTTCS 2016
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3 Liveness compatible subsumptions

In this section, we are interested in understanding generic conditions as to when subsumption
can be used correctly for liveness analysis. We start with an example. Consider the TBA A
and ZGa4LU (A) illustrated in Figure 3. The zone graph has an accepting cycle on the node
(1, 101 ≤ y−x). For each of the states 1, 2 and 3 of the TBA, there are at least 100 nodes in the
zone graph. Note that (1, 1 ≤ y−x) v (1, 0 ≤ y−x) and (2, 1 ≤ y−x ≤ 101) v (2, 0 ≤ y−x).
If we allow the luxury to use subsumptions freely, we would get the graph consisting only
of the green nodes in the figure. However, in this graph there is no accepting cycle made
uniquely of → edges. There are cycles containing subsumption edges but, as we will see later,
it is not sound to take such cycles as witnesses for the existence of an accepting computation.
Hence the green graph is not complete for liveness: to detect an accepting computation we
should not use subsumption on (1, 1 ≤ y − x). Observe that using subsumption on the node
(2, 1 ≤ y − x ≤ 101) would do no harm, as further exploration would not lead to accepting
cycles anyway. This subsumption gives already a significant gain. In fact, the zone graph
restricted to the green and grey nodes, along with the subsumption edge on the right is a
liveness complete graph according to the definition below. Algorithm in Figure 2 does not
detect this possibility and explores the whole graph.

Our goal is to make use of subsumption as much as possible, subject to the restriction
that the resulting graph contains an accepting cycle of → edges iff ZGa4LU (A) contains one.
Including the subsumption edges as part of a cycle is not sound in general - for instance in
Figure 3, the subsumption edge on state 2 forms a cycle, whereas there is no cycle containing
2 in ZGa4LU (A). In this paper, we do not include the subsumption edges as part of cycles.
Hence in the graphs that we construct, cycles are actual cycles in ZGa4LU (A) - so every such
cycle with an accepting state gives an accepting computation. The challenge is to decide
what are the subsumptions that are safe and can be left in the graph. We first make precise
the notion of a zone graph with subsumptions, and then follow up with a condition that
makes a zone graph with subsumption complete for liveness.

I Definition 3 (Subsumption graph). Let G be a graph consisting of a subset of nodes and
edges of ZGa4LU (A) together with new edges called subsumption edges. Each node is labeled
either covered or uncovered. Such a graph is called a subsumption graph if it satisfies the
following conditions:
C1 the initial node of ZGa4LU (A) belongs to G and is labeled uncovered,
C2 for every uncovered node s, all its successor transitions s −→ s′ occurring in ZGa4LU (A)

should be present in G,
C3 for every covered node t ∈ G there is an uncovered node s ∈ G such that t v s; moreover

there is an explicit subsumption edge t s in G,
C4 there is a path of −→ edges from the initial node to every other node.

A path in a subsumption graph is made of both → and  edges. We write s1 99K∗ s2 to
denote that there is a path from s1 to s2 in the subsumption graph. We now describe the
relation between paths in a zone graph and in a subsumption graph.

I Lemma 4. For every (finite or infinite) path s0 → s1 → s2 → · · · in ZGa4LU (A) there is
a path s′0 99K∗ s′1 99K∗ s′2 99K∗ · · · in G such that for each i, si v s′i and s′i is uncovered.

Lemma 4 along with condition C4 says that if there is a path s0 →∗ s in ZGa4LU (A), there
is a path s0 →∗ s′ with s v s′ in the subsumption graph G. This shows that subsumption
graphs are complete for reachability. However, these conditions are not sufficient for liveness
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{x}
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(1, 0 ≤ y − x)
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(3, 1 ≤ y − x ≤ 100)

(3, y − x = 100)

(2, y − x = 101)

...
...

Figure 3 On the left is a TBA A; on the right the graph without the dashed edges is ZGa4LU (A).
Assume that L = U = 100 at every state - this can be achieved by adding more transitions on each
state (which are not shown for clarity). Dashed edges show subsumption. The part of ZGa4LU (A)
restricted to green nodes and dashed edges is the zone graph with subsumption. In this green
graph there is no accepting cycle consisting of → edges. Removing the dashed edge on the node
(1, 1 ≤ y − x) and adding the grey nodes identifies the accepting cycle.

– for a cycle of → edges in the zone graph, we may not get a corresponding cycle of → edges
in the subsumption graph (cf. Figure 3). We now give an extra criterion.

I Definition 5 (Liveness compatible subsumption graph). A subsumption graph G is said to
be liveness compatible if it additionally satisfies the following condition:
C5 there is no cycle containing both an accepting node and a subsumption edge.

In Figure 3, the zone graph restricted to green nodes and the dashed edges is not liveness
compatible. There is a cycle containing an accepting node (1, 1 ≤ y − x) and a subsumption
edge from this node. However, removing this subsumption edge and adding the grey nodes
makes it liveness compatible. The only subsumption edge is from (2, 1 ≤ y − x ≤ 101) and it
is not part of a cycle containing an accepting node. Intuitively, when we add a subsumption
edge t s, we know that paths in ZGa4LU (A) starting from t can be simulated from s in
the subsumption graph. But if there is a cycle containing t s in the subsumption graph,
this would mean that the simulation from s can bring us back to t. Hence some accepting
runs from t in ZGa4LU (A) could be lost in the subsumption graph. We show that condition
C5 above makes such a situation impossible.

I Theorem 6. ZGa4LU (A) has an infinite accepting path iff a liveness compatible subsump-
tion graph has an infinite accepting path consisting of → edges.

Proof. Let G be a liveness compatible subsumption graph. Since all the −→ edges in G

come from the zone graph, a cycle of −→ edges in G implies such a cycle in the zone graph.
This shows the direction from right to left. Suppose ZGa4LU (A) has an accepting run ρ:
s0 −→ s1 −→ · · · . From Lemma 4, we have a path ρ′ in G of the form:s′0 99K∗ s′1 99K∗ s′2 99K∗
· · · such that each si v s′i . Since ρ is an accepting run, some accepting node s repeats
infinitely often in ρ. Corresponding positions in ρ′ contain nodes which subsume s. Since
there are finitely many nodes in G, there should be some accepting node s′ which occurs
infinitely often in ρ′. Therefore there is a cycle containing s′ in G. By liveness compatibility
criterion C5 this cycle should be made of only −→ edges. From condition C4, there should
be a path consisting of −→ edges from the initial node of G to s′. This gives an infinite path
in G made of → edges that visits an accepting node s′ infinitely often. J

FSTTCS 2016



48:8 Why Liveness for Timed Automata Is Hard, and What We Can Do About It

q0 q1 q2 q3 r0 r1 r2

t0

{x1}

{x1}

{x2}

{x2}

{x3}

{x3}

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

{y}(y ≥ 1)

Figure 4 Automaton for φ = (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3).

4 Liveness is more difficult than reachability

Theorem 6 says that to solve the Büchi non-emptiness problem, one can compute a liveness
compatible subsumption graph and check for cycles containing an accepting node and no
subsumption edge. In general, liveness compatible subsumption graphs are smaller than
the zone graph, but bigger than the usual subsumption graphs computed for reachability
(cf. Figure 3). A natural question now is to ask if one can quantify this overhead created
due to the liveness compatibility. In this section, we show that deciding liveness from a
(reachability compatible) subsumption graph is NP-hard. Therefore, unless P=NP, one
needs an object exponentially bigger than subsumption graphs to decide liveness. The proof
of the following theorem uses the same kind of gadget as in [6].

I Theorem 7. Given a strongly non-Zeno TBA and its subsumption graph, deciding Büchi
non-emptiness is NP-hard.

Proof. We give a reduction from 3SAT. Let P = {p1, . . . , pk} be a set of propositional
variables and let φ = C1 ∧ · · · ∧ Cn be a 3CNF formula with n clauses. We will construct an
automaton Bφ such that φ has a satisfying assignment iff Bφ has an infinite run satisfying
the Büchi condition. Moreover, we give a subsumption graph with the same number of nodes
as the number of states in Bφ.

The timed automaton Bφ is defined as follows. For each propositional variable pi, there
are two clocks, xi and xi, which encode the value of pi when the value of one of the two
clocks is 0 and the other is not. In addition, there is a clock y. In all, the set of clocks X
is {x1, x1, . . . , xk, xk, y}. For a literal λ, let cl(λ) denote the clock xi when λ = pi and the
clock xi when λ = ¬pi. The set of states of Bφ is {q0, . . . , qk, r0, . . . , rn, t0} with q0 being the
initial and the accepting state. The transitions are as follows: for each propositional variable
pi we have transitions qi−1

{xi}−−−→ qi and qi−1
{xi}−−−→ qi; for each clause Cm = λm1 ∨ λm2 ∨ λm3 ,

m = 1, . . . , n, there are three transitions rm−1
cl(λ)≤0−−−−−→ rm for λ ∈ {λm1 , λm2 , λm3 }; a transition

qk −→ r0 with no guards and no resets; transitions rn
{y}−−→ t0 and t0

y≥1−−→ q0.
Figure 4 shows the automaton for the formula (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3). A path

from q0 to q3 encodes an assignment with the following convention: a reset of xi represents
pi 7→ true and a reset of xi means pi 7→ false. Then, from r0 to r2 we check if the formula
is satisfied by this guessed assignment (clearly there is no point to let the time pass in this
process). The additional parts are the transitions from r2 −→ t0 and t0 −→ q0. Note that this
makes the automaton strongly non-Zeno: between two consecutive visits to q0, at least 1
time unit should elapse.

If φ has a satisfying assignment, then for every pi the path that resets xi if pi is true and
resets xi if pi is false can be extended to a run reaching t0. For instance, the formula from
Figure 4 is satisfied by every assignment that maps p3 to true. The path corresponding to
such an assignment passes through the transition q2

{x3}−−−→ q3. Then, it has the possibility
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to follow transitions r0
x3≤0−−−→ r1 and r1

x3≤0−−−→ r2. Note that this is possible independently
on the amount of time elapsed at q0. In particular, after the first iteration from q0 → q0
the values of all clocks become bigger than 1. By following the path corresponding to the
satisfying assignment each time, q0 can be visited infinitely often. Conversely, suppose Bφ
has an infinite run that visits q0 infinitely often. Since after one iteration q0 → q0 the value
of all clocks are above 1, the only way to take transitions r0 → r1 · · · → rn is by resetting
clocks appropriately so that at least one guard is satisfied at every ri. One such sequence of
resets would then give a satisfying assignment for φ.

We now give an idea of the subsumption graph Gφ for Bφ as computed by the algorithm in
the right hand side of Figure 1. It turns out that for every state q0, . . . , qn and r0, . . . , rn there
is a single node with the zone a4LU

(Z0), where Z0 is the initial zone, consisting of the time
successors of v0 (the valuation mapping every clock to 0). This is because a4LU

abstraction
does not remember the order of resets. If it had, there would be exponentially many nodes
at rn. It can be checked that transitions rn → t0 → q0 yield a node (q0, a4LU

(Z ′0)) where
a4LU

(Z ′0) is strictly included in a4LU
(Z0). J

The graph Gφ in the previous proof is not a liveness compatible subsumption graph. An
algorithm for liveness would explore further from (q0, a4LU

(Z ′0)) till a complete graph is
obtained. Theorem 7, says that this process essentially leads to SAT solving. The above
theorem holds even if the less coarse abstraction Extra+

LU [3] is used instead of a4LU
.

5 An algorithm

We now consider the algorithmic problem of computing a liveness compatible subsumption
graph for a given automaton. The objective is of course to compute a small graph, as
otherwise we could just compute the entire abstract zone graph without subsumption using
the algorithm from the left of Figure 1. A better solution is the nested DFS algorithm in
Figure 2 - indeed the final graph computed by it is a liveness compatible subsumption graph.
In this section, we present a different algorithm, and compare its performance with the
nested DFS approach. Our algorithm iterates between a reachability computation and an
SCC analysis of the computed graph to find cycles violating condition C5 in Definition 5.
Figure 5 illustrates the idea. The picture on the left shows the situation after the first
reachability-SCC analysis. At this point, each violating subsumption edge is removed and a
subsumption graph computation is started from the corresponding covered node (nodes a
and e in the figure). During this exploration, the use of subsumption is restricted in order to
avoid falling repeatedly into the same bad cycle: as a is covered by b then i must be covered
by c, but this covering edge will form a bad cycle anyway, so there is no point of introducing
it. To achieve this behavior, a level field is added to each node and subsumption is allowed
only to nodes of a higher level (subsumption j  k and the subsumption on node l, assuming
nodes in the white part get level ∞). The iteration between reachability and cycle detection
phases continues till the computed graph does not have violating cycles.

The problem with this approach is that the same edges will be considered in an unbounded
number of SCC analyses. To avoid this, each SCC analysis phase is restricted to the nodes
and edges of the current level. This however could miss out certain violations that span
across levels (like the one caused by the edge o→ f). The following algorithm handles this
issue by considering all such exit edges as potential causes of violation.
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Figure 5 On the left is an illustration of a subsumption graph. An SCC decomposition of this
graph gives the nodes that are part of violating cycles, and those that cannot reach violating cycles.
On the right, is a re-exploration from bad subsumptions. In the re-exploration, subsumption is
restricted to nodes of same level, or nodes that are known not to reach violating cycles.

Iterative SCC based algorithm with subsumption:

Phase 0 Let K = 1 and let Sinit and S be the sets containing the initial (state,zone) pair.
Phase 1 Construct a subsumption graph from nodes in Sinit. Set the level field of all nodes

in Sinit to K and let Sinit be the pool of nodes to be explored. Every node added in
this phase will have level field set to K. Repeatedly, take a node (q, Z) from the pool.
For every edge (q, Z) ⇒ (q′, Z ′), add node (q′, Z ′) to S and to the pool unless there is
already (q′, Z1) ∈ S s.t., either:
1.1 a4LU

(Z ′) = a4LU
(Z1), or

1.2 a4LU
(Z ′) ⊂ a4LU

(Z1), state q′ is non-accepting, node (q′, Z1) is uncovered and has
a level K or ∞.

In the first case, add the edge (q, Z)→ (q′, Z1) to S. In the second case, add the node
(q′, Z ′) to S and the edges (q, Z)→ (q′, Z ′), (q′, Z ′) (q′, Z1) to S. By the end of this
phase, graph S will be extended with some nodes of level K.

Phase 2 Consider the subgraph GK of S induced by nodes of level K, and containing all the
→ and  edges between these nodes. Decompose GK into maximal SCCs by considering
both → and  as the same kind of edges. Mark a maximal SCC as bad if:
2.1 either it contains an accepting node and a subsumption edge (both nodes adjacent

to the  edge must be in the SCC), or
2.2 it has a node s with a successor edge s→ s′ to a node s′ of level strictly less than K.

Note that node s is in GK , but s′ is not.
For every node in GK : set the flag of the node to ∞ if it cannot reach a bad SCC.

Phase 3 Let Sinit be all covered nodes in GK which still have level K. Remove the corres-
ponding subsumption edges. Set K := K + 1.

Repeat If Sinit is non-empty, restart from Phase 1.
Final If Sinit is empty, perform an SCC decomposition of S. If there is an accepting cycle of
→ edges, return non-empty, else return empty.

In the above algorithm, Phase 1 is a reachability computation and Phases 2 and 3 are
SCC-analysis. The final phase is a usual cycle detection algorithm.

I Theorem 8. A strongly non-Zeno TBA A is non-empty iff the iterative SCC based
algorithm with subsumption returns non-empty.

Although the iterative algorithm performs an unbounded number of calls to an SCC
decomposition, each edge is visited in only two SCC decompositions - one in the Phase 2 of
the iteration corresponding to the level of the source node when it appeared, and the second
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Table 1 Comparison of the size of liveness invariants generated by nested DFS algorithm, nested
DFS algorithm with subsumption [11] and our Iterative algorithm running a Topological Search (see
[10]) on the benchmark from [11]. We used a Linux station with an Intel i7-2600 3.40GHz processor
and 8Gb of memory.

Prop Sat Nested DFS NDFS subsumption Iterative TS UPPAAL TS
# nodes sec. # nodes sec. # nodes K sec. # nodes

Fi1
√

26 651 0.2 26 651 0.2 7 737 1 0.3 7 737
Fi2

√
132 808 1.4 132 808 1.3 38 238 1 1.0 38 238

Fi3 26 679 0.4 26 679 0.4 20 768 1 0.8 20 768
FD1

√
19 858 0.3 18 246 0.2 705 1 0.1 705

CC1
√

1 786 399 31.6 1 786 399 32.7 15 837 1 1.3 15 837
CC2

√
22 070 0.4 22 070 0.4 12 898 1 0.3 12 898

one during the final phase. This gives a constant upper bound on the number of times an
edge is visited, irrespective of the number of iterations needed for stabilization. Therefore
the time spent by the algorithm is linear in the size of the final graph computed, similar
to the algorithm in Figure 2 which visits each edge twice. Moreover the result is always
included in an abstract zone graph (without subsumption).

Let us now compare this approach with the nested DFS algorithm from Figure 2. The
advantages of our algorithm are clearly visible on a (quite pathological) case of an automaton
having no reachable accepting state. In this case, nested DFS does not use subsumption at
all as there are no red nodes. On the other hand, the iterative algorithm computes just a
reachability subsumption graph. After the first iteration, there would be no bad SCCs, and
hence the entire graph would be marked ∞. Another important class of automata for which
we get a significant gain is weak timed Büchi automata (every cycle in a weak TBA consists
entirely of accepting nodes or non-accepting nodes). As there can be no SCCs containing
both accepting and non-accepting nodes, the iterative algorithm stabilizes after 1 iteration.
The automaton of Figure 3 is a weak Büchi automaton. The nested DFS algorithm computes
the entire zone graph - no subsumption will be allowed. The iterative algorithm would
allow subsumption on the non-accepting part. It computes the graph consisting of the green
and grey nodes. There are examples where the nested DFS approach can outperform the
iterative algorithm. Modify the automaton in Figure 3 as follows: make all states accepting;
add another clock w and an edge 0 w≥5−−−→ 2. Note that the iterative algorithm cannot use
subsumption at all since all nodes are accepting. Moreover this additional edge leads to
n1 : (2, 0 ≤ y− x∧w ≥ 5) which starts a long thread of zones due to the transitions between
2 and 3. Note that n : (2, 0 ≤ y − x ∧ w ≥ 5) is subsumed by (2, 0 ≤ y − x). If the NDFS
chooses a good order and finishes exploring the latter zone first, it allows subsumption
n1  n, and avoids computing the subtree below n1.

6 Experiments

We have implemented our algorithm in our tool TChecker. Our implementation includes
various optimizations that are not presented in this paper (the algorithm stops after Phase 1
when no accepting state is reachable, covered nodes are not kept in the liveness invariants,
etc.). We have compared our algorithm with our own implementation of the nested DFS
algorithm with subsumption from [11]. We have conducted experiments on the classical
benchmarks for Timed Automata, that we describe below. We verify properties given by
Büchi automata on these standard models. To do this, we take the product of the model
with a property automaton, and check for Büchi non-emptiness on this product.
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Table 2 Comparison of the nested DFS algorithm with subsumption[11] and our Iterative
algorithm running a Topological Search (see[10]) on properties with timed constraints. We used a
Linux station with an Intel i7-2600 3.40GHz processor and 8Gb of memory.

Prop Sat NDFS subsumption Iterative TS UPPAAL TS
# visited # nodes # visited # nodes K # nodes

Fig 4 58 50 116 50 3 8
(CC3) 8 16 165 16 164 219 561 205 656 1 205 656
(CC4) 3

√
44 873 35 787 449 724 150 078 282 367

(CC5) 3
√

240 111 237 548 606 421 201 740 60 772
(Fi4) 8

√
466 572 382 936 154 854 77 427 1 77 427

(Fi5) 4
√

48 299 24 979 88 430 29 677 17 704

As a first experiment, we considered the models and properties in [11]. Fischer’s protocol
is a mutual-exclusion protocol based on real-time constraints. Let c denote the number
of processes in critical section. We checked properties (Fi1) G(c ≤ 1) mutual exclusion;
(Fi2) GF(c = 0)∧GF(c = 1) non-blocking from [12]; and (Fi3) G(req1 =⇒ Fcs1) every request
of process 1 is eventually satisfied. FDDI is a token ring protocol where the communication
can be synchronous or asynchronous. We checked property (FD1) FG(async1) process 1
eventually communicates asynchronously. Finally, CSMA/CD is a protocol to detect and
solve message collisions that is used for communications over Ethernet networks. We checked
two properties (CC1) G(collision =⇒ Factive) after a collision, the network becomes active
again; and (CC2) FG(collision =⇒ G¬sent) after some collisions, no message can ever be
sent. We consider instances of the 3 models with 7 processes and standard parameter values
from the literature.

Table 1 shows a comparison between the standard nested DFS algorithm, nested DFS
algorithm with subsumption [11] and our Iterative algorithm. The first column corresponds
to the property checked as described above. A tick in the second column indicates that
the property holds: the Büchi automaton for the complement has no accepting run. For
every algorithm, we report the size of the liveness invariant (# nodes) and the running
time (sec.). We also report the maximum level (K) for the Iterative algorithm. The last
column gives the size of the reachability invariant as computed by our implementation of
UPPAAL’s algorithm [16]. This is a lower bound on the size of the liveness invariant. Both
our Iterative algorithm and UPPAAL’s algorithm explore the state-space of the automata
using a topological search [10].

The results show that our Iterative algorithm computes liveness invariants that are
significantly smaller that those computed by both nested-DFS algorithms. Indeed, for all
these examples, the reachability invariants are liveness compatible as shown by the comparison
to UPPAAL’s algorithm. Our algorithm also visits significantly less nodes than nested-DFS
algorithms. It stops immediately after Phase 1 for (Fi1) and (CC2) that have no reachable
accepting state. Models (Fi2), (FD1) and (CC1) have reachable accepting states, but no bad
SCC. As a result, the Iterative algorithm stops after Phase 2 and skips Phase 3 and the final
phase. Finally, (Fi3) has an accepting run that is found during Phase 2.

We have also compared the algorithms on examples that are particularly difficult for
Iterative algorithm. The results are shown in Table 2. We report for each model the number
of visited nodes (# visited) and the size of the liveness invariants (# nodes). We also compare
to the size of reachability invariants generated by UPPAAL’s algorithm. The first example
corresponds to the automaton in Figure 4. Since it is built from a formula that is satisfiable,
the automaton has an accepting run. However, the accepting cycle spans over two levels. As
a result, our Iterative algorithm required 2 refinements (K = 3), and it had to run all phases
to detect the accepting run. The nested-DFS algorithm explores significantly less nodes.
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Figure 6 Model of CSMA/CD: station (left) and bus (middle); property (CC3) (right).

The other examples are built from the CSMA/CD model (CC) and the Fischer model
(Fi) described above. We consider timed specifications with timed constraints that make
covering harder. Property (CC3) is depicted in Figure 6 (right). The automaton checks that
station 1 tries to transmit fast enough, and that it often achieves successful transmissions.
Property (CC4) is a variation of (CC3) where cycles can be iterated only a bounded number
of times. This is achieved by adding a new clock t4 that is never reset, and an invariant
t4 ≤ K to the accepting state. Property (CC5) checks that if collisions are infrequent and
station 1 tries infinitely often to send, then it effectively sends messages infinitely often.
Property (Fi4) expresses that if process 1 can infinitely often access the critical section for K
time units, then it enters the critical section infinitely often. Finally, property (Fi5) checks
that process 1 requests access to the critical section frequently, but is only granted access
in a certain time window. As for (CC4) the cycles in (Fi5) can be iterated only a bounded
number of times.

Property (CC3) has accepting runs, thus the nested-DFS algorithm with subsumption
performs significantly better than our Iterative algorithm. Indeed, the Iterative algorithm
first computes a reachability invariant in Phase 1 before being able to detect the accepting
run in Phase 2. Properties (CC4) and (Fi5) with bounded iterations of cycles are difficult
for our Iterative algorithm. These two automata generate many bad SCCs, hence many
refinements. At each refinement step, our algorithm needs to generate many new nodes as
covering is restricted to nodes within the same level (or nodes with level ∞). This results in
bigger liveness invariants than those computed by nested-DFS algorithm with subsumption.
On the examples (CC5) and (Fi4), on the contrary, our algorithm generates smaller invariants
than nested-DFS with subsumption. Notice that in most examples, the liveness invariants
computed by both algorithms are huge w.r.t. reachability invariants computed by UPPAAL’s
algorithm.

Finally, the case of CSMA/CD gives an interesting motivation for testing Büchi properties.
Indeed property (CC2) holds for the CSMA/CD model. As a result, the model is not correct
since communications should be enabled after a collision. It turns out that a transition is
missing in the widely used model [14, 17]. In consequence, once some process enters in a
collision, no process can send a message afterwards. The model can be fixed by allowing the
busy action in state RETRY as shown in Figure 6. This example confirms once more that
timed models are compact descriptions of complicated behaviors due to both parallelism and
interaction between clocks. Büchi properties can be extremely useful in making sure that a
model works as intended.
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7 Conclusions

As we show in this paper, the liveness problem for timed automata is substantially more
difficult algorithmically than the reachability problem. We have defined a notion of an
invariant for liveness properties: a graph proving that the property does not hold. We
have also proposed a high-level algorithm for constructing such an invariant. Finally, we
have reported on some experiments with a preliminary implementation of this algorithm.
Further work will be required to understand the relation between sizes of liveness and safety
invariants, as well as to develop better algorithms for constructing liveness invariants.
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